
Audio Transmission via S/PDIF over TOSLINK
1st Eric Bui

Department of Electrical Engineering
and Computer Science

Massachusetts Institute of Technology
Cambridge, MA
eqbui@mit.edu

2nd Alyssa Keirn
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA
akeirn@mit.edu

3rd Luis Martinez
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA
luism@mit.edu

Abstract—Fiber optics are an important method of communi-
cation. Fiber is vastly faster than other forms of long-distance
data transmission and as a result forms the basis for modern
communication. We use two FPGAs, one to collect and transmit
audio data, and one to receive it and output it to a speaker.

The implementation consists of an audio WAV file stored on an
SD card on the FPGA. This digital data is converted to an optical
data source and coupled to a TOSLINK cable with a JIS F05
connector. Data is transferred through the cable via fast-traveling
pulses of light in the 650 nm range from an LED and transmitter
circuit. The data link protocol is S/PDIF, a serial uni-directional
interface over short distances. S/PDIF format is preferable for
audio as it allows the transfer of data between two pieces of
digital audio equipment without needing analog connection that
would lessen the quality. A receiver device with a photodiode
receives and converts the optical information to digital to the
second FPGA. It is then edited and sent over another TOSLINK
cable to a speaker.

Index Terms—S/PDIF, TOSLINK

I. PHYSICAL CONSTRUCTION

The setup consists of:
• An optical TOSLINK cable
• A transmitter circuit consisting of TOTX1950A optical

transmitter1 with data rate of 10MBd with a control signal
coming from our FPGA digital I/O at a bit rate of 6 MHz.

• A receiving circuit including the TORX1950A optical
receiver2 that requires a simple voltage drop from 5 V to
3.3V by using a signal diode and load resistor. To reduce
parasitics, we tightly couple the signal output into the
digital I/O pins for the FPGA by using header pins.

• Two Nexys 4 DDR FPGAs
• One 2GB micro-sd card
• A speaker with optical input

This setup may be modified slightly in the final version, with
additional hardware such as a screen.

A. Hardware Construction

The receiver circuit is based on the implementation of the
TORX circuit. We included a load resistor and a signal diode
in order to step down the voltage to 3.3V, instead of the
5.0V measured at the output. For the transmitter circuit, the
implementation is instead based on the TOTX implementation
circuit provided. We included a 5600Ω load resistor and a
0.1µF bypass capacitor.

In order to verify and obtain the proper configuration values
for the S/PDIF i.e. default consumer channel words, auxiliary
bits, and user bits, we implemented a Python script used to
scope a single packet of audio data from a reliable source —the
reliable source being a DVD disk player. For the speaker, we
purchased an optical TOSLINK compatible speaker that uses
S/PDIF as audio transmission protocol. It is to note that in
order to initially scope the signal from the disk player, we
used a digital logic analyzer in order to figure out the values
and transfer them to a Python format that we could parse and
analyze.

II. SD CARD AUDIO

A. SD Card Controller

The setup uses a SD card module written by Johnathan
Matthews3. This module controls the direct interfacing to the
SD card. The rest of the setup was assembled by the group.
The module reads 8 bytes at a time, in 512 byte chunks. The
data is in .WAV PCM 8-bit unsigned raw format. The SD card
runs on a 25Mhz clock created by passing through a clock
wizard generated using the IP. This prevents the original clock
from being overdriven. The controller module is controlled by
a state machine waiting for user input and ready signals.

The state machine takes in addresses and a ready signal to
begin a read. The ready signal and addresses are controlled by
the file system module. The output of the state machine is then
passed to an intermediate module (sd card addressor) that sorts
the data output. Each 512 block is either cluster information,
directory information, or audio data. The addressor sorts the
output by information type. Cluster data is accumulated into
a three byte chunk, and then sent to the file system module.
Directory data is sent to a block ram so it can be accessed
by the VGA (this information contains song titles and start
addresses for the file system). Audio data is sent to a FIFO
buffer for transmission. This more modular system was easier
for us to debug, and allowed us to implement the project in
stages.

B. FIFO Buffers

The data from the SD card is sent to one FIFO buffer. This
buffer allows the transmission module to catch up the the SD
card, which reads much faster than the transmission rate. The
FIFO stores three 512 byte blocks at a time. Two thresholds are



set: full512, which goes high when the FIFO has at least one
block, ans empty512, which goes high when the transmission
module has sent at least one block of data. These signals are
used in the top level state machine to determine when to ask
the file system module for more data.

C. System State Machine and User Interface

A simple state machine in the top level module coordinates
the ready, read, write, and valid bits between the file system
and SD modules, the FIFO buffers, and S/PDIF transmitter
module. It ensures that the SD card is read in time for the
S/PDIF transmitter module’s needs. The system starts playing
audio after receiving user input. The top module also contains
all the variable initilizations and connections between other
modules.

Using btnu (up), btnd (down), and btnc (select), a user can
scroll through songs on the SD card. Directory data is stored
on a bram using the SD addressor module. This bram can
then be read by the extractor module according to the user’s
selection, allowing song names to be displayed on the VGA.
The top level state machine keeps track of the current display
song and whether is has been selected to be played.

D. Clock Domain Crossing

Because we read off the SD card at 25mhz, transmit data at
6.144mhz, and display to the VGA at 75mhz, modules were
needed to handle clock domain crossing. To solve this issue,
we used the IP generator to create several true dual port block
rams. We instantiated one block ram for each variable that
needed to be moved across clock domains. This allowed us to
forgo state machines and just tie the addresses and read and
write enable inputs to hardcoded values.

III. FILE SYSTEM

In order to allow the simple transferring of song information
into the SD card, we implemented a FAT12 file system, which
allows the user to ”drag and drop” file from a computer onto
the SD card. This is possible given that the SD cards are
fragmented into sectors of 512 bytes, where information can
be stored.

A. File Addressing on the SD card

Every SD card contains a Master Boot Record (MBR) at
the beginning of the file. This record holds the partition table,
which in itself contains four partitions. We formatted the
FAT12 partition onto the first partition, where there is a Linear
Block Address that when multiplied by 512, provides us the
resulting address of the start of the FAT formatted partition
(in our case, at 0x100000).

Fig. 1. Structure of FAT12 block

B. FAT12

The FAT12 is a fragmented file system characterized for
its simplicity. The system is fragmented into clusters which
specify the address of the stored data. In general, the FAT12
is organized in four structures:

• BIOS Parameter Block (BPB): this structure is 2 sectors
wide and contains information about the format of its
specific FAT details. After the BPB there are Reserved
Sectors, which are already specified in the BPB.

• FAT (File Allocation Table): there are typically two FAT
—both identical to avoid corruption. The data in the
FAT12 is organized in cluster objects which in this case,
are 32 sectors wide. The FAT thus, works essentially as a
lookup table. Once you have a cluster number, you lookup
the value of the cluster number in the corresponding index
of the FAT to get the next cluster number. It is to note
that the cluster number is used to find the appropriate
locations of the sectors in the data.
As an example shown in the following diagram, we get
our starting cluster number from the dictionary at entry
2. We then read off the data at the logical cluster with
value 2. Following, we check FAT table 2, obtain the
value 4. Given that we have the value 4, we read the data
at Logical Cluster Value 4 and then go to entry 6 and so
forth, until we reach entry 7; which has an ending code
that specifies the end of the file —typically values that
are greater than or equal to 0xFF8.
Finally, we also note that the FAT entries are only 12
bytes wide —hence the name, which is not a power of
2. Therefore, it is possible to run into issues where the
sectors, of size 512 bytes, are not perfectly divisible by
12. This prompts us to find an alternate implementation.
Furthermore, they are organized in such a way that it
takes these letters as hex values 0xBCZAXY. If the
cluster number was even, then we would get the cluster
value 0xABC. If odd, then the cluster value would be
0xXYZ.

• Dictionary: following the FAT tables, each dictionary
entry is 32 bytes wide and contains the name of the files,
the file length, and the file’s starting cluster.

• Data sector: this comes after the Dictionary, and includes
all of the data that the cluster data points to.

The user can scroll through the directory entries where each
directory entry is 32 bytes, where the song name occupies the
upper 11 bytes and the song starting cluster is at bytes 26 and
27. Thus, the user can select the song by iterating through the
appropriate directory entries.

At the beginning of every FAT partition, we have certain
important information to consider. First, we make further note
that the data displayed are all represented in little Endian
format. Second, at the BIOS Parameter Block of the FAT
partition, we note that the number of bytes per sector is
512, and most importantly, the number of sectors per cluster
is 32. Furthermore, the number of FATs are two, and the
number of hidden sectors is 32. Finally, the size of each FAT



Fig. 2. FAT12 Allocation table

table, reserved sectors, including root directory is 32 sectors
large. The beginning of the data sector starts after these; and
therefore, we start 128 sectors after the beginning of the FAT
partition.

IV. S/PDIF

A. Structure

The S/PDIF protocol4 consists of blocks that are 192 frames
wide; with every frame divided into two 32 bit subframes
—one for the left audio channel and another one for the
right audio channel respectively. In our implementation, as
we reproduce monophonic sound, the two audio channels
shared the same information, aside from the preamble that
characterizes each channel. Excluding the 8-bits that form
the preamble, every logical bit is sent using biphase-mark
encoding (BMC); thus, sending two bits for every logical bit
at a clock rate of 6.144MHz. The structure of every subframe
is as follows:

• Preamble: 8 bits that mark the start of every subframe.
It can vary between three unique alternating sequences:
one for the right channel, one for the left channel, and
one for the start of a block.

• Auxiliary: 4 optional bits are used to include extra audio
data.

• Audio Sample word: 20 bits include the audio data. In
mono, both subframes carry the exact same audio data;
in stereo, they have different audio data.

• Validity Bit: single bit that indicates whether the audio
sample word is invalid.

• User Bit: single bit of user data channel corresponding
to the associated channel in the subframe.

• Channel Bit: single bit that contains important informa-
tion about the transmission channel (e.g. clock frequency,
user mode, etc.) that is collected in a 192-bit word,
including an 8-bit CRC-8/EBU that allows for checking
its validity once the entire block is received.

• Parity Bit: single bit that is assigned such that the
entire subframe, excluding the preamble, contains an even
number of ones and zeros.

B. Frame Assembler

The frame assembler is the principal module that, given
20 bits of audio data at the start of every frame, constructs
the aforementioned structure and sends it encoded in BMC to
the transmitter circuit through the JA PMOD pins. In order
to obtain the audio data, the frame assembler sends a ready
signal to the audio FIFO at the start of every frame, which
will send the 20 bits before the module finishes sending the
preamble. We send the following sections —auxiliary, audio
word, and the last four bits— through the use of a module
that encodes every bit in BMC. In our design, the 192 bits that
conform the channel bits are set to a default value that allows
for monophonic audio to be played in the speaker. Given that
we are always sending valid data and are not making use of
the user data bits, we set these two to 0. Through the process
of sending the first 27 bits, we track the parity such that we
set the parity-bit to 0.

This entire process is repeated multiple times as long as the
ready signal from the FIFO —the one that indicates us that the
FIFO contains enough information for a block— is present.

C. Receiving Modules

Once the audio message is sent through the TOSLINK opti-
cal cable, we use the receiver circuit to gather the information
through the JC PMOD pins. As the information is received at
a frequency of 6.144MHz, we sample the bits at a frequency
of 60MHz, assessing the validity of each bit by considering 8
similar samples. Once we obtain a complete bit, we send it to
the receiving modules.

In order to decode the bits received, which are a combi-
nation of preambles and BMC encoded data, we introduce a
biphase-mark decoder module. As the preambles include se-
quences of ones and zeros not reproducible in BMC encoding
(’000’ and ’111’), we detect the preamble corresponding to
the start of a block and then continue to decode each dibit of
the subframe.

Then, we send to decoded bits to a frame dismantler
module, which carries the purpose of extracting the audio
data, and checking both the validity of the subframe and the
entire block i.e. checking the validity bit, the parity bit, and the
CRC-8/EBU at the end of the block. This module sends the
extracted data to a FIFO buffer at the end of every subframe,
given that the data is valid and the parity is preserved. At
the end of a block however, the module compares the last 8
channel bits (containing the checksum) and with the CRC-8;
this will trigger a done signal indicating the end of a block, and
a kill signal indicating that the block is invalid. Upon finding
an invalid block, the kill signal will tell the FIFO buffer to
delete the audio data information received. Once received, in
addition to the done signal, the FPGA will show the last 32
bits of the channel bit word (including the checksum) in the
seven-segment display.

For re-transmission, we use another frame assembler mod-
ule that will receive the audio data from the FIFO buffer, in
addition to the valid 192-bit channel word. This design allows



for verification of our transmission design before transmitting
audio data to an external speaker.

V. VIDEO INTERFACE

A. VGA Display

Given a title stored in the SD card, we want to provide the
user an interface that allows them to select a song through the
use of the pushbuttons embedded in the Nexys board. In order
to achieve this, we made use of a series of modules designed
by the Project F group4. Through the use of these modules,
we constructed an ASCII title with small stars being displayed
in the background.

The titles can be up to 10 letters long, for a total size of 10
bytes for each input title and each byte representing an ASCII
code point that we use as address for a BRAM that contains
our bitmap fonts (in this case using Unscii). By pushing the up
button or the down button, we find the corresponding address
at which the the title is contained, and then, we send it to the
video interface module.

VI. RETROSPECTIVE

We learned quite a few things throughout this process:
• Filesystem: Implementing file systems is difficult. Prob-

ing the SD card was critical. If we were to do the project
again, it would be helpful to work out a way to simulate
the SD without having to debug everything with an ILA.

• Hardware: We had a few hardware faults that left us
confused as to whether software of hardware was the
problem. In the future, we would like to buy multiple
copies of each part.

REFERENCES

[1] Mouser datasheet, TOTX1950. April 04, 2016.
[2] Mouser datasheet, TORX1950, April 04, 2016.
[3] Jonathan Matthews’ Github repository
[4] European Broadcasting Union, Tech 3250: Specification of the digital

audio interface, 3rd edition. June 08, 2004.
[5] Project F’s Github repository
[6] https://wiki.osdev.org/FAT
[7] https://wiki.osdev.org/MBR (x86)
[8] https://www.eit.lth.se/fileadmin/eit/courses/eitn50/Literature/fat12

description.pdf
[9] Our repository containing the code and the modules designed for this

project.

https://docs.rs-online.com/e75b/0900766b8143d8e2.pdf
https://docs.rs-online.com/f15c/0900766b8136ca19.pdf
https://github.com/jono-m/mariokart/blob/master/POCs/SD/SD.srcs/sources_1/new/sd_controller.v
https://tech.ebu.ch/docs/tech/tech3250.pdf
https://tech.ebu.ch/docs/tech/tech3250.pdf
https://github.com/projf/projf-explore
https://wiki.osdev.org/FAT
https://wiki.osdev.org/MBR_(x86)
https://www.eit.lth.se/fileadmin/eit/courses/eitn50/Literature/fat12_description.pdf
https://www.eit.lth.se/fileadmin/eit/courses/eitn50/Literature/fat12_description.pdf
https://github.com/alkeirn/optical_project
https://github.com/alkeirn/optical_project



	PHYSICAL CONSTRUCTION
	Hardware Construction

	SD CARD AUDIO
	SD Card Controller
	FIFO Buffers
	System State Machine and User Interface
	Clock Domain Crossing

	FILE SYSTEM
	File Addressing on the SD card
	FAT12

	S/PDIF
	Structure
	Frame Assembler
	Receiving Modules

	VIDEO INTERFACE
	VGA Display

	RETROSPECTIVE
	References

