
FPGA Accelerated Tactile Sensing Textiles Final
Report

1st Austin White
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

akwb@mit.edu

2nd Tiffany Louie
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

tklouie@mit.edu

Abstract—Research into flexible sensors has become increas-
ingly important in developing human computer interactions and
fine motor control. The Computational Design & Fabrication
Group (CDFG) lab in CSAIL is currently developing a piezoresis-
tive textile sensor where wires are embroidered in an array across
a piezoresistive sheet, and pressure on the material reduces the
resistance. This sampling on normal microprocessors is limited
by speed, only reading a 32 x 32 array up to 10Hz max. We
utilized FPGA design to speed up this process and provide more
data through a greater sampling rate, data analysis, VGA and
UART visualization at up to 80 times the original array scanning
rate.

Index Terms—Digital systems, Field programmable gate ar-
rays, Tactile Sensors

I. DESIGN OVERVIEW

Fig. 1. Image of System

Fig. 2. FPGA Block Diagram.

The system consists of the embroidered sensor, the sen-
sor reading electronics, an FPGA, and visualization outputs
including the VGA and UART. The FPGA design is split
into three main parts: data acquisition that controls the sensor
electronics, data analysis that refines and extracts tracking
information from the data, and a visualization of the sensor
data. Users can control settings in the data analysis and
visualization using switches and buttons on the FPGA.

II. PHYSICAL CONSTRUCTION

The sensor and the readout electronics are adapted from the
sensors in the IntelligentCarpet system and tactile gloves [2].
These readout electronics are also based on recommendations
listed in a paper exploring piezoresistive array sensor readout
options [3].

The system operates off two voltages, 3.3V which is pro-
vided from the FPGA and powers the electronics. The Vref
refrence voltage is 1.66V, which is provided by a voltage
divider from the 3.3V and buffer.

Fig. 3. Electronics Block Diagram

A. Sensor

The sensor is an embroidered Velostat sheet with conductive
silver thread. The threads are arranged in a grid, with lines on
either side of the material. The array in which the points cross
are the readout points for the sensor. The sensor reads out a
voltage proportional to the resistance (and consequently the
pressure) applied on the point of the crossing.



B. Switching Side

All wires are set to Vref except for the selected wire,
which is driven to ground. The selected wire is controlled
by a CD74HC4067 multiplexer, each output signal is also
connected to a SN74HC14 inverter. The inverted signal is
connected to a 74HC4316 SPST switch held at Vref and the
original signal is connected to another SPST switch driven to
ground.

Fig. 4. Switching Electronics where wire A’ is selected

C. Reading Side

The array is scanned through each of the read-in wires. The
wire is selected using a CD74HC4067 multiplexer. The signal
is then passed into the negative terminal of a LT1632 op amp
with a 100 Ohm feedback resistor. The output of the op amp
is wired into the AD7476A ADC.

Fig. 5. Reading Electronics where wire A is selected

III. DATA ACQUISITION

A. Clocks

Our reference clock for the design comes from a 65 MHz
VGA clock, which is generated using the 100 MHz FPGA
base clock and a Xilinx clock wizard generator block.

The ADC clock comes from dividing the VGA clock by an
integer parameter ADC_CLK_DIVIDE. This is so we can have
a separate control from the scanning frequency of the sensor
to the display and computations. We designed our system to
work on this ADC clock by calculating the array scanning rate
at:

65, 000, 000 Mhz
ADC CLK DIVIDE ∗ (16 + TQUIET) ∗ RD WIRE CNT ∗ SW WIRE CNT

(1)

B. Wire Control

To ensure that the wires are only switching when the ADC
has finished reading out the value, the pulse generation module
counts how many ADC clock cycles it needs for the ADC to
read and output the value indicates that the reading wire should
be changed by creating a pulse. For every RD_WIRE_CNT
number of wires, the signal to change the switching wire is
also pulsed out.

A counting module controls the switching and reading wires
by counting from 0 to the max number of wires (stored
in SW_WIRE_CNT and RD_WIRE_CNT). The counts are
incremented once for every corresponding pulse the module
receives. The values are wired from PMOD headers to the
mux that controls the corresponding wire.

C. ADC Read

The FPGA communicates with the ADC following a SPI
protocol and operates using the ADC clock. When chip select
is driven low, the ADC outputs four leading zeros, then 12
bits of value. The module drives the chip select signal low,
verifies these leading zeros, then saves the value to a buffer.
When all the values are in, the FPGA drives the chip select
signal high for ADC_TQUIET cycles. The module outputs the
saved value and a valid out signal. Every time the reading wire
is changed, the voltage is read in through the ADC.

D. Data Storage

Because the sensor input and data analysis run on different
clocks, we use a dual port dual clock Xilinx BRAM to manage
the sensor data. The data is written to the BRAM at the rate
of the ADC clock and data is read from the BRAM at the rate
of the 65mhz clock. This first BRAM contains only the raw
data.



IV. COMPUTATION DATA ANALYSIS

A. Threshold Input

The threshold input for the data is controlled by a seven
segment display, switches, and the buttons. It is stored by
multiple counting modules that increment on the rising edge of
each button push. Since the data is 12 bits, the thresholds are
represented by 3 hex figures in the seven segment display. The
top four nibbles in the display represent the upper threshold,
and the bottom four nibbles represent the lower threshold.

A switch determines whether the user controls the upper
or lower threshold. The left and right buttons toggle between
which nibble (“significant figure”) the user controls. The user
then uses the top and bottom button to change the nibble value.

The threshold values are used in noise filtering, convolution,
and center of mass calculation.

B. Convolution

This module reads in the threshold module’s filtered data
and stores it into a three line internal buffer. This data is used
to perform convolutions, or combining our array signals to
highlight patterns in data. Due to the input requirements of
our convolution algorithm, we are unable to perform arithmetic
on the input of our outer wires. Our 3x3 convolution kernels
include:

1) Identity
2) Gaussian Blur
3) Sharpen
4) Ridge Detection
5) Sobel X Edge Detection
6) Sobel Y Edge Detection

This data is then written to two duplicate BRAMs for visual-
ization. The BRAMs are a dual port dual clock Xilinx BRAM
that operates at the rate of the VGA clock on both ports. One
BRAM is connected to the VGA visualization modules, while
the other is connected to the UART output.

C. Center of Mass

This module takes in any pixel that passes the thresholding
value after convolution. It adds the pixel to the sum and divides
out the total number of pixels on the monitor.

D. Motion Tracking

This module takes in the coordinates from the Center of
Mass module and tracks its movement. This module sends a
signal to the VGA Display if the Center of Mass coordinates
move across 3 pixel regions, correlating to switching wire and
reading wire combinations, within a specified timeout. This
signal highlights blue all of the pixel regions that the Center
of Mass coordinates moves through. This signal stops when
the Center of Mass coordinates do not move for the specified
timeout amount of time.

V. VISUALIZATION

A. VGA Display

The scaling and mirror modules control the size that the
sensor appears on the monitor. The scale module divides
whether the hcount and vcount are within the range, then
outputs the address to the BRAM for which corresponding
data point value it should display.

The visualization module scales the 12 bit data in the
BRAM into a RGB color scale. This data is then scaled to
a combined RGB value ranging from 0-767. This combined
RGB value is used to make a set of RGB values, (R, G, B)
where each ranges from 0-255. This conversion is done by
having the first third of the RGB value correspond to the R
value, the second third correspond to the G value, and the final
third correspond to the B value.

Fig. 6. Visualization Heat Map Color Gradient

A final vga mux module controls additional displays that
can be layered on top of the visualization, including:

1) Crosshair for Center Of Mass
2) Blue squares indicate motion tracking
3) Thresholding all non-relevant values to black

B. UART

The data for the sensor can also be sent through UART
for storage purposes. It runs on a parameterized baud width
(the default is the fastest baud width of 115.2kHz) by dividing
out the reference 65 MHz clock. The UART module has an
internal counter for the switching and reading wires, then pulls
the relevant data from the convolution BRAM. Since UART
is 8 bits maximum serial communication protocol, we found
that it was best to scale the 12 bits down and store it in a shift
buffer that outputs to the UART line.

The UART will output a user-set NEWFRAME_VALUE
character indicator (default is 0) every time the internal
counters have finished the maximum SW_WIRE_CNT and
RD_WIRE_CNT wires. A python script on the computer can
parse out this new value, and draw the array.

Fig. 7. Sensor Visualisation



VI. DESIGN EVALUATION

A. External Electronic Timing

By tracking the timing constraints of our electronics, we
found that the limiting factor is the input into the ADC which
operates at a reading input frequency of 1 MSPS.

Since the ADC needs 16 clock cycles (4 leading zeros, 12
bits of data) and a we set our ADC_TQUIET of to 4 clock
cycles, we can operate our ADC clock at 20 MHz. This means
the minimum reliable clock divider ADC_CLK_DIVIDE out
of our reference 65 MHz clock would be 3.25. Given the
maximum possible timing constraint, our entire sensor scans
at:

65, 000, 000

3.25 ∗ (16 + 4) ∗ 16 ∗ 16
= 3906.25 Hz (2)

For some flexibility in our system and additional electronics,
we decided on a default clock divider ADC_CLK_DIVIDE of
4. In this case, we are marginally exchanging signal integrity
(as seen in figure 9 below) for speed of scanning.

On the switching side, each wire is held for about 100 µs.
The time between switching to a wire and the responding
switch driving it to ground was around 265 ns. The time
between switching out of a wire and driving it high again
was 9 µs.

Fig. 8. Switching signal with a ADC CLK DIVIDE of 4. Green is FPGA
signal, yellow is switch output.

On the reading side, each reading wire is held for about 4.9
µs. We measured about a 1.8 µs delay between the reading
wire input into the reading mux and a stable op amp output.

Fig. 9. Reading signal with a ADC CLK DIVIDE of 4. Green is FPGA
signal, yellow is op amp output.

B. FPGA Timing

The majority of the latency is acquired from the limitations
on the ADC reading clock. The maximum rate that we can
reliably sample the entire sensor is 3906.25 Hz. However, this
data is then fed into the first BRAM , which operates at a rate
of 78.125 kHz. Then this data moves through the computation
modules, which consist of 5 pipeline stages and feeds into the
second BRAM. From the second BRAM the data is output
over VGA and UART. This amount of latency is undetectable
by humans and can thus be considered non-existent for the
use-cases of the project.

Other than the ADC Read module, every module in the
design has full and constant data throughput. The ADC output
consists of quiet cycles and leading 0s, limiting the data
throughput and operating rate of the entire system.

The biggest overhead in the design is the number of clocks
that are all derived from the 65 MHz VGA clock. These clocks
are required for driving the numerous signals sent to external
electronics in the project design.

On the digital side, the path of worst delay is found within
our convolution module. According to Vivado’s timing report,
it has a 5.609 ns slack delay with a requirement of 15.385 ns,
representing the 65 MHz VGA clock it operates on. This is
the fastest clock within the design and the convolution module
is the most mathematically intense logic within the design.

C. FPGA Usage

With 16 switching wires and 16 reading wires, the design
uses 1.5 of the available 135, 1.11 utilization percentage, block
RAM tiles. There isn’t a clear way to decrease the block RAM
usage, as it allows for the scalability of the design to any
number of wires.

With 16 switching wires and 16 reading wires, there are
10 DSPs of the available 240, 4.17 utilization percentage, in
use by the design. This number could be reduced by further
pipelining the convolution module, where all 10 DSPs are
located, at the expense of undetectable latency.

With 16 switching wires and 16 reading wires, the design
uses 1670 of the available 63400, 2.63 utilization percentage,
slice LUTs. With the same wire configuration, the design uses
1675 of the total 126800, 1.32 utilization percentage, slice
registers.

D. Design Scalability

Since the sensor is essentially a series of powered wires
over an array in space, it is limited by physical constraints
that we include in our measurements. Performing a bode plot
analysis on the sensor shows that for a 3 dB dropoff point,
the sensor will begin to drop off at 146.8 kHZ.

The limiting factor of the sensor resolution in this case
was the hand mounted electronics. While the sensor can be
manufactured up to an arbitrary amount of wires, we chose
to read out of a 16x16 array. In the future, we would like to
consolidate our electronics into a PCB which would allow us
to expand into further exciting applications.



Fig. 10. Hand pressure as read by sensor on UART output

Assuming that the usage of DSPs can be minimized
through pipelining at the cost of unobservable latency, the
utilization percentages of the FPGA resources scale linearly
with the number of wire intersections (SW_WIRE_CNT ∗
RD_WIRE_CNT), and the slice LUTs are the limiting factor
of the design, the maximum number of wire intersections that
the FPGA could support with this design is 9,733.

(16 ∗ 16) ∗ 100

2.63
= 9733 wire intersections (3)

9,733 is a prime number, but, for visualization purposes,
9,734 wire intersections corresponds to a sensor consisting of
61 by 157 wires. This would require a total of 14 IO ports
to switch through the wires through external MUXs. Using
the same ADC and number of ADC quiet cycles, this gives a
maximum sensor sample rate of 10.4 Hz.

65, 000, 000

3.25 ∗ (16 + 4) ∗ 61 ∗ 157
= 10.4 Hz (4)

E. Project Specifications

We were able to achieve all of our goals for the project.
The design allows for the user to visualize filtered data from
a touch sensor on a VGA monitor. It also allows for the user to
fine tune the filtering process, track the motion on the sensor,
and output the filtered and processed sensor data over a UART
signal.

In the future, there are a variety of methods the design could
expanded to detect extremely fast events on the sensor. The
digital design was written to be fully scalable to any number of
wires, which allows larger and/or more precise sensors at the
cost of IO ports, sampling speed, and electronics cost. This is,
however, assuming we simply linearly increase the number of
electronics. It is also possible to have multiple configurations
of electronic grids running on the same sensor and extrapolate
pressure points via superposition. The electronics have been
redesigned to be more accessible for future development.

VII. RETROSPECTIVE

1) Electronics are hard and, even though we read up
about the system, there are a lot of intricate details
that come along with analog measurements. Despite the
documentation we received from previous work on a
similar project, the progress was slow and the docu-
mented design required many improvements to properly
function. Even so, we did what we could about the
system and are excited to turn it into a PCB layout in
the future.

2) Managing various clock signals and timing rates is
extremely difficult and tedious. In the future, it would
be wise to minimize the number of clock signals in the
design.

3) Constant communication, realistic goal setting, and
proper time management is what allowed us to finish our
project in a timely manner. We ran into many pitfalls, but
we were able to adeptly maneuver tasks and priorities
between the two of us in order to successfully complete
the project.

A. Code Repository

http://github.mit.edu/akwb/tactile-sensing

B. Team Member Contribution

We worked in a very integrated manner, so nearly each
module is split evenly between our work. Austin built the
convolution and motion tracking, and wrote the FPGA eval-
uations. Tiffany worked on the electronics, ADC reader, and
UART, and wrote the electronic descriptions. Everything else
is made up of both our contributions.

We would like to thank our project supervisor, Joe Stein-
meyer. We would additionally like to thank the CDGF Lab
in CSAIL and mentor Mike Foshley for providing the sensor
technology and references that form the base of this project.

REFERENCES

[1] Y. Luo et al., ”Intelligent Carpet: Inferring 3D Human Pose from
Tactile Signals,” 2021 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2021, pp. 11250-11260, doi:
10.1109/CVPR46437.2021.01110.

[2] Sundaram, S., Kellnhofer, P., Li, Y. et al. ”Learning the signatures of
the human grasp using a scalable tactile glove” Nature 569, 698–702
(2019). https://doi.org/10.1038/s41586-019-1234-z

[3] Tommaso D’Alessio ”Measurement errors in the scanning of piezoresis-
tive sensors arrays” Sensors and Actuators A: Physical, Volume 72, Issue
1, 1999, Pages 71-76, ISSN 0924-4247, https://doi.org/10.1016/S0924-
4247(98)00204-0.


