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Abstract—Below, we outline our preliminary report for work
done thus far in the final project for the Huah Huah Huah group.
We can divide up the work into the following three sections,
which is roughly divided among the team members: Image
Processing, Game State/Rendering, and Music Processing. The
Image Processing modules aim to use the camera to determine
hand and head positions in a 3D space. The Game State modules
aim to keep track of the state of the game, and the Rendering
modules aim to use the VGA to render the entire game state in
either 2D or 3D using raycasting. Finally, the Music Processing
modules aim to play a music wav file from an SD card and synch
music output with game play. The Music processing modules will
also initialize the block locations based on music characteristics
like changes in amplitude and frquency.

I. INTRODUCTION

Our goal is to create an augmented reality Beat Saber game
implementation using the FPGA. In our project, we aim to
create a seamless user experience that uses the parallelizability
of the FPGA to render a 3D game in real-time. Our main
goals are to learn about how to project 3D shapes onto
a 2D plane using raycasting, play and communicate music
synchronization on the FPGA, track hand and head positions
and velocities, and keep track of a big game state to manage
all of these different components during the entire game.b

II. GAME LOGIC (DARREN)

The game logic follows a simple state machine, which stores
the current player’s score, most recently sliced blocks, and
the current time. The game runs on a current time counter,
which moves once every 10 milliseconds. This current time
counter was chosen in order to give sufficient time for the
rendering modules, as described below in more detail, to
update the framebuffer. The game logic also ensures that
blocks are loaded in order, the saber’s velocity is accounted for,
block positions are calculated, and blocks are sliced correctly.
Below, we will go over the modules in more detail. See the
game_logic_and_renderer.sv diagram for a overview
of the game state and how it interfaces with the renderer.

A. Game State

The game state outputs the current time and the player’s
current score, the latter of which is outputted on the LED
array on the FPGA. The current time drives all other modules
downstream.

B. Block Loader

The block loader reads block data preloaded in a .mem file,
which stores the following block information for every block:
X position, Y position, time to be hit (in the units defined
above), color (red or blue), and direction (up, left, right, down).
We use a read-only BRAM to read the .mem file, and load the
blocks in order of time. Since we know that blocks will only
appear in increasing time order, we can stream data from the
BRAM as a cache. We output 12 block data at a time, where
the first index is the block that is closest to being hit, and the
last index is the farthest block. In our demo, we only need to
render at most 5-6 blocks at a time, but theoretically up to 12
can be done using this method. This block information is used
downstream, especially in the block selector module, to figure
out what block is being rendered for a particular XY position
on the monitor.

C. Saber History

The saber history stores the previous saber position offset by
a constant time. This allows us to calculate velocity, which is
the difference in saber positions between time periods. This is
used downstream in the state processor to determine if blocks
have been sliced in the correct direction.

D. Block Positions

The block positions module will take in all the block data
from the block loader and augment this data with the Z
position, calculated from the time that the block will hit the
player, and whether or not the block is currently visible. Since
the block loader loads the 12 next blocks from the BRAM,
not all blocks will be visible until it reaches a certain time
threshold.

E. State Processor

The state processor will incorporate the information from
the saber history and output whether a block has been sliced.
Since we can only slice the block that is closest to the player
from the block loader, we only check this one block for
whether this condition holds.

III. MUSIC SYNCHRONIZATION (SHREYA)

A. Block Generation

Currently, audio preprocessing for block generation is done
in python. Audio amplitude is analyzed to determine block
positions that match with the song’s inherent beat. This allows



custom songs to be loaded onto the SD card and used for
game play. Currently, the blocks that are generated need to
be manually loaded as BRAM onto FPGA 1 since audio
preprocessing occurs on our local PCs, but future work can
implement this processing using Verilog and use our already
existing Serial module to transmit block hex data from FPGA
2 to FPGA 1. The block_gen logic, however, is the same
and is described below.

For pre-loaded songs, we have hard coded block positions.
For each block, we specify (x, y, z, t) for block starting
position. This information is stored as a mem file and sent via
serial to our second FPGA that does game logic and rendering
prior to game start.

For custom songs, we create a mem file with block starting
position based on song characteristics. Below is an explanation
of our analysis in Python.

Fig. 1. Sample from raw wave file

Fig. 2. Smoothing of raw wave file

Figures 2-4 show the steps to our custom song analysis.
Wave file data is first averaged with a 1D convolution to
achieve the smoothing effect in Figure 3. Figure 4 is then a
derivative of the amplitudes seen in Figure 3. This is computed
with another 1D convolution with a kernel of [−1, 0, ...., 1] of
length N=5000 in this example. N was set as approximately

8
sample rate = 44100

8 . This second 1D convolution was done to
detect steep rises in amplitude shown in Figure 4. Blocks will
be generated with a random (x, y, z) at every rising edge of
the wave function shown in Figure 4. Block generation is done
prior to game play, so any latency here will not affect music
and game rendering synchronization.

Fig. 3. Step function corresponding to amplitude peaks

B. Audio Pipeline

Fig. 4. Flip flop synchronization from 65 MHz to 100 MHz clock domain

The Figure 9 shows the high level timing of the audio
pipeline. Three different clocks were used because of con-
straints to the sd_controller, audio_pwm, and VGA
modules. The ordering of the pipeline was optimized to try and
have most domains from a slower to a faster clock frequency.
This is so that a 2 flip flop synchronizer shown in Figure 4
can be used. This allows the registers to be able to catch the
rising edge of the slower clock since the register operates in
a much faster clock frequency. The one cross from 100 MHz
to 25 MHz is for the start byte from FPGA 1 that signifies
game start. To ensure that the sd read state control module
catches the game start byte, we transmit the start byte multiple
times (100 times) and game state begins. This doesn’t affect
game play because once the byte is received, the state moves
to the sd_read state and is no more scanning the receiver
for the start_byte. Overall timing issues/resolutions will
be described in the subsections within the music generation
section.

C. SD Card Reading

Songs are read from an SD card on board the Nexys 4 and
played to a speaker output. Wav files were directly written
to the SD card in hex format and separated by 1000 bytes
from each other. The SD card module, given in the 6.205
Documentation page, reads music data in 512 byte chunks,
and is currently set to start reading music data from byte 512
of the desired wav file. The first 512 bytes of data are part of



the wav file header specifying wav file length, sampling rate,
number of channels, etc. . . Reading music data is done at 25
MHz as specified in the module documentation.

Communication between the external SD card and the
Nexys board is done using SPI. SPI is a common interface
used for communication between a microcontroller and its
peripherals. The 4-wire SPI uses a CS (chip select) register
set to the SD peripheral, a shared clock CLK generated by
the Nexys, an input MISO (main out, subnode in), and an
output MOSI (main in, subnode out). Here, we use the MOSI
line to transmit data from the subnode SD card to the Nexys.

The sd_controller module utilizes the SPI interface
described above to read the data written in the SD card to the
main board. Data is made available 1 byte at a time, and is read
continuously in chunks of 512 bytes. With a 25 MHz clock,
512 bytes of data is 1/25000000*512 seconds of music, which
is pretty short. Data is made available on the rising edge of the
data_available signal. Once a 512 byte read operation
is done, ready is asserted and the module is ready to read
another 512 bytes starting at the specified SD address. This
functionality was exploited to start and stop SD card reading to
ensure correct data is available for the speaker output. Reading
from the SD card is completed once the address reaches the
last byte address of the wav file. The length of the wav file
was measured prior to processing, and is also made available
by storing the 4 bytes that occur after the 32’h64 61 74 61
in the wav file header at the beginning of the file.

Using this module was not too difficult; however, interfacing
this module with the complete audio pipeline took more time
than expected due to clock domain crossing and other timing
considerations that will be explained in the next sections.

D. Speaker Output

Data read from the SD card is written to an audio_pwm
module, also given in the 6.205 Documentation page, at
a 44.1KHz frequency. So, SD card reading is done about
1e03 times faster than audio signal generation. Therefore,
simply reading from the SD card and outputting the data to
speaker output leads to a way faster sampling rate (found from
experience).

First, I implemented a large amount of BRAM to try and
solve this problem, but later discovered the First In First Out
(FIFO) IP that does the same thing and is much easier to
integrate and debug. The FIFO acts as a buffer that can be
written to and read from. In this case, data is written and read
from in 1 byte sections. Data read from the SD card is written
to the FIFO and when the data from the FIFO is read from
the FIFO, it is written to the speaker output modules.

The FIFO used has a common 25 MHz clock and a width of
16384. Reading from the FIFO is done every 568 clock cycles
while writing occurs every 20 clock cycles, as specified by the
sd_controller module. 568 was chosen to divide the 25
MHz clock signal to a 44KHz signal to achieve the desired
sampling rate of 25e06

44e03 ≈ 568
This means the FIFO is likely to get full because of the large

between the read and write rates. The issue with this, which

I discovered while debugging, is that FIFO writing is halted
when it gets full but SD card reading is not halted unless the
rd line in the sd_controller module is manually driven
low. When this happens, audio data is skipped since data that
is being read is not being stored anywhere.

To solve this, when the FIFO gets close to being full (with
less than 1536 empty entries available for writing), SD card
reading is halted by disabling the rd line while the FIFO
reading continues to allow the FIFO to become more empty
and allow writing to the FIFO.

This was probably the most challenging part of the audio in-
tegration. I initially tried just the approach described above, but
the audio sounded very fuzzy. There were a few reasons for the
background noise. One, is that I was using the audio_pwm
module with a 25MHz clock instead of the 100MHz specified
by audio_pwm documentation.

To get rid of some fuzziness, I implemented clock do-
main crossing from 25 MHz to 100MHz, and integrated
audio_pwm for speaker output with 100MHz. This was
done using a 2 flip flop synchronizer, shown in the Figure
4. Initially, I was seeing some glitches, and added a second
register to decrease the risk of metastability.

The final sound quality, as seen in the final report video, is
much cleaner than initial iterations. There are a few reasons
for this. I found, using the ILA, that I am sampling the music
data at the correct 44KHz; however, the number of entries
being written to the FIFO needed to be increased. As described
earlier, SD card reading is much faster than writing to the
audio_pwm controller. Stopping reading from the SD card
reader was initially being done when the FIFO had more
than 1024 entries and would restart when the FIFO had only
512 entries, meaning 512 bytes, or 1 SD card read. Instead,
I increased the upper bound to stopping SD card reading
when the FIFO was more than 1536 entries, so the FIFO now
has room for 2 SD card reads. This increase in the usable
section of the FIFO greatly improved audio quality. Finally, I
preprocessed my audio data to include both a low pass filter
below the 22KHz Nyquist frequency (which didn’t make a
huge difference considering that is on the upper range of the
human hearing range) and more importantly, reduced the gain
of the whole audio file. This ensured that there was absolutely
no clipping in any part of the audio.

E. Serial UART

Serial UART is a method of communication that was
implemented in this project for communication between our
two FPGAs. It uses the Rx and Tx lines that allow for two
way communication. This allows both FPGAs to both transmit
and receive data so long as both transmitter and receiver share
a clock and have the same baud rate.

BaudGen The baudGen module works by raising dividing
a given clock to obtain an 115200 baud rate. We divide a 65
MHz clock to get 115200 baud rate, by using an accumulator
of size 214 and incrementing by 29 every clock cycle:

214

19
≈ 6500000

115200



Transmitter The transmitter serializes data. This means it
takes one byte of data and adds a start and stop bit. The Tx
line stays high in idle state, drops low for one baud cycle to
indicate start of transmission, sends each bit of data on each
baud cycle, and a stop bit of value 1 for another baud cycle.

Receiver The receiver deserializes the data. It takes the
input from the transmission output and watches for a start
low bit. Then it stores the next 8 bits in a buffer stored over
the next 8 baud bits, and checks for a correct stop bit. If the
stop bit is not received, it clears the buffer to ensure false data
is not received and used.

FPGA to FPGA Implementation (Monica) To implement
serial communication between two FPGAs, one FPGA imple-
ments the transmitter module and the other implements the
receiver module. In terms of wiring, the transmitting FPGA
must tie TxD to a port as an output (for example set output
logic jc[0]) in its top level. The receiving FPGA must tie RxD
to a port as an input (for example, input wire jc[0]) in its
top level. Finally, the two FPGAs achieve a common ground
and signal with a physical wire connecting their ground ports
together and a physical wire connecting the TxD port to the
RxD port.

The two FPGAs are connected now in hardware and use the
same baud rate, however, their clocks are not synchronized
and thus may differ in timing by an unknown phase shift.
As a result, the receiver would sample close to the edges of
the transmitter signal and interpret the data incorrectly. To
address this miscommunication, we modify the receiver. When
the receiver is idle and detects a falling edge indicating the
start bit, it begins counting up to half a baud cycle. Once a
half cycle has passed (282 cycles on a 65MHz clock is half
of 1/115200), then the receiver checks again if the start bit is
still low (to verify that the falling edge was not a glitch). If
the line is still low, then the receiver resets its baud so that it’s
offset approximately half a cycle from the transmitter’s baud.
With the offset, even if the clocks skew from each other by a
small margin, the receiver will still receive the correct bit.

F. FPGA Communication for Audio (Shreya)

To start playing the song, FPGA 1 sends a byte of all ones
to FPGA 2. When the receiver on FPGA2 receives this data,
it starts reading audio data from the SD card and feeding it to
the audio_pwm module.

Another feature of the music jukebox is that it plays a 740
Hz PWM wave for about 0.1 sec when a block is correctly
sliced. Hit detection is done in the game logic modules. When
a hit is recognized, FPGA 1 sends a byte of data via serial
to FPGA 2. When the receiver on FPGA 2 receives and
deserializes the data, the audio_pwm module receives the
740 Hz PWM wave audio data instead of the SD card for 0.1
sec.

The delay between the first button press to the first note
played on the speaker and the delay between a hit on the
screen and the hit note played on the speaker is 568 clock
cycles in the 25 MHz domain and 10 cycles with a 115200
baud rate. This difference is approximately 3.14e-5 seconds

and is negligible to the human ear. We tested this, and in our
final video, it can be seen that many of the blocks appear at a
down beat in the song (not all down beats since we reduced
frequency of blocks to make game play slightly easier) and
the hit sound is heard almost instantaneously to the human
ear after a hit is rendered on VGA.

G. Insights (Shreya)

I learned many many things, some of which I described
earlier. The key takeaways were to test every step of the
way. First, I would test via testbenching, such as when testing
if serializing was working, and then with the ILA if I was
interfacing with hardware that I could not scope with the os-
cilloscope or test through testbenching. Additionally, working
with domain crossing and FIFO’s was a learning experience. I
definitely understood the importance of timing, metastability,
and clock synchronization. For example, serial transmission
and receiving worked perfectly from the FPGA to a PC, but
required much more debugging between two FPGAs to ensure
the baudbits were aligned. Finally, I learned the importance
of drawing block diagrams and thinking through integration
prior to writing code. Writing it out beforehand allowed me to
see constraints, like those of the sd_controller module,
VGA, and audio_pwm module timing constraints, to ensure
that there were synchronizers in appropriate locations and
allowed me to have a better sense of what was going on when
trying to isolate a problem.

IV. CAMERA INTERFACE (MONICA)

A. Saber and Headlight Construction

We create a saber for the player using blue LEDs on a
breadboard. We can power six LEDs in parallel with one 9V
battery and a 68 Ohm resistor in series with each LED. We
also use LEDs to identify where the player’s head is. Six
red LEDs and resistors on another (small) breadboard with
a battery are taped to a hat for the player to wear. The LEDs
are covered with tape to prevent the LEDs from over-reflecting
on their surroundings, lessening the noise in the camera color
detection.

B. Saber and Headlight Detection

The cameras need to detect the colors and locations of each
saber. Color detection is implemented through thresholding
and masking. Each camera will detect a saber by first com-
paring pixels to both low and high thresholds for Cr and Cb
color content, and then masking threshold-satisfying pixels.
The masked pixels for each are inputted in parallel into two
center of mass calculation modules from Lab 4.

Originally, our goal was to have two hands (one red and
one blue light on each) and use a blob detection algorithm
to split the blue and red into two blobs each. The plan was
to fit the masked pixels with a line of linear regression,
find the perpendicular line through the center of mass, and
then recalculate two center of masses for each color with the
line splitting the frame. We implemented a linear regression
calculation module to output b and m (as defined in Equation



1 and 2 respectively) for y = mx+ b, the line of best fit for
the masked pixels.

b =
(Σy)(Σx2)− (Σx)(Σxy)

n(Σx2)− (Σx)2
(1)

m =
n(Σxy)− (Σx)(Σy)

n(Σx2)− (Σx)2
(2)

However, this linear regression fails when the data points
fit a horizontal line - for example x = 100. If the line is
horizontal, there is no m or b that can be inputted into y =
mx + b to match x = 100. This result was determined by
displaying the line of regression on the VGA screen. When the
data’s best line of fit approached a vertical line, the displayed
line would widely swing around a horizontal line instead. We
attempted addressing this by computing the linear regression
for x = my + b and considering adding fixed thresholding
of slope for this specific edge case. This edge case would
affect the perpendicular line as well. After further efforts, this
method was ultimately deemed unnecessarily complex for its
application.

The proposed alternative would be to convert each pixel to
HSV format, quantifying their hue, saturation, and value. This
module would replace the RBG to YCrCb module. With the
resulting format, we would threshold for higher saturations
and values due to the bright nature of LEDs. We would then
identify five different colored LEDs and mask corresponding
pixels based on hue. Unfortunately, there was not enough time
to implement the proposed solution, as well as limited space
on the FPGA for a second hand. We instead continue forward
to processing data from two cameras.

C. Camera Ranges

In order to merge the data from two cameras and obtain a
3D point in space, we first must understand the possible ranges
of the camera and anticipate the potential movements of the
player.

We collected sample points testing the edges of the camera’s
field of vision and have concluded that the camera’s wider
dimension can approximately capture 3 feet of width at a
distance of 5 feet away from the lens. In the other dimension,
the camera can approximately capture 3 feet of width at a
distance of 4 feet away. The player should thus stand at least
4 feet away, and further if full arm span range of motion is
desired).

As for pixel data, we store X and Y coordinates as 12 bits
to not only cover the ranges below, but also to align size with
the rendering and for ease of data transmission that will be
discussed in the upcoming serial section.

2D camera data ranges:

• X: 0 - 274 hex (0 - 678 decimal)
• Y: 0 - 1DF hex (0 - 479 decimal)

D. Moving to 3D Space

Upon acquiring the coordinates that each camera sees an
LED at, we merge their two 2D coordinates into a 3D one.
We place the first camera in front of the player and the
second camera looking down at the player from above so
that they share one dimension. We also rotate both cameras
clockwise by 90 degrees so that the wider dimension can better
capture a person’s arm span. Accounting for this rotation, a
point (x3D, y3D, z3D) in our 3D space would be composed
of (y2 and y1, x1, x2) from the two sets of 2D camera data
as depicted in Figure 1. As a result, the Z coordinate has the
same range as an X coordinate would.

Fig. 5. 3D space constructed from two cameras

E. Serial UART Communication

In order to merge the two camera coordinates into a single
3D coordinate, we implement FPGA to FPGA serial commu-
nication discussed previously.

F. Camera Data Transmitter

The second camera, with a transmitter, continuously sends
its detected center of mass X and Y coordinate for both the
hand and head (even though currently only the X axis is
needed to augment the Z axis, both coordinates are sent for
flexibility). To continuously send bytes, once the TxD_busy
line goes low, the start_byte is set high again. Since it is
sending one byte after another, the receiver on the first camera
needs a reference message to know which byte corresponds to
which coordinate. The reference message must be impossible
to recreate with camera data so the following format was
designed.

The data to send includes:
• hand X coordinate (12 bits) – 0 to 274 hex
• hand Y coordinate (12 bits) – 0 to 1DF hex
• head X coordinate (12 bits) – 0 to 274 hex
• hand Y coordinate (12 bits) – 0 to 1DF hex
The transmitter cycles through the following bytes of data

(omitting start and stop bits):
• byte 1 – FF (reference signal)
• byte 2 – FF (reference signal)
• byte 3 – FF (reference signal)
• byte 4 – hand X coordinate [11:4] (cannot be FF)



• byte 5 – hand Y coordinate [7:0] (can be FF)
• byte 6 – hand X coordinate [3:0], hand Y coordinate

[11:8] (cannot be FF)
• byte 7 – head X coordinate [11:4] (cannot be FF)
• byte 8 – head Y coordinate [7:0] (can be FF)
• byte 9 – head X coordinate [3:0], head Y coordinate

[11:8] (cannot be FF)

With this ordering, it’s not possible to have three or more
consecutive FF’s from the data. Both X and Y coordinates
can have the bottom 8 bits be FF according to our limits. But
because we send the bottom 4 X bits with the top 4 Y bits,
this split can no longer be FF. Additionally, we make this byte
the last byte before starting over so the receiver cannot receive
4 FFs and mistake the first 3 as the reference.

These values were verified using the serial bus on an
oscilloscope and comparing them to the displayed center of
mass on the VGA and seven segment display.

G. Camera Data Receiver

The receiver functions with a buffer that stores the 9 most
recent bytes from the transmitter. When there is a new byte
at the end of a baud cycle, the previous bytes are shifted left
and the new byte is stored at the lowest 8 bits. When the
top 3 bytes are equal to FFFFFF, the receiver stores the other
bytes as the data for the XY coordinates. Since our camera is
running on a faster clock than the serial, we are able to store
the correct data on the next camera clock cycle. The received
X coordinates are then tied to the 3D Z coordinates.

Successful transmission of data was verified using the ILA
probes on the buffer and coordinate logics and comparing them
to the transmitter verification tools.

The final X, Y, and Z coordinate logics are only updated
when the new information is processed and fully ready, so that
only valid numbers are passed on to the rendering.

H. Insights

From this project I’ve learned a few valuable lessons. The
first main lesson is that when it comes to implementation
ideas, it is best to think thoroughly about all potential edge
cases, implementation options, and resources. I brainstormed
and researched various blob detection algorithms, without
even considering simpler solutions that bypassed algorithms
completely (such as HSV). The algorithm ended up being
more complex than expected due to edge cases I had failed to
consider beforehand. While the color detection algorithm was
interesting to think about and learn from, I do wish I could’ve
had more time to try the HSV route. Another insight I’ve had
is that the ILA is very useful for debugging. However, since
it takes a substantial amount of time to build for each change,
it is important to figure out a bug fully and attempt a fix
before running another build in order to be time efficient. And
finally, I’ve learned to take nothing for granted in debugging.
Small mistakes can be hard to find yet have great effects on
functionality. I learned to methodically dig for the root of an
issue.

V. 3D RENDERER RAYCASTING (DARREN)
The 3D renderer uses a raycasting algorithm in order to

render blocks in a 3D landscape to the player, much like
how it is done in the actual Beat Saber game. Below, I
outline the modules and IP required to make a raycasting
algorithm in the FPGA function correctly. Essentially, the
process that was used to create this huge set of modules
from scratch involved the following steps: first, a working
raycasting algorithm was implemented using Python, which
proved as a proof-of-concept and the point at which the FPGA
implementation will build upon. Second, relevant modules that
would allow raycasting to work in an FPGA were found, which
involved importing 10 different 32-bit floating-point modules
from the Vivado IP. Third, the Python code had to be structured
in such a way that the code was compatible with FPGA code.
This meant the following: since modules immediately output
the result of calculations when it is done processing the input
data, it was necessary to ensure that the input output pipelines
of modules were synced up, and if possible, placed adjacent
to each other so that the pipelining needed was minimal. This
meant that the Python code had to be split up into stages,
where one stage would use the outputs of the last stage as
inputs, while also pipelining the relevant logic from previous
stages when necessary to be input at the exact same time. For
instance, in the get_pixel_color module, the module had
to be split up into 8 stages of varying cycle delay in order to
get from a block and ray information to the output pixel RGB.
Many modules in this section had to be precisely pipelined in
order to get correct results, since block data and XY positions
were passed in every cycle and they changed very quickly to
the clock cycle itself.

Finally, to ensure that the modules worked correctly, it
was imperative that all modules were separately tested in
simulation for correctness, since floating-point calculations
were virtually impossible to test in hardware (additionally,
build times using floating-point IP quickly exhausted from 10
to 30 minutes of each run). This meant that simulation modules
were created for each module below, as well as integration
modules to ensure pipelining correctness between modules as
well. When all modules worked in simulation, the modules
were tested and debugged on the hardware level only when
necessary.

A. Float IP

There are 10 floating-point modules used in the development
of this raycasting algorithm. This includes the operations for
add, subtract, multiply, divide, less than, less than or equal,
equal, reciprocal square root, and finally two modules to
convert to and from a float to a signed 32-bit integer. These
modules were all customized to be non-blocking, which meant
that the raycasting had to be pipelined to ensure speed and
correctness. Additionally, 32-bit float modules were chosen to
ensure correctness. Finally, each module incurred a different
delay before outputting the data. These values were carefully
noted to initially predict and test pipelining logics for various
logic from upstream modules.



B. 3D Vector Abstraction

In order to effectively use the floating-point IP, it was
necessary to create a 3D vector abstraction for the operations
needed to implement raycasting. This involved creating 12
modules for this purpose, which are the following: vector
reciprocal square root, scale by a constant, add, subtract,
multiply, divide, dot product, normalize, less than, compare,
max, and min. The compare module would take in two 3D
vectors, and based on the result of a less than vector module,
output a new 3D vector that outputs each respective vector
XYZ that matched the comparison condition. These modules
were built and tested individually, before being used for the
below modules.

A brief overview of how the raycasting algorithm was
implemented is as follows: firstly, the three-dimensional block
selector module must take in the 12 candidate blocks from
the game state section described above, and figure out for a
specific XY screen position which block is being rendered at
that pixel. To do that, we will first define some terminology
that is commonly used for 3D projection algorithms. Firstly,
note that we have two coordinate systems: we have the XY
screen pixel positions that define what is being shown on the
screen, but we also have the XYZ space that defines where
everything exists that is being rendered. The blocks will live
in this XYZ space and be translated to the XY position to
be viewed. We will have a camera, which is the location at
which the 3D render is being seen. In our final project, this
is considered the head position, which can change by moving
your head. This is also placed in the XYZ space. Thirdly, there
exist three lights in the XYZ space that allow the player to
see anything in the 3D space. Two lights are placed at static
locations, and the third light is placed on the saber itself.

With the terminology defined, we can begin to understand
the algorithm used in this final project. In the block selector,
we will begin by projecting a ray from the camera position
in the 3D space to every XY pixel position, represented as
a projection matrix in the 3D space that lies in front of
the camera. See diagram for a visual understanding of this
translation. Next, we must determine if this ray intersects with
any blocks in the XYZ space. To do this, we can loop all 12
blocks currently cached and determine if any block collides
with this ray. If so, we take the closest block and return this
block as the correct block for the input XY pixel position.

The second part of the modules involves actually figuring
out the color of the pixel that is rendered. This is done via two
main modules. Firstly, we check if this ray lies on the face
of the block closest to the camera. If this is true, we can do
math in the 3D space to figure out whether we should render
an arrow that represents the arrow of direction the saber should
move to successfully “hit” the block. If this is not true, then
we will use a lighting process called lambert diffusion, which
essentially uses the three lights to generate the correct RGB
value for this XY pixel position. Essentially, this diffusion will
use the positions of each light to increase the RGB values of
the pixel, where each light contributes some amount of RGB

to the block pixel based on its distance to the light. This is
used as our output pixel, after some constant processing, to be
sent finally to the three-dimensional renderer.

The final part of our modules is the three-dimensional
renderer, which simply takes in this pixel from the above
module and stores it into a framebuffer of 512x384. The reason
a framebuffer exists is because the float modules above take
many hundreds of cycles to calculate the XY position of one
particular pixel, since there are many calculations going on in
the background to allow this to work. However, since the VGA
module requires a pixel to be output every cycle, the solution
that was decided was to always output the pixels from the
framebuffer (scaled up 2x to fit the screen), and update the
framebuffer when the data became available.

VI. THREE-DIMENSIONAL BLOCK SELECTOR

A. Get Intersecting Block

The module will take in block data, such as its position
in 3D space, and determine whether this block is visible,
and if so, output the ray vector and t value of the block
intersection, which is described below. The three-dimensional
block selector will essentially run this module once for every
block that is in the cache (which is 12), and then determine
afterwards which is the closest block that is visible to be used
downstream in the get pixel module. This is a simple check,
because we know that the smallest block index is the block
that is closest, since we assume all blocks come in order of
time and at a constant speed. An exception to this check is
that if the saber is visible at a pixel, we will always render
the saber over any block.

B. Eye to Pixel

The eye to pixel module takes in a XY pixel position and,
as described in the overview section, it will output a ray that
maps from the current head position to the pixel. The pixel
is represented as a projection matrix in 3D space, which is
invisible but placed in front of the camera between the camera
and the blocks.

C. Does Ray Block Intersect

The module will take in the ray from the eye to pixel module
and a specific block XYZ position to determine whether the
block intersects with the ray. If this is true, we output a t
value, which can be used with the ray to determine where on
the block the block intersects with the ray. To successfully
compute this module much like every other module in this
section, we use many vector modules to compute 3D vector
math and determine ray-cube intersections. This module is also
used to figure out where the saber should render.

VII. GET PIXEL FORMATTED

A. Should Draw Arrow

This module will take in a block XYZ and ray XYZ
position, scaled using t, to determine whether the arrow should
be rendered at a particular XY pixel. This is essentially
calculated using the following idea: we will only render the



arrow when we are at the face of the cube that is closest to
the camera. Additionally, we can use slopes to figure out how
to render the arrow based on the position of the block and
the position at which the ray hits the block. This allows us to
calculate the final boolean value.

B. Get Pixel Color

This module is one of the most complex to translate to
SystemVerilog, as it requires a 8 stage pipeline with multiple
branches that require exact pipelining to result in correct
answers. Furthermore, since this module determines whether
or not the pixel is rendered correctly, it was tested very
extensively in simulation to verify that it works before it
could be deployed to hardware. Essentially, the pixel color
is determined via looping through all the lights that exist in
the 3D space, of which there are three, and then calculating
how much RGB each light contributes to a block position in
order to generate a shading effect as seen in the game. The
module will output a rgb value, which is scaled and clipped
to 12 bits to be rendered on the VGA.

C. Three-Dimensional Renderer

The three-dimensional renderer module uses a framebuffer
of 512x384 in order to render on the VGA. Essentially, it
will take in simultaneous XY pixel positions from both the
VGA and the raycasting algorithm. The module will always
output XY pixel colors from the framebuffer to the VGA,
and using the read-write BRAM module, it can also write
to the framebuffer from the raycasting algorithm as it gets
updated. This mitigates pipelining issues between the time-
intensive float modules and the actual rendering of the game.

VIII. INSIGHTS

On the raycasting side, although it was very time-consuming
to implement raycasting through the FPGA from scratch, it
was a very rewarding experience and I came out of the
project with a much greater appreciation and understanding
of hardware design and programming. I found that throughout
the process, aside from creating simulation pipelines to ex-
tensively test everything before pushing to hardware, having
a close software implementation copy of the code, especially
in Python, helped a lot with debugging. It was a lot faster
to verify design changes in software than it was in hardware,
which definitely made it possible to complete this project on
time for the end of the semester.

IX. EVALUATION OF DESIGN

For our final FPGA that holds all game state and rendering
logic, we end up using about 72% of the Slice LUTs, 89% of
BRAM, and 88% of the DSPs available in the FPGA. Most
of the usage comes from the extensive floating-point modules,
vector operations, and complex pipelining that occurs in the
raycasting algorithm. At one point in the design, the modules
actually took up over 100% of the DSPs available. To resolve
this, LUTs were used in place of DSPs for some floating-
point modules, and logic was folded when possible instead of

instantiating many expensive vector/float modules in parallel.
For instance, originally the does ray block intersect module
was done in parallel for the entire cache at once, but this led
to having a usage of nearly 175% of the existing DSPs. The
final design runs the module once for every block in the cache
and once for the saber as a state machine in order to use less
modules and output once.

The latency and throughput of the modules written are
documented, since they are required to correctly compute the
pixels from the raycasting algorithm. This is in the order
of a few hundred to a thousand cycles, which is more than
fast enough to successfully render onto the screen without
any noticeable lags. The entire set of modules fits timing
requirements, with a slim WNS of 0.238.

In our checkoff list described in the initial project report, we
aimed to be able to play a song, and track using the camera in
a 2D space. In our goal, we aimed to use an SD card to play
music, communicate between FGPAs, and pipeline camera
data. In our stretch goal, we aimed to implement raycasting,
head tracking, and custom songs. We have reached goals in
each of these sections. Although we did not have sufficient
time to integrate all the items in the checkoffs we defined, we
believe we have implemented a well-implemented game that
achieves all the main goals that are required to make our game
work: music playback, raycasting, head tracking, and saber
tracking, as well as a high score to be shared after playthrough.
On the raycasting side, since the entire raycasting algorithm
had been implemented from scratch, it is entirely possible to
minimally change the design in order to add more objects into
the 3D space, for example. Additionally, since we have the
entire song pipeline written out, we can easily switch out the
song and generate new blocks for the new song. Finally, the
camera data can be augmented minimally by incorporating the
Z coordinate information to make tracking more immersive.

X. BLOCK DIAGRAMS

Block diagrams begin on the following page.

XI. CODE REPOSITORIES

https://github.com/shreyka/huah cubed
https://github.mit.edu/skarpoor/music 111 fp.git

CONTRIBUTIONS AND ACKNOWLEDGMENT

Shreya was in charge of the music jukebox in the project.
She implemented the audio pipeline to play a speaker output
from the sd card, and also play the ‘hit’ sounds when a block
is hit in gameplay. In addition, she wrote the 2 way UART
serial communication and used it to send serial data from the
game play FPGA transmitter to the music receiver.

Monica implemented the camera interface and created the
hand/head LED set. She extended Lab 4 code for player
head and hand detection. In addition, she debugged serial
communication between two FPGAs and utilized serial to send
camera data and create 3D coordinates from two sets of 2D
coordinates.



Darren was in charge of implementing the rendering
pipeline and game logic. He created the 3D rendering algo-
rithm inspired by a raycasting algorithm from another class
(6.172), rewrote the algorithm in Python, and tuned it so that
it could be used for Beat Saber and also be SystemVerilog-
compatible, before implementing the entire pipeline through
SystemVerilog.

Thanks to Fischer, Jay, and Joe for an amazing semester
of learning, much help with debugging, and for the great
knowledge!



Fig. 6. Top level block diagram



Fig. 7. Game logic and renderer modules



Fig. 8. Submodules used in the raycasting module



Fig. 9. Music Synchronization Block Diagram

Fig. 10. Camera interface block diagram



Fig. 11. Raycasting objects



Fig. 12. Float Functions



Fig. 13. All vector function modules used for raycasting


