
FPGA Digital Audio Workstation
Nader Jemel

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, U.S.A.
naderj@mit.edu

Charalampos ”Charis” Georgiou
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, U.S.A.

cgeo@mit.edu

Abstract—We present a hardware design for a Digital Au-
dio Workstation implemented on an FPGA, utilizing powerful
caching techniques and parallelized real-time audio manipulation
pipelines. This workstation can record, manipulate and mix
sounds from any audio source, such as musical instruments or
music players. The user has the ability to play stored tracks, store
mixed and manipulated sounds and reuse them. We implement
this design using a Nexys 4 DDR FPGA and evaluate its
performance by testing it with a keyboard’s inputs.

Index Terms—Digital Systems, Field Programmable Gate Ar-
rays, Audio Processing

I. GOALS AND CHALLENGES

Our implementation allows the user to record audio inputs
and store them in slots called channels. The audio is repre-
sented following the I2S protocol, using sequences of 8 bits,
which we call words. The user has the ability to apply effects
such as delay, echo, distortion... Each channel’s modified audio
track would be combined into a single output through a process
called mixing. While mixing tracks, the user can adjust the
volume of each channel separately and choose which will be
muted.

A. Commitment

Our commitment was to design and implement a system
which is able to record an instrument, store it into the SD
card, and retrieve its sound. We also promised that our design
would be able to apply basic audio effects to the sound, mix
multiple tracks before outputting them, and provide a basic
graphical user interface. As described in later sections, our
implementation satisfies all the above requirements.

B. Goal

Our goal was to have a workstation that would be able
to record and playback at a sampling frequency of 44.1KHz,
while providing continuous playback and the capability of
storing mixed tracks into the system to be reused as audio
sources. We aimed to do all these while minimizing the latency
of retrieving the audio tracks from the SD cards. All the above
goals were met. The only checkpoint that we did not manage
to meet was recording and playing audio at different beats per
minutes (BPM), although this can be implicitly achieved by
the user by utilizing the effects pipeline.

C. Memory Challenges

Storing audio tracks in internal memory would not be
feasible since RAM storage on the FPGA is limited and not
retrievable after reboot. Instead, we need to use an SD card,
which introduces issues with latency since reading from it is
much slower than reading from a RAM.

SD cards are split into sectors, which are contiguous blocks
of 512 bytes. All read and write operations are performed on
exactly one whole sector.

Furthermore, extreme attention to detail was necessary when
it came to synchronization. Each word must be stored and
retrieved exactly once from the SD card, and while crossing
clock domains this is something one has to be cautious about.

The most crucial aspect of the memory module design was
retrieving multiple channels’ audio information for mixing.
This meant that we would need to be able to access informa-
tion from multiple sectors at virtually the same time. All of
these had to be done with low latency and while keeping the
area used at a minimum.

D. Audio Challenges

The main challenge with audio was dealing with overflow,
since we’re limited by 8 bits, summing data for effects or
the mixer always causes overflow which eventually causes
clipping.

II. IMPLEMENTATION DETAILS

The workstation is composed of a Nexys 4 DDR FPGA
from Digilent, which has attached an I2S2 Periferal Module
Interface (PMod). A 2GB SD Card is plugged into the FPGA.
Audio source and output devices will be connected to the
PMod using 3.5mm stereo audio jacks.

Our design uses a clock of frequency 100MHz for its main
operations, one of frequency 65MHz for VGA output and one
of 22.579MHz for audio input and output as we will see below.

We are using CALCULATE NUMBER HERE Block
RAMs and our worst negative slack is CALCULATE NUM-
BER HERE.

III. AUDIO INPUT AND OUTPUT
CHARIS GEORGIOU

The I2S protocol is used to receive and transmit audio
signals from and to the secondary interface. Using a main



clock we generate a serial clock and a word clock which are
necessary for synchronizing the process.

On each rising edge of the word clock (also called Left-
Right clock) a new word is passed between the main and
secondary modules. This means that the frequency of the word
clock should be equal to the sampling rate.

On each rising edge of the serial clock a new bit is passed
between the main and secondary modules. The frequency of
the serial clock is l times the frequency of the word clock,
where l can be any number greater than the word length.

fsclk = l · fwclk = l · fsample

In our implementation we are sampling at 44.1KHz using 8-
bit words, with l = 64. Therefore, we have fwclk = 44.1KHz
and fsclk = 2.82MHz. To derive these, we are using a
main clock with fmclk = 22.58MHz, which is 8 times the
frequency of the serial clock.

Example waveform of the different clocks [1]

Essentially, our I2S modules will always output the 3 clocks
(main, serial and word-select), and either receive or transmit
bit-by-bit a word output. For the specific timing and logic
configurations we followed the I2S2 Pmod reference [2].

A sensitive issue that came up during implementation was
the necessity of transferring information between clock do-
mains, specifically between the 100MHz and 22.58MHz areas.
After experimentation and consulting the teaching assistants,
we decided to address this by using dual-port Block RAMs,
in which each port would be driven by a different clock. That
design choice allowed for infallible and synchronized clock
domain crossing.

IV. AUDIO EFFECTS
NADER JEMEL

A. Delay

This effect plays back delayed samples of the same audio
to create an echo effect. This effect can be reduced to a
special case of a finite impulse response (FIR) filter [3]:
Y [n] = X[n] + αX[n − m] The user will have the ability
to set the amount of delay and the coefficient. To implement
this, we save samples in the BRAM, read the delayed sample,
and sum it with the input. For this project, we are using 16-
bit audio recordings with a samling rate of 44.1 kHz. To save
500ms of samples, we’d need storage of 44100 * 16 / 2 =
352.8 kilobits. Thus, to save enough samples for the delay,
we will need 10 BRAMs.

B. Chorus

Chorus is an effect where multiple sounds, in the same
tune, are played together approximately at the same time. To
create a chorus-like sound, we will use a bunch of delays

with different and small latencies. This will provide sounds
that are slightly similar, but still in tune and not exactly the
same. These samples will be played at the same time to create
the warm chorus effect.

C. Distortion

Distortion creates a fuzzy sound by clipping the high and
low amplitudes to a certain limit specified by the user. To
implement this, we just need to check if the sample is higher
or lower than the set limit and change it to the limit if that is
the case.

D. Echo

Echo’s implementation is very similar to that of the delay.
The only difference is that instead of saving the dry input to
the BRAM, we save the delayed version. That way, we get an
effect that’s similar to delay that propagates more over time

E. Tremolo

The tremolo effect is very similar to flanger it’s just that the
multiplication by the wave is applied to the current sample,
not a delayed one.

V. AUDIO TRACK STORAGE AND PLAYBACK
CHARIS GEORGIOU

In order to record, modify and replay high quality audio we
need great amounts of storage; far more than it is reasonable
to have on an FPGA. To address this challenge, we are storing
all recorded tracks on an SD card.

Block diagram of our design for memory management

By using peripheral storage we encounter the issue of high
latency reads and writes. To minimize latency and provide an
accurate playback, we use dual-port Block RAMs (BRAMs)
on the FPGA, modeling them as caches that will load each
channel from the sd card and provide outputs in parallel.

The important tradeoff between space and time is partic-
ularly important for this design, therefore we opted for a
solution that allows for multiple sound samples to be stored
while simultaneously not sacrificing latency.



A. Assumptions

In our design and implementation we assume that all tracks
have the same duration. In other words, we work under
the assumption that all tracks will be recorded and replayed
following the same Beats Per Minute (BPM). That allows us
to fix the number of bytes (and sectors) to be retrieved from
the SD card.

This is crucial to be able to mix multiple channels in a
synchronized manner, since it will allow us to collect the
same number of words from each channel, because each
time interval will correspond to the same number of words
irregardless of the channel.

B. SD Card Details

To interface with the SD card, we make use of an SD
Controller module [4] which when requested, will provide or
store a sector of 512 bytes, by sending one byte at a time.
Because this module uses sensitive timing loops, we need to
use a clock at 25MHz, which we can derive by dividing the
system’s 100MHz clock.

An audio track is obviously composed of multiple bytes,
which will be retrieved or given to the SD card when it
is ready for new pieces of information. This brings up the
necessity for an intermediate module which will load partial
words into a buffer before providing them for manipulation
and transmission.

C. First In - First Out Caches

Interacting with the SD card is relatively fast when com-
pared with the sampling frequency. For that reason, we will
use Block RAMs to store sectors of the SD Card, which will
only request to read or store new sectors when needed. We
model the BRAMs as first-in first-out (FIFO) caches, which
will serve and store words every time they are requested.

Diagram of first-in first-out BRAM

On request, move the corresponding pointer and loop over once we reach the depth

The buffers will work in a cyclical fashion. As soon as
the address they are reading or storing reaches the maximum
depth, they will restart from the beginning. This is equivalent
to a least-recently-used (LRU) eviction protocol, since each
sector is loaded and used in sequential order.

Our design stores left and right channel information in
alternating order. When recording, on every edge of the word-
select clock (either positive or negative), a new word is written
into the buffer. On every edge of the clock when playing

sound, a new word is read from it. This implies that left-
channel words will be stored in odd positions and right-
channel words in even positions of the FIFO (or vice-versa).

D. Storing
Storing is the process where an external module (either the

I2S receiver, or the final mixer) will provide input to be written
into the SD Card.

Diagram of storing logic

Every 512 write requests to the FIFO, we make a write request to the SD card

The arrival of a new word is signaled by a write request
to the FIFO cache. The words are stored into an intermediate
buffer, with capacity about 8 times the sector size of the SD
Card (4096 bytes). As soon as a batch of 512 words have been
received, a write request is issued to the SD Card, which will
accept the new sector of words.

Just as we aimed for, little space is used since the buffer
only needs to store a constant amount of SD sectors at all
times (we are actually overshooting by allowing it to store 8
times the sector size).

The latency of storing into the SD Card does not affect the
overall latency of the module greatly, for two reasons. Firstly,
the SD Card operations are driven by a 25MHz clock, which is
significantly faster than the 44.1KHz sampling rate. Secondly,
by only requesting writes when we have a full sector prepared,
we are allowing some ”slack time” for the SD card to store
the current sector, while we are writing into the buffer the next
one.

E. Loading
Loading is the process where an external module (either the

I2S transmitter, or the audio effects pipeline) requests to read
a track from the SD card.

Diagram of loading logic

Every 512 read requests to the FIFO, we make a read request to the SD card to refill

The request of a new word is signaled by a read request to
the FIFO cache. As soon as a batch of 512 words has been
given to the external module, a read request is issued to the
SD Card, which will fill the cache with a new sector of words.
The intermediate buffer has capacity about 8 times the sector
size of the SD Card (4096 bytes)

For reasons similar to those of the storing module, this way
of loading a single audio track is both time and space efficient.
Since we are using a block RAM, each read request will be
fulfilled only after 2 clock cycles of our main 100MHz clock!



F. Retrieving all tracks simultaneously

This is the greatest challenge of designing the SD card
interaction modules. In order to mix tracks, we need to retrieve
them in parallel. That is, for each time step we need to receive
the next word for each channel.

Diagram of logic to load all tracks

Every 512 read requests to the FIFOs, they all make read requests to the SD card to refill

We chose to follow a design that uses one buffer for every
channel. Each time the mixer requests for new words from
all channels, each FIFO will return the next word for its own
channel. Every time a batch of 512 bytes have been delivered
to the mixer, each channel’s cache will take turns requesting
a new sector from the SD card.

To create the looping effect, after a certain amount of sectors
we will start from the beginning of each track. That is, we will
read sectors [x, x+k] for each track’s starting address x (since
the SD is evenly split between all channels, x is not hard to
find). For 16 second loops, we calculated k to be about 210

based on our sampling frequency.
The increased amount of requests to the external memory

poses the danger of delay accumulating, which can lead to the
FIFOs not having words loaded into them in time. To address
this issue, we pre-loaded the caches with a few sectors as soon
as the mixing starts. This allowed for some additional delay
to accumulate without breaking our buffers’ timing.

This structure allows for low space usage, since each buffer
will need to store only a small, constant number of sectors
(512 bytes) at any time.

Most importantly, using this design we managed to reduce
the latency required to read words from all channels simulta-
neously, achieving an amortized delay of only 2 cycles of our
100MHz clock!

VI. GRAPHICAL USER INTERFACE
NADER JEMEL

We built an interactive GUI where the user can control
all the channels and the mixer. It consists of a table with 5
columns for the 4 channels and the mixer, and 10 rows. The
user controls the cursor between the table entries using the
buttons on the board. The user can start recording, add and
remove effects as needed through the GUI.

A. VGA Details

We’ll be using a divider to get a 65 MHz clock from the
system’s 100 MHz clocks which we’ll use to create a GUI
with a resolution of 1024 x 768 and a 60 MHz refresh rate.
For now, we just have the background be a specific color, with
different blocks added on top.

B. Text Generation

Similar to pong game, we used sprited for text, where the
output is just two colors.

VII. MIXER
NADER JEMEL

The user will be able to set a volume for each channel.
The mixer’s role is to play all the unmuted and programmed
channels at the same time. The volumes can be set at any value
between 0 and 63, so we will need 6 bits to represent it. We
will then multiply the volume by the output of each channel,
and shift it right by 6 bits. Finally, we will sum up all the
sample output from each channel and shift right depending on
how many channels are active to make up for overflow.

VIII. RETROSPECTIVE

Designing and implementing this project proved to be
a challenging task. Nevertheless, we believe to have made
appropriate choices when faced with dilemmas, leading to a
satisfying final project. In this section, we describe how we
would approach some aspects differently if we had to start
again. We also propose some additional features that we could
have added to the workstation, if time allowed.

A. Memory management

Our design uses a simplistic way of partitioning the SD card
into a fixed number of channels. Looking back at the design
with the experience of implementing it, we realize there are
more efficient and even simpler designs that allow for more
flexibility.

A different approach would be by storing an index table in
the first 100 sectors of the SD card, where each sector would
hold information about a track, such as its name, starting and
ending addresses and the beats per minute that it was recorded.
This would make our design more versatile and able to support
additional features later on.

Furthermore, while we have a great latency for our multiple
track retrieval, we are not able to increase the number of chan-
nels arbitrarily, due to the delay of SD retrievals accumulating.
One possible way to go around this would be to request for
new sectors from the SD card more often, determined by a
function of the number of channels (for now, we only request
new sectors every 512 reads). By determining a ratio of bytes
needed for each new request, we should be able to increase
the number of channels without failure.

Having said these, our current design as is can be easily
modified to support multiple audio tracks to be ”loaded” by
channels, instead of each track always corresponding to a
channel, by just using registers to remember each channel’s



selected track and calculate their starting addresses in the SD
card.

B. Fragmentation

This technique would be hard to implement but would pro-
vide our system with much greater flexibility while overwriting
stored tracks. We would utilize an insignificant portion of each
SD sector to allow for fragmentation of information. While
retrieving an audio track from the SD card, each sector’s last
4 bytes would indicate the address of the next sector to be
read. To indicate the end of an audio track, we would use a
terminal code (such as 32’b0 or an invalid address).

Following this design, each audio track’s information could
be fragmented across the SD card and not stored in contiguous
sectors. This means we could record tracks without worrying
about overwriting past information, since with the help of a
simple ”availability table” we could find the next available SD
sector to write into.

C. Naming Stored Tracks

An additional feature that we would include would be the
opportunity for the user to browse among a large collection of
saved tracks and load the selected ones into the audio channels.
For the selection to be meaningful, the tracks would need
to be named. We could allow for the user to type words by
using a PS/2 keyboard and translating its input by utilizing an
ASCII lookup table, which could be implemented as a read-
only block RAM.

IX. CONTRIBUTIONS

We split our system’s features in a way that we could
work on them independently until the final integration. The
research, design and implementation of the audio effects
pipeline and mixer was Nader’s. Charis had to design and
implement the I2S input/output protocols and all memory
management modules. As mentioned before, the SD Controller
module, which was crucial for our project, was implemented
by Jonathan Matthews.

The general block diagram was designed by Charis and we
both worked on the presentation. The reports were written
by both, each focusing on their own components and Charis
writing the joint sections.

Finally, we are thankful for the advice and guidance of
the teaching assistants Jay Lang and Fischer Moseley, as well
as the professor Joe Steinmeyer, throughout the processes of
researching, designing and implementing the project.

REFERENCES

[1] https://d3uzseaevmutz1.cloudfront.net/pubs/proDatasheet/CS5343-
44F5.pdf

[2] https://digilent.com/reference/ media/reference/pmod/pmodi2s2/pmodi2s2 sch.pdf
[3] https://wiki.analog.com/resources/tools-software/sharc-audio-

module/baremetal/delay-effect-tutorial
[4] B. Gross, J. Matthews, N. Rodman “Live-Action RC Mario Kart”, 2014


