
H.264 Video Compression and Transmission: Final
Report

1st Elena Su
Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

esu@mit.edu

2nd Reinaldo Figueroa
Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

reyfp@mit.edu

Abstract—Here we propose a low-latency implementation of
the ubiquitous H.264 video compression and transmission pro-
tocol, compatible with the Nexys 4 DDR FPGA. Our system
involves two FPGAs: the first will take in the raw 320 x 240
RGB video in VGA format from an input desktop computer, then
proceed to encode and transmit the input video as a compressed
bitstream; the second FPGA will receive and decode the bitstream
in order to render a final 320 x 240 video output. Our bitstream,
which is comprised of NAL units, will be transmitted via a
direct Ethernet connection between the two FPGAs. Our Ethernet
transmitter-receiver pair will be consistent with the official RMII
specification, and builds upon the Ethernet NIC from lab.

Index Terms—H.264, Video Compression, Ethernet, Digital
Systems, Field Programmable Gate Arrays, Motion Compensa-
tion, Video Compression

I. DELEGATION

Throughout this project, Reinaldo was responsible for work-
ing with the Vivado GUI, as well as integrating the motion
compensation, entropy encoding and decoding, and the de-
blocking filters; Elena was responsible for implementing the
initial block, spatial model, intra prediction, inverse quantiza-
tion and transform, NAL Parser, and Ethernet components. As
delegated by all team members, Elena and Reinaldo wrote the
final preliminary report, and produced most of the diagrams
and visuals included in both papers. Both team members
collaborated on component integration and debugging. Our
code base is hosted on GitHub here, or at the following url:
https://github.com/su-elena/h264.

II. OVERVIEW

A high-level module diagram which illustrates these com-
ponents and our detailed block diagrams are provided on the
final page for ease of reference. At a high level, H.264 is
a lossy compression standard which achieves efficient video
compression and transmission via selective reduction of re-
dundancies in the original video input. In this section, we
shall commence with a high-level description of the H.264
protocol; in later sections, we will discuss implementation-
specific design decisions. Under this protocol, video is com-
monly transmitted in YCbCr format as a series of still images,
each of which is called at frame. First, the H.264 encoder
partitions each frame into a series of contiguous 16 x 16-
pixel chunks, called macroblocks. Within each macroblock,

the luma and chroma components of each pixel are selectively
sampled to discard extraneous color information. Next,
each macroblock undergoes motion-compensated prediction,
wherein a prediction model is generated using a reference
frame, which is frequently a previously-encoded video frame.
A 16 x 16-pixel block in our reference frame which most
closely resembles our current macroblock is located using a
search algorithm. The offset between the current macroblock
and the reference block will be conveyed as a motion vec-
tor, which is later encoded and transmitted; additionally, the
bitwise differences between the current macroblock and the
reference frame, called the residuals, will be transmitted also.

In situations when motion prediction is inaccurate, intra
prediction can be used to generate a prediction block based on
previously encoded and reconstructed blocks within a frame.
The prediction block is then subtracted from the current block
to generate residuals prior to encoding. Prior to applying
entropy encoding, each residual macroblock is sent through
the spatial model. Within each 16 x 16 macroblock, the
basic 4x4 transform is a scaled approximate Discrete Cosine
Transform (DCT). The residuals and motion vectors are then
quantized into a smaller set of discrete values. Finally,
the outputs of the spatial model are encoded using Context-
based Adaptive Variable-Length Coding (CAVLC) and Exp-
Golomb encoding. All quantized coefficients are encoded us-
ing CAVLC; syntax elements are encoded using Exp-Golomb
encoding. The output of the entropy encoder is a bitstream.
As bytes emerge from the CAVLC encoder, they are fed into
a NAL packager, which inserts headers, extraneous zeroes,
and delimiters as needed. The output of the NAL packager
is the final encoded bitstream. Conceptually, the decoding
process is very similar; it is essentially the reverse of the
encoding pipeline. Each stage in the encoding pipeline has
a corresponding stage in the decoding pipeline which reverses
its effects to yield the original transmitted video. Below is a
simple diagram which conveys the rough steps of the H.264
encoding and decoding process. In the following sections,
we will provide a thorough discussion of module-specific
implementation details and design considerations.

https://github.com/su-elena/h264
https://github.com/su-elena/h264


III. TESTING AND DEBUGGING

To facilitate the testing and debugging of such a complex
system, we relied not only on an extensive series of test-
benches, but also on an Integrated Logic Analyzer (ILA).
We enabled an ILA IP using the Vivado GUI, which was
used to test and debug features such as SD reading, Ethernet
transmission, and reception of downstream packages. We also
relied on GTKWave outputs to ensure the accurate timing of
rising and falling edges across all of our testbenched modules.

IV. INITIAL BLOCK

Our initial block consists of the RGB to YCbCr converter,
frame buffer, and chroma subsampling modules. We convert
each pixel from 24-bit RGB to 24-bit YCbCr format,
then partition each 320 x 240 frame into 16 x 16-pixel
macroblocks.

The module rgb_to_ycbcr.sv takes a 24-bit RGB
pixel as input and outputs a 24-bit pixel in YCbCr format after
a two clock-cycle delay. Conversion formulas are obtained
from the Microsemi UG0639 Color Space Conversion User
Guide.

Next, we read each 24-bit pixel into frame_buffer.sv,
which contains a dual-port BRAM holding two 320 x 240
frames. We then index into that BRAM to yield 16 x 16
macroblocks; as macroblocks become available, they are sent
into a chroma subsampling module. During this stage, we
exploit the BRAM’s low-latency reads and writes; to reduce
complexity, we also designate one port exclusively for reads
and one for writes only.

As the final module in the initial block,
chroma_subsample.sv implements 4:2:0 chroma
subsampling to reduce image complexity. The subsampling
patterns are displayed below (Fig. 1).

To ensure the robustness and effectiveness of our initial
block, we have tested the entirety of the initial block on
an entire 320 x 240 frame: this test yielded the correct
subsampled macroblocks, and GTKWave indicated correct
valid_in and busy signals. The frame buffer incurs about
1280 clock cycles of latency; while this is many clock cycles
compared to many other modules in our pipeline, this still
only a matter of milliseconds in real time, which should be
much faster than a modern GPU.

Fig. 1. The 4:2:0 chroma subsampling pattern. For each pixel, we sample
the luma component in its entirety; for the red difference and blue difference
components, we sample only one pixel for every four input pixels.

V. MOTION COMPENSATION AND INTRA PREDICTION

A. Motion Compensation

For each macroblock, we index into the BRAM containing
the reference frame to find the 16 x 16 block within a reference
frame which is most similar; from this reference block, we
calculate the residual and motion vector, which are transmitted.
At the time of this report, we have yet to implement the motion
estimation and compensation modules; however, work on these
modules has commenced. To find the 16 x 16 block in the
reference frame which is most similar to our macroblock, we
have decided to use an exhaustive search; this is conceptually
the simplest algorithm, and it will simplify the pipelining
process during top-level wiring.

B. Intra Prediction

The intra_predict.sv module generates a prediction
block based on previously encoded and reconstructed blocks
within a frame. The prediction block is then subtracted from
the current block prior to encoding.

We have a BRAM cache which holds our reference frame;
for each macroblock in our current frame, we execute three
forms of INTRA4x4 prediction: DC Mode, Vertical Mode,
and Horizontal Mode. We choose the prediction mode which
minimizes the sum of squared differences from the actual
block, then output the predicted macroblock. The sum of abso-
lute differences is calculated by taking the absolute difference
between each pixel in the original block and the corresponding
pixel in the reference block; these differences are summed
across all 16 pixels to give an indicator of how similar the
INTRA4x4 prediction is to the reference image. Below is
a visual which demonstrates the three different modes of
INTRA4x4 prediction.



Fig. 2. In the DC mode of INTRA4x4 prediction, all pixels of a subblock
are predicted from the average of the values of the pixels, which are above
and on the left of the current subblock.

Fig. 3. In the horizontal mode of INTRA4x4 prediction, all pixels in the each
row of the subblock are predicted directly from the value of the pixel in the
same row, which lies immediately to the left of the block.

Fig. 4. In the vertical mode of INTRA4x4 prediction, all pixels in the each
column of the subblock are predicted directly from the value of the pixel in
the same column, which lies immediately on top of the block.

VI. SPATIAL MODEL

Within this pipeline stage, residuals and motion vectors are
transformed and quantized into a smaller set of discrete values;
we obtain coefficients, which are inputs to the entropy encoder.
First, a Discrete Cosine Transform will allow us to express
our macroblocks as a sum of cosine functions at different
frequencies. The 4 x 4 DCT matrix M is shown below:

Fig. 5. 4x4 DCT matrix.

For a 4 x 4 input matrix A, we compute MAMT ; in this
way, we will apply the DCT to the subblocks within each
macroblock. Then, we scale and quantize our transformed

outputs; we chose our optimal scaling and quantization pa-
rameters according to a 2008 IEEE conference paper [5].

We are performing matrix multiplication in parallel, which
gives the FPGA a steep advantage over a traditional CPU. In
order to enable accurate calculations using sine functions, we
integrated a fixed-point math IP core generated by the Vivado
GUI.

VII. ENTROPY ENCODER AND DECODER (REINALDO)

A. Encoder

Here, we will use Context Adaptive Variable Length Coding
(CAVLC) and Exp-Golomb encoding to encode all quantized
coefficients, aided by an SD card. The encoded bitstream will
be run through the NAL packager and sent to the decoder via
Ethernet.

1) Exp-Golomb Encoder: Firstly, we implemented an Exp-
Golomb entropy encoder module which you can find inside
the exp_golomb_enc_look_up.sv file. This module en-
codes any numbers (or code num) from 0-512 into its re-
spective code word. The Exp-Golomb coding effectively uses
shorter code words for code nums that are more frequent.
Each sector of the SD card contains 512 bytes and we
use two bytes per code word. Therefore, we use two full
sectors of our SD to effectively store our full look-up table
for the Exp-Golomb encoder. We decided to store our look-
up tables on an SD card since it offers 1 MB of storage,
which is more space than the BRAMs on our FPGA afford.
Numbers between 0 and 256, inclusive will be included in
Sector #1 and numbers between 257 and 512 are included on
Sector #2; we choose the sector we should find our desired
code word based on this criteria. Since every code word uses
two bytes, we initiate a counter that increases every two
bytes (in other words, every code word); therefore, once our
counter’s value matches our target code num, we store it, wait
for the SD Card reader module to be done (i.e., for the ready
signal to go high), and return such code word by driving a
data valid out signal high. Exp-Golomb encoding is a form
of variable length coding (VLC), so using two full output bytes
for every code word would negate its purpose and introduce
inefficiencies. Therefore, we padded a an extra 1’b1 bit before
the beginning of our code word so that we know where it
starts, and filter it out later during encoding. By using the
Vivado GUI, and specifically the Integrated Logic Analyzer
(ILA) tool, we were able to retrieve the right code word for a
given code num from our SD card. Exp-Golomb encoding is
used for the encoding of parameters such as macroblock type,
reference frame index, and motion vector difference.

2) Context-Adaptive Variable-Length Coding (CAVLC):
CAVLC is another example of Variable-Length Coding widely
used in H.264. Note that CAVLC will be necessary when
encoding parameters such as the 4x4 residuals which result
from the Discrete Cosine Transform (DCT) matrix multipli-
cation. In addition, the number of non-zero coefficients in
adjacent blocks are highly correlated, so our module also
uses previously calculated numbers of non-zero coefficients
to select which table to conduct the variable lookup. Our



module cavlc_encoder.sv contains all the look-up tables
we need to encode these parameters: Num-VLC0, Num-
VLC1, Num-VLC2, other fixed-lenght coding tables and a
Chroma DC coding table. All these are necessary and have
been written inside our CAVLC module. Our module has to
make a decision about which table to use based on the number
of coefficients of the blocks to the left (declared as N l) and
above (declared as N u) of the current block. By using these
two parameters we compute use a new parameter N that later
helps us select the needed table.

Fig. 6. Computing the N value based on upper and left blocks. N will be
used to select encoding tables.

We then pick which table we have to use based on the
value of the computed N. If no values for adjacent blocks were
provided, our decision defaults to Num-VLC0. Additionally,
our module uses the number of trailing ones (also known
as T1s, each of which is ±1) and total number of non-zero
coefficients (or num coeffs, as we call it in our module.)
Using our previously selected encoding table, our module
proceeds through a set of case statements to arrive at the
desired code word. We decided not to offload our look up
tables this time since the number of parameters we need to
store our tables is not as big and the loop-up operating is
done in a single clock cycle. These encoding modules have
been tested through testbenches provided inside the sim folder.

B. Decoder

We implemented Exp-Golomb entropy decoder which you
will find in the module named exp_golomb_decoder.sv
which takes in and exp-golomb code word and return its
respective code num. Thankfully, this module did not require
us to have look-up tables in order to find the code nums.
However, it did required some computations and understanding
on how each Exp-Golomb code word is composed. The way
to decode an Exp-Golomb word of the format :

[Mzeros][1][log2(code num+ 1)]

is the following:
1) Read all leading zeros followed by a 1, which we call

M.
2) Read the M-bit sized INFO field.
3) Then,

code num = 2M + INFO − 1

Our module is capable of taking in a code_word of any
size and will apply the aforementioned steps to find the
code_num. It takes a single clock cycle (100 MHz) to
perform this computation.

VIII. ETHERNET

We have implemented our Ethernet transmitter; down-
stream, we use the Ethernet NIC implementation from Lab05
to receive packages on the decoder FPGA.

A. Ethernet Transmitter
We designed a custom Ethernet transmitter to send our

entropy-encoded bitstream over the wire. Our transmitter
functions as as follows: we have hardcoded our preamble,
SFD, and header. We also specified a custom source address
and have modified our downstream Ethernet receiver accord-
ingly. Our input data is read into a two-port BRAM FIFO
buffer; one port is used for reads, indexed by the variable
read_address, and the other port is used exclusively for
writes, indexed by the variable write_address. We incre-
ment write_address whenever a new byte is input into
our BRAM, and we increment read_address whenever an
external module requires us to output data from our buffer.
Each byte we read out from the buffer was then split into
four dibits and sent across the wire. To maximize buffer space
and optimize the memory usage of our project, we are storing
our preamble, SFD, and header in a register rather than in a
BRAM. We then run CRC32-BZIP2 across the entirety of our
message and send the FCS after all our data has been trans-
mitted; additionally, all portions of the bitstream excluding the
FCS are run through the bitorder.sv module in order to
be compatible with downstream logic and to account for the
Endianness of the Ethernet protocol. Similarly to the Ether-
net lab, we used a clock divider to produce eth_refclk as
an output, which is a 50MHz clock which drives the physical
layer. Other outputs were txen, a one-bit signal that indicated
a valid dibit was being transmitted, and txd, which held the
dibit that was being transmitted.

B. Ethernet Receiver
We use the complete Ethernet NIC implementation from

Lab05. In simulation, we are able to successfully receive single
packets of length up to 1500 bytes (the Ethernet MTU) which
are sent via our transmitter; however, we are encountering and
troubleshooting a few difficulties regarding dropped header
and FCS bits when multiple packets are being sent across the
wire.

IX. NAL PARSER

We have implemented the NAL packager and parser, which
ensure that all information is transmitted intact between the
FPGAs. Displayed below is the structure of the NAL unit.

To simplify our process, our design choice involved elim-
inating the SPS, PPS, and IDR. However, we decided to
interject startcodes intermittently into our bitstream in order
to indicate the locations of distinct frames in our bitstream.
To reduce the length of our final bitstream, we replaced the
official three-byte startcode with a shorter one-byte sequence
(8’b10101010), which our decoder checks for in down-
stream logic. This module was debugged using testbenches;
verification was conducted on GTKWave. A schematic show-
ing the high-level design of our parser is below.



Fig. 7. The bitstream consists of three-byte startcodes, interjected with NAL
units. At the beginning of the bitstream, we also would ordinarily have the
Sequence Parameter Set (SPS), the Picture Parameter Set (PPS), and the IDR.

X. RECONSTRUCTION

Our image reconstruction module comprises of two stages:
first, we will use the decoded residuals and offsets to recon-
struct each original frame; next, we will use a deblocking filter
to smooth the edges between adjacent macroblocks, leading to
a more cohesive image.

We have yet to implement our inverse motion compensation
module; but it will use a previous reconstructed frame as a
reference, then calculate the address of the current macroblock
based on the reconstructed motion vector. To lower the latency
of our implementation, and for ease of access, we will store
the reference frame in a BRAM.

Our deblocking_filter.sv module takes a raw re-
constructed image as input; our input frame, which is stored
in a BRAM, consists of 16 x 16 macroblocks. We apply a
Gaussian blur filter between the edges of adjacent macroblocks
to yield a smoother-looking image. The simple Gaussian filters
are applied concurrently, which takes 2 clock cycles. This
module works in simulation, but has yet to be tested in
synthesis. Finally, the output of our

XI. EVALUATION

Our project was clocked at 100 MHz. Our Exp-Golomb
encoder performs SD reading which works at 25MHz which
we created by using the Vivado clock wizard. As expected,
reading from the SD card takes aproximately 9200 clock
cycles at this frequency. As we briefly mention inside the
Entropy Encoding section, we occupy two sectors of a 2Gb SD
card, which means we occupy in total 1Mb to store the look-
up tables. Even though our module usually finds our desired
value after faster, we wait for the SD controller module to
finish ready to not cause timing issues.

XII. FUTURE WORK

If time permitted, we would have devoted more effort
into top-level wiring of our modules. Although most of our

components were functional in simulation, a potential focus
would have been the performance of our modules in synthe-
sis. In particular, areas of improvement include the motion
compensation module. The implementation of the motion
compensation module was not completed so we would have
loved to spend more time finishing it up and including it into
our top-level design. The CAVLC decoder module was also
not fully implemented due to lack of time.

REFERENCES

[1] JVT Document JVT-C028, Gisle Bjøntegaard and Karl Lillevold,
“Context-adaptive VLC (CVLC) coding of coefficients,” Fairfax, VA,
May 2002.

[2] I. E. Richardson, The H.264 Advanced Video Compression Standard.
John Wiley & Sons, 2011.

[3] “Vcodex.” Vcodex, www.vcodex.com/. Accessed 15 Dec. 2022.
[4] ”Microsemi UG0639 Color Space Conversion User Guide”, 6th ed.

Microsemi Headquarters, One Enterprise, Aliso Viejo,CA 92656 USA
[5] Wu, Ping-Tsung, et al. “A H.264 Basic-Unit Level Rate Control Al-

gorithm Facilitating Hardware Realization.” IEEE Xplore, 1 Mar. 2008,
ieeexplore.ieee.org/abstract/document/4518077. Accessed 15 Dec. 2022.








	Delegation
	Overview
	Testing and Debugging
	Initial Block
	Motion Compensation and Intra Prediction
	Motion Compensation
	Intra Prediction

	Spatial Model
	Entropy Encoder and Decoder (Reinaldo)
	Encoder
	Exp-Golomb Encoder
	Context-Adaptive Variable-Length Coding (CAVLC)

	Decoder

	Ethernet
	Ethernet Transmitter
	Ethernet Receiver

	NAL Parser
	Reconstruction
	Evaluation
	Future Work
	References

