
6.111 FINAL REPORT 1

Stealthoscope Final Report
Sophie Guo, Kevin Qian, and Maggie Zhang

Abstract—The stealthoscope is a point of care FPGA based
medical device to help digitally record and process heart sounds
from a stethoscope. Our system is comprised of three main com-
ponents—audio sampling, data analysis, and data visualization.
The combined system takes real-time audio recordings, performs
an Adaptive Line Enhancer (ALE) algorithm to separate heart
from lung sounds, and transforms this audio data into a visual
display of the frequency spectrums for both sound types.

Github: https://github.com/skeqiqevian/stealthoscope

I. HARDWARE COMPONENTS

A. Stethoscope
The base of our stethoscope is a traditional analog stetho-

scope commonly used by doctors. Taking advantage of the
tubing of a traditional stethoscope, we cut the tubing near the
head of stethoscope and fit our own microphone and wiring
into the tube.

B. Microphone and Microphone module
We use CUI Device’s CMC-6018-44L100 Electret Con-

denser Microphone. This microphone is sufficient for our
purposes as its frequency response curve is relatively stable
until up to 10 kHz. The microphone is connected to an
Adafruit Electret Microphone Amplifier - MAX4466 with an
adjustable gain between 2.4 and 5.5 Volts. Tuning the amplifier
via an oscilliscope, we set the mic to a 3.3 Volts gain, which
is required of the Analog-to-Digital converter.

C. Analog to Digital Converter
We use Microchip Technology Inc.’s MCP3008 device

which is a 10-bit Analog to-Digital converter (ADC). The
analog input channels are configured as single-ended inputs.
Communication with the Diligent Nexys 4 DDR FPGA is
accomplished via SPI protocol.

D. Circuitry
In combining the ADC and Microphone module, we want

to supply only AC power to our microphone at the voltage
and gain that would achieve the highest spread of outputs for
our module. Our circuit uses a 3.3µF capacitor to cancel our
DC current from our FPGA. Once we have only AC current,
we use a 100K Ohm potentiometer to divide our incoming
voltage from the FPGA. The microphone module is capped at
3.3 Volts, so we divide the voltage in half to 1.65 Volts. By
itself, the gain for heartbeats was around 0.5 Volts, which is
about 1.15 Volts lower than optimal. To amplify the gain, we
added an operational amplifier (op amp) paired with another
100K Ohm potentiometer to multiply our gain by 2.3. The
voltage dividers and op amp create a voltage amplitude of
1.65 centered at 1.65 Volts, so that our heartbeat voltage ranges
from 0 to 3.3 Volts.

II. SAMPLING AND DATA PROCESSING (SOPHIE)

A. Data Sampling and Transmission with ADC

A majority of heart sounds emit within the range of 60 -
200 Hz, and lung sounds (i.e. breathing, coughing, wheezing)
usually emit around 600 Hz, but can appear at frequencies as
high as 2000 Hz. To sufficiently capture such frequencies, we
aim for an ADC sampling rate of 40 ksps, allowing around
20 samples per period. Since data transmission from the ADC
to our FPGA device occurs via SPI protocol, we implemented
an SPI state machine module to handle this protocol. Because
the SPI protocol requires 18 serial clock cycles to output one
complete data sample, we must drive our serial clock (SCK)
at 720 kHz to achieve our desired 40 ksps sampling rate.
Since this module is driven by pixel_clk (65 MHz) we
implemented our serial clock by waiting 45 cycles on the
pixel_clk between driving edge changes in the serial clock.

The input channels are configured as single-ended inputs as
part of the serial command through the serial data input pin.
The results of the A/D conversion are outputted as 10 bits in
MSB order.

B. FIR Low Pass Filter and Down Sampling

With an ADC output rate of 40 ksps that can represent
audio frequencies up to 20 kHz, we intend to downsample
our data to 10 ksps, so we can yield audio frequencies up to
5 kHz. In order to prevent aliasing during the downsampling
process, we need to first remove frequencies of 5 kHz-20 kHz
from the audio by passing it through an anti-aliasing filter. In
addition, it is important to note that when data is read into the
anti-aliasing module, the msb of our 10-bit data is flipped to
convert our data from offset binary format, to a signed two’s
complement format.

The anti-aliasing filter implementation consists of two mod-
ules, one module that implements a 31 tap Finite Impulse
Response Filter, and a combinational module that returns a
signed 10 bit filter coefficient given a tap number between 0
and 30. These coefficients are obtained using the MATLAB
round(fir1(30, 0.25)*1024) command to generate a
lowpass filter with a cutoff frequency of 0.25. The coefficients
are scaled by 210 to produce integer tap coefficients.

The 31-location sample memory buffer required by the FIR
module is implemented using a circular buffer and incoming
samples are stored at an incrementing offset. Since our 65
MHz clock operates much faster than the 40 kHz sample rate
of our incoming data, we are able to iteratively multiply each
sample in the buffer with its respective coefficient and add
to the running aggregate sum. Once 31 samples have been
summed, this is our final filter output.

6.111 FINAL REPORT 2

The filter calculation can be shown in the following sum-
mation:

y[n] =

30∑
i=0

(ci · x[n− i])

where ci is the coefficient supplied by the coefficients
module and x is our circular buffer array of input samples.

After the FIR low pass filter module is applied, the data
is forwarded to a downsampling module, which downsamples
our data from 40 ksps to 10 ksps.

III. ALE (KEVIN)

In order to separate the heart and lung signals, we use an
Adaptive Line Enhancer (ALE) algorithm described in [1].
At its core, the ALE algorithm learns a FIR filter which
tries to predict the signal using historical data points. At
each iteration, it updates the filter weights using least squares
gradient descent. The algorithm is parameterized by

• L, the number of filter taps
• ∆, the prediction distance
• µ, the learning rate of the gradient descent

We selected values of L = 50, ∆ = 32, and µ = 2−23 based
on Python simulations of the ALE algorithm on data collected
by attaching an oscilloscope to our hardware setup.

To describe the algorithm mathematically, let x[k] denote
the input signal, y[k] denote the output signal, and w[k]
denote the vector of filter weights at time k. For notational
convenience, let

X[k] = [x[k −∆], x[k −∆− 1], . . . , x[k −∆− (L− 1)]]

denote the historical data points. Then the ALE computes an
output

y[k] = w[k] ·X[k].

Afterwards, the weights are updated according to the least
squares method:

w[k + 1] = w[k] + µ(x[k]− y[k]) ·X[k]

The ALE algorithm learns the autocorrelation of the audio
signal at a fixed, predetermined shift ∆. Because the heart
signal is narrowband and approximately periodic, it has strong
autocorrelation, and thus the ALE will learn to predict it. On
the other hand, the lung signal is broadband and thus has a
weaker autocorrelation. Therefore, the ALE algorithm’s output
will approximate the heart signal. To derive the lung signal,
we can subtract the ALE’s output from the original signal.

Our testing shows that the ALE algorithm is capable of
learning the periodic heart beats measured from the stetho-
scope. See the Results section for more details.

IV. FAST FOURIER TRANSFORM (KEVIN AND MAGGIE)

A. Fast Fourier Transform

We use Vivado to generate the Xilinx FFT IP (as a *.xci
file). Our FFT module is configured to perform the calculation
on 1024 input data points. The inputs are 10-bits wide and the
output data is 32-bits wide.

B. Magnitude Calculations

After finishing the FFT calculations, we convert from the
32-bit output values into real magnitudes that represent in-
tensities for given frequencies. For magnitude calculations,
we use a square_and_sum module in addition to the
axis_data_fifo_0 and cordic_0 IP’s to accomplish
this task. These modules in sequence transform our 32 bits of
FFT data into a 24 bit output representing the intensity at each
frequency.

V. FREQUENCY WATERFALL VIEW (MAGGIE)

A. Intensity Averages

Our FFT utilizes 1024 input values for each transformation.
Because we have specified in our FFT module that we want
natural bit ordering, our frequency values are output from
smallest frequency to largest, which ranges from 0 to 10 kHz
after downsampling. Though it would be optimal to output all
1024 different frequencies, our monitor caps our y-axis at 684
and since we aim to display both a heart and lung waterfall
visualization, we chose to construct an averaging scheme of
output values.

Initially, we strictly averaged every four FFT output values,
but after additional testing on actual heartbeats, realized that
the heartbeats span a small spectrum relative to the overall
frequency values. Our final waterfall averaging scheme breaks
up the FFT data into three sections. The lower 256 frequencies
are averaged every two outputs, the next 256 values are
averaged every four outputs, and the final 512 values are
averaged every eight outputs. The new averaging scheme leads
to a much more compelling waterfall plot that better highlights
the heartbeats as they occur.

B. Magnitude to Color

After calculating average intensities of magnitudes from the
FFT, we convert the 24 bit magnitude values into 8 bit colors.
Our color palette consists of a 16 value subset within the
classic Video Graphics Array (VGA) 256 color palette. The
colors are bright, highly contrasted, and span the colors of
the rainbow, lending itself to a visually compelling waterfall
display.

Though only 10 seconds worth of data needs to be stored at
a time in each heart and lung waterfall Block RAM (BRAM),
to accommodate for BRAM space required by our time series
data visualization stretch goal, we opted for a smaller color
palette. To convert our averaged magnitude values to colors,
we used the bits from indices [4:1]. Though the overall
magnitudes were 24 bits coming off the IP, we realized that the
actual data from the ALE, due to the weak intensities of the
heartbeat, were well within positive and negative 32 for values,
and thus we only used the smaller bits. This allows us to “bin”
the magnitudes into 16 different bins which correspond to our
palette.

To select from the pre-set palette, we utilized a single port
BRAM with depth 16 and width of 8. The bit shifted and
truncated magnitudes are our palette read addresses. We obtain
an output two clock cycles later, and other inputs including

6.111 FINAL REPORT 3

valid_in and is_last are therefore pipelined by two
clock cycles.

VI. TIME DOMAIN VIEW (MAGGIE)

Alongside the primary waterfall view of our heartbeat data,
it is also useful to observe how the predicted ALE heartbeat
tracks with our time domain datapoints. The time domain
view is constructed similarly to a waterfall, using a dual port
BRAM. The writing side of the BRAM takes 1024 ALE data
points, downsampled by 20 times to show 2 seconds worth of
time domain data. On the read side, we take a new signed 16
bit data point at every new hcount value which corresponds
to a vcount coordinate for the given sample value to plot as
red on the time domain graph.

VII. VIDEO GRAPHICS ARRAY DISPLAY (MAGGIE)

The Video Graphics Array (VGA) has three main func-
tionalities controlled by on board switches—displaying the
frequency waterfall, showing a rotating or static frequency
waterfall, displaying the time domain, and pausing the data
readout.

A. Waterfall

For the waterfall display, after determining the colors for
each averaged magnitude, we need to efficiently store these
values in a rolling buffer for the heart and lung waterfall
that dynamically update with each new FFT transformation.
The waterfall module takes advantage of the two port BRAM
to allow for simultaneous reads and writes. Using a BRAM
of depth 256 (total number of averaged samples per FFT) x
10 (total seconds of recordings) x 10 (recordings per second)
with width 8 bits, we write and read the palette colors. While
we are writing new color values for outputs as they roll off
the mag_to_color module, the more frequently updating
hcount and vcount for the VGA will be reading off the
stored color values.

On the writing side, we are storing 128 cycles of 256 values.
Each cycle refers to a completed output from the FFT and the
256 values are the averaged frequencies. To index into the
waterfall buffer for writing, we increment a addr_count by
1 with each new output from mag_to_color and store this
value at the index. After reaching 128 cycles of FFT outputs,
at our final color_last_heart, we reset addr_count
to 0.

Because we are reading into the buffer linearly going
straight from output into BRAM, we do all the index manip-
ulations from the read side. To calculate the actual index that
we need to extract from the BRAM, it’s not as straightforward
as simply computing an index from vcount and hcount.
The diagram below highlights the conversion into index.

The process of index conversion consists of a few steps.
The first is realizing that because there are only 128 values
on the x axis, but we have a screen width of 1024, every 8
adjacent pixels must be copies of each other. So, the hcount
when indexing is right bit shifted by 5 to account for the 32
copies. Afterward, we need to flip the count values to start
at 255, the top of the frequency spectrum. Performing this is

Fig. 1. Waterfall BRAM filling

easy by just using 255-vcount. Finally, we account for the
jumps in 256 index values on the hcount side, creating a
computed index value of the following.

draw_addr← (hcount≪ 5) + (255− vcount);

B. Rotating Waterfall

In addition to the sliding view of the waterfall that overrides
old data, we have a second waterfall display that constantly
feeds in new data from the left side of the monitor, showing
a rotating display that dynamically shifts as we read in
new inputs. To achieve the rotating effect, we utilize the
sample_counter variable which keeps track of which
sample is being written into the BRAM. From there, our
drawing index will start at the location of the most up to date
sample_counter rather than the start of the BRAM. The
BRAM draw addressing is determined as follows.

(sample_counter−(hcount≫ 3))≪ 8+(255−vcount)

C. Time Domain

Centered at 380 pixels down the monitor, the spread of the
time domain coordinate across the center is plotted as discrete
red lines, creating a continuous time domain display. For the
coordinate_out data from the time domain BRAM, we
determine which vcount values must be red to capture the
size of the ALE output. All vcount values that fall between
the outputted ALE data per sample hcount, we set the color to
red, as represented by 1100 0000. The formula to determine
the actual displayed RGB is as follows.

rgb = |vcount| < (coordinate_out+380)?1100 0000 : 0;

D. Pausing

Switch one is used to pause the data read in and view the
existing displays. When the display is paused, no more of
the read in data is inserted into the waterfall or time domain
BRAMS, creating to a static view that can be used for further
analysis of the heartbeats. When un-paused, the data continues
to be read in where the previous updates was stopped.

VIII. AUDIO OUTPUT (SOPHIE)

To keep the basic functionality of a stethescope, we added
an audio output feature that allows the user to hear the heart,
lung, and unfiltered audio recorded by the microphone.

6.111 FINAL REPORT 4

A. Sound Selection

The user can control which audio data to output via the
switches on the FPGA board. Keeping switches 11 and 12
low outputs the non-ale filtered data, switch 11 outputs lung
audio, and switch 12 outputs heart audio.

B. Upsampling and Anti-Alias Reconstruction Filter

After the desired audio is selected, the data must be up-
sampled back to the original 40 ksps sampling rate, from
its current 10 ksps sample rate. A zeroth order hold method
is implemented in the upsampling module to read in a new
sample every single time one is available, and output it 4 times
in a row, before the next new sample is available. Next, the
data is sent to the low-pass FIR filter again, which during
upsampling, acts as a reconstruction filter.

To ensure that we still enable enough time for the sequential
31 tap filter operations in the following low-pass FIR filter, we
make sure to output the data from the upsampling module with
enough time between outputs. In our case, we waited 300 cy-
cles of the 65 MHz pixel_clk between each valid_out.

C. Volume Control and PWM

Switches 13-15 enable the user to control the volume. When
sw[15:13] is 3’b111, volume is maximized and when it is
3’b000 volume is minimized. Next, the data is sent to a pulse
width modulator module which converts the 2’s complement
signed data back to offset binary form and generates a PWM
signal to drive the amplifier.

IX. RESULTS

A. ALE Performance

The ALE algorithm is able to isolate the heartbeat audio
and suppress the other noise/lung audio (Figure 2). The top
spectrogram, which plots the output of the ALE algorithm,
contains the heartbeats (the periodic blue amplitudes) and
significantly less high frequency noise (green). For the derived
lung signal (computed as the original signal minus the ALE’s
output signal), while we are able to suppress the heartbeat
audio to some extent, unfortunately the heartbeat is still present
(Figure 2).

Fig. 2. Heart ALE filters out noise to isolate heartbeats (top) from lung
sounds (below)

B. Memory Utilization
As the stealthoscope is constantly visualizing data on the

screen as it takes in new audio, we were careful to minimize
the amount of memory utilized to create the display. Overall
in the whole stealthoscope module, we have 4 BRAMS—one
for storing a set color palette, two for each of the heart and
lung waterfalls, and one to display time domain data.

Overall, we utilized only 18.15% of the available FPGA
BRAM. The palette BRAM utilizes 128 bits, the lung and
heart waterfall each use 262 kbits, and the time domain data
uses 16 kbits.

By selecting from a small color palette of eight bits and
storing only small segments of input data, we leave room
for future functionalities and potential storage of data without
sacrificing the quality of the visual display.

C. Timing
In the stealthoscope project, we had to work around many

different clocks and sampling rates to best capture the beats
of the heart. Initially, we had negative build slack due to some
complex computations between large positive and negative
numbers occurring in both the ALE and Antialias. After
maximally pipelining the operations and still being unable
to meet timing, we realized that we could instead run the
whole system on a slower clock. Because we had already
slowed down the clock so much to sample at 40 ksps on the
ALE, there was no legitimate need to run on a fast 100 kHz
axi_clk. We ultimately standardized all of our components
to use a 65 mHz pixel_clock which matched the clk used
by the VGA display to avoid clock domain crossing and meet
timing.

X. TAKEAWAYS AND NEXT STEPS

One potential area of improvement is in the resource utiliza-
tion. We did not have substantial time to optimize this aspect
of our project, but to make our stethoscope viable, we should
try to minimize the resources necessary (logical units, DSP
blocks, etc.) while still maintaining functionality.

In addition, the audio output would be another area of
improvement that we would like to optimize. A significant
amount of gain was added to the system via the circuitry
to ensure enough signal to visualize the data. However, it is
likely that this gain introduced a lot of noise into the system,
therefore causing a bunch of static in the audio output. The
next step would be to figure out a method to either amplify
the data internally or find ways to filter out the noise in audio
output.

Another interesting add one feature to the display would
be automatic algorithms to zoom into heart beats and provide
suggestions on whether or not any irregularities exist. This
would likely require training some machine learning models,
but would be useful in ultimately becoming a better tool for
diagnoses.

REFERENCES

[1] C. Chao, N. Maneetien, C. Wang, and J. Chiou, Performance Evalua-
tion of Heart Sound Cancellation in FPGA Hardware Implementation
for Electronic Stethoscope, https://www.hindawi.com/journals/tswj/2014/
587238/.

6.111 FINAL REPORT 5

Fig. 3. Block diagram of entire system

