
Radio Society Defense Network Final Report
Oliver Trevor

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, USA
olt@mit.edu

Abstract—We present a design for a real-time radio transceiver
fingerprinting system for preventing undesirable users from being
able to retransmit their signal on amateur radio repeaters.
The system, which is implemented on an FPGA fabric using
minimal external signal processing, digitizes the raw demodulated
FM signal from a repeater’s input frequency and recognizes
the characteristic frequency deviations caused by the initial
instability in most FM transceiver’s PLLs. We will evaluate
system performance using radios of known identity to track how
often the system can correctly identify a transceiver.

Index Terms—Field programmable gate arrays, Radio,
Transceiver identification, Matched filtering, Digital signal pro-
cessing

I. REQUIREMENTS AND GOALS

The ultimate goal of the project was to create a system
that runs multiple matched filers in parallel against a detected
incoming signal and outputs whether it found a match in its
database of fingerprints (which were loaded from an SD card).
This goal was met.

Additionally, we developed a more robust and reconfig-
urable SD card controller IP that implements a custom
application-specific softcore CPU so that it can be configured
to talk to larger SD cards with more complex protocols.

A possible goal of the system was to “reload” the filters
with different fingerprints and re-run them to allow for more
fingerprints to be used. This ended up not being either possible
or necessary, as doing so would require keeping extra BRAMs
with the unused fingerprints (since the SD card is too slow for
real-time loading), which would use the exact same amount
of extra BRAM as if we just made more instances of the
filter module in parallel. Instead, the system is parameterized
such that you can adjust the total number of filter modules
generated, and the SD card controller CPU firmware can be
modified to tell it how many blocks of data to load.

We additionally added a stage to the system where it outputs
recorded signals over a UART to a computer for storage and
viewing, allowing for an attached computer system running a
Python script to view keyup signatures and store them.

II. ANALOG DESIGN

The analog frontend uses a single MCP6002 op-amp to add
a DC offset and scale factor to the incoming signal (which
has no DC offset). This allows the MCP3008 SPI ADC to
digitize the waveform, as it is not capable of reading voltages
significantly below its ground. The op-amp also gives us the
option of adding analog gain to better utilize all the bits of the

ADC. As a side effect of this topology, the incoming signal is
inverted, but that does not affect fingerprinting. The transfer
function of the circuit is:

vo = (3.3V)

(
R2

R1 +R2

)(
Rf +Rin

Rin

)
− Rf

Rin
vin

Note that, since we currently sample the ADC at 52.6312
kSps, no analog anti-aliasing signal is required, as there
are not any significant spectral components past the Nyquist
frequency.

III. DIGITAL ARCHITECTURE

A. Input and Output

The spi controller submodule of the mcp3008 adc mod-
ule implements a simple FSM that shifts data from the AXI
bus out over SPI while shifting data in and sending it out
over the AXI bus. Data is latched on the falling edge of the
SPI clock to maximize the time the line has to “settle” before
the MCP3008 samples it on the rising edge of the SPI clock.
Currently, the SPI clock is 10 MHz, and each SPI transaction
lasts 17 bits. This ends up resulting in a 52.6312 kSps sampling
rate.

Another simple FSM implements a UART output at 115200
baud on the PMOD connectors with 8 data bits per transaction,
1 start bit, 1 stop bit, and 1 odd parity bit. This allows
quickly exporting recorded waveforms to a Python program
on a computer over an FTDI cable for debugging and analysis.

The UART will also output classification results from the
matched filters. There will also be a binary “transmit enable”
signal for a repeater controller to enable banning specific users
by their fingerprints.

The spi controller module for the ADC will also be re-
used for a module that communicates with a microSD card
in SPI mode. A fixed number of fingerprints of fixed length
will be stored directly on the microSD card starting at address
zero to obviate the need for a filesystem. A large FSM will
implement the initialization and block read commands from
the SD card specification, then send the stored data out over
the AXI bus to the filter manager FSM when the FPGA is
reset.

B. Transmission Detection

Since it is not possible to run a large number of matched
filters fast enough to run them continuously (i. e. running the

Fig. 1. FT-3D keyup recorded on Siglent SDS1204X-E oscilloscope, triggered
using FPGA. The trigger signal on channel 2 (the purple signal) is barely
visible as an impulse in the middle of the display.

entire matched filter set on the last N samples in the time
between incoming ADC samples), the system instead has to
trigger on a detected incoming transmission, record it, then
process and classify it before the repeater user starts speaking.
The triggering algorithm maintains a ring buffer in a BRAM
of the last 50 samples. After each sample, the algorithm
finds the minimum and maximum of the ring buffer. Due to
the effect known as FM quieting, the difference between the
maximum and minimum (essentially a crude approximation
of the envelope of the demodulated signal) will drop sharply
when a transmission begins and the incoming signal “captures”
the receiver. A Schmitt trigger detects this sharp drop and
outputs a trigger signal to tell another module to start storing
the incoming samples into a longer buffer.

For testing purposes, the trigger signal is also routed out to a
digital pin so that an external oscilloscope can trigger off of it.
A successful capture is shown in Fig. 1FT-3D keyup recorded
on Siglent SDS1204X-E oscilloscope, triggered using FPGA.
The trigger signal on channel 2 (the purple signal) is barely
visible as an impulse in the middle of the displayfigure.1. The
same signal exported from the FPGA’s BRAMs via the UART
and graphed on a computer is shown in Fig. 2FT-3D keyup
recorded on FPGA and exported over UART to computer.
Note the similar characteristic “triple decaying peaks” feature
of this radio visible in both the oscilloscope and FPGA
capturesfigure.2.

C. Matched Filtering

In the original design, the matched filter modules performed
a simple correlation between the incoming signal and a stored
fingerprint signal by sliding one across the other and com-
puting their dot products at each point. The correlation score
would be the maximum dot product. Since correlations require
a zero-mean signal, the stored fingerprint is preprocessed by
a Python script to subtract out an DC bias. The incoming
waveform must be averaged (and that average subtracted from
the sample values to produce signed values from unsigned
ones) by the matched filter module.

Fig. 2. FT-3D keyup recorded on FPGA and exported over UART to computer.
Note the similar characteristic “triple decaying peaks” feature of this radio
visible in both the oscilloscope and FPGA captures.

This method produced reasonable results but frequently
had issues with signals of very different magnitudes, as the
dot product of a very strong fingerprint against a completely
differently-shaped but weaker signal is still a fairly large
number. To combat this, we added a second stage that aligns
the fingerprint and the signal using the phase shift determined
by the location of the maximum dot product, then computes
the sum of the squared differences between the waveforms.
This produces a “similarity score” which is dramatically lower
for matching waveforms than for non-matching ones. See
Fig .4Python emulation of comparing different FT-3D and
FT-70D fingerprints against each other. Black text on the
left edge shows which fingerprint that row of graphs was
compared against. Colored text above each graph shows which
other signal that comparison was run against. Green and red
show matches and non-matchesfigure.4 for examples. The
blue and orange waveforms are the fingerprint and signal
being compared against (aligned in time using the phase shift
determined by the matched filtering). The green waveforms
show the squared difference between those waveforms. As
you can see, the green waveform will be near zero for signals
that are actually similar but very spiky for signals that have
different shapes.

With the new algorithm, selecting the match becomes
trivial–the lowest similarity score is the match. Similarity
scores tend to be orders of magnitude different between
matches and non-matches, so there is little ambiguity.

D. External Buses
Simple FSMs implemented SPI and UART buses for com-

municating with the ADC, communicating with the microSD
card, outputting final match scores, and outputting signal traces
to a computer. We also used the LEDs to indicate detected
radios’ identities for rapid testing in hardware.

E. Internal Buses
All the internal modules communicate using AXI, some-

times augmented with “trigger” signals for the start of an
event. The SPI and UART controllers also use an “axiready”
signal to indicate when they have finished sending a byte and
are ready for another.

F. microSD Card Controller

Building a more robust microSD card controller was a side
goal of this project, since the one currently in use by the
course can only communicate with SDSC cards (8MB-2GB
size). The initialization protocol of microSD cards, apart from
being proprietary and largely unknown, is complex enough that
implementing it in a pure hardware FSM would be unwieldy
and a poor use of resources.

Instead, we chose to make a small softcore CPU with a 16-
instruction ISA, instruction ROM, 11 registers, and a simple
Python-based assembler. The ISA is tailored towards easy
communication with an SD card, including single instructions
that perform SPI transactions or issue SD card commands with
the appropriate CRCs and formatting. The system can correctly
initialize both a 2GB and an 8GB card (reading from an 8GB
card requires changing a mode in the firmware to use use block
addresses instead of direct addresses, as larger cards addresses
are “divided by 512”).

The CPU also has basic arithmetic and bitwise instructions,
the ability to load and store constants, the ability to display er-
ror codes on the FPGA dev board’s LEDs, conditional/branch-
ing instructions, and the ability to control the clock select line
of the SPI bus directly (because SD cards need mildly non-
standard CS manipulation to work correctly).

The CPU does not have or need any RAM, only a ROM
containing a program that it starts executing after reset. The
program is generated by a Python script that acts as a simple
“assembler,” where calling Python methods of an Assembler
object causes it to write out binary to a file that is then
converted into a .memh file for Vivado. The entire FSM for
initializing and reading blocks from a microSD card takes 144
32-bit instructions.

1) Development and Debugging of the microSD Controller:
No freely-available or iVerilog-compatible simulation model
of a microSD card in SPI mode exists anywhere that we could
find online, so debugging had to be done in-situ. We verified
the correct operation of the CPU itself in simulation using test
programs that did not require a real card to interact with. Then,
we wrote Verilog to mirror all the SPI communication lines to
the card out to the JC Pmod connector on the dev board, then
connected an inexpensive fx2lafw-based 24 MHz USB logic
analyzer to those GPIO pins and used Pulseview to record the
entire initialization and reading sequence.

Pulseview has the ability to decode both SPI and the higher-
level SD card protocol built on top of it, as well as identifying
errors and extrapolating the internal state of the card based
on that data. Fig. 3Pulseview decoding the beginning of
the initialization sequence of an 8 GB microSD card from
Netacfigure.3 shows an actual example capture and decode
of the start of a successful initialization of an 8 GB Netac
microSD card. Mousing over the different parts of the decoded
waveform diagram in Pulseview shows what each individual
bit in the card’s response means, which was extremely useful
in debugging issues with the internal state of the card that
would otherwise be completely opaque.

Fig. 3. Pulseview decoding the beginning of the initialization sequence of an
8 GB microSD card from Netac

Official documentation of the microSD card protocol is not
available online without buying a license, but we were able
to base the card controller firmware off of the behavior of the
Arduino SD card library [4], which has been extensively tested
on many cards.

We also used a remarkably detailed website about the
general architecture of the SD card protocols that purports
to originate from an anonymous cat known as ChaN in Japan
who works as an embedded engineer [2]. This website gave us
the critical piece of information for initializing >2GB cards–
that some cards use the ACMD41 sequence for initialization
but others use the CMD1 sequence. Trying both is required to
cause all cards to initialize successfully. The SD card controller
firmware accounts for this, trying one sequence until a timeout
is reached, then trying the other.

We also adapted ideas from a previous personal project
called OliverRISC (a CPU that could load its program from
an SD card). The ISA of the SD card controller is much more
specialized than that of OliverRISC, but the firmware imple-
ments a similar protocol. The firmware had to be completely
rewritten because OliverRISC has actual RAM and a stack,
whereas the SD card CPU only has registers.

IV. EVALUATION RESULTS

The matched filters correctly load and classify between
FT-3D and FT-70D keyups reliably in hardware (see project
video). Using the match scores dumped via a debug SPI port
created in the filter manager, we see that the FT-3D matched
filter outputs a similarity score around 4000-8000 when an FT-
3D keys, whereas the FT-70D matched filter outputs a score
around 70000 (lower similarity score means more similar, see
section on matched filtering). Conversely, when an FT-70 keys
up, the FT-3D matched filter outputs a score around 101000,
whereas the FT-70 matched filter outputs around 31000.

Additionally, Python emulation of the matching algorithms
used in the FPGA let us gain more insight into the internals
of the filtering (see Fig. 4Python emulation of comparing
different FT-3D and FT-70D fingerprints against each other.
Black text on the left edge shows which fingerprint that row of
graphs was compared against. Colored text above each graph
shows which other signal that comparison was run against.
Green and red show matches and non-matchesfigure.4).

One of the major goals of this project was to push the
total number of matched filters we can instantiate while fitting
within the FPGA’s resources. We managed to get to 10 filters
before being stopped by timing issues caused by Vivado’s
inability to infer pipelining for the DSP48 slices unless the
user explicitly instantiates them (something we could not do
because there is no unencrypted Verilog simulation model of
a DSP48 slice, so we would’ve been forced to migrate to
Vivado’s simulator in the last week of the project).

The design works at the original planned clock speed of
100 MHz. It very slightly does not meet timing at this speed
(WNS = -0.234), but does appear to work reliably in the
specific hardware we have up to about 10 matched filters
being instantiated (this was determined with actual testing in
hardware). This could be easily fixed if we could enable the
DSP48 pipelining explicitly.

It takes a matched filter around 40 ms to receive a capture
(measured using simulation), perform a correlation to deter-
mine the appropriate phase shift, and calculate a similarity
score by finding the mean squared difference between the sig-
nals. This is well within the time before somebody generally
starts talking into their radio after keying it up, so we have
enough margin to have time left over for the slower SPI bus
to send the match data to a repeater controller or computer
(in a future design, this final output could probably also be
replaced with a faster bus like PCIe or Ethernet).

Everything is fully-pipelined (although, as mentioned else-
where, Vivado struggles to fit an entire DSP48 multiply into
one clock), so the throughput is 1 sample per clock cycle.

The design uses 2 DSPs and 1 BRAM per matched filter. For
reasons that remain unclear, the DSP utilization report always
reports 4 DSPs being used, regardless of how the design
is changed, even though the actual synthesis log (and the
behavior in hardware one we add more filters than the timing
can handle) definitely shows that adding more matched filters
to the code causes them to be synthesized. Once again, we
suspect that using the Vivado simulator earlier on in the project
and explicitly controlling DSP48 usage/pipelining would help.

The design could be improved to use only 1 DSP per
matched filter, since the only reason there are 2 is that Vivado
creates separate multipliers for different states of the FSM that
never actually run at the same time. However, attempting to
separate out the multiplier to stop this behavior causes Vivado
to not infer a DSP48 slice at all.

General logic utilization (LUTs) was very low at only 3.12%
of Slice LUTs, since most of the resource usage is in BRAMs
and multipliers. Most of that logic is probably going to the
debug and SD card interfaces. The synthesizer struggles with
congestion due to the large fanout of many parallel filters but
manages to resolve it after a few attempts.

One of the large overheads incurred is the time and logic
spent on effective debugging systems (most of which could
be switched off in a final product to save logic). Most buses
slow enough for the oscilloscope or logic analyzer to read
accurately over long wires are slower than the actual operating
speed of the logic, so buffers are required to run them. UART

Fig. 4. Python emulation of comparing different FT-3D and FT-70D finger-
prints against each other. Black text on the left edge shows which fingerprint
that row of graphs was compared against. Colored text above each graph
shows which other signal that comparison was run against. Green and red
show matches and non-matches.

Fig. 5. GTKWave visualization of output of matched filter correlating a refer-
ence fingerprint of an FT-70D radio against an FT-3DR. The dot product out
signal shows the correlation waveform.

is extremely slow and requires an extra FSM, so exporting
signals to a computer takes time. The SPI bus used to output
match scores is also fairly slow, which, in actual use, would
decrease the amount of time the repeater controller has to
react to a blocked user detection. However, these tools made
developing the system a lot easier, as they all offer windows
into parts of the actual DSP chain that let us debug the system
more effectively.

The design is definitely usable for the use case of detecting
and locking out a single user and could trivially be extended to
the use case of detecting/logging multiple users of a repeater
for some kind of “scoreboard” system.

With minimal changes, the design could also be extended
with a CAT (Computer Aided Transceiver) interface back to
the radio (usually just an RS-232 port) that would allow it to
scan multiple frequencies and build up a general summary of
who is transmitting on the air throughout the day.

With much larger changes, the design could be used on
an FPGA with an SDR interface like the HackRF so that
it could fingerprint and identify all users within a slice of
RF bandwidth at the same time, creating a valuable tool for
analyzing interference sources or characterizing user behavior.

V. INSTRUMENTATION AND TESTING

We used a Siglent SDS1204X-E digital storage oscilloscope
to obtain initial recordings of various radios’ keyup character-
istics to develop the matched filtering in Python and determine
what sampling rate/bit depth would be required to accurately
reproduce the signals. A custom C program from a previous

project for converting oscilloscope binary dump files into CSV
files was extremely useful.

We also used a Siglent SDG2042X arbitrary waveform
generator to generate repeatable test waveforms to ensure that
the ADC was digitizing incoming signals correctly.

A Python script that recorded and stored exported signals
from the FPGA’s UART over an FTDI cable allowed us to
easily run testbenches in Icarus Verilog against the exact sig-
nals as the FPGA would see them. This was extremely useful
for verifying and debugging DSP algorithms. Additionally, it
allowed us to generate ROMs of actual fingerprint signals and
synthesize them into the design’s matched filtering stage for
testing the filters without having to load the data from the
microSD card.

Most of the DSP algorithms were prototyped in Python and
C both to develop them more easily and to provide a reference
implementation to compare the output of Verilog testbenches
to.

Each module in the design had its own testbench (some
which used $readmemh() to load memory files generated from
actual recorded signals from the UART), as well as small Bash
scripts to run the testbenches and open GTKWave with the
appropriate display configuration. We used GTKWave’s “ana-
log waveform display” option extensively to display register
values as smooth waveforms for easy visual debugging of DSP
algorithms.

Pulseview’s protocol analysis/decoding tools and Sparkfun’s
24 MHz USB logic analyzer, as discussed previously, were
critical to being able to develop a working SD card controller
without a working simulation model of an SD card.

VI. INSIGHTS AND NEXT TIME

The project completed its goals and, due to the “similarity
score” algorithm we came up with in the final weeks of the
project, outperformed our initial expectations of reliability
based on the early C/Python code written to test the DSP
chain.

However, if we were to do this again, we would set up the
project to use XSim, Vivado’s own internal simulator, from the
beginning. This would alleviate issues with suble differences
in signed number handling and, more importantly, allow us to
simulate direct use of the DSP48 slices. The Vivado wizard for
creating a DSP48 instantiation actually allows users to directly
customize the exact pipelining inside the slice, which would
have been incredibly useful and likely allowed us to solve the
timing issues and run somewhere in the neighborhood of 100
parallel filters easily.

VII. CODE

GitHub repo containing all Verilog code, as well as the
toolchain and firmware for the SD card controller (and some
C/Python code for DSP testing):

https://github.com/featherfeet/6111 Final Project

REFERENCES

[1] B. Fields, “Transmitter fingerprinting,” W9CR, 19-Nov-2020. [Online].
Available: https://wiki.w9cr.net/index.php/Transmitter Fingerprinting.
[Accessed: 23-Nov-2022].

[2] ChaN, “How to use MMC/SDC,” ELM-CHAN, 26-Dec-
2019. [Online]. Available: https://users.ece.utexas.edu/ val-
vano/EE345M/view12 SPI SDC.pdf. [Accessed: 09-Dec-2022].

[3] R. Rager, “XMIT ID version 2.61,” XMIT ID version 2.61, 15-Nov-
2000. [Online]. Available: https://www.qsl.net/n9zia/xmit id/index.html.
[Accessed: 23-Nov-2022].

[4] Arduino Project Authors, “SD Library for Arduino,” GitHub, 12-Nov-
2022. [Online]. Available: https://github.com/arduino-libraries/SD. [Ac-
cessed: 09-Dec-2022].

Fig. 6. Full system block diagram

