
TOT (Terminal-on-TOT) Final Report
1st Stephen Kandeh

Department of Physics and EECS
Massachusetts Institute of Technology

Cambridge, MA, USA
skandeh@mit.edu

2nd Julio Rodriguez
Department of Physics and EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

juliorod@mit.edu

Abstract—We present Terminal on TOT (TOT), a machine run-
ning on a five-stage 50MHz processor with a 32-bit Instruction Set
Architecture (ISA) based on RISC-V. This processor is designed
to implement a modified Harvard computer architecture, where
two direct-mapped caches are used to mimic a split memory for
instructions and data while still referring to a single shared main
memory module. TOT comes with a boot-loader stored on a local
ROM module which allows him to be programmed by a separate
machine through a UART port. Unused address spaces are
utilized for MMIO instructions to devices and global processor
settings. The necessary infrastructure for exceptions and kernel
mode are in currently in place. We implement this design through
the Nexys 4 DDR FPGA and evaluated its performance using
iVerilog and GTKWave.

Index Terms—Processor, RV32I, Direct-Mapped Cache,
DRAM, Distributed RAM, BRAM, UART, RS232, MMIO, Ker-
nel, TOT

I. INSTRUCTION SET ARCHITECTURE

The Instruction Set Architecture (ISA) used by the processor
is custom and loosely based on the RV32I instruction set. [1]
An instruction always follows the same format: the upper 6 bits
encode the operation of the instruction (opCode), the following
10 bits encode arbitrary registers of 5 bits each (val1 and val2),
and the last 16 bits encode either a register or immediate (val
3). A depiction of this is shown in TABLE I.

TABLE I
INSTRUCTION FORMAT

31 26 25 21 20 16 15 0
opCode (6 bits) val1 (5 bits) val2 (5 bits) val3 (16 bits)

There are 4 different types of instructions that can be
distinguished conceptually:

• 3R Instructions - instructions that involve the use of 3
registers (rd, rs1, and rs2)

• Immediate Instructions - instructions that contain an
immediate in val3

• CPC Instructions - instructions that change the PC in
some non-trivial way, such as branches or jumps

• Load/Store Instructions - instructions that interact with
the main memory of the machine

There are a total of 25 instructions that are recognized by
the processor. A reference of these instructions is provided in
TABLE II.

TABLE II
INSTRUCTIONS

Instruction Syntax Description
ST ST rs2 rs1 offset mem[rs1 + offset] ⇐ reg[rs2]
LD LD rd rs1 offset reg[rd] ⇐ mem[rs1 + offset]

ADD ADD rd rs1 rs2 reg[rd] ⇐ reg[rs1] + reg[rs2]
SUB SUB rd rs1 rs2 reg[rd] ⇐ reg[rs1] - reg[rs2]
AND AND rd rs1 rs2 reg[rd] ⇐ reg[rs1] & reg[rs2]
OR OR rd rs1 rs2 reg[rd] ⇐ reg[rs1] | reg[rs2]

XOR XOR rd rs1 rs2 reg[rd] ⇐ reg[rs1] ∧ reg[rs2]
SRL SRL rd rs1 rs2 reg[rd] ⇐ reg[rs1] >> reg[rs2]
SRA SRA rd rs1 rs2 reg[rd] ⇐ reg[rs1] >>> reg[rs2]
SL SL rd rs1 rs2 reg[rd] ⇐ reg[rs1] << reg[rs2]
LUI LUI rd imm reg[rd] ⇐ imm << 16

ADDI ADDI rd rs1 imm reg[rd] ⇐ reg[rs1] + imm
SUBI SUBI rd rs1 imm reg[rd] ⇐ reg[rs1] - imm
SRLI SRLI rd rs1 imm reg[rd] ⇐ reg[rs1] >> imm
SRAI SRAI rd rs1 imm reg[rd] ⇐ reg[rs1] >>> imm
SLI SLI rd rs1 imm reg[rd] ⇐ reg[rs1] << imm
JAL JAL rd label reg[rd] ⇐ pc + 4

pc ⇐ pc + label
JALR JALR rd rs1 offset reg[rd] ⇐ pc + 4

pc ⇐ reg[rs1] + offset
BGE BGE rs1 rs2 label pc ⇐ reg[rs1] ≥u reg[rs2] ?

pc + label : pc + 4
BLT BLT rs1 rs2 label pc ⇐ reg[rs1] <u reg[rs2] ?

pc + label : pc + 4
SBGE SBGE rs1 rs2 label pc ⇐ reg[rs1] ≥s reg[rs2] ?

pc + label : pc + 4
SBLT SBLT rs1 rs2 label pc ⇐ reg[rs1] <s reg[rs2] ?

pc + label : pc + 4
BEQ BEQ rs1 rs2 label pc ⇐ reg[rs1] == reg[rs2] ?

pc + label : pc + 4
NOP NOP Ignore instruction
HLT HLT Stop the program

Note that val2 is zero for instructions with only 2 arguments.

II. MAIN MEMORY AND CACHES

Tot implements a modified Harvard computer architecture.
This means that there is a single memory (DRAM) that holds
both the instructions and data for TOT, but two direct-mapped
caches – an instruction cache and a data cache – are imple-
mented within him to mimic a split memory. The other two
memory structures within TOT are his ROM and MMIO for
defining startup behavior and external communication/global
setting control.

A. Instruction and Data Caches

To mitigate the slow read/write times of DRAM and main-
tain a distinction between instructions and data, two direct-



mapped caches are currently implemented. The instruction
cache is implemented through Distributed RAM to ensure
single-cycle reads upon request hits. The data cache is im-
plemented through BRAM, as we cared less about timing for
data-accesses. Both caches are one block wide (each block is
one word wide, so each cache has one word per line), and all
memory access state machines have clocked state transitions
and combinational access signals to ensure no wasted clock
cycles.

Every line in the cache is stored through an address. For the
data cache, this instruction is formatted in the following way:
the lower 2 bits are the offset bits and always zeroed out, the
following 9 bits correspond to the cache index, and the upper
21 bits correspond to the tag. This is illustrated in TABLE
III. As such, each line in the cache must be 53 bits wide (32
data bits + 21 tag bits). The instruction cache has variable size
for optimization purposes, but currently is 64 lines long. This
means it has 6 index bits and 26 tag bits. It will also only
ever send load requests, so its controlling logic is much more
simple than its partner cache. The following information only
applies to the data cache.

TABLE III
CACHE ADDRESS FORMAT

31 11 10 2 1 0
tag (21 bits) index (9 bits) offset (2 bits)

Two one-hot encoded vectors are kept to indicate each
line’s validity and cleanliness (dirty lines are written back to
main memory upon eviction). A state machine is running to
appropriately read and write to BRAM and DRAM depending
on the memory access pattern. While running, the entire
pipeline is stalled.

B. Main Memory

The main memory of the machine is implemented through
DRAM. A request handler routes requests to DRAM, and gives
precedence to data cache requests in the case of simultaneous
accesses. This is because the data cache state machine will
take longer to complete and it stalls the entire processor while
it makes the request: the instruction cache will simply input
NOPs into the pipeline while it makes its request, so parallel
work can be completed if we make the instruction cache wait
longer.

We are using a memory interface generator IP module to
interface with the on-board DRAM resource. Reads and writes
are done 16 bytes at a time, so a mask is enabled to ensure
only the first 4 bytes of any given request is written to/read
from. The cache making the request will stall for a single
cycle on writes (once the request is accepted by DRAM)
and for as many cycles as necessary to return valid data on
reads (typically 20 cycles). No simultaneous reads/writes are
accepted (for example, on a load dirty miss, data is first written
back, then read from DRAM in two separate requests).

The clock DRAM uses is different from the processor clock,
so a BRAM clock crossing bridge is utilized on any signals

crossing domains in order to smooth out any meta-stability
issues.

C. ROM/MMIO

The address space of DRAM is defined to end at
0x00 FF FF FF (although the true space extends slightly
beyond that). The MMIO space begins at 0x01 00 00 00
and ends at 0x10 00 00 00. These spaces can be utilized
for any communication with the outside world and global
processor settings. Each device/setting address comes in pairs:
one address for the value intended for the corresponding
device/setting, and another address for an indication of fresh
data (although this second address won’t always be necessary
in practice).

There are currently 4 MMIO address: two for UART
communication (UART data and UART fresh) and another
two for cache-bypassing. Our protocol for UART is currently
only one way but could be easily modified for two way
communication. Our UART protocol is described in more
detail in a later section.

ROM memory will contain any important programs that
must be performed at startup. At the moment, it only contains
a simple boot-loader and described in more detail in a later
section. ROM is only accessible from the fetch stage, and
for any address above 0x10 00 00 00, requests go directly to
ROM as opposed to MMIO, the instruction cache, or DRAM.

III. MODULAR OVERVIEW

TOT is split into three main modules: The processor,
DRAM, and peripherals (currently just the UART port). This
general structure is illustrated in Fig. 1.

A. Processor Components

a) Fetch: At the Fetch stage, the processor fetches an
instruction from the instruction cache whose address is deter-
mined by the PC register’s current value. This register can be
updated in the following ways:

• If the processor is stalling due to a data hazard or
an ongoing memory request (in the instruction or data
cache), the value in the PC register will remain unchanged
until the stall is resolved.

• If a jump instruction is committed in Writeback, the PC
register will jump to the indicated address.

• If none of the above conditions are met, the processor
updates normally by adding 4 to the PC register.

The 32-bit instruction combinationally passed to decode will
be a NOP if there are any stalls, jumps, or if a HLT/NOP
instruction is pulled from the cache. Upon a reset, the first
instruction is fetched from a user-defined location (currently
set to address 4).

b) Decode: Decode accepts a 32-bit instruction for its
input register, and combinationally sets 9 control variables for
execute:

• aluOp (5 bits) - Instructs the ALU what operation to
perform on its inputs.

• rd (5 bits) - Propagated to WB stage for destination reg.



• changePC (1 bit) - Capable of ordering a jump to an
appropriately calculated address and flush (defined below)
when combined with other control signals.

• memAccess (1 bit) - Indicates a LD or ST instruction.
• wbEnable (1 bit) - Indicates that a register will be written

to.
• isImm (1 bit) - Ensures ALU sees a provided immediate

number rather than a register output.
• imm (32 bits) - The actual immediate to be operated on

(only 32 bits to facilitate the LUI immediate function:
at most 16 bits if taken from any other immediate
instruction)

• rs1, rs2 (5 bits ea.) Register addresses sent to an external
register file to provide the ALU’s

These 9 control signals are capable of uniquely identifying all
of our current 25 instructions. rs1 and rs2 reference an external
register file module and combinationally receive the data
stored at these respective addresses. All of this information is
packed into a 110 bit dInst wire and routed to Execute. Under
a flush (or reset), Decode will ignore its current instruction
and prepare to accept a new one from Fetch. Upon a stall, a
NOP decoded instruction is passed to Execute and Decode
will hold its current instruction until the stall passes. The
pipeline is setup to ensure that a flush and stall never occur
simultaneously.

c) Execute: Within Execute, the current decoded instruc-
tion is set sequentially from the output of Decode. This register
commands the ALU to perform a specified operation, which
then outputs the aluOut and branch wires. The first input to
the ALU is always a register file output, while the second
may be an immediate value. The isImm and changePC control
signals utilize branch to distinguish between JAL, JALR, and
any branch instructions. The jump and nextPC signals are
then appropriately set. An external PC pipeline is run at
the top level in a manner that ensures Execute and Memory
always get the correct address for their instruction (which
is necessary for various calculations). A 103 bit wire called
potentialMemoryReq is then combinationally forwarded to
Memory containing the control signals memAccess, aluOut,
rs2Val, wbEnable, rd, nextPC, and jump.

Under flushes and resets, the current decoded instruction
is cleared, and an output ensuring Memory and Writeback
do nothing is sent. Under memory stalls, Execute will hold
its current decoded instruction and output the same signals
(knowing memory will not be listening until the memory
stall is lifted). Note that Execute, Memory, and Writeback are
not affected by data hazard stalls. They are allowed to clear
their instruction through the pipeline precisely to eliminate the
hazard stall. The logic for this type of stalling is handled by
a separate, external module (called RegConflict).

d) Memory: The decision to split the memory access into
its own separate stage was made in the face of impossible
timing constraint violations. The input to Memory is received
sequentially. If a memory request is not required, the signals
are forwarded to Writeback unchanged. Otherwise, a request
with the appropriate write, data, and address signals is sent

to the data cache. This is a separate module following the
protocols briefly outlined in the Main Memory and Caches
Section. Memory will raise a memory stall while waiting for
the green light from the data cache, and holds onto its current
instruction while doing so.

After retrieving a response and determining the appro-
priate data to write back (if relevant), commands (wbEn-
able,rd,wbData,nextPC,jump) are combinationally forwarded
to Writeback in a 71 bit wide wire.

As with the previous two modules, under flushes and resets,
the current commands are cleared.

e) Writeback: This is the stage in which exceptions are
committed. When an exception is triggered, kernel registers
epc and exc are utilized. Epc will be populated with the
program counter of the instruction that triggered the exception
in case we must resume the program. Exc will be populated
with the address of a pre-written program specialized with
handling the particular problem that triggered an exception. At
the moment, we have exceptions for illegal memory accesses
and opcodes, incorrect privilege, interrupts, and page faults.
The next step in dealing with a triggered exception is to jump
to a general TRAP address. This is a basic program that adds
the user’s register state onto the stack. It ends with a jump to
whatever address is in exc. Upon returning, the TRAP program
proceed to reload the user’s state and jump pack to epc to
resume the user program.

In addition to dealing with exceptions, Jumps, register
values, and PC values are all committed in the writeback stage.
It is not affected by any stalls or flushes.

f) Exception/PC Pipeline: These are pipelines running
parallel to the processor that propagates the PC and exception
value for a given stage to writeback in a way that takes into
account the different rates of instruction flow due to memory,
hazard, and fetch stalls.

IV. PERIPHERALS/PROCESSOR SETTINGS

A. UART Port Communication

The Nexus 4 DDR FPGA includes a UART port which is
normally used to upload a build. With this same port, a sep-
arate computer can send data to TOT through a Python script
and effectively write programs directly into main memory.

The information sent to and received by TOT is formatted in
accordance to the RS232 protocol for a baud-rate of 2,000,000
bits/sec and one stop bit. The UART line is active low; a start
bit with a value of 0 indicates the start of a transmission,
and a stop bit with a value of 1 – succeeding the 8 data
bits transmitted in little-endian order – indicates the end of
a transmission (no parity bit is transmitted). [2] When a
full word is received, it is written to the UART data MMIO
address. A one is placed in UART fresh to indicate that new
data is present. When data is collected by TOT, he must
always remember to set UART fresh low again and await new
information.



B. Processor Settings

Currently, the only processor setting is a cache-bypass
address. When it is set high, any store request will be sent
directly to DRAM. This ensures consistent cache states and
allows the user to execute self-modifying code on TOT.

C. Bootloader

TOT includes a hardwired bootloader to handle data incom-
ing from the UART port. This loader is essentially a 3-stage
state machine. The first word it expects from the UART port
will always be the expected start address of the user program.
Then a continuous loop executes in which TOT first receives
and stores an address, then an instruction, then stores directly
to DRAM. This happens continuously until -1 is sent over
UART (since no address or instruction can ever be all F’s). At
this point, 2 (rather than 1) is stored in the UART fresh MMIO
address, and TOT jumps to the start address. Stack and global
pointers are then set, and MMIO protocol is maintained.

V. RETROSPECTIVE THOUGHTS

A. Vivado is Hard

It’s interesting to realize how fast things moved when they
were divorced from Vivado and its GUI. The entire processor
was mostly completed within the first weekend/week. Things
slowed from a sprint to a crawl after we started the journey of
interfacing with DRAM. A week was spent simply becoming
familiar with Vivado to an extent where meaningful debugging
work could be accomplished.

B. Timing is Hard

Perhaps the most frustrating aspect of this project was trying
to navigate the flood of timing errors we got in trying to
run TOT at 100MHz. Trying to track down problems quickly
became seemingly impossible, and was only worsened by the
fact that Vivado refused to use the relevant user-defined name
for wires. Instead, wires would be labeled in terms of indices
into obscure arrays they originated from. In addition, pushing
the compiler to optimally route a board with a high clock
frequency made build times go from 5 to 25 minutes. I’d like
to return to these issues once TOT is more stable to learn how
to deal with them more effectively.

C. Hardware Bugs are Hard

At the beginning of 6.111, I realized how much I missed
software bugs. Soon into final projects, I realized how much
I missed simulation bugs. By the middle of Tot’s timeline,
making progress absolutely required working solely on the
hardware directly, because MIGs and other IPs that I could
not simulate became a huge part of the project. I became quite
accustomed with ILA probes, except these quickly became
problematic after introducing UART, since the timescales of
UART of much larger than processor clock time scales.

D. Inconsistent Bugs are Hard

I’ve seen more seemingly random and disconnected bugs
in TOT’s hardware development than ore than any previous
project but we’re running out of time so that’s all I’ll say for
now

VI. REFERENCES

REFERENCES

[1] SiFive Inc. Andrew Waterman, Krste Asanovi. The RISC-V Instruction
Set Manual Volume I: User-Level ISA. CS Division, EECS Department,
University of California, Berkeley, May 2017.

[2] National Instruments. Serial Quick Reference Guide, June 2018.



Fig. 1. Complete block diagram of TOT. The diagram is color-coded to highlight the 5 pipelined stages of the processor. Note that the DRAM and peripherals
modules are handled within the memory stage of the processor.


