
FPGA Fractal Ray Marcher
Thanadol Chomphoochan

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts
tcpc@mit.edu

Dillon DuPont
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts

ddupont@mit.edu

Abstract—We present a design for a hardware-based graphics
pipeline that uses the ray marcher algorithm to render infinitely
large scenes on an FPGA. Our design utilizes approximately 0.2
MB of Block RAM on a Nexys4 DDR Artix-7 FPGA board to
render a 400 by 300 grayscale image at a rate of 30-60 frames
per second. We implement, test, and evaluate the performance
of our design, and discuss potential improvements.

Index Terms—Digital systems, Field programmable gate ar-
rays, Computer graphics

I. TOP LEVEL ORGANIZATION

Our pipeline has five main components: user control, ray
marcher, BRAM manager, VGA control, and Ethernet subsys-
tem. The user control interprets user inputs and informs the
ray marcher of the scene to be rendered. The ray marcher, the
main component of our project, has a finite state machine that
dispatches rendering jobs to internal ”Ray Units.” These units
compute the color at a requested pixel with variable latency,
and the ray marcher controller FSM forwards the results to
the frame buffer. The BRAM manager manages input/output
routing to two frame buffers of equal size. The ray marcher
writes to one buffer and the VGA control reads from the other,
ensuring that each frame is displayed without artifacts. Finally,
the Ethernet subsystem allows the user to export the currently
rendered image via Ethernet. See Fig. 1 for the block diagram.

All modules outside of the Ethernet subsystem run on a 40
MHz clock, consistent with the requirements for outputting an
800 by 600 image at 60 Hz via VGA. The Ethernet subsystem
runs on a 50 MHz clock.

Source code listing for the project can be found at
https://tcpc.me/fpga-ray-marcher.

II. NUMBER REPRESENTATION

Given the nature of this project, we require a compact but
precise enough representation of real numbers that enable
efficient synthesis for basic arithmetic operations such as
adding and multiplying.

We use the Q6.16 fixed-point representation to represent real
numbers, where the first 6 bits denote the whole part of the
number (including the sign bit) and the last 16 bits represent
the fractional part. This allows us to represent numbers in the
range [−25, 25) with precision up to 2−16. This representation
is sufficiently large and precise enough for the purposes of this
report. A 3D vector can then be easily represented as three
Q6.16 fixed-point numbers.

Operations can be easily implemented and used in Sys-
temVerilog thanks to type definitions and automatic functions.
Addition, subtraction, negation, and comparison work in the
same way as integers. Multiplication also works similarly
but requires shifting the result right by 16 bits to get the
correct magnitude. We do not implement division, but we
do implement the inverse square root function for vector
normalization. This is accomplished by shifting the input to
the range [0.5, 1], estimating the answer by linearly interpo-
lating between 1/

√
0.5 and 1/

√
1, performing two iterations

of Newton’s method, and shifting the output to the correct
magnitude. Note that we only handled inputs of at least 0.5
because our system never has to find the inverse square root
of a smaller number. Two iterations of Newton’s method are
enough to get a result as precise as our number representation
can handle (See Fig. 2). The inverse square root function is
implemented as a folded circuit to reduce the critical path
length and DSP utilization.

To use the fixed-point arithmetic and vector arithmetic
library, we included src/fixed_point_arith.svh and
src/vector_arith.svh at the beginning of each file. We
have also created test benches that automatically verify the
correctness of the library. The test benches can be run through
these scripts:

• test-fixed-point.sh
• test-vector.sh
• test-fp-inv-sqrt-folded.sh

III. USER CONTROL AND KEYBOARD INPUTS

The User Control FSM keeps track of the position and the
direction of the camera in the scene. It interprets FPGA button
inputs and keyboard inputs and moves the camera accordingly.
The User Control also allows the user to change the fractal
being rendered, changes the movement speed, and toggles
various rendering features such as color display, dithering, and
checkerboard rendering, via the switches on the FPGA board.

There are two movement modes for the user: Walking and
Translation. In walking mode, the user can move the camera
forward or backward and turn left or right. In translation mode,
the user can move the camera up, down, left, or right, relative
to the plane of the current camera.

Keyboard inputs are interpreted using a combination of the
PS/2 Decoder implemented in Lab 2 from the first half of
6.205 in Fall 2022 and our own (relatively trivial) finite state

https://tcpc.me/fpga-ray-marcher

Fig. 1. Block diagram for the top level of the system

Fig. 2. Absolute error for the inverse square root function

machine for keeping track of relevant buttons’ states. The user
can walk using the WASD buttons and translate using the
arrow keys without selecting a movement mode.

The User Control FSM also features collision detection.
Keyboard input is used to calculate the next position. The
next position is then fed into an SDF Query submodule (to be
explained), which returns the distance from the next position
to the nearest wall. This allows the User Control FSM to easily
check if the player is trying to move into a wall, as the FSM
will only update the current position if the SDF Query is above
a specific distance.

IV. RAY MARCHER CONTROLLER

The Ray Marcher Controller dispatches Ray Units and
maintains internal counters for rows, columns, and Ray Unit
indices. On each clock cycle, it checks if the current Ray Unit
is free. If it is, the controller copies its output to the frame
buffer, assigns the pixel, and increments the column and Ray
Unit counters. If the unit is busy, the controller increments the
Ray Unit index and waits for the next clock cycle. For easier
implementation, there is an ”end of row” state to increment
the row counter and reset the column counter. When all pixels
have been rendered, the Ray Marcher Controller emits a ”new
frame” signal to the BRAM manager, which makes the current
frame available to the VGA controller and allows the Ray
Marcher Controller to write to the other buffer. See Fig. 3 for
the state diagram.

The ray marcher increments both integer and normalized
coordinates (in the range −1 to 1) by precomputed amounts,
eliminating the need for two multiplications within the Ray
Units. This also eliminates the need for large numbers, as
the rendering logic does not require full integer coordi-
nates. The ray marcher’s implementation can be found in
src/ray_marcher.sv. Non-synthesizable instructions in
this file print the rendered scene in a text format, allowing
the ray marcher to be simulated entirely in software and its
output viewed with a Python script. This script can be run
with sim-ray-marcher.sh.

The ray marcher controller was developed independently
of the Ray Units. To test its ability to correctly assign
jobs and handle outputs, we implemented dummy Ray

Units that stall for a random number of cycles. (See
src/ray_unit_dummy.sv.) The test bench can be run
with test-ray-marcher.sh, and outputs should be man-
ually examined.

Fig. 3. State diagram for the Ray Marcher Controller

V. RAY UNIT

The Ray Unit takes in pixel coordinates and uses the ray
marching algorithm to find the color information at the current
pixels. It is implemented with multiple different submodules;
the Ray Generator, the Texture Sampler, the SDF Query, and
the Marcher Logic FSM. The general organization can be seen
in Fig. 4.

A. Ray Generator

The Ray Generator is a module that sets up the initial
state of the Marcher FSM by taking a 2D screen position
and camera vectors as input and outputting a normalized 3D
directional vector for each pixel. It is folded to fit more Ray
Units within the FPGA’s DSP blocks. The module is defined
in src/ray_generator_folded.sv.

B. Texture Sampler

The Texture Sampler is a module that generates procedural
textures based on input data from the Ray Unit. The primary
inputs are the world position of a ray hit and the original color
value of the ray. The texture is generated by dividing the world
into rectangles and modulating the color at the edges of these
rectangles, creating a tiling ”brick wall” texture. The module
is defined in src/texture_sampler.sv.

C. SDF Query

The SDF Query is a module that stores scene geometry
information using a Signed Distance Function (SDF). This
function takes a 3D position vector as input and outputs a
signed fixed-point value representing the distance between
the input position and the closest surface in the scene. This
allows for easy creation of scenes with fractals and infinitely

detailed geometry, and the resulting depth value can be used
to calculate surface normals and approximate shadows. The
module is defined in src/sdf_query.sv.

D. Marcher Logic FSM

The Marcher Logic FSM is the top-level FSM in the Ray
Unit that combines the output of the Ray Generator and
the SDF Query to perform Ray Marching. After valid pixel
information is received from the ray marcher controller, the
Marcher Logic FSM relays that to the Ray Generator and
stores the ray direction and ray position in a buffer. The FSM
then queries the SDF with the current ray position. If the
signed distance is above the minimum distance, it translates
the ray position by scaling the ray direction by the signed
distance and adding it to the current ray position, then returns
to the query state for another iteration. If the signed distance
is below the minimum distance, the FSM shades the current
pixel using its state information and returns to the idle state.
See Fig. 6.

The shaded color for each 2D pixel is calculated using the
depth value to get an approximation of shadow occlusion.
Since the internal shaded value has a higher bit width than
the color values of the frame buffer and the display, the Ray
Unit performs ordered dithering using the screen coordinates
to reduce quantization errors and simulate a higher color depth
in the final image.

The Marcher Logic FSM implementation can be found in
src/ray_unit.sv. This file also contains instantiation of
the Ray Generator and SDF Query submodules.

VI. BRAM MANAGER AND VGA CONTROLLER

The BRAM manager owns two BRAMs, each with a depth
of 400x300 and a width of 4 bits, allowing for the storage
of up to two frames at the same time. The BRAM manager
exposes the correct read/write ports of the BRAMs using a
multiplexer. The read port corresponds to the fully rendered
frame buffer and is read by the VGA controller. The write
port corresponds to the frame buffer being rendered by the ray
marcher. When a frame is finished, the ray marcher notifies
the BRAM manager, which changes its internal state and
switches the exposed buffers. The BRAM manager was tested
with test-bram-manager.sh and outputs were manually
examined.

The VGA controller is a wrapper for the VGA signal
generator from Labs 3 and 4 of 6.205 in Fall 2022. It takes
the pixel count and calculates the correct address to read
from the frame buffer. It also translates grayscale pixels into
colored pixels by multiplying the grayscale values by constants
dictated by the color setting.

VII. ETHERNET SUBSYSTEM

The Ethernet subsystem allows the user to export the cur-
rently rendered image from the Ray Marcher to their computer
via Ethernet. This is implemented by creating another frame
buffer that runs on two different clock domains. The Ray
Marcher, which runs on a 40 MHz clock, uses one port to write

Fig. 4. Block diagram for the Ray Marcher

Fig. 5. Visualization of the SDF Ray Marching algorithm. (Teadrinker, CC
BY-SA 4.0, via Wikimedia Commons)

Fig. 6. State diagram for the Ray Unit

the pixel values to the frame buffer. The Ethernet Export FSM,
running on a 50 MHz clock, uses the other port to read the
pixel values and listen for button inputs from the user. When
the export button (BTNC) is pressed, the Ethernet Export FSM
sends a raw Ethernet frame consisting of the Ethernet header,
50 bytes of all-1 bits, and the frame check sequence. It then
sends a frame for each row in the image, starting with the
row count (4 bytes) and followed by the grayscale pixel values
(400 col × 4 bits/col = 200 bytes). The user can run a Python
script on their computer to listen for these Ethernet frames
and render them into an image file.

To simplify the process of sending Ethernet frames, we
created an Ethernet Transmission submodule (defined in
src/ether_tx.sv), which can be used in this manner:

1) The upstream module (i.e. the Ethernet Export FSM)
sends a trigger signal. The submodule will start sending
the preamble and the Ethernet header.

2) Once the submodule is ready to send the actual payload,
it sends a ”data ready” signal to the upstream module.

3) The upstream module sends data (in dibits) and eventu-
ally stops by sending a ”last dibit” signal.

4) The submodule handles the frame check sequence, and
also ensures that it will not send another frame again
until the interframe gap has passed.

Note that the submodule receives data in Most Significant
Byte, Most Significant bit (MSB/MSb) order. The submodule
internally reverses the endianness and handles all pipelining
complications.

VIII. RESULTS

Our system can display a 12-bit RGB 400x300 image of
four scenes: a cube, a box lattice, a Menger sponge tunnel,
and a maze. We were able to successfully synthesize the
system with up to 12 Ray Units, using 35.56% of the available
BRAMs (400 × 300 × 4 bits each × 3 buffers). The limiting

TABLE I
RAY MARCHER RESOURCE UTILIZATION

Ray Units WNS Slice Util% DSP Util%

4 1.946 ns 38.42% 35.56%
8 1.305 ns 64.53% 45.42%

12 0.250 ns 92.08% 65.42%

factor was the number of slice LUTs and registers available,
as shown in Table I. This is surprising, as we expected to run
out of DSPs first due to the large number of multiplications
needed to calculate the SDFs. 1

Our system measures rendering speed by attaching a frame
rate counter module to the Ray Marcher’s swap_buffer
signal. The module counts the number of frames generated
and finds the average value after moving around in the scene
for five seconds. The frame rates are given in Table II. Ren-
dering speed depends on the average number of ray marching
iterations per pixel (higher for more complex scenes) and the
latency of the SDF Query. For example, the SDF for cube
scenes requires only one clock cycle to compute while the
maze requires five, resulting in an almost five-fold difference
in performance.

Fig. 7. Menger sponge tunnel rendered on screen

Fig. 8. Infinite grid of cubes rendered on screen

1The preliminary report used up to 98% of the DSPs for a Ray Marcher
with 8 Ray Units because of a bug in the previous limitation, which required
us to use Q12.18 number representation rather than Q6.16.

Fig. 9. Menger sponge tunnel viewed from a different angle

Fig. 10. Randomized maze rendered on screen

TABLE II
RENDERING SPEED FOR FRACTALS (IN FRAMES PER SECOND)

Fractal Configuration 4 RUs 8 RUs 12 RUs

Simple cube 33 59 89
Simple cube (checkerboard) 60 107 140

Infinite cubes 27 50 70
Infinite cubes (checkerboard) 51 114 112

Menger Sponge 16 30 44
Menger Sponge (checkerboard) 32 56 82

Maze 9 17 26
Maze (checkerboard) 17 32 49

We employ a couple of rendering techniques to improve
the color depth and performance. Enabling the dithering fil-
ter provides a 2× perceived color depth improvement, and
checkerboard rendering, which skips every other pixel for
even/odd frames, provides a 2× FPS improvement.

Our system achieves its primary goal, which was to display
at least three fractals as a 640-by-480 image at 20 frames per
second. Though our system renders at 400 by 300 resolution
instead, given current resource utilization, it can easily be
adapted to render at 640 by 480 resolution with fewer Ray
Units. 2 We chose not to follow our original target because
it greatly simplifies our implementation and significantly in-

2The BRAM required for the Ethernet submodule can be shrunk signifi-
cantly. The Ethernet submodule could instead query for one row at a time,
disrupting the VGA Controller’s operation for a few frames.

creases performance while still maintaining the spirit of the
project. We also achieve our stretch goal of implementing
multiple useful features, including keyboard controls and
image exporting via Ethernet, as well as rendering objects
with textures and dithering. We did not implement additional
rendering passes or integrate SDRAM for larger resolutions
because they do not improve image quality in the software
prototype enough to justify the impact on performance.

To enhance the system, we can reduce LUT slice utilization
by improving our complex, nested conditional implementa-
tions and potentially pipeline the circuit better to support
higher clock speeds for faster frame rates. It may also be
possible to enable communication between two or more FPGA
boards for further parallelization.

IX. DIVISION OF LABOR

Pleng and Dillon contributed roughly equally to the project.
Pleng wrote the arithmetic library, the BRAM manager, the
VGA controller, and the Ray Marcher Controller, along with
the necessary test benches. Pleng integrated the modules
and optimized them when necessary, including folding and
pipelining existing modules and micro-optimizing mathemati-
cal operations. Pleng also added keyboard inputs and Ethernet
exporting. Pleng created most diagrams and figures used in
the report.

Dillon focused on the graphical aspects of the project. He
set up the software prototype to verify implementations and
wrote most of the logic within the Ray Units, including the
Ray Generator and the SDF Query. This required minimizing
the use of heavy mathematical operations and verifying that
the SDFs produced the intended images. Dillon added all extra
graphical features, such as colors, dithering, and textures, and
created the user control logic, with keyboard controls added
by Pleng later in the project.

APPENDIX: RETROSPECTIVES

A. Notes on the design

After completing the project, we realized that the design
could be simplified. For instance, we don’t need to use both
ports of both BRAMs at the same time, as we only write
or read to each BRAM at any given clock cycle. We could
just toggle the write-enable bits, freeing up another port and
allowing us to put the Ray Marcher and the VGA Controller
in separate clock domains. The VGA Controller would just
choose which BRAM to read from, rather than relying on the
BRAM manager. (We actually had to do something similar to
enable the Ethernet exporting feature anyway.)

Furthermore, performance could be improved by imple-
menting the Ray Marcher as a pipelined circuit, eliminating the
need for multiple Ray Units. This would reduce the overhead
due to the Ray Controller FSM. Variable latency in the Ray
Unit could be handled by adding dummy cycles or stall signals.
However, the additional complexity may result in high LUT
and DSP utilization and may be harder to scale (e.g. if we
used multiple FPGA boards).

B. Reflections on writing test benches

In this project, we strived to work as professionally as
possible to produce a good final product. This includes putting
careful thought into organizing our code base and writing
as many automated test benches and simulations as possible.
While writing test benches requires an upfront investment, the
time and headaches it has saved us are worth much more.
We were surprised by how quickly we were able to get the
ray marcher to work on hardware once we got the simulation
working.

This lesson was made extremely clear to us in one instance:
We naively thought the FPS counter was a simple enough
module that did not need software testing. We put it on the
hardware and were perplexed as to why it did not work. After
an hour or two of stubbornly trying to debug by re-reading
through the code and fixing random things, we gave in and
write a simulation. It brought to light a silly typo hiding in
plain sight, and we fixed the bug in five seconds. We greatly
appreciated the instant karma.

Another tragic incident: We thought we could easily adapt
the VGA signal generator submodule from Lab 03 to sup-
port lower resolutions. We decreased the number of bits for
hcount and vcount without realizing that the maximum
coordinates combined with front/back porches and sync signals
could overflow. We (or rather, Pleng, specifically) spent at
least six hours trying to get a single, solid color to display on
the screen. Had we spent two minutes writing a very simple
simulator for the module as a sanity check, we would not have
had to try to debug the more complicated modules like the Ray
Marcher, when those are, in fact, not the culprit.

C. Reflections on time management

We were lucky that we were sensible enough to follow the
long-revered advice of starting things early. By having a clear
timeline and committing to it, we were able to build a fully
functioning system by Thanksgiving break. This was really
helpful at the end of the semester. We were less stressed about
balancing all our obligations, knowing that we made good
progress on the project and had a reasonably bounded amount
of work left to finish up.

ACKNOWLEDGMENTS

We thank the 6.205 staff for developing this amazing class
and giving us the tools necessary to succeed in the project.
We are particularly grateful to Joe Steinmeyer, the course
instructor, and project mentor, for helping us determine the
direction of the project. We also thank Fischer Moseley and
Jay Lang for being extremely amazing, cool, and helpful TAs.

	Top Level Organization
	Number Representation
	User Control and Keyboard Inputs
	Ray Marcher Controller
	Ray Unit
	Ray Generator
	Texture Sampler
	SDF Query
	Marcher Logic FSM

	BRAM Manager and VGA Controller
	Ethernet Subsystem
	Results
	Division of Labor
	Notes on the design
	Reflections on writing test benches
	Reflections on time management

