
A Really Long Extension Cord: Final Report

Miles Silva
Department of Brain & Cognitive Sciences

Massachusetts Institute of Technology
Cambridge, MA, USA

mbsilva@mit.edu

Jordan Wilke
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

wilke18@mit.edu

Abstract—We present a system that enables remote gameplay of
the retro game console the Nintendo Entertainment System (NES).
Our system streams video from the NES over the internet to a
remote transceiver, which in turn receives input from physical
controllers and sends them over the internet to the NES. Due to
various hardware issues, including issues with 4-bit ethernet and
HDMI input, the video that is sent to the remote FPGA is from a
camera pointed at the screen on the NES side. Although as yet
untested, the design outlined in this report should enable sending
packets sending packets over the internet upon addition of an
ARP module by connecting to routers via ethernet.

Keywords—retro gaming, internet, networking, Field
Programmable Gate Arrays

I. GENERAL OVERVIEW OF SYSTEM

Fig 1. High-level overview of system loop.

The ultimate goal of our project is to revolutionize the
classic Nintendo Entertainment System (NES) experience with
modern day technology. Previously, the NES could only be
played in one place with up to two players. We seek to free
gamers of this physical constraint of needing to be in the same
room as the NES by providing a network card that would
allow users to play remotely without taking away from the
playing experience.

Our system consists of two FPGAs: one connected directly
to an NES, hereafter referred to as the NES FPGA (N-FPGA),
and one that connects to a screen and takes in controller input
which we will refer to as the remote FPGA (R-FPGA).

As Fig. 1 demonstrates, the main architecture of our system
has the N-FPGA take video from the NES (which we
ultimately did using a camera pointed at a TV screen that the
NES was hooked up to) and send this to the R-FPGA. The
R-FPGA then decodes the video data it receives and outputs it
over VGA to the TV. In the reverse direction, the R-FPGA
takes input from the NES controllers and sends that to the
N-FPGA to decode and output into the NES.

Fig 2. General OSI model consisting of 7 layers

In order to achieve these goals, we developed a system
following the OSI model shown in Fig. 2, originally defined in
the late 1970s, which provides a general architecture of
networked communication (variants of which are still used
today). Of this model, we define and implement the bottom 4
layers, while the top 3 layers (consisting of the session,
presentation, and application layers) were all encapsulated into
a single application layer for sending data.

As described in subsequent sections, the physical and data
link layers are implemented using ethernet, the network layer
primarily consists of the Internet Protocol (IP), and the
transport layer uses the User Datagram Protocol.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

mailto:mbsilva@mit.edu
mailto:wilke18@mit.edu

Though the system never got fully off the ground, the
remainder of this paper will describe the implemented
architecture that, if given more time, could be integrated
together to allow people from anywhere in the MIT
community to play the NES remotely.

II. NETWORK STACK

Fig 3. Network receiving block diagram logic

Fig 4. Network transmission block diagram logic

A. Ethernet Receiving and Transmission
Ethernet is one of the primary modes of transferring data in

the modern world. Within the OSI model, ethernet actually
makes up both the physical layer and the data link layer. The
physical layer is the actual ethernet wires you might have
plugged into your computer and is the very bits being sent on
the wire, while the data link layer is more about the processing
of those bits from one end of the cable to another into the
actual ethernet jacks.

Our original plan was to use a parameterized ethernet
receiving and transmission module to enable 4-bit ethernet on
the video FPGA. However, after implementing this
parameterized module, we ran into an intractable bug with
4-bit transmission (see Appendix for details). We were unable
to resolve the error, so we instead will only use the 2-bit
ethernet protocol.

We implemented 2-bit ethernet transmission to the spec
defined by IEEE 802.3-2008 [1]. Using this standard we can
successfully transmit arbitrary data over ethernet to any Media
Access Control (MAC) address. MAC addresses are an
important part of networking as they provide a unique (either
globally or locally) address for every piece of hardware such
that communication is able to be differentiated to different
devices.

Like with almost any technology, there is a possibility for
errors when sending over ethernet which is why the
specification includes a 32-bit sequence, known as the Frame
Check Sequence (FCS), that allows for the detection of errors
within an ethernet frame, which for us is a full packet or a full
message. The FCS is calculated using the CRC32-BZIP2

algorithm, which is efficient to do in hardware and less prone
to failure than other methods (like the checksums in the
network and transport layers described later).

This checksum process is highlighted in Fig. 3 which
details the process that a received network packet goes
through and in Fig. 4 which details the process for sending a
network packet. In Fig. 3, the FCS computation is
encapsulated within the Ethernet module. As data is received
from the Ethernet wire (the physical layer in the OSI model) it
is passed directly into the FCS such that all of the important
data within a frame is checked for validity. Once the entire
frame is received, the ethernet module reports a done signal
and a kill signal, where kill is high if the FCS received does
not match the one we calculate for the received data.

When transmitting, a very similar though equally complex
process happens. As seen in Fig. 4, as different parts of the
Ethernet frame are sent out onto the wire, they are also fed
into the CRC32 algorithm such that it can send an accurate
FCS at the end of the frame.

This was tested by first verifying correct reception of
transmitted packets by another FPGA running our ethernet
receiving module. During testing, we used arbitrary data and
sent it to the broadcast destination address
(FF:FF:FF:FF:FF:FF). Once this was verified to be received
correctly, we connected our FPGA to a computer and sniffed
the packets using Wireshark, verifying that Wireshark received
the packets correctly as well.

B. Internet Protocol v4 (IPv4)

Fig 5. State machine describing IPv4 transmission and reception

The network layer is extremely important for
communication. In the lower layers, ethernet provides a means
for transmitting data and MAC addresses offer a way to
disclose where data should go, but this does not allow for data
to traverse between different networks. Without a network

layer, all the transmission of data is just a set of really long
extension cords between devices.

All of the communication between the FPGAs within our
project use the 4th version of the Internet Protocol (IPv4) as
the network layer. IPv4 is the most prominent network layer
protocol because of its simplicity yet usefulness. Similar to
how ethernet used MAC addresses to uniquely identify
devices, IPv4 assigns unique1 addresses for internetworking,
the ability to communicate between different networks. A
simpler implementation2 of IPv4 has been implemented
according to RFC 791 [2].

Though our design is meant to work within the MITNet,
this network is actually a very large network of networks such
that ethernet communication from Building 38 where the
N-FPGA is located needs to be able to internetwork with
ethernet within other MIT buildings.

Fig. 5 describes the flow of data that is transmitted or
received when using IPv4. For simplicity we will not go
through what all the fields do, but rather make note of some of
the important states within the flow.

An important design choice that we made is making sure
that our messages aren’t fragmented by keeping their length
below 576 bytes3. The IPv4 header is always a fixed length of
20 bytes since we don’t use the options field. Our messages
are then encapsulated in a UDP header which is also a fixed
length of 8 bytes. This leaves us the ability to send 558 bytes
of data without it being fragmented. The controller data
transmitted by R-FPGA is only 8 bits and we only send one
line of each frame (240x320 pixels, each 12 bits) at a time
which is 480 bytes of data, leaving us plenty of room in each
packet.

When receiving, the header checksum is calculated as the
IP header streams in and is used to cancel further processing if
it is incorrect. This checksum is quite different from the FCS
used by ethernet frames. The IPv4 checksum is the one’s
complement sum of all 16-bit words4 in the header. This
means that when summing all of the words together, if the sum
is greater than 0xFFFF, the carry is added back into the sum
which causes a rollover (ie 0xFFFE + 0x2 = 0x1). This sum is
then complemented and added to the packet header such that
when the receiver sums up all of the 16-bit words in the
received header, the result should be 0xFFFF.

When transmitting, the header checksum is calculated as
the other portions of the header are sent with the exception of
the source and destination IPs. This can be seen in Fig. 4 as
the output of the IP module is fed into an IP checksum. Since
both the source IP address and the destination IP address must
be known before we begin transmitting, we are able to
precalculate their checksums and add them into the whole
header checksum. This was a design decision that we made

4 Words are just chunks of data

3 This is the total number of bytes that routers are required to
be able to send within a single packet, however many can

support more data than this.

2 Simpler is not technically true
1 Not actually unique

such that the transmission of packets could be a streamed
process, requiring no delay once the data is ready to send.

C. User Datagram Protocol (UDP)

Fig 6. State machine describing the receiving and transmission of
UDP headers

The transport layer in the OSI model is not always used
since it is not always necessary, unlike the network layer. The
transport layer is important for when devices want to send
varying amounts of data, while also guaranteeing certain
quality-of-service functions such as reliability or low-latency.

For the transport layer, we chose to use the User Datagram
Protocol (UDP) for delivering our data in accordance with
RFC 768 [3]. The UDP header that is added before the actual
transmission of data is fairly small (8 bytes) and only contains
4 fields: the source port, destination port, packet length, and
checksum (see Fig. 6).

The ports are designed to allow servers to multiplex UDP
packets that they are receiving, but this is inconsequential for
us as we are only communicating between 2 FPGAs. The
packet length field is meant to be the length of the UDP
header plus the length of all of the data being sent. Similarly,
the checksum is computed on the UDP header and all of the
data using the same checksum calculation that the IPv4 header
uses.

As noted, the UDP length and checksum take into account
the data that is being transmitted which wasn’t a concern for
the IPv4 header checksum. This data can have varying length,
theoretically, and will affect the checksum meaning that a
streaming approach to calculating these values would not
work.

For this reason, we chose a different approach to knowing
the data length and checksum that can be seen in Fig. 4. We
cannot start transmitting until all of the data is ready to be
sent, however this does not mean we can’t begin calculating
the length and checksum of the data as we queue it up to be
sent. Since the checksum calculation uses one’s complement
addition, rather than the FCS’s CRC32-BZIP2 algorithm, the
checksum of the data can be precalculated and then just added
to the UDP header checksum (since the checksums themselves
are just 16-bit words).

An alternative consideration for the transport layer would
have been to use another common protocol such as the
Transmission Control Protocol (TCP). TCP at first was a very
alluring choice because if implemented properly, it guarantees

reliable transport making sure that every packet arrives (so
dropped packets aren’t lost) and that even if packets arrive out
of order, they will be properly ordered. However, TCP comes
with two large drawbacks: larger complexity and high latency.
Both are caused by the logic that guarantees reliability.

On the other hand, UDP is designed to be quick and simple
because it does not give any reliability guarantees (i.e. if a
packet gets dropped the receiver will never even know it was
sent). Additionally, packets sent can arrive in any order, and
the UDP logic leaves it to the application layer to handle
reordering. Since the bottleneck of our design is already the
throughput and latency of the network we are using, having a
transport protocol with low latency is more important.
Additionally, reliability is not a huge concern with video data
as there will not be large changes between most frames, so old
lines of pixels can be used until the same line of the next
frame is received which would be an imperceptible wait time
to the human eye.

III. HARDWARE INTERFACES

A. Video Interface
Our original plan was to connect to the NES via HDMI

input by connecting an RCA to HDMI adapter between the
NES and our FPGA. However, the adapter we received
outputs only in 1920x1080 resolution, which our HDMI
receiver code was unable to handle correctly. After carefully
working through the code and considering our options, we
made the unfortunate decision to discard the HDMI interface
part of our project. Instead, we have decided to connect our
FPGA to a camera, and send that data over the wire instead.

Our video interface consists of two parts: a linebuffer
module, and a framebuffer module.

The linebuffer lives on the N-FPGA, and buffers in one line
at a time from the camera, then sends this line to the network
stack to be sent over the wire. This module works with two
320x16 single-port BRAMs. One BRAM is filled with new
pixels directly from the camera, one 16-bit pixel at a time,
until the end of the line is reached, then the module
immediately sends data out from that BRAM as it reads in
data to the other BRAM. With each line, the BRAMs are
flipped so that one is constantly being written to while the
other is read from. This structure implicitly handles clock
domain crossing, as the data is able to be written to the BRAM
on the 16.67 MHz clock of the camera, while being read out at
the 50 MHz clock of ethernet.

On the R-FPGA, each line is received from the network
stack, one pixel at a time. Each pixel is sent to a pixel decoder
module, which converts the 16-bit color into 12-bit color to be
ready for VGA output, which uses 12-bit color. These pixels
are then sent directly into the framebuffer module, which
calculates the correct framebuffer BRAM address to write to,
based on an internal counter of how many pixels it has
received up to that point. The framebuffer BRAM is a
(240*320)x12 dual-port BRAM that contains each pixel in the
frame. These pixels are then read out to the VGA pins based
on timing from a VGA module. This structure also handles
clock domain crossing, as the module can write to the BRAM

with the 50 MHz ethernet clock, and read from the BRAM on
the 65 MHz VGA clock.

B. Controller Interface
We connected an original NES controller to the FPGA

using the PMOD ports. We followed the specification laid out
in Figure 7. The end of an NES controller cord has 7 pin-outs,
however of these, only 5 are connected to the controller itself.
The other two do not lead anywhere. Of the five connected
wires, one is power, one is ground, one sends the latch signal,
one sends the pulse signal, and one sends the data signal. See
Figure 4a.

In a typical NES controller setup, every 60Hz, the NES
sends a latch signal to the controller. This lasts 12μs, then goes
low again. 6μs later, the NES will send the first of 8 pulses
that last 12μs total, 6μs high and 6μs low. The pulse line is
high at rest, and valid low. Each pulse corresponds to a button,
in the order of {A, B, Select, Start, Up, Down, Left, Right}.
When pulse is asserted low, the data line becomes high if that
button is being pressed, and low if that button is not pressed.
See Figure 4b.

a)

b)
Fig 7. Diagrams of controller information that is sent to the NES[4].
a) A wiring diagram for an NES controller b) The data sheet
representing how the NES reads the data from the controller

We were able to mimic this setup on our own FPGAs. The
R-FPGA connects to an NES controller via the PMOD ports,
and mimics the latch and pulse signals of an NES, and reads
the data line in from the controller. The N-FPGA connects to
the NES, reads the latch and pulse signals from the NES and
mimics the data line back to the console.

Each time the R-FPGA’s controller module detects that a
button has either been pressed or released, it sends a packet to
the network stack with the new button state. This way, we do
not clog the wire by sending any controller data over the wire
that we do not need to. However, to mitigate a corruption issue
we faced with the ethernet packets, where arbitrary bytes of
ethernet data were corrupted when they were sent over the
wire, we send 20 copies of the packet each time the button

state is changed. The N-FPGA receives these packets, and
performs a simple corruption check by checking if two copies
of the button state data within a packet are equal. If they are,
the FPGA instantly updates its internal buffer of which buttons
are being pressed. This buffer will remain constant until a new
packet is received, telling it that a new button was pressed or
released.

IV. EVALUATIONS

A. Resource Utilization
Our design currently uses 1290 Lookup Tables (LUTs)

which is only 2% of the total LUTs. This means that we could
have done more combinational logic rather than doing some of
our math over multiple clock cycles. Overall, we have room
for increased logic to handle VGA & HDMI and other inputs
that didn’t quite make it.

B. Memory Usage
Currently we do not have the build logs to determine exact

memory usage, but based on our design documents, we
believe that the following will be true of the final product:

● Both the NES and the remote FPGA have have two
network buffer BRAMs (one for receiving and one
for sending) that are 16 bits wide and 320 entries
deep in order to fully accommodate lines coming in
(lines are 320, 12-bit pixels long)5 resulting in 8 Kib

● The NES FPGA has two line buffers that are 320
entries long and 16 bits wide each, for a total of 10
Kib.

● The R-FPGA has a frame buffer that is 240x320
entries and 12 bits per entry equating to 900 Kib

This results in a total of 728 Kib used in total. This of course
might need to be adjusted for HDMI as well as cache’s for
ARP and other protocols.

C. Packets Dropped
While actual dropped packets are very rare, considering the

FPGAs are connected directly over ethernet, the N-FPGA fails
to read every packet correctly. Over a test of 50 packets, the
FPGA received 50 of them, but correctly read only 41 of them,
for a success rate of 82%. This success rate is low for our
standards, and makes playing games difficult, as a dropped
packet means a button is not registered correctly, a big
problem when playing fast-paced video games.

D. Limiting Factors
Our ethernet module implements a 100 Mib ethernet standard,
and runs on a clock cycle of 50 MHz. As we currently are only
sending button presses over ethernet, and we only read button
presses at a rate of 60 Hz as required by the NES controller
spec, we will send at a maximum 20*60=1200 packets per
second (accounting for sending 20 packets per button press as
per our corruption mitigation protocol). This is well under the

5 Notice that there is a mismatch between the width of the data and
the width of the pixels. This is to more easily accommodate data

sending for network protocols. We will handle the differing pixel size
accordingly.

limit posed by ethernet, so the network is not our limiting
factor in our design. With the introduction of routers into our
design, and the unreliability that comes with that, this may
become the limiting factor, as latency for internet connections
can approach the milliseconds. As is, the slowest part of our
design is the NES controller itself.

E. High Score in Super Mario Bros.
Miles has currently not achieved the high score in Super

Mario Bros from Simmons6 and currently sits around 130,0007

points away from that top score.

V. REFERENCES

[1] IEEE 802.3-2008: IEEE Standard for Information
technology--Telecommunications and information exchange between
systems--Local and metropolitan area networks--Specific requirements
Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications

[2] Internet Program Protocol Specification. RFC 791, September 1981.
[3] User Datagram Protocol. RFC 768, November 1982.
[4] Tresi Arvizo, https://tresi.github.io/nes

VI. CODE

https://github.com/wilke0818/6111_final_project

7 This number has been fact checked with the lab white board
6 He has not achieved it in lab either

https://tresi.github.io/nes/
https://github.com/wilke0818/6111_final_project

APPENDIX

I. Spooky Action: 4-bit Ethernet
While implementing 4-bit ethernet transmission, we ran

into a strange bug. After extensive testing, our 4-bit ethernet is
able to send the correct header, data, and checksum bits (as
calculated using a 4-bit version of the CRC32-BZIP2 module
generated online that was recommended by the course staff) to
the wire, using a 25MHz clock as specified by the spec [1].
However, this data is not being received correctly by the
device on the other side. After even more testing, we realized
that the data being received on the other side of the wire was
mostly correct, except for the last 4 bits received before the
valid bit goes low. These 4 bits (i.e. the last 4 bits of the
packet, i.e. the last 4 bits of the FCS) are invariably replaced
with the bits `0101`. We determined this is not due to an
incorrect checksum calculation, as we probed the bits being
sent to the physical layer of ethernet and those bits are correct.
We also know it is not due to message content, as we tried to
send various different messages to no avail. We know as well
that the bug does not lie on the receiving end, as we probed
exactly what is being received from the physical layer, and the
corruption is present in those bits as well. And just to be sure,
we tried three different ethernet cords, two different video
boards, and two different receiving boards.

To summarize, it is only the last 4 bits before the valid bit
goes low that are being corrupted, and this happens at some
point after the bits are sent to the physical layer of the Video
Board, and before the bits are received from the physical layer
of the receiving board.

II. Spooky Action: Off-by-one Receiving
An interesting yet absolutely terrible bug we encountered

was that when receiving controller input on N-FPGA, we
found that its carrier signal was high for one cycle too long.
This doesn’t seem like it might be as big of an issue as it
seems, but in fact, this causes the interpretation of where the
ethernet FCS is to be off which in turn back-propagates to the
data being misread.

After a lot of debugging, we found no apparent issues with
sending or receiving which leads us to believe that there is
either a hardware issue or that the ethernet jack specification is
different than what we believe it is.

