Waveshine
A Gesture-Controlled Lighting System

Final Report

Jonas Cameron
MIT EECS
jonasc @mit.edu

Abstract—We present Waveshine, a gesture-controlled lighting
system that utilizes active, buffered filtering of video input
to perform decision making by interfacing with an array of
individually-addressable LEDs. A user of this system is able
to select either red, green, or blue channels by displaying a
specific shape in front of the camera (i.e. a triangle shape to
command the green channel), and then adjust the brightness of
that channel by maneuvering the object in specific directions, all
in real time. Due to its implementation on an FPGA and direct
communication with individual LEDs, Waveshine offers a seam-
less, high-performance, and efficient experience that highlights
the advantages of a hardware implementation as compared to a
software control scheme.

I. SYSTEM OVERVIEW

A. Physical Layer

The physical component of this project is relatively simple.
A camera and processing board is connected to the Digilent
Nexys A7-100T FPGA Trainer Board via two of the board’s
Pmod ports. The VGA output port is connected to the lab
monitor. The data line on the 8x32 WS2818B LED board is
connected to the fourth pin on Pmod port ’jc” (jc[3] in the .sv
file). The LED array is plugged in to a lab power supply set to
5V to supply adequate power. Common ground is connected
to the Nexys board and the LED panel. The physical setup is
shown below in figure [I]

System
Ground

VGA Port

Fig. 1. Physical setup with camera board, FPGA board, VGA monitor and
LED array

Aklilu Aron
MIT EECS
arona@mit.edu

B. Hardware Implementation

The implementation for Waveshine can be thought of on
a high level as containing two major structures: the video
processing engine and the LED interface. These sections are
connected as indicated in the high-level block diagram shown
at the top of the next page (Figure [2). The video processing
engine includes existing overhead which was modified from
6.205 lab 4. This includes several modules which translate
the input of the camera to a sensible, upright, scaled VGA
output. It also includes a buffer module which was modified
to implement a 10-line rolling buffer of pixel data, effecting
a 10x10 sliding window as pixel data is retrieved from the
camera. The main piece of the video processing engine is the
detect module, which takes in 10 pixels at a time from the
rolling buffer and tracks how well those pixels match a pre-
determined hard-coded template. When one of three target
shapes is recognized, detect sends its identity and position
down the pipeline to the next module.

The tracker module watches this position over time. When
a shape is detected more than once within the span of a
few frames, and the position of these detections is different,
tracker adjusts a 24-bit rgb output accordingly. The LEDcomm
module continuously monitors this rgb value and translates it
to WS2818B serial communication. These modules will be
detailed in the following sections.

II. VIDEO PROCESSING ENGINE

The general purpose of the video processing engine is to
take in the raw camera input, filter it appropriately, and extract
the necessary information to track shapes. This includes out-
putting the current pixel location, and if there has been a valid
shape detected, then outputting which channel it corresponds
to (red, green, blue), and the position of the letter. This output
is then sent to the tracker module which will make decisions
based on any shape movement. This video processing engine
can be broken down into its components. The first portion is
the camera pipeline, adopted from the 6.205 course materials
[1]. This pipeline includes many small modules important for
interfacing with the camera board attached to the FPGA board
and appropriately routing the incoming pixels downstream, as
well as properly displaying the desired output on a VGA-
compatible monitor. This engine includes a redesigned buffer
module to handle line buffers of size 10, and the critical

65MHz clock

VGA port

hsync, vsync, blank e vga_rgb pixel data
VGA Gen | VGA Mux |« Scale
hcount, vcount
©
&
©
g
: 16’ pixel data 16’ pixel data =
f 16’ pixel data . ol o
pixel data N p Filter N)) > » > BRAM
> hcount, vcount count, vcount | address
Camera |, . .4aa | RECOVEr ‘ o PP — . Rotate . e
N data valid uffer etec data_valid data_valid Framebuffer
_ N |
i
]
o
©
led_rgb hcount, vcount
1:0] detected .
LEDcomm | data_valid| Tracker [1:0] detecte: _heount, veount | Nirror
< — » X, Y position
WS2818B
: LED Panel
Serial

Fig. 2. Mid-level block diagram of the Waveshine system. Original modules in red.

matching filter, which is responsible for interpreting the frames
and acting accordingly.

filter.sv

16’ pixel data [9:0][15:0] line_buffer_out data_in hcount, vcount

Xx_com, y_com
hcount, vcount =
heount, veount Buffer

Detect
[15:0] line_out

data_valid data_valid_out data_valid_in

[1:0] recognized

Fig. 3. Internal block diagram of the filter module

A. Buffer Module

The buffer module takes inspiration from a smaller version
developed by the authors as part of 6.205 lab 4b [2]]. The
purpose of the buffer is to always have access to the last 10
lines of pixels that were read in. Each time a new pixel is read
in, the current line buffers ’roll” over so that the oldest line
is dropped and the newest is read in. In this way, at any given
point in time, the downstream module has access to a given
pixel’s immediate 10x10 surroundings. In order to implement
this, 11 BRAMSs were used in an 11-state finite state machine
(FSM). This is necessary because each buffer’s role changes
depending on which stage in the rolling process it is in (i.e.
it may be accepting a new input in one state, while it may be
simply shifting over data in another). Each BRAM is addressed
by the incoming pixel’s hcount so that all off the appropriate

pixels can be read out of memory. Finally, the pixels are sent
out in buffers of size 10 to be used in the detect module.

B. Detect Module

The detect module incorporates the main filtering function-
ality which is responsible for shape detection. The main goal
of the module is to reliably detect when a command shape
appears in the camera’s view. In order to accomplish this, an
appropriate buffer has to be used in order to draw conclusions
about groups of pixels. This implementation makes use of the
rolling line buffer described above to break up a potential
character into a two-stage 100x100 pixel unit and evaluate its
contents. Due to limitations in hardware memory and timing,
it is not feasible to try and consider all 10,000 pixels at once to
determine if we have a shape match. Thus, this system breaks
down a given frame into 10x10 pixel blocks. Our template
shapes are constructed from 10x10 units of these uniformly
white or black 10x10 pixel blocks. Thus, we can consider each
10x10 unit at a time, while at the same time remembering what
blocks we have seen before. In this way we can determine
whether or not we are seeing a valid shape.

For example, consider trying to identify a triangle shape
contained within a 100x100 pixel area on the camera input. If
the shape is black on a white background, every pixel could be
checked on whether it is a very dark (low value) or very light
(high value), and the entire range could be given a score which
is then subject to a threshold to determine whether a ’triangle’
is present. However, this robust implementation would require
a 100-line rolling line buffer in order to store the necessary
info to be sent to the following module. We found this to be
unreasonable in code and in memory and resource utilization.

The simplified implementation divides this 100x100 space into
10 10x10 squares, each of which is checked against a uniform
black or white template square. The result is a template for
the triangle shape as shown below:

OO0 000
N .. |
.-]
-]
., 1]

mim. 1]
e 11l
(AN EEEEE
m 11111111}
EEEEEEEEEE

Fig. 4. Possible 100x100 template for the triangle shape (used for controlling
green LED levels), split into 10x10 chunks

Fig. 5. The triangle (green shape) on the verge of being detected. Each green
dot represents a 10x10 square that has matched the template.

It is also important to note here that there is some flexibility
in terms of what we consider a “match”. For each of the 10x10
sub-unit blocks, we can set a threshold count for which if there
are at least that many sufficiently (another threshold value)
bright or dark pixels, that is a valid block. This flexibility is
very useful because in most cases the orientation or distance
of the shape will not be perfectly aligned with what the filter
is looking for. Thus, there is room for adjusting tolerance to
allow for smoother operation. Once we reliably detect if there
is a shape, we can record the position of the shape and send it
onwards to the tracker module to keep track of how the shape
moves over time.

III. LIGHT INTERFACE MODULE

The tracker module takes several key inputs from the detect
module: pipelined hcount and vcount, the detected horizontal
and vertical position, and a 2-bit register which indicates which
shape, if any, has been detected. When a particular shape
is detected, its position is stored and the module enters a

state corresponding to this shape. The module begins to count
frames. If at any point the number of frames counted exceeds
a parameterized value, the module returns to its rest state. If
the same shape is detected before this frame count, the frame
count is reset to zero, the rgb output is altered according to the
difference in position, and the new position is stored. In design
and practice, we found that a 1:1 scaling between the pixel
position and the 8-bit LED color channel was appropriate, both
being on the order of about 100. Thus traversing the entire
camera range results in a full range of red, green, or blue
values. If a detection of one shape is followed immediately
by a detection of a different shape in the next frame, the new
detection cannot be processed until the parameterized frame
count has been exceeded. This occurrence creates the longest
pipelined path in the Waveshine system and thus is the extreme
of latency. This delay is not noticeable visually.

The role of the LEDcomm module is to transform the
final desired RGB data into a serial form which can be
effectively received by the 8x32 LED panel. This is designed
in accordance with the WS2818 communication protocol used
by the integrated circuits built into the panel. The module
must continually stream data to the LED drivers, and update
this stream based on the output of the filter module.

The WS2818 protocol uses a Single-Line Return-to-Zero
standard. In order to transmit a bit of value 1, the protocol
specifies that a high signal must be sent for a specific amount
of time, followed by a low signal for a specific amount of
time. Transmitting a O involves the same scheme with different
timing. These timing specifications can be seen in Figure [6]

The detection scheme being quite stable from frame to
frame, LEDcomm was modified to not require a rising edge in
data-valid-in. Instead, it waits until the previous rgb value has
been sent and then looks for any high valid data signal. This
technically reduces throughput, as the module cannot take a
new rgb input while the previous is being sent. However, given
the timing specifications of the WS2818 protocol, an entire
LED panel’s worth of data can be transmitted within the span
of one frame. Thus, with respect to the incoming detection
updates, LEDcomm has 100 percent throughput.

8
RESETE Treset
Sequence Time
TOH 0-code, High-level time 220ns~380ns
TIH 1-code, High-level time 580ns~1.6us
TOL 0-code, Low-level time 580ns~1.6us
TIL 1-code, Low-level time 220ns~420ns
RES Frame unit, Low-level time >280us

Fig. 6. WS2818 Serial Timing Specification

In order to communicate, then, the interface module sends

each bit of the 24-bit RGB input at a time, using the above
codes for each bit. To time the signals correctly, the module
assumes a 65MHz clock (obtained from an upstream clock
transformation module) and waits the appropriate number
of clock cycles when holding the output high or low. For
example, to send the high portion of a ”1” bit, keep the
output high for about 64 65MHz clock cycles, equating to
about 0.985 microseconds. This falls comfortably in the 580ns-
1.6us range specification. The interface module completes this
communication for every bit in the RGB data and repeats the
process continually.

IV. EVALUATION

When it comes to system speeds, Waveshine is built to
perform very well. The throughput of the system is limited
by how quickly new pixels can move through the video
processing engine. Due to fixed overheads built into the camera
pipeline (i.e. 2 cycles for BRAM access return), it takes several
clock cycles for a new valid pixel to be presented to the
engine. Despite this, because all of the template comparison
happens in one cycle, there is no worry of negatively impacting
throughput. That being said, the implementation for checking
if the current 10x10 is “white” or “black” requires doing
comparisons and additions on each channel (R,G,B) of 100
pixels in one cycle. We believe Vivado is building distributed
RAM or BRAM blocks in order to accomplish this large
combinational task, according to the presence of 22 otherwise
unexplained 320x16 bit RAMs in addition to 4 (expected) 7-
bit 100-input adders. While this was still able to pass timing
requirements due to Vivado’s superb optimization abilities,
its possible that this implementation could be improved by
sacrificing some clock cycles to free up some combinational
logic, especially because the detect module is not the limiting
factor on the throughput. However, it is also important to note
that the RAM resources on the FPGA board remain as unused
space unless they are built, so it is not necessarily a bad thing
if the logic takes up more of these resources.

A. Timing

Vivado was able to optimize our design so that the worst
negative slack (WNS) in the system is 0.286, with zero total
negative slack. WNS was reported as positive in every phase
of routing. We expect that the path which limits the speed of
the system is through the buffer and detect modules, including
the 100-input adders, then through the tracker and LEDcomm
modules. The limiting factor is likely the combinational block
present in the detect module, and if this were optimized or
prioritized differently to sacrifice latency, a clock faster than
65MHz could be used.

B. Resource Utilization

For the most part, Waveshine is not that straining on system
resources. According to the build logs (see repo link right
before appendix), none of the memory elements were close to
being fully used. As mentioned previously, the only portion of
the design that does use a significant amount of resources is

the fairly large combinational math used in detect. This could
be an opportunity to use up any extra space to further pipline
the math and improve the speeds of the overall system, so long
as the resources aren’t hogged to the point that they begin to
affect performance. For specifics on exact amounts of BRAMs,
LUTs, etc, see the Vivado reports in the appendix.

C. Goals and Extensions

Our current implementation met all of our commitments,
and nearly all of our goals. We decided to forgo simple color
detection for a more sophisticated object recognition system,
and were able to get this successfully implement this. The
downside was that the shape detection requires a fairly stable
camera environment; the best results were obtained with the
white shape on an all black surface. For this reason, it did not
make much sense to incorporate the auto-brightness feature,
because there would not be much of an ambient background
from which to draw from. As far as the shape detection,
Waveshine can detect the red, green, and blue shapes reliably
given the proper conditions. Specifically, the distance from
the camera and orientation of the shapes are very important in
order to match what the template is expecting. Using multiple
different thresholds allowed us to leave some room for error,
but it is possible we could achieve better results if we explored
a more sophisticated detection technique (true convolution,
edge detection, etc). That being said, the current system is
very effective, and also is built in a way that would allow for
a wide range of expansions. Adding new shapes is as simple
as dropping in a 100 bit shape template and corresponding
threshold. Furthermore, we are currently only tracking vertical
motion to affect LED channel intensity. We could also make
use of horizontal movement to incorporate more features, such
as sweeping across which LEDs are on, and other neat tricks.

V. DISCUSSION

In retrospect, we have several thoughts:

o As opposed to color detection using robust color spaces
and masks, we opted for the more complex option of
shape detection. A color detection implementation would
undoubtedly be simpler in resources and timing.

e Scaling the VGA output was causing unwanted behaviors
in our live shape tracking. Due to time constraints we
simply chose not to scale up the output, though with
time we could reconcile our modules with this existing
functionality.

e Much of the existing camera processing pipeline (mirror,
rotate, scale, masking, muxing, etc.) cause issues in our
design process. With more time we might have built out
our own custom pipeline instead of editing.

e« We found that using bright white emitted light on a
dark background worked best for our shape detection
algorithm. The surrounding environment slightly affected
our results through reflections. Some filtering or unique
coloring (i.e. pink shapes) could possibly alleviate these
issues and enable a solution more robust to background
noise.

o There are other methods of shape detection, such as
edge detection using convolved kernels, that might be
interesting to explore and compare in the future.

e An 8x8 or 16x16 sliding window, as opposed to 10x10,
might have been more ”Vivado friendly” and resulted in
a slimmer build.

VI. CONTRIBUTIONS

In terms of implementing the Waveshine system, Aklilu
was responsible for developing the video processing engine.
This included revamping the buffer module, writing the detect
module, and adjusting the entire camera pipeline as neces-
sary to support Waveshine, as well as drawing the template
shapes and experimenting to find successful threshold values.
Jonas was responsible for developing the LED interface. This
included researching the WS2818 protocol to understand the
operation of the LED panel, writing the LEDcomm module
to properly implement communication with the LEDs, and
writing the tracker module to interpret position information
from the video engine and send commands to LEDcomm.

For the report, both authors were generally responsible for
writing about the portions of Waveshine that they developed,
as well as relevant evaluation topics. In addition, Jonas created
some figures to be displayed in the report and edited together
the final video.

The full source repository for Waveshine can be found at
https://github.com/akliluaron/Waveshine

REFERENCES

[1]1 Author: 6.205 Fall 2022 Teaching Staff, “Lab 04A: Video Processing”,
6.205 Website October 2022.

https://fpga.mit.edu/6205/F22/1abs/lab04

Author: 6.205 Fall 2022 Teaching Staff, “Lab 04B”, 6.205 Website
October 2022.

https://fpga.mit.edu/6205/F22/1abs/lab04b

Author: Worldsemi, “WS2818A Single-line 256 Gray-level 3-channel
Constant Current LED Driver IC”,
https://www.tme.com/Document/1d930d9b83e8cce43e5d 1 c490ab0tbe8/
WS2818A.pdf

[2]

[3]

VII. APPENDIX A: VIVADO REPORT ON RESOURCE
UTILIZATION

————————————————— e
| |Cel1l | Count |
Femmemmheescessss== = +
11 | BUFG | 2]
12 | CARRY4 | 130]
13 | DSP48E1 | 9]
|18 |LUT1 | 52|
19 |LUT2 | 527]|
10	LUT3	663
11	LUT4	711
12	LUTS	1514
13	LUT6	5315
14	MMCME2_ADV	1
15	MUXF7	836
16	MUXF8	154
117	RAMB18E1	22
18	RAMB36E1	48
121 | SRL16E | 58]
122 | FDRE | 4353
123 | FDSE | 32|
124 | IBUF | 29|
125 |OBUF | 51|
Soomm=m omomsommm=e Pommm=m +

Detailed RTL Component Info :
rs

+---Adde
2 Input 32 Bit Adders := 1
3 Input 24 Bit Adders := 3
2 Input 24 Bit Adders := 3
4 Input 22 Bit Adders := 2
2 Input 17 Bit Adders := 1
3 Input 16 Bit Adders := 1
3 Input 13 Bit Adders := 3
3 Input 12 Bit Adders := 3
2 Input 11 Bit Adders := 8
3 Input 10 Bit Adders := 2
2 Input 10 Bit Adders := 6
2 Input 9 Bit Adders := 2
3 Input 8 Bit Adders := 2
2 Tnput 7 Bit Adders := 16
100 Input 7 Bit Adders := 4
2 Input 5 Bit Adders := 2
2 Input 4 Bit Adders := 2
2 Input 2 Bit Adders := 1
+---Registers :
32 Bit Registers :
24 Bit Registe
22 Bit Registe
19 Bit Registe
17 Bit Registe
16 Bit Registers :
12 Bit
11 Bit
10 Bit
9 Bit
8 Bit
7 Bit
5 Bit
4 Bit
2 Bit
1Bit Registers := 110
+==-RANS :
1200 Bit (76800 X 16 bit)
S12K Bit (65536 X 8 bit)
SK Bit (320 X 16 bit)
3K Bit (256 X 12 bit)

+---Muxes :
2 Input 32 Bit Muxes := 1
2 Input 24 Bit Muxes := 10
4 Input 24 Bit Muxes := 1
3 Input 16 Bit Muxes := 3
2 Input 16 Bit Muxes := 12
4 Input 16 Bit Muxes := 2
2 Input 12 Bit Muxes := 4
4 Input 12 Bit Muxes := 3
2 Input 11 Bit Muxes := 11
2 Input 10 Bit Muxes := 3
2 Input 9 Bit Muxes := 2
3 Input 9 Bit Muxes := 1
3 Input 7 Bit Muxes := 2
2 Input 7 Bit Muxes := 6
5 Input 7 Bit Muxes := 2
8 Input 7 Bit Muxes = 1
2 Input 6 Bit Muxes := 6
8 Input 6 Bit Muxes := 1
2 Input 5 Bit Muxes := 2
3 Input 5 Bit Muxes := 1
2 Input 4 Bit Muxes := §
20 Input 2 Bit Muxes := 1
4 Input 2 Bit Muxes := 3
8 Input 2 Bit Muxes := 2
2 Input 2 Bit Muxes := 14
2 Input 1Bit Muxes := 275
3 Input 1 Bit Muxes := 8
4 Input 1 Bit Muxes := 18
7 Input 1 Bit Muxes := §
11 Input 1Bit Muxes := 6
6 Input 1 Bit Muxes := 4
8 Input 1 Bit Muxes := 8
RAMS 1= 1 10 Input 1 Bit Muxes := 4
it

=1
RAMs := 22 Finished RTL Component Statistics

RAMS

VIII. APPENDIX B: WS2818B PROTOCOL

Data Transmission Method

RESET RESET
VLB ~|>280us"” FLb R ~]>280us

O 7 | o T [t |z][vt ||

D! 012/~24bit 031 24bit Hin-24bit 012/24bit 0374-24bit i 24bit

- 240 i L2ai st || ufosn |

D4 Hinf-24bit Min-24bit

Note: D1 is the data from MCU, and D2, D3, D4 are from Cascade Circuits.

Composition of 24bit data

[R7]re[rs[rara R [ri[Ro a7 a6 asaa]as aafar oo B7]Be]msma]Bs]B2

B1 [B0]

Note: Data transmit in order of RGB, high bit data is first.

https://fpga.mit.edu/6205/F22/labs/lab04
https://fpga.mit.edu/6205/F22/labs/lab04b
https://www.tme.com/Document/1d930d9b83e8cce43e5d1c490ab0fbe8/WS2818A.pdf
https://www.tme.com/Document/1d930d9b83e8cce43e5d1c490ab0fbe8/WS2818A.pdf

	System Overview
	Physical Layer
	Hardware Implementation

	Video Processing Engine
	Buffer Module
	Detect Module

	Light Interface Module
	Evaluation
	Timing
	Resource Utilization
	Goals and Extensions

	Discussion
	Contributions
	References
	Appendix A: Vivado Report on Resource Utilization
	Appendix B: WS2818B Protocol

