
FPGA Virtual Lightboard
1st Ivy Liu

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA
iliu@mit.edu

2nd Melissa Stok
Department of Electrical Engineering and Computer Science,

Department of Materials Science and Engineering
Massachusetts Institute of Technology

Cambridge, MA
mstok@mit.edu

Abstract—We present a design for a virtual lightboard imple-
mented entirely in hardware on an FPGA, which utilizes a wired
ethernet connection between a ”Transmitter” and ”Receiver”
FGPA to to stream annotated video footage. We implemented this
design using a XC7A100T, evaluated its performance and quality
through examining the output video stream and any error in
inscription, and discussed possible expansions upon the project.

Index Terms—Field programmable gate arrays, Image pro-
cessing, Ethernet transmission and receiving

I. INTRODUCTION

Lightboards allow for the overlaying of text onto images,
serving as a valuable education and communication resource.
Commercial lightboards cost thousands of dollars, can be
damaged by improper use, and are not easily transportable.
Virtual lightboards, on the other hand, require no physical
board, and simply involve a user ”writing” into the air with a
camera filming them. Through image processing techniques,
the writing is overlaid onto the image and stored until erased,
allowing for lightboard functionality.

II. PHYSICAL CONSTRUCTION

Fig. 1. Virtual Lightboard system components

The virtual lightboard consists of the following components:
• Two XC7A100T’s from Digilent.
• An OV7670 camera module and a 6.2050 VGA camera

board.
• A MAX4466 microphone module.

• A speaker.
• Two monitors.
• A drawing glove with a pink finger and palm for image

detection.

Fig. 2. Drawing glove with colored fingertip for writing and colored palm
for erasing.

III. VIDEO PROCESSING

Video capture is performed using an OV7670 camera mod-
ule and a 6.2050 VGA camera board on the ”Transmitter”
FPGA. Video processing occurs on a 16.5 MHz clock through
a sequence of modules to convert pixel values and perform
calculations to determine where the writing is occurring.
Pixels are then evaluated and valid greyscale pixels or writing
is stored in two pixel block RAMs (BRAMs) which hold
identical contents.

A. Pixel Conversion and Mask Creation

Pixels are transmitted from the camera module and sent
through the recover module to pair each pixel value with its
respective horizontal and vertical indices. Pixels are then sent
through a RGB to YCrCb converter. The Y value, a 10-bit
greyscale pixel, contains the pixels that will be stored in the
pixel BRAMs. Since we are using a bright pink colored finger
and palm as the drawing/erasing device, the upper four bits of
the red chrominance (Cr) value are used to create a mask tag
if the pixel falls within a certain threshold range. The pixels
that are tagged with mask for falling within the threshold are
used for the center of mass (COM) calculation.



B. Center of Mass Calculation

One essential feature of the video processing is to determine
where the center of the user’s finger is to allow them to write
or erase on the screen. As previously done in Lab 4, we use the
x and y coordinates of select pixels on the screen to preform a
center of mass calculation. Using this count of selected pixels
and the sum of coordinates, we can calculate our center of
mass.

mtotal =
∑
n

1

xCoM =

∑
n xn

mtotal

yCoM =

∑
n yn

mtotal

This calculation is performed for each frame in the COM
module, and used to select which pixels in the BRAM have
writing stored on them and which just have regular grey-scale
values.

C. Pixel Manager

Since certain pixels are written on but others are just the
grey-scale pixel, it is important to be able to distinguish
between the two and to store the correct pixels into the BRAM.
In addition, pixels that have been written on must not be
overwritten by grey-scale pixels, because otherwise the writing
on the screen would not be maintained between frames. The
compare module is responsible for executing this logic. A
diagram of the compare module is shown in Fig. 3. The inputs
and outputs of the compare module are as follows:

• valid, x com, y com: Outputs produced by the COM
module. Every time a new COM is generated, the valid
signal goes high for one clock cycle. Once received by
the compare module, these are stored and used for pixel
comparisons until a new value is received.

• sw[2:1], sw[0]: Switches used for color select and
write/erase mode select, respectively.

• y: Pipelined upper 6 bits from YCrCb output.
• hcount rec, vcount rec: Pipelined horizontal and verti-

cal count values from the recover module.
• current pixel: Current pixel contained in requested ad-

dress in BRAM.
• pixel valid, pixel addr, pixel: Valid signal that goes

high only when a pixel is being written on, not when
being read. Pixel address of pixel that is being requested
or pixel that is being written (depending on the valid
signal). Pixel value that is being written into the BRAM.

The compare module uses a rotating cycle of 8 states since
a new pixel from the camera is only received every 8 clock
cycles. When a new pixel is received, the address is first
calculated and sent to the BRAM to request the pixel that is
currently there. Two clock cycles later, this pixel is received
and it is evaluated. If the Transmitter is in write mode, then
pixels that have 11 in their MSBs will not be written on,

because these are pixels that already have color. Otherwise,
a new pixel will be written into the BRAM - either a colored
pixel if the pixel falls in the COM or in the 8 pixels around it,
or a regular gray-scale pixel otherwise. When in erase mode,
any location where there is a pixel that is over the threshold is
written to as a gray-scale pixel to get rid of the stored color.

Fig. 3. Diagram of FPGA1 Compare Module

D. Video Frame Storing

On the Transmitter FPGA (FPGA1), we instantiated two
dual-port BRAMs to hold 320x240 8-bit grey-scale pixels. One
of the BRAMs is a dual-clock BRAM, with port A being used
to store pixel values and port B being used to read pixels
to the Ethernet modules. The other BRAM contains identical
pixels but is a single-clock BRAM for which port B is used
by the VGA to display pixels on the transmitter side. In order
to reduce resource utilization, a future improvement could be
to only have one BRAM that contains the pixel values. The
VGA module could also read from port A in alternation with
the pixels that are being written in by the compare module so
that it can also be on a 65MHz clock. Port B would be used
by the Ethernet on a 50MHz clock.

On the Receiver FPGA (FPGA2), we used one dual-port,
dual-clock BRAM to hold the same 320x240 8-bit grey-scale
pixels. Port A is written to by the Ethernet module with the
pixels that are received from FPGA1, and port B is read from
by the modules responsible for displaying to the monitors
through VGA.

The pixels that are written on and the greyscale pixels must
be distinguishable once read from the BRAMs so that they can
be transmitted and displayed properly. The 8-bit pixels which
are stored use the following encoding scheme:

8-Bit Pixel Definition

11000000 Yellow
11010000 Pink
11100000 Green
11110000 Red

00, 6-bit Y Greyscale
10, 6-bit Y Threshold
01, 6-bit Y Crosshair



IV. VIDEO AND AUDIO TRANSMISSION

The development board comes equipped with an Ethernet
chipset capable of implementing full duplex 10/100 Mbps
Ethernet according to Diligent’s website. For our project, we
used 100 Mbps transmission by sending a dibit on every rising
edge of our 50MHz clock

We designated one FPGA as the Transmitter, and the other
as the Receiver. The Ethernet communication between the two
FPGAs is able to run on its own 50MHz clock, separate
from the VGA clock, and asynchronously access the data
in the pixel BRAM thorough its second port. To avoid the
complications of giving unique MAC addresses to the Receiver
FPGA boards, packets are sent with the broadcast address
FF:FF:FF:FF:FF:FF. A future implementation could verify if
we are capable of transmitting to multiple FPGA boards at a
time through a router. But, for the moment, we will discuss
one-on-one transmission and reception.

A. Transmission

A challenge of transmission we focused on was how to
handle dropped packets. To combat corruption in the received
video frames, we decided to also transmit the address of the
first pixel of every packet. To accomplish this, we implemented
a module that kept track of the pixel address as pixels were
sent, allowing us to preserve and sync the address on either
side of the transmission. We also used this packaging module
to access the pixel BRAM and transmit pixel data as dibits
in MSB, LSb in accordance with IEEE 802.3 standard. The
same standard mandates a 96 bit time Inter-Packet Gap (IPG)
between packets with a max size of 1518 bytes. By transmit-
ting our frame line-by-line, our Ethernet Packets follow the
structure given below in Fig. IV-A to meet these standards
with a fixed packet size of 356 bytes (362 when including the
IPG).

356 Bytes
7 bytes 1 byte 6 Bytes 6 Bytes 2 Bytes 3 Address + 320 Pixel + 1 Audio Bytes 4 Bytes

Preamble Frame Start Delimiter
(FSD) Destination Address Source Address Length Data Frame Check Sequence

(FSC, CRC checksum)

For the 362 bytes that will ultimately be transmitted per
packet, we calculated a frame refresh rate over Ethernet of
143.9 fps, which is well above the camera’s 30 fps. We
provided the refresh rate calculations below.

50MHz ∗ 2 dibits/cycle = 100Mb/s

100 Mb/s
8 bits/byte

= 12500000 bytes/sec

12500000 bytes/sec
362 bytes/packet

= 34530.4 packets/sec

Since we send a line of pixels per packet, we then simply
divide by 240 packets/frame to get our final refresh rate.

34530.4 packets/sec
240 packets/frame

= 143.9 frames/sec

During the transmission of the header, checksum, and IPG,
a stall signal is used to ensure we do not deviate from the
intended line-by-line transmission of the frame preserved in

our pixel BRAM. The transmission duration of this signal can
be altered to allow us to pick arbitrary packet sizes as long
as they meet the RMII specification of being between 64 and
1518 bytes.

As a reminder, our camera generates 320x240 frames at a
rate of 30 fps, and our monitors at 60 fps. Since we currently
cannot make use of the extra transmission speed without
upgrading our camera or monitors to have a higher fps or
resolution, it would make sense to change the duration of the
stall signal in order to decrease the packet sizes and adjust
the rate frames are sent at. This would have implications on
how frequently we receive new audio samples. For example,
decreasing the packet size by decreasing the number of video
pixels sent would allow us to send more packets per second,
resulting in a higher number of audio samples sent per second.
This also has implications on how much of the data transmitted
is user-viewable. Since every packet comes with 41 bytes
of boilerplate to make the packet conform to transmission
standards (Ethernet header, IPG, etc) and allow the data to be
interpreted (BRAM address), decreasing the number of data
bytes sent in each packet would decrease the percentage of
user viewable data.

x pixels + 1 Audio Byte User-Viewable Data % FPS Audio Kilosamples/Sec
81 66.39 106.73 102.46
161 79.70 128.92 61.88
321 88.67 143.92 34.53
641 93.99 152.74 18.33
1281 96.90 157.59 9.46

Alternatively, we have the extra transmission speed nec-
essary to instead increase the size of pixels sent. So we
could display full color 12-bit pixels and audio samples and
still retain over 50% of our transmission rate. We also have
the Block RAM necessary to store these frames, as we are
currently using less than 50% available Block RAM sites on
the board (see Section VI). If we followed the current pixel
encoding scheme that reserves bits on each pixel received
to select color, a 16-bit transmitted pixel would allow us to
display 12-bit color pixels with an Ethernet transmission rate
of 76.26 fps.

If we instead wanted to upgrade our camera and monitor to
allow for greater resolution and choose maintain our current
8-bit pixels, we could achieve the following rates below.

Resolution FPS Audio Kilosamples/sec
320 x 240 143.9 34.53
720 x 480 34.10 16.40
1024 x 768 15.05 11.73

B. Reception

After passing through the Media-Access Control layer that
was previously implemented in class, the packet is divided into
a write address, pixels, and audio data. Using the write address
that was most recently received, the modules will increment
and store the pixel data in the pixel BRAM on the Receiver
FPGA as it is received.



With high transmissions, pixel corruption during transmis-
sion is a negligible concern compared pixel address corruption.
A helpful refinement upon the work done thus far would be
completing a our checksum only over the pixel address of the
packet. Or perhaps, sending packets in an alternating pattern
of address-data instead, where a previously received address
packet is a requirement before accepting the following data
packet.

V. VIDEO DISPLAYING AND AUDIO SYNCING

A. VGA Displaying

VGA displaying is done through a series of four modules.
The VGA module is used to generate VGA display signals
for a 1024x768 display at 60Hz. The horizontal and vertical
counts (hcount and vcount) that are generated by this module
are then used by the mirror module, which scales down the
counts to 5/16 of its value and mirrors the hcount so as the grab
the pixel from the opposite side of the display. It generates a
16-bit pixel address which is used to index into port B of the
BRAM to obtain the desired output pixel. The output pixel is
sent to the scale module, which directly transmits the pixel if
it falls within the desired displaying region on the monitor or
sends a black pixel if this is not the case. The VGA, mirror,
and scale modules are identical on both FPGAs.

The one difference between the displaying on the two
FPGAs is in the VGA mux module. This module is responsible
for taking in the 8-bit values from the BRAM and converting
it into a 12-bit {R,G,B} value to be displayed by the VGA.
This module sorts out the pixels that have been colored on
from those that are greyscale. On FPGA1, the threshold and
crosshair pixels are also filtered out and displayed as pink and
green, respectively. This helps the user know where on the
screen they are writing or erasing so that they can properly
orient their hand. On FPGA2, the threshold and crosshair
pixels are just read out as regular grey-scale pixels.

B. Audio Recording and Syncing

We found that due to the high transmission speed of our
Ethernet connection, we were able possible to transmit our 8-
bit audio with a sample rate of 34.53kHz simply by sending a
single audio byte in each packet. This result enabled us sample
the current audio sample on the microphone on Transmitter
board, send it directly to the Receiver board, and output it
through the board’s 3.5mm aux port, thus eliminating the need
to deal with the syncing issues that come from having a buffer.

Although it was possible to distinguish words from the
audio received, we found that the system was somewhat
susceptible to noise. A possible future add-on of this system
could be a low-pass finite impulse response (FIR) filter to
attenuate high frequency noise and to handle anti-aliasing
during the down-sampling process. Alternatively, upgrading
the speaker or microphone module we used may also help
decrease the static heard.

Site Type Available Used Utilization %
FPGA1 Memory LUT 19000 5 0.03

Logic LUT 63400 900 1.42
DSP 240 10 4.17
BRAM 135 48 35.56

FPGA2 Memory LUT 19000 2 0.01
Logic LUT 63400 400 0.63
DSP 240 1 0.42
BRAM 135 18 13.33

VI. RESOURCE UTILIZATION AND TIMING

A. Resource Utilization

B. Timing

FPGA1 and FPGA2 use 65MHz and 50MHz clocks. The
65MHz clock is used for video capture and displaying, and
the 50MHz clock is used for Ethernet and audio capture and
playing.

FPGA1 has a WNS of 8.828 ns and a TNS of 0 ns. FPGA2
has a WNS of 9.536

VII. RETROSPECTIVE

Throughout our work on this project, we learned several
valuable things.

• When creating a complex system, it is easier to start with
something small that is functional and incrementally add
on components. This allows for an easier debugging pro-
cess where it is possible to identify issues and where they
stem from instead of having many possible connections
from which the issues may have arisen.

• In the same spirit, thinking about dependencies between
systems when deciding what to develop first leads to less
future revision and rework.

• Although test-benching can help in the development
stages, it does not catch all possible issues. Hardware
debugging takes a lot of time. Having test-benches that
cover end-to-end processes developed can be useful in
the hardware debugging stages to recreate the errors that
are seen and try to fix them quickly.

• Small counting errors can propagate and cause entire
systems not to work.

• Establishing a well-defined interface between systems,
especially those created by different team members, fa-
cilitates integration of all components at the end of the
project.

VIII. CONTRIBUTIONS

Melissa worked primarily on the image processing on
FPGA1 and the VGA displaying for both FPGAs. Ivy worked
on Ethernet packaging on FPGA1 and reception on FPGA2.
Audio transmission was a joint effort.

IX. ACKNOWLEDGMENT

We would like to thank Joe Steinmeyer, Fischer Moseley,
Jay Lang, as well as the other 6.2050 Fall 2022 LAs for a
wonderful semester and their support in producing this virtual
lightboard.



X. APPENDIX A: GITHUB REPOSITORY LINK

https://github.com/waterRK9/62050\ final\ project



XI. APPENDIX B: FPGA BLOCK DIAGRAMS

Fig. 4. Diagram of FPGA1/Transmitter

Fig. 5. Diagram of FPGA1/Transmitter



Fig. 6. Diagram of FPGA2/Receiver


