

FPGA Light Zapper

By Griffin Duffy and Aiden Padilla

 2

Table of Contents

Overview .. 3

Motivation .. 4

Summary .. 5

Block Diagram .. 6

Light Zapper ... 7

Modules ... 8

Top Level .. 8

Game FSM .. 9

Hit Detect .. 10

Game Targets .. 11

Sprite ROM .. 14

Background ROM ... 16

Random Number Generator .. 16

Challenges .. 19

Improvements .. 20

Conclusions ... 21

Appendix .. 21

 3

Overview

Our project is based around the idea of a light gun, a type of input device that

utilizes a light sensor and can detect a specific target displayed on a screen by

looking for changes in brightness on the display. This type of input device was

first developed at MIT in the mid-20
th

 century in order to interact with the CRT

displays of the time and be a regular computer input device, however the

technology became much more popular with the rise of arcades and home

gaming systems such as the NES. In these applications, light gun technology

became and exciting way for game developers have their players interact with

their games.

For our game, we have taken aspects of both Nintendo’s Duck Hunt and Fruit

Ninja to create our own game in which targets are thrown upwards from the

bottom of the screen and it’s the player’s goal to hit as many of the targets as

possible before they drop using the light gun. In addition to this basic mode,

we’ve added an additional game mode and several difficulties that players can

either choose from or the game will naturally progress to.

The undertaking of this project has been very interesting since it contains not

only the logic portion on the FPGA, but also the analog component of the

zapper itself and the phototransistor it’s built around as well.

 4

Motivation

The motivation for this project was primarily due to two aspects: the desire to

make something both fun and visually interesting, and the feasibility of the

project. On the subject of the feasibility, we already had some experience in the

labs working with video outputs and making a game (albeit a rudimentary one)

in the form of pong. Changing pong to be targets going up and down did not

seem to be too much of a logical leap. Additionally, light gun technology is

decades old; the NES Zapper was released in 1984, thirty seven years ago. It

was our belief that if the technology was feasible thirty seven years ago then it

should theoretically present little problem for us to create today with the tools

at our disposal.

Second was the desire to create something both fun and visually interesting. Of

course, ideally all projects one chooses to work on should be interesting to that

person, but more than just being “interesting”, it was nice to work on

something which was actively fun and became more fun the more features we

added; it acted as a sort of incentive. Frequently while debugging or waiting for

bitstreams to compile we would spend time just playing the game and seeing

the highest score we could get. This also ties into the desire to create

something visually interesting. There are interesting projects one could do

based almost entirely around manipulation of data which have almost no visual

aspect to them, but these require a lot of explanation to understand what’s

going on. Creating a light gun and a corresponding game is not only visually

 5

interesting, it speaks for itself when it comes to what the project is. Anyone

who looks at our finished product can immediately understand what it is and

how it works practically with no explanation from us, which we see as a benefit.

Summary

For our project, we chose to implement a Duck Hunt and Fruit Ninja hybrid

game in which players use a light gun to hit fruit as they are thrown up and fly

across the screen. Players can choose between different difficulties and game

modes from the main menu which also utilizes the light gun and their score is

reported to them on the FPGA’s seven segment display.

 6

Block Diagram

 7

Light Zapper

At its core, the light zapper consists of a phototransistor with its collector

pulled-up high to VCC and its emitter is kept at ground such that when enough

light hits the phototransistor, the switch of the transistor is closed and we can

measure the collector drop from VCC to ground and thus an active low signal is

established. Additionally, the light gun also houses the trigger which the player

pulls to “shoot” the light gun at the screen and begin the hit detection process.

While the analog circuitry is the main functional component of the light zapper,

our team also decided to CAD an enclosure for or circuitry in order to block out

ambient light from hitting the phototransistor and potentially triggering it when

not receiving enough light from the display; as an added benefit, creating the

zapper enclosure makes the game much more exciting for the player than

simply holding some random components on a breadboard. Once our model

was printed out, we were able to solder together the necessary circuitry, secure

it in the enclosure, and connect it to the FPGA via cables coming out of the

bottom.

 8

Modules

Top Level

Our Top Level module is responsible for controlling all I/O for our

implementation as well as making all necessary nets and connections between

all lower modules. In terms of I/O, the largest consideration for our project was

being able to output via VGA to a monitor to have a working game; as a result,

the entirety of our system operates with a 65mhz clock to accommodate the

timing requirements of 1024x768 XVGA resolution. Additionally, the Top Level

module is where the signals for the light zapper are received such that the Top

Level module can then route them to each other module as needed. While not

entirely necessary to be within Top Level, players’ scores are calculated here

and sent directly to the seven-segment display. Finally, the Top Level is also

responsible for assigning the final pixel output, displaying nonzero Game FSM

Our printed design fitted with the necessary

hardware and wiring

A look at the internal components and wiring

 9

output pixels and otherwise replacing entirely black pixels with background

pixels from the Background ROM.

Game FSM

The Game FSM or Menu FSM controls the main menu behavior and acts as a

“controller” for the actual game itself and intermediary between the game and

other systems such as hit detection. Hit detection information is passed in, and

pixel information to be displayed is passed out. The Menu FSM consists of a

state machine with various states for navigation of the menu as well as for

gameplay.

Beginning in the very main menu, users can traverse to the pre-game menu

where settings can be selected: whether the difficulty starts off as low or high,

as well as the game mode they would like to select (either a normal game or the

“keep-up” game). This is accomplished through the same target hit detection

which works while in-game, only applied to menu buttons instead of targets

themselves. All targets are loaded in at all times, but which ones are active and

thus visible and available for hit detection is controlled by targets_activated and

targets_onscreen variables.

Upon starting a game, the Menu FSM begins a counter which is incremented

every cycle. Upon reaching one minute of real time, the game is over, and the

user is returned from the game into the main menu.

 10

Additionally, every third of the total game time (which is every twenty seconds

given a one minute game), the difficulty increases by one. Functionally, what

this means is that when starting at difficulty zero, targets will be thrown and

fall slowly for the first twenty seconds, be thrown higher and fall faster for the

next twenty, and require two hits to break for the final twenty. If starting on

difficulty one instead of zero, targets start out already moving faster and take

two hits for the final forty seconds of game time.

If selecting the “keep-up” game mode, difficulty again controls the speed of the

target and gravity, with difficulty zero having a floatier and slower target and

difficulty one’s target moving much faster.

For the basic gameplay mode, we also were able to utilize the RNG module to

randomize the spawns of the targets being thrown up on the screen. Whenever

there is less than two targets active and onscreen, the Game FSM module will

take the random output of the RNG module and use it to select different targets

by basing it off of a certain threshold value. If the randomly generated number

was lower than that threshold value, that target would be selected. Therefore,

we could adjust probabilities of each target accordingly based on their point

worth by changing these threshold values.

Hit Detect

The hit detect module consists of a Moore finite state machine with six

individual states consisting of the following: IDLE, TRIGGERED,

TARGET_CHECK, HIT, MISS, ASSERT. In the IDLE state, once a trigger press

 11

has been registered, there are targets present on screen, and the display is

about to begin the next frame, it will transition to the TRIGGERED state and

otherwise stay in the IDLE state. Upon transitioning into the TRIGGERED state,

the module will store a one-hot-encoded signal of onscreen targets in a register

and reset various counters in preparation for the next stage. Once in the

TRIGGERED state, the module will determine the indices of which targets need

to be flashed and store those values in the index_to_flash array for later use

in the TARGET_CHECK, HIT, and MISS states—it then transitions into the

TARGET_CHECK state after the end of the initial blank frame. From this point,

the FSM will continuously move between the TARGET_CHECK state and the MISS

state until a hit is registered by a rising edge of zap_in or all targets onscreen

have been flashed. If a hit is registered, our module transitions to the HIT state,

asserts its output is valid along with setting target_hit to the corresponding

target in a one-hot encoding scheme. Upon a frame ending and a hit not being

registered, the module will move to the MISS state where it prepares to flash

the next target in index_to_flash. If there are no more targets to flash, it

moves to ASSERT, asserting that no target has been hit. Finally, the ASSERT

state resets important output registers and then returns to IDLE.

Game Targets

The Game Targets module is responsible for controlling the motion of the

targets which appear during gameplay. It functions as a state machine with

three states: VISIBLE, MISSED, and NONVISIBLE. Entering the VISIBLE state,

the target begins with an initial horizontal, vertical velocity, and initial

 12

horizontal position all determined by the Random Number Generator.

Targets with an initial horizontal position on the left side of the screen fly

from left to right and vice versa, so as to eliminate situations where a target

begins near a corner and immediately flies off screen. The target begins

with its vertical position at the maximum (i.e. off the bottom of the screen)

and begins flying upwards. Each frame, the target’s horizontal and vertical

positions are translated via its horizontal and vertical velocity, and the

target’s vertical velocity is reduced by a constant parameter of GRAVITY. In

this way, the target rises and falls in a realistic and satisfying manner, as if

determined by the way that real objects fall via gravity. The value of

GRAVITY can be altered based upon the difficulty level passed into the

Game Targets module, such that on higher difficulties the level of gravity is

increased and targets will fall faster, making them harder to hit as they

move faster and spend less time on screen. When the target reaches the

apex of its trajectory (i.e. the value of its vertical velocity is either 0 or is

less than the amount that it would be decreased by GRAVITY), its vertical

direction goes from UP to DOWN. When this happens, every frame we now

add GRAVITY to the target’s vertical velocity which is now de facto negative.

We do this to simplify our code and avoid having to work with signed

negative numbers, which could lead to bugs.

When the target has flown up and then reaches the bottom of the screen

again without having been hit, the player has failed to hit it and we move

 13

into the MISSED state. This is a primarily transitory state which we spend

only a single frame in before moving into the NONVISIBLE state. In the

NONVISIBLE state, the target waits a random amount of frames from 0 to 30

(i.e. 0 to 0.5 seconds at 60 frames per second) before reappearing and

moving back into the VISIBLE state. We do this for the sake of better

gameplay, as it becomes overwhelming if targets were to immediately

reappear after being hit or being missed; the player needs time to visually

confirm whether a target has been hit or missed before it goes up again.

Before transitioning back into the VISIBLE state, we again call the Random

Number Generator to provide the target with new initial velocities and an

initial horizontal position.

All aforementioned Game Target updates take place once every frame. Every

clock cycle, however, we check to see if the target has been hit, i.e. if the

input is_hit to the target is one. If so, the target immediately transitions to

the NONVISIBLE state on the next frame, where its vertical position is set to

the height of the screen such that it is not visible, and appears to the user

as if the target was hit and destroyed.

If the difficulty level is three when the target is hit, however, a separate

behavior occurs. If this is the first time that the target has been hit since

entering the VISIBLE state, it changes its horizontal direction from left to

right or vice versa and gains a small amount of upwards vertical velocity, in

effect “hopping up” slightly while changing direction. The second time the

 14

target is hit, it is “destroyed” as normal. This behavior provides an extra

challenge when the game is in the later stages of difficulty, as targets take

multiple hits and their movement changes suddenly.

There is an alternative Game Target module called Popup Target, meant for

the second game mode. In this game mode, rather than multiple targets

which fly up on screen and are destroyed as the player hits them, there is a

single target which exhibits the “hopping up” or “bouncing” behavior every

time it is hit. The aim of the game mode is to keep the target up on screen

as long as possible by hitting it continuously such that it never falls down.

This Popup Target’s behavior is mostly identical to a regular Game Target’s

behavior when difficulty equals three, with the only difference being that

the Popup Target’s horizontal velocity changes randomly upon being hit,

along with the aforementioned property that it is not destroyed after any

number of hits (unlike a regular target at difficulty three, which is destroyed

after two hits). To summarize, when a Popup Target is hit, its horizontal

direction reverses, it begins moving upwards if it was falling down, gains a

small constant amount of vertical velocity, and gets a new randomly

determined amount of horizontal velocity.

Sprite ROM

Within our Sprite ROM, we are store all five of our fruit and bomb sprites,

each being 128x128 in size and all using the same set of RGB colormaps.

Thus, with 8-bit colors and colormap addresses and 4860kbits of BRAM

 15

available on the FPGA, we have
128∗128∗5∗8+3∗256∗8

4860∗1000
 = ~13.6% memory

utilization. If there were more sprites we wanted to use or need for

additional BRAM to elsewhere, we could have scaled down our

sprites here and simply upscaled when displaying but we deemed

such to be unnecessary for our project. For the Sprite ROM module

itself, it will lookup the appropriate sprite based on the object

being currently drawn in the game logic and output it on the third

cycle after the input due to some pipelining with the address

calculation; resultingly, it is given an offset hcount_in input to

ensure the sprites are output cleanly. In order to simplify our logic,

the sprites are also arranged vertically such that we only require a

vertical offset when looking up into the ROM and not a horizontal

one as well which would be the case if say there were three in the

first row and the remaining two in a second row. An additional

consideration that had to be made within this module is the fact

that the Top Level module replaces all black pixels with the

background image as well as the white backgrounds of the sprites.

In order to address this and still keep the black border pixels of the sprites,

our solution was to simply flip the least significant bit of any output black

pixel to prevent the swap from occurring in Top Level as well as turn any

entirely white pixel to entirely black to make sure it gets replaced with the

appropriate background.

 16

Background ROM

The Background ROM module is quite

similar to the Sprite ROM module, with the

difference being there is some upscaling

and wrapping of the image at play here.

Instead of using a 1024x768 image for it to

be able to cover the entirety of the display,

we instead used a 256x384 image which

was then used to entirely cover the bottom

half of the display by taking the

hcount_in % 256 for the input to address

calculation so that we would be able to

draw the background in a repeated fashion. Additionally, since the top half

of the original image was simply blue anyways, we copied the same blue

value from the COE file to be written as the background pixel for every

value below the 384 halfway threshold of the display height.

Random Number Generator

In a game like the one we wanted to make, it’s crucial that the challenge that

players face is dynamic. It would be uninteresting and quickly get stale if the

targets appeared in the same pattern, in the same position, and with the same

velocities every time the game were played. Thus, it becomes necessary for us

to introduce elements of randomness into our game, which requires a Random

Number Generator.

 17

Generating random numbers completely deterministically and on an FPGA is

less difficult than one might expect. It helps that the type of randomness we

need doesn’t need to be anywhere near as truly random or as cryptographically

secure as many other computational tasks.

All randomness is generated through a single 16 bit RNG variable. When

something like a target wants randomness, it calls the RNG module. The RNG

module takes the current RNG state value as input, generates a new RNG value,

and outputs it. That output value is then stored as the next RNG state value.

The actual process of transitioning from one RNG state to the next is best

described as “bit magic”. We first take our current state, shift it to the right by

5 bits, and XOR it with itself, storing this value as “temp1”. We take temp1, shift

it to the right by 7 bits, and XOR it with itself, storing this as temp2. Finally, our

new RNG state is temp2 plus decimal 28383, and we set our RNG output value

to this.

Given that our RNG state is a 16 bit variable, there are 65,536 possible inputs

and the same number of possible outputs. Our RNG function is a bijection,

meaning that it maps to every output, and no two inputs map to the same

output. It forms a cycle 65536 long before repeating back on itself: if you were

 18

to call RNG 65536 times you would go through every value before ending back

at your original state.

Once an RNG value has been returned to whatever required it, working with that

value to produce the desired random behavior is simple. If the goal is to do

something with a certain probability x, we can simply check to see if the return

value is less than x * 65536, which we expect to happen x% of the time. Or, as

we frequently need to do in the target module to give targets randomly

determined initial velocities, we may want to get a range of possible random

numbers. To do this, we can take our returned RNG value modulo whatever we

desire our range to be. So, if I wanted a target’s possible initial velocity to range

from 3 to 15, I would set it to be equal to 2 + (RNG % 13 + 1), which again we

expect to be distributed uniformly across that range.

 19

Challenges

One of the largest challenges we faced was unfortunately also the most

crucial aspect of our design, being able to interface with the light zapper

hardware and accurately detect a hit and which target was hit. Another issue

that we did not realize until during our final checkoff was an oversight in

the light gun circuitry in which we actually had a floating input from our

trigger. This went unnoticed since we had switched out our trigger button at

the last moment before our checkoff and during the previous rounds of

testing, a different button had been used that luckily (or perhaps unluckily

for us) worked regardless potentially due to collecting greater static charge.

Another significant challenge we ran into over the course of our project was

 20

communication, there were many times when we would both be making

edits to a single file and by the time one of us had pushed to git, we would

have to manually resolve the differences—wasting time. Time management

was also another struggle for us; although we were able to meet all of our

goals pretty handedly before Thanksgiving break, it afterwards became a

struggle and we ended up missing several of our commitment goals.

Improvements

One improvement that can be made would be the addition of text to our

menus and during gameplay. This could be achieved by initializing an

additional ROM file containing a font and another text_box module that

would take a string of characters as an input as well as an anchoring corner

and then drawing the given characters from the point of the given corner.

This would greatly enhance the usability of our project since it would

enable players to know what each button in the onscreen menus does.

Further improvements could also be made to our hit detection algorithm;

instead of implementing a method that involves individually flashing each

target one-by-one resulting in a number of required frames being linear with

the number of onscreen targets. Instead, we could have successfully

implemented a method that first flashes all targets to check if one is hit and

then if so, doing a binary search on the targets to figure out exactly which

target was hit resulting in the number of required frames for hit detection

to be 1 + log2(n).

 21

Conclusions

Overall, we consider this project a success. Despite the limitations of our

hardware, we accomplished the goal we set out in creating a light gun game.

Given the challenges of having to interface with the physical world as opposed

to operating completely on the FPGA, we still ended up with a quite functional

light gun. Additionally, despite the seeming simplicity of our game, it turned

out as surprisingly fun—there is something inherently satisfying about clicking

away fruits just as they jump up, or in keeping an apple bouncing left to right

for as long as you can keep hitting it. We ran into issues of working with our

hardware and time concerns, but ended up implementing all of the most

important features that we initially set out to.

Appendix

`default_nettype none

module top_level(

 input wire clk_100mhz,

 input wire [15:0] sw,

 input wire btnc, btnu, btnl, btnr, btnd,

 input wire [1:0] jc,

 output logic [3:0] vga_r, vga_g, vga_b,

 output logic vga_hs, vga_vs,

 output logic [15:0] led,

 output logic ca, cb, cc, cd, ce, cf, cg, dp,

 output logic [7:0] an

);

 localparam TARGET_WIDTH = 64;

 22

 logic reset;

 assign reset = btnc;

 // clock manager

 logic clk_65mhz;

 clk_wiz_0 (.clk_in1(clk_100mhz), .clk_out1(clk_65mhz));

 // test trigger for debug

 logic prev_trig, trig_rise, trig_read;

 assign trig_rise = ~prev_trig && trig_read;

debounce(.reset_in(reset), .clock_in(clk_65mhz), .noisy_in(trig_

read_noisy), .clean_out(trig_read));

 // seven seg display

 logic [6:0] seg_out;

 assign {cg, cf, ce, cd, cc, cb, ca} = seg_out;

 seven_seg_controller

sev_seg(.clk_in(clk_100mhz), .rst_in(reset), .val_in(seven_seg_i

nput), .cat_out(seg_out), .an_out(an));

 logic [31:0] seven_seg_input;

 assign seven_seg_input = {game_timer, 3'b000, hit_count};

 logic [11:0] game_timer;

 // display logic

 23

 logic [11:0] pixel;

 logic [11:0] hit_detection_pixel;

 logic [10:0] hcount, prev_hcount;

 logic [9:0] vcount, prev_vcount;

 logic hsync, vsync, blank;

 display

(.clk_65mhz(clk_65mhz), .reset(reset), .pixel(pixel), .vga_r(vga

_r),

 .vga_g(vga_g), .vga_b(vga_b), .hcount(hcount

),

 .vcount(vcount), .hsync(hsync), .vsync(vsync

),

 .blank(blank), .vga_hsync(vga_hs), .vga_vsyn

c(vga_vs));

 // background display

 logic [11:0] bg_out;

 background_rom

bg(.pixel_clk_in(clk_65mhz), .hcount_in(hcount), .vcount_in(vcou

nt), .pixel_out(bg_out));

 // target logic

 //logic [11:0] output_pixel

 logic [3:0] difficulty;

 logic [11:0] game_out, target_flash, targets_onscreen,

hit_target;

 24

 game_fsm

my_game_fsm(.clk_65mhz(clk_65mhz), .reset_in(reset),

 .hcount_in(hcount), .vcount_in(vcount), .tri

gger_in(trig_rise),

 .active_in(pause), .flash_in(target_flash),

 .hit_valid(hit_valid), .hit_target(hit_targe

t),

 .left_button_in(btnl), .right_button_in(btnr

), .down_button_in(btnd),

 .pixel_out(game_out), .difficulty(difficulty

),

 .targets_onscreen(targets_onscreen), .timer_

out(game_timer),

 .new_game_out(new_game));

 assign led[11:0] = targets_onscreen;

 // pixel output

 assign pixel = |game_out ? game_out : bg_out;

 // hit detection

 logic hit_valid, targets_active, pause;

 assign pause = sw[15] ? sw[14] : targets_active;

 hit_detect

hd(.clk(clk_65mhz), .reset(reset), .zap_in(zap_read), .trig_in(t

rig_rise),

 .targets_onscreen(targets_onscreen), .hcount

_in(hcount), .vcount_in(vcount),

 25

 .targets_update(targets_active), .flash_out(

target_flash),

 .valid_out(hit_valid), .target_hit(hit_targe

t));

 logic [15:0] hit_count;

 logic new_game;

 always_ff @(posedge clk_65mhz) begin

 if (reset) begin

 prev_trig <= 1'b1;

 hit_count <= 0;

 end else begin

 prev_trig <= trig_read;

 hit_count <= new_game ? 0 : (hit_valid ?

hit_target : hit_count);

 // score increments

 if(hit_valid) begin

 case(hit_target[11:7])

 5'b00001: hit_count <= hit_count + 10; //

cherry

 5'b00010: hit_count <= hit_count + 15; //

strawberry

 5'b01000: hit_count <= hit_count + 25; //

orange

 5'b10000: hit_count <= hit_count + 50; //

apple

 26

 5'b00100: hit_count <= hit_count > 50 ?

hit_count - 50 : 0; // bomb

 default: hit_count <= hit_count;

 endcase

 end

 end

 end

 // zapper logic

 logic zap_read, trig_read_noisy;

 assign zap_read = jc[0];

 assign trig_read_noisy = jc[1];

endmodule

`default_nettype wire

`default_nettype none

module game_fsm (

 input wire clk_65mhz,

 input wire reset_in,

 input wire [10:0] hcount_in, // horizontal index of current

pixel (0..1023)

 input wire [9:0] vcount_in, // vertical index of current

pixel (0..767)

 27

 input wire trigger_in,

 input wire active_in,

 input wire hit_valid,

 input wire [11:0] flash_in, hit_target,

 input wire left_button_in,

 input wire right_button_in,

 input wire down_button_in,

 output logic [11:0] pixel_out,

 output logic [3:0] difficulty,

 output logic [11:0] targets_onscreen,

 output logic [11:0] timer_out,

 output logic new_game_out

);

 localparam SCREEN_HEIGHT = 768;

 localparam SCREEN_WIDTH = 1024;

 localparam TARGET_WIDTH = 64;

 localparam CYCLES_PER_FRAME = 1083264;

 localparam GAME_TIME = 3600; // 3600 frames aka

one minute

 localparam CHERRY = 3'b000,

 28

 STRAWBERRY = 3'b001,

 ORANGE = 3'b011,

 APPLE = 3'b111,

 BOMB = 3'b110,

 BACKGROUND = 3'b100;

 logic [20:0] cycle_counter;

 logic [11:0] frame_counter;

 enum {MAINMENU, SCORES, SELECTMODE, PLAYING, POPUP,

SAVESCREEN} state;

 logic target_hit [11:0];

 always_comb begin

 for (int i = 0; i < 12; i++)

 target_hit[i] = hit_target[i] && hit_valid ? 1'b1 :

1'b0;

 end

 logic game_target_drawing [4:0];

 logic game_target_activated [4:0];

 logic game_targets_prev_onscreen [4:0];

 logic [3:0] onscreen_sum;

 always_comb begin

 onscreen_sum = 0;

 for (int i = 0; i < 5; i++) begin

 onscreen_sum += game_target_activated[i];

 29

 end

 end

 logic [4:0] game_targets_onscreen;

 logic [9:0] game_target_x [4:0];

 logic [9:0] game_target_y [4:0];

 logic [15:0] spawn_rng_num;

 logic [4:0] spawn_rng_reg;

 RNG #(.INITIAL_STATE(16'd9494))

spawn_rng(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .trigger_next_state_in(1'b1

), .rng_out(spawn_rng_num));

 logic popup_gameover;

 logic play_mode;

 game_target #(.RNG_SEED(16'd123))

game_target_0(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .hcount_in(hcount_in), .vcount_in(vcount_in)

, .difficulty_in(difficulty),

 .active_in(active_in &&

game_target_activated[0]), .is_hit(target_hit[7]),

 .is_onscreen(game_targets_onscreen[0]), .is_

drawing(game_target_drawing[0]),

 .target_x(game_target_x[0]), .target_y(game_

target_y[0]));

 30

 game_target #(.RNG_SEED(16'd456))

game_target_1(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .hcount_in(hcount_in), .vcount_in(vcount_in)

, .difficulty_in(difficulty),

 .active_in(active_in &&

game_target_activated[1]), .is_hit(target_hit[8]),

 .is_onscreen(game_targets_onscreen[1]), .is_

drawing(game_target_drawing[1]),

 .target_x(game_target_x[1]), .target_y(game_

target_y[1]));

 game_target #(.RNG_SEED(16'd6294))

game_target_2(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .hcount_in(hcount_in), .vcount_in(vcount_in)

, .difficulty_in(difficulty),

 .active_in(active_in &&

game_target_activated[2]), .is_hit(target_hit[9]),

 .is_onscreen(game_targets_onscreen[2]), .is_

drawing(game_target_drawing[2]),

 .target_x(game_target_x[2]), .target_y(game_

target_y[2]));

 game_target #(.RNG_SEED(16'd794))

 31

game_target_3(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .hcount_in(hcount_in), .vcount_in(vcount_in)

, .difficulty_in(difficulty),

 .active_in(active_in &&

game_target_activated[3]), .is_hit(target_hit[10]),

 .is_onscreen(game_targets_onscreen[3]), .is_

drawing(game_target_drawing[3]),

 .target_x(game_target_x[3]), .target_y(game_

target_y[3]));

 popup_target #(.RNG_SEED(16'd18447))

popup_target_1(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .hcount_in(hcount_in), .vcount_in(vcount_in)

, .difficulty_in(difficulty),

 .active_in(active_in &&

game_target_activated[4]), .is_hit(target_hit[11]),

 .is_onscreen(game_targets_onscreen[4]), .is_

drawing(game_target_drawing[4]),

 .target_x(game_target_x[4]), .target_y(game_

target_y[4]));

 logic [2:0] in_type;

 logic [10:0] rom_x, rom_width;

 logic [9:0] rom_y, rom_height;

 logic [11:0] rom_pixel;

 32

 sprite_rom

rom(.pixel_clk_in(clk_65mhz), .sprite_type(in_type), .x_in(rom_x

), .y_in(rom_y),

 .hcount_in(hcount_in-

3), .vcount_in(vcount_in), .width(rom_width), .height(rom_height

),

 .pixel_out(rom_pixel));

 always_comb begin

 if(game_target_drawing[4]) begin

 in_type = APPLE;

 rom_x = game_target_x[4];

 rom_y = game_target_y[4];

 rom_width = 128;

 rom_height = 128;

 end else if(game_target_drawing[3]) begin

 in_type = ORANGE;

 rom_x = game_target_x[3];

 rom_y = game_target_y[3];

 rom_width = 128;

 rom_height = 128;

 end else if(game_target_drawing[2]) begin

 in_type = BOMB;

 rom_x = game_target_x[2];

 rom_y = game_target_y[2];

 rom_width = 128;

 rom_height = 128;

 33

 end else if(game_target_drawing[1]) begin

 in_type = STRAWBERRY;

 rom_x = game_target_x[1];

 rom_y = game_target_y[1];

 rom_width = 128;

 rom_height = 128;

 end else if(game_target_drawing[0]) begin

 in_type = CHERRY;

 rom_x = game_target_x[0];

 rom_y = game_target_y[0];

 rom_width = 128;

 rom_height = 128;

 end else begin

 in_type = 0;

 rom_x = 0;

 rom_y = 0;

 rom_width = 0;

 rom_height = 0;

 end

 end

 logic [10:0] menu_target_x [6:0];

 logic [9:0] menu_target_y [6:0];

 logic [10:0] menu_target_w [6:0];

 logic [9:0] menu_target_h [6:0];

 logic [6:0] menu_targets_onscreen;

 logic menu_target_drawing [6:0];

 34

 menu_button menu_zero

(.x_in(menu_target_x[0]), .width(menu_target_w[0]), .y_in(menu_

target_y[0]), .height(menu_target_h[0]),

 .hcount_in(hcount_in), .vcount_in(v

count_in), .drawing(menu_target_drawing[0]));

 menu_button menu_one

(.x_in(menu_target_x[1]), .width(menu_target_w[1]), .y_in(menu_

target_y[1]), .height(menu_target_h[1]),

 .hcount_in(hcount_in), .vcount_in(v

count_in), .drawing(menu_target_drawing[1]));

 menu_button menu_two

(.x_in(menu_target_x[2]), .width(menu_target_w[2]), .y_in(menu_

target_y[2]), .height(menu_target_h[2]),

 .hcount_in(hcount_in), .vcount_in(v

count_in), .drawing(menu_target_drawing[2]));

 menu_button

menu_three(.x_in(menu_target_x[3]), .width(menu_target_w[3]), .

y_in(menu_target_y[3]), .height(menu_target_h[3]),

 .hcount_in(hcount_in), .vcount_in(v

count_in), .drawing(menu_target_drawing[3]));

 35

 menu_button menu_four

(.x_in(menu_target_x[4]), .width(menu_target_w[4]), .y_in(menu_

target_y[4]), .height(menu_target_h[4]),

 .hcount_in(hcount_in), .vcount_in(v

count_in), .drawing(menu_target_drawing[4]));

 menu_button menu_five

(.x_in(menu_target_x[5]), .width(menu_target_w[5]), .y_in(menu_

target_y[5]), .height(menu_target_h[5]),

 .hcount_in(hcount_in), .vcount_in(v

count_in), .drawing(menu_target_drawing[5]));

 menu_button menu_six

(.x_in(menu_target_x[6]), .width(menu_target_w[6]), .y_in(menu_

target_y[6]), .height(menu_target_h[6]),

 .hcount_in(hcount_in), .vcount_in(v

count_in), .drawing(menu_target_drawing[6]));

 always_comb begin

 case (state)

 MAINMENU: begin

 menu_targets_onscreen = 7'b0000011;

 for (int i = 0; i < 7; i++) begin

 menu_target_x[i] = i == 0 || i == 1 ? 237 :

0;

 menu_target_y[i] = i == 0 ? 30 : (i == 1 ?

400 : 0);

 36

 menu_target_w[i] = i == 0 || i == 1 ? 550 :

0;

 menu_target_h[i] = i == 0 || i == 1 ? 350 :

0;

 end

 end

 SCORES : begin

 menu_targets_onscreen = 7'b0000001;

 for (int i = 0; i < 7; i++) begin

 menu_target_x[i] = i == 0 ? 237 : 0;

 menu_target_y[i] = i == 0 ? 400 : 0;

 menu_target_w[i] = i == 0 ? 550 : 0;

 menu_target_h[i] = i == 0 ? 350 : 0;

 end

 end

 SELECTMODE : begin

 menu_targets_onscreen = 7'b0011111;

 menu_target_x[0] = 237;

 menu_target_y[0] = 30;

 menu_target_w[0] = 260;

 menu_target_h[0] = 216;

 menu_target_x[1] = 527;

 menu_target_y[1] = 30;

 menu_target_w[1] = 260;

 37

 menu_target_h[1] = 216;

 menu_target_x[2] = 237;

 menu_target_y[2] = 276;

 menu_target_w[2] = 260;

 menu_target_h[2] = 216;

 menu_target_x[3] = 527;

 menu_target_y[3] = 276;

 menu_target_w[3] = 260;

 menu_target_h[3] = 216;

 menu_target_x[4] = 237;

 menu_target_y[4] = 522;

 menu_target_w[4] = 550;

 menu_target_h[4] = 216;

 for (int i = 5; i < 7; i++) begin

 menu_target_x[i] = 0;

 menu_target_y[i] = 0;

 menu_target_w[i] = 0;

 menu_target_h[i] = 0;

 end

 end

 SAVESCREEN : begin

 menu_targets_onscreen = 7'b1111111;

 38

 menu_target_x[0] = 0;

 menu_target_y[0] = 0;

 menu_target_w[0] = 0;

 menu_target_h[0] = 0;

 menu_target_x[1] = 0;

 menu_target_y[1] = 0;

 menu_target_w[1] = 0;

 menu_target_h[1] = 0;

 menu_target_x[2] = 0;

 menu_target_y[2] = 0;

 menu_target_w[2] = 0;

 menu_target_h[2] = 0;

 menu_target_x[3] = 0;

 menu_target_y[3] = 0;

 menu_target_w[3] = 0;

 menu_target_h[3] = 0;

 menu_target_x[4] = 0;

 menu_target_y[4] = 0;

 menu_target_w[4] = 0;

 menu_target_h[4] = 0;

 menu_target_x[5] = 0;

 menu_target_y[5] = 0;

 39

 menu_target_w[5] = 0;

 menu_target_h[5] = 0;

 menu_target_x[6] = 0;

 menu_target_y[6] = 0;

 menu_target_w[6] = 0;

 menu_target_h[6] = 0;

 end

 default : begin

 menu_targets_onscreen = 7'b0000000;

 for (int i = 0; i < 7; i++) begin

 menu_target_x[i] = 0;

 menu_target_y[i] = 0;

 menu_target_w[i] = 0;

 menu_target_h[i] = 0;

 end

 end

 endcase

 end

 assign targets_onscreen = {state == PLAYING || state ==

POPUP ? game_targets_onscreen : 5'h0, state != PLAYING ?

menu_targets_onscreen : 7'h0};

 logic next_frame_blank, blank_frame;

 40

 always_ff @ (posedge clk_65mhz) begin

 if (reset_in) begin

 state <= MAINMENU;

 difficulty <= 0;

 cycle_counter <= 0;

 frame_counter <= 0;

 next_frame_blank <= 0;

 blank_frame <= 0;

 spawn_rng_reg <= 0;

 game_target_activated[0] <= 1;

 game_target_activated[1] <= 1;

 game_target_activated[2] <= 0;

 game_target_activated[3] <= 0;

 game_target_activated[4] <= 0;

 play_mode <= 0;

 end else begin

 spawn_rng_reg <= spawn_rng_num[4:0];

 if (trigger_in) begin

 next_frame_blank <= 1;

 blank_frame <= 0;

 end else if (next_frame_blank == 1 && hcount_in ==

1343 && vcount_in == 805) begin

 next_frame_blank <= 0;

 blank_frame <= 1;

 end else if (blank_frame && hcount_in == 1343 &&

vcount_in == 805 && !(|flash_in)) begin

 next_frame_blank <= 0;

 41

 blank_frame <= 0;

 end

 case (state)

 MAINMENU : begin

 if(menu_target_drawing[0]) begin

 if(flash_in[0]) pixel_out <= 12'hFFF;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= 12'h1;

 end else if(menu_target_drawing[1]) begin

 if(flash_in[1]) pixel_out <= 12'hFFF;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= 12'h1;

 end else

 pixel_out <= 12'h0;

 if (target_hit[0]) begin

 state <= SELECTMODE;

 end else if (target_hit[1]) begin

 state <= SCORES;

 end

 end

 SCORES : begin

 if(menu_target_drawing[0] && flash_in[0])

pixel_out <= 12'hFFF;

 else pixel_out <= blank_frame &&

menu_target_drawing[0] ? 12'h1 : (menu_target_drawing[0] ?

12'h800 : 12'h0);

 42

 if (target_hit[0]) begin

 state <= MAINMENU;

 end

 end

 SELECTMODE : begin

 if(menu_target_drawing[0]) begin

 if(flash_in[0]) pixel_out <= 12'hFFF;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= difficulty == 0 ?

12'h0F0 : 12'h1;

 end else if (menu_target_drawing[1]) begin

 if(flash_in[1]) pixel_out <= 12'hFFF;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= difficulty == 1 ?

12'h0F0 : 12'h1;

 end else if (menu_target_drawing[2]) begin

 if(flash_in[2]) pixel_out <= 12'hFFF;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= play_mode == 0 ?

12'h00F : 12'h1;

 end else if (menu_target_drawing[3]) begin

 if(flash_in[3]) pixel_out <= 12'hFFF;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= play_mode == 1 ?

12'h00F : 12'h1;

 end else if (menu_target_drawing[4]) begin

 43

 if(flash_in[4]) pixel_out <= 12'hFFF;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= 12'h1;

 end else

 pixel_out <= 12'h0;

 if (target_hit[0]) begin

 // difficulty <= (difficulty == 0) ? 0 :

difficulty - 1;

 difficulty <= 4'b0;

 end else if (target_hit[1]) begin

 // difficulty <= (difficulty == 7) ? 7 :

difficulty + 1;

 difficulty <= 4'b1;

 end else if (target_hit[2]) begin

 play_mode <= 0;

 end else if (target_hit[3]) begin

 play_mode <= 1;

 end else if (target_hit[4] ||

down_button_in) begin

 state <= play_mode ? POPUP : PLAYING;

 new_game_out <= 1'b1;

 timer_out <= 60;

 end

 end

 PLAYING : begin

 new_game_out <= 1'b0;

 44

 if(game_target_drawing[4]) begin

 if(flash_in[11]) pixel_out <=

|rom_pixel ? 12'hFFF : 0;

 else if (blank_frame) pixel_out <=

12'h1;

 else pixel_out <= rom_pixel;

 end else if (game_target_drawing[3]) begin

 if(flash_in[10]) pixel_out <=

|rom_pixel ? 12'hFFF : 0;

 else if (blank_frame) pixel_out <=

12'h1;

 else pixel_out <= rom_pixel;

 end else if (game_target_drawing[2]) begin

 if(flash_in[9]) pixel_out <=

|rom_pixel ? 12'hFFF : 0;

 else if (blank_frame) pixel_out <=

12'h1;

 else pixel_out <= rom_pixel;

 end else if (game_target_drawing[1]) begin

 if(flash_in[8]) pixel_out <=

|rom_pixel ? 12'hFFF : 0;

 else if (blank_frame) pixel_out <=

12'h1;

 else pixel_out <= rom_pixel;

 end else if (game_target_drawing[0]) begin

 if(flash_in[7]) pixel_out <=

|rom_pixel ? 12'hFFF : 0;

 45

 else if (blank_frame) pixel_out <=

12'h1;

 else pixel_out <= rom_pixel;

 end else

 pixel_out <= blank_frame ? 12'h1 :

12'h0;

 if (frame_counter == (GAME_TIME / 3)) begin

 difficulty <= difficulty + 1;

 end else if (frame_counter == (2 * GAME_TIME

/ 3)) begin

 difficulty <= difficulty + 1;

 end

 for(int i = 0; i < 5; i++) begin

 game_targets_prev_onscreen[i] <=

game_targets_onscreen[i];

 end

 if(onscreen_sum < 2) begin

 if(spawn_rng_reg < 12

&& !game_target_activated[0]) game_target_activated[0] <= 1'b1;

 else if (spawn_rng_reg < 20

&& !game_target_activated[1]) game_target_activated[1] <= 1'b1;

 else if (spawn_rng_reg < 26

&& !game_target_activated[2]) game_target_activated[2] <= 1'b1;

 else if (spawn_rng_reg < 29

&& !game_target_activated[3]) game_target_activated[3] <= 1'b1;

 46

 else if (!game_target_activated[4])

game_target_activated[4] <= 1'b1;

 end else begin

 for(int i = 0; i < 5; i++) begin

 if(game_targets_prev_onscreen[i] !=

game_targets_onscreen[i] && game_targets_onscreen[i] == 0)

 game_target_activated[i] = 1'b0;

 end

 end

 if (frame_counter == GAME_TIME) begin // one

minute has passed, game over

 state <= MAINMENU;

 cycle_counter <= 0;

 frame_counter <= 0;

 difficulty <= 0;

 timer_out <= 0;

 end else if(active_in) begin

 if (cycle_counter == CYCLES_PER_FRAME)

begin

 cycle_counter <= 0;

 frame_counter <= frame_counter + 1;

 end else begin

 cycle_counter <= cycle_counter + 1;

 end

 if (frame_counter % 60 == 0) begin

 47

 timer_out <= timer_out - 1;

 end

 end

 end

 POPUP : begin

 new_game_out <= 1'b0;

 game_target_activated[4] <= 1'b1;

 if(game_target_drawing[4]) begin

 if(flash_in[11]) pixel_out <=

|rom_pixel ? 12'hFFF : 0;

 else if(blank_frame) pixel_out <= 12'h1;

 else pixel_out <= rom_pixel;

 end else pixel_out <= blank_frame ? 12'h1 :

12'h0;

 // if (popup_gameover) begin

 // state <= MAINMENU;

 // end

 if (frame_counter == GAME_TIME) begin // one

minute has passed, game over

 state <= MAINMENU;

 cycle_counter <= 0;

 frame_counter <= 0;

 difficulty <= 0;

 48

 timer_out <= 0;

 end else if(active_in) begin

 if (cycle_counter == CYCLES_PER_FRAME)

begin

 cycle_counter <= 0;

 frame_counter <= frame_counter + 1;

 end else begin

 cycle_counter <= cycle_counter + 1;

 end

 if (frame_counter % 60 == 0) begin

 timer_out <= timer_out - 1;

 end

 end

 end

 SAVESCREEN : begin

 end

 endcase

 end

 end

endmodule // menu_fsm

`default_nettype wire

 49

//

//////

//

// blob: generate rectangle on screen

//

//

//////

module menu_button

 (input wire [10:0] x_in, hcount_in, width,

 input wire [9:0] y_in, vcount_in, height,

 output logic drawing);

 always_comb begin

 if ((hcount_in >= x_in && hcount_in < (x_in+width)) &&

 (vcount_in >= y_in && vcount_in < (y_in+height)))

 drawing = 1'b1;

 else

 drawing = 1'b0;

 end

endmodule

module hit_detect(

 input wire clk,

 input wire reset,

 50

 input wire zap_in,

 input wire trig_in,

 input wire [11:0] targets_onscreen,

 input wire [10:0] hcount_in,

 input wire [9:0] vcount_in,

 output logic valid_out, targets_update,

 output logic [11:0] flash_out,

 output logic [11:0] target_hit

);

localparam IDLE = 3'b000,

 TRIGGERED = 3'b001,

 TARGET_CHECK = 3'b011,

 HIT = 3'b111,

 MISS = 3'b110,

 ASSERT = 3'b100;

localparam CYCLES_PER_FRAME = 1083264;

logic blank_zap, next_frame, trigger_pressed;

logic [2:0] current_state, next_state;

logic [2:0] entries;

logic [3:0] flash_count, index_counter;

logic [3:0] index_to_flash [6:0];

logic [11:0] target_buffer, next_flash;

logic [20:0] wait_counter;

 51

always_comb begin

 next_frame = hcount_in == 1343 && vcount_in == 805;

 next_flash = 12'h0;

 next_flash[index_to_flash[flash_count]] = 1'b1;

 case(current_state)

 IDLE : next_state = trigger_pressed && next_frame

&& targets_onscreen ? TRIGGERED : IDLE;

 TRIGGERED : next_state = next_frame ? TARGET_CHECK :

TRIGGERED;

 TARGET_CHECK: next_state = blank_zap != zap_in &&

blank_zap == 1 && next_frame ? HIT : next_frame ? MISS :

TARGET_CHECK;

 HIT : next_state = ASSERT;

 MISS : next_state = flash_count < entries ?

TARGET_CHECK : ASSERT;

 ASSERT : next_state = IDLE;

 default : next_state = IDLE;

 endcase

end

always_ff @(posedge clk) begin

 if(reset) begin

 blank_zap <= 1'b0;

 trigger_pressed <= 1'b0;

 current_state <= IDLE;

 entries <= 3'h0;

 index_counter <= 4'h0;

 52

 flash_count <= 4'h0;

 for (int i = 0; i < 7; i++) index_to_flash[i] <= 0;

 target_buffer <= 12'h0;

 wait_counter <= 21'h0;

 valid_out <= 1'b0;

 targets_update <= 1'b0;

 flash_out <= 12'h0;

 target_hit <= 12'h0;

 end else begin

 current_state <= next_state;

 case(current_state)

 IDLE : begin

 targets_update <= 1'b1;

 flash_out <= 12'h0;

 if(trig_in == 1) trigger_pressed <= 1;

 if(next_state == TRIGGERED) begin

 wait_counter <= CYCLES_PER_FRAME;

 target_buffer <= targets_onscreen;

 entries <= 3'h0;

 index_counter <= 4'h0;

 flash_count <= 4'h0;

 for (int i = 0; i < 7; i++)

index_to_flash[i] <= 0;

 end

 end

 TRIGGERED : begin

 53

 if(next_state == TARGET_CHECK) begin

 wait_counter <= CYCLES_PER_FRAME;

 flash_out <= next_flash;

 end else begin

 if(|target_buffer) begin

 target_buffer <= target_buffer

>> 1;

 index_counter <= index_counter +

1;

 if(target_buffer[0]) begin

 index_to_flash[entries] <=

index_counter;

 entries <= entries + 1;

 end

 end

 wait_counter <= wait_counter - 1;

 blank_zap <= zap_in;

 end

 end

 TARGET_CHECK : begin

 if(next_state == MISS) flash_count <=

flash_count + 1;

 wait_counter <= wait_counter - 1;

 end

 HIT : begin

 54

 valid_out <= 1'b1;

 target_hit[index_to_flash[flash_count]]

<= 1'b1;

 end

 MISS : begin

 if(next_state == ASSERT) begin

 valid_out <= 1'b1;

 target_hit <= 12'h0;

 end else if(next_state == TARGET_CHECK)

begin

 flash_out <= next_flash;

 wait_counter <= CYCLES_PER_FRAME;

 end

 end

 ASSERT : begin

 valid_out <= 0;

 target_hit <= 0;

 trigger_pressed <= 0;

 end

 endcase

 end

end

endmodule

`default_nettype none

 55

module game_target

 #(parameter RNG_SEED = 0)

 (

 input wire clk_65mhz,

 input wire reset_in,

 input wire active_in,

 input wire [3:0] difficulty_in,

 input wire is_hit,

 input wire [10:0] hcount_in, // horizontal index of current

pixel (0..1023)

 input wire [9:0] vcount_in, // vertical index of current

pixel (0..767)

 output logic is_onscreen, is_drawing,

 output logic [9:0] target_x, target_y

);

 localparam SCREEN_HEIGHT = 768;

 localparam SCREEN_WIDTH = 1024;

 localparam TARGET_WIDTH = 128;

 localparam TERMINAL_VELOCITY = 24;

 enum {VISIBLE, MISSED, NONVISIBLE} state;

 logic [1:0] GRAVITY;

 logic [7:0] INITIAL_VELOCITY;

 56

 assign GRAVITY = (difficulty_in > 1'b0) ? 2 : 1;

 assign INITIAL_VELOCITY = (difficulty_in > 1'b0) ? 40: 20;

 logic [9:0] vertical_velocity;

 logic [9:0] horizontal_velocity;

 logic [15:0] rng_val;

 logic trigger_next_rng_state;

 RNG #(.INITIAL_STATE(RNG_SEED))

my_rng(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .trigger_next_state_

in(trigger_next_rng_state),

 .rng_out(rng_val));

 // enum {UP, DOWN} vertical_direction;

 // enum {LEFT, RIGHT} horizontal_direction;

 logic moving_up;

 logic moving_right;

 logic hit_once;

 logic [4:0] frames_to_wait; // wait up to 32 frames or

roughly a half second

 assign is_onscreen = state == VISIBLE ? 1'b1 : 1'b0;

 57

 always_ff @ (posedge clk_65mhz) begin

 if (reset_in) begin

 target_y <=

SCREEN_HEIGHT;

 trigger_next_rng_state <= 1'b1; // TODO: is this

needed?

 vertical_velocity <= INITIAL_VELOCITY +

(rng_val % 10);

 horizontal_velocity <= 3 + (rng_val % 9);

 target_x <= rng_val %

SCREEN_WIDTH;

 moving_up <= 1'b1;

 moving_right <= ((rng_val %

SCREEN_WIDTH) < (SCREEN_WIDTH / 2)) ? 1'b1 : 1'b0; // if on

right side of screen, target starts moving left, and vice versa

 hit_once

<= 1'b0;

 state <= VISIBLE;

 end else if ((hcount_in == 0) && (vcount_in == 0) &&

active_in) begin

 case (state)

 VISIBLE : begin

 trigger_next_rng_state <= 1'b0; // TODO: is

this needed?

 58

 target_y <= moving_up ? target_y -

vertical_velocity : target_y + vertical_velocity;

 target_x <= moving_right ? target_x +

horizontal_velocity : target_x - horizontal_velocity;

 // this case block determines velocity

changes

 case (moving_up)

 1'b1: begin // moving up

 if (vertical_velocity < GRAVITY)

begin

 vertical_velocity <= 0;

 moving_up <= 1'b0; // reached

apex of trajectory, begin moving down

 end else begin // still moving

upwards

 vertical_velocity <=

vertical_velocity - GRAVITY;

 end

 end

 1'b0: begin // moving down

 if ((vertical_velocity + GRAVITY) >

TERMINAL_VELOCITY) begin

 vertical_velocity <=

TERMINAL_VELOCITY;

 end else begin

 vertical_velocity <=

vertical_velocity + GRAVITY;

 59

 end

 end

 endcase

 // check if off screen

 if (!moving_up && ((target_y +

vertical_velocity) > SCREEN_HEIGHT)) begin

 state <= MISSED;

 end else if ((vertical_velocity > target_y)

&& moving_up) begin

 moving_up <= 1'b0;

 end

 if (is_hit) begin

 state <= NONVISIBLE;

 trigger_next_rng_state <= 1'b1;

 end

 end

 MISSED : begin

 // this state is primarily for scoring

purposes

 // we spend exactly one frame here

 trigger_next_rng_state <= 1'b1;

 state <= NONVISIBLE;

 end

 60

 NONVISIBLE : begin

 if (trigger_next_rng_state == 1'b1) begin //

just entered state

 trigger_next_rng_state <= 1'b0;

 frames_to_wait <= (rng_val % 30);

 end else if (frames_to_wait == 0) begin

 target_y <= SCREEN_HEIGHT;

 // trigger_next_rng_state <= 1'b1;

 vertical_velocity <= INITIAL_VELOCITY +

(rng_val % 10);

 horizontal_velocity <= 3 + (rng_val %

9);

 target_x = rng_val % SCREEN_WIDTH;

 moving_up = 1'b1;

 moving_right = ((rng_val %

SCREEN_WIDTH) < (SCREEN_WIDTH / 2)) ? 1'b1 : 1'b0; // if on

right side of screen, target starts moving left, and vice versa

 state <= VISIBLE;

 end else begin

 frames_to_wait <= frames_to_wait - 1;

 end

 end

 endcase

 end else if (is_hit) begin

 61

 if (difficulty_in == 3 && !hit_once) begin

 moving_right <= !moving_right;

 moving_up <= 1'b1;

 vertical_velocity <= vertical_velocity +

(INITIAL_VELOCITY / 3);

 end else begin

 state <= NONVISIBLE;

 trigger_next_rng_state <= 1'b1;

 hit_once <= 1'b0;

 end

 end

 end // end always_ff

 always_comb begin

 is_onscreen = state == VISIBLE ? 1'b1 : 1'b0;

 if(hcount_in >= target_x && hcount_in < (target_x +

TARGET_WIDTH) &&

 vcount_in >= target_y && vcount_in < (target_y +

TARGET_WIDTH)) begin

 if(state == VISIBLE /*&& active_in*/)

 is_drawing = 1'b1;

 else

 is_drawing = 1'b0;

 end else

 is_drawing = 1'b0;

 end

 62

endmodule

`default_nettype wire

`default_nettype none

module popup_target

 #(parameter RNG_SEED = 0)

 (

 input wire clk_65mhz,

 input wire reset_in,

 input wire active_in,

 input wire [3:0] difficulty_in,

 input wire is_hit,

 input wire [10:0] hcount_in, // horizontal index of current

pixel (0..1023)

 input wire [9:0] vcount_in, // vertical index of current

pixel (0..767)

 output logic is_onscreen, is_drawing,

 output logic [9:0] target_x, target_y,

 output logic gameover

);

 localparam SCREEN_HEIGHT = 768;

 localparam SCREEN_WIDTH = 1024;

 63

 localparam TARGET_WIDTH = 128;

 localparam TERMINAL_VELOCITY = 24;

 enum {VISIBLE, MISSED, NONVISIBLE} state;

 logic [1:0] GRAVITY;

 logic [7:0] INITIAL_VELOCITY;

 assign GRAVITY = (difficulty_in > 1'b0) ? 2 : 1;

 assign INITIAL_VELOCITY = (difficulty_in > 1'b0) ? 35: 25;

 logic [9:0] vertical_velocity;

 logic [9:0] horizontal_velocity;

 logic [31:0] hit_count;

 logic [15:0] rng_val;

 logic trigger_next_rng_state;

 RNG #(.INITIAL_STATE(RNG_SEED))

my_rng(.clk_65mhz(clk_65mhz), .reset_in(reset_in),

 .trigger_next_state_

in(trigger_next_rng_state),

 .rng_out(rng_val));

 // enum {UP, DOWN} vertical_direction;

 // enum {LEFT, RIGHT} horizontal_direction;

 logic moving_up;

 logic moving_right;

 64

 logic [4:0] frames_to_wait; // wait up to 32 frames or

roughly a half second

 assign is_onscreen = state == VISIBLE ? 1'b1 : 1'b0;

 always_ff @ (posedge clk_65mhz) begin

 if (reset_in) begin

 target_y <=

SCREEN_HEIGHT;

 trigger_next_rng_state <= 1'b1; // TODO: is this

needed?

 vertical_velocity <= INITIAL_VELOCITY + (rng_val %

10);

 horizontal_velocity <= 3 + (rng_val % 9);

 target_x <= rng_val % SCREEN_WIDTH;

 moving_up <= 1'b1;

 moving_right <= ((rng_val % SCREEN_WIDTH) <

(SCREEN_WIDTH / 2)) ? 1'b1 : 1'b0; // if on right side of

screen, target starts moving left, and vice versa

 hit_count <= 32'b0;

 state <= VISIBLE;

 end else if ((hcount_in == 0) && (vcount_in == 0) &&

active_in) begin

 case (state)

 VISIBLE : begin

 65

 trigger_next_rng_state <= 1'b0; // TODO: is

this needed?

 target_y <= moving_up ? target_y -

vertical_velocity : target_y + vertical_velocity;

 target_x <= moving_right ? target_x +

horizontal_velocity : target_x - horizontal_velocity;

 // this case block determines velocity

changes

 case (moving_up)

 1'b1: begin // moving up

 if (vertical_velocity < GRAVITY)

begin

 vertical_velocity <= 0;

 moving_up <= 1'b0; // reached

apex of trajectory, begin moving down

 end else begin // still moving

upwards

 vertical_velocity <=

vertical_velocity - GRAVITY;

 end

 end

 1'b0: begin // moving down

 if ((vertical_velocity + GRAVITY) >

TERMINAL_VELOCITY) begin

 vertical_velocity <=

TERMINAL_VELOCITY;

 end else begin

 66

 vertical_velocity <=

vertical_velocity + GRAVITY;

 end

 end

 endcase

 // check if off screen

 if (!moving_up && ((target_y +

vertical_velocity) > SCREEN_HEIGHT)) begin

 state <= MISSED;

 end else if ((vertical_velocity > target_y)

&& moving_up) begin

 moving_up <= 1'b0;

 end

 if (is_hit) begin

 state <= NONVISIBLE;

 trigger_next_rng_state <= 1'b1;

 end

 end

 MISSED : begin

 // target missed, game over!

 state <= MISSED;

 gameover <=

difficulty_in == 3 ? 1 : 0; // if difficulty is 3, end game

on

 67

 trigger_next_rng_state

<= 1'b1;

 state <= NONVISIBLE;

 end

 NONVISIBLE : begin

 if

(trigger_next_rng_state == 1'b1) begin // just entered state

trigger_next_rng_state <= 1'b0;

 frames_to_wait

<= (rng_val % 30);

 end else if

(frames_to_wait == 0) begin

 target_y <=

SCREEN_HEIGHT;

 //

trigger_next_rng_state <= 1'b1;

vertical_velocity <= INITIAL_VELOCITY + (rng_val % 10);

horizontal_velocity <= 3 + (rng_val % 9);

 target_x =

rng_val % SCREEN_WIDTH;

 moving_up =

1'b1;

 68

 moving_right =

((rng_val % SCREEN_WIDTH) < (SCREEN_WIDTH / 2)) ? 1'b1 : 1'b0;

// if on right side of screen, target starts moving left, and

vice versa

 state <=

VISIBLE;

 end else begin

 frames_to_wait

<= frames_to_wait - 1;

 end

 end

 endcase

 end else if (is_hit) begin

 trigger_next_rng_state <= 1'b1;

 hit_count <= hit_count + 1;

 moving_right <= !moving_right;

 moving_up <= 1'b1;

 vertical_velocity <=

vertical_velocity + (INITIAL_VELOCITY / 3);

 horizontal_velocity <= difficulty_in

+ 3 + (rng_val % 9);

 end

 end // end always_ff

 69

 always_comb begin

 is_onscreen = state == VISIBLE ? 1'b1 : 1'b0;

 if(hcount_in >= target_x && hcount_in < (target_x +

TARGET_WIDTH) &&

 vcount_in >= target_y && vcount_in < (target_y +

TARGET_WIDTH)) begin

 if(state == VISIBLE /*&& active_in*/)

 is_drawing = 1'b1;

 else

 is_drawing = 1'b0;

 end else

 is_drawing = 1'b0;

 end

endmodule

`default_nettype wire

module sprite_rom

 (input wire pixel_clk_in,

 input wire [2:0] sprite_type,

 input wire [10:0] x_in,hcount_in, width,

 input wire [9:0] y_in,vcount_in, height,

 output logic [11:0] pixel_out);

 localparam WIDTH = 128;

 localparam CHERRY = 3'b000,

 70

 STRAWBERRY = 3'b001,

 ORANGE = 3'b011,

 APPLE = 3'b111,

 BOMB = 3'b110;

 logic [16:0] image_addr; // num of bits for 128*640 ROM

 logic [9:0] y_offset;

 logic [7:0] image_bits, cm_addr, red_mapped, green_mapped,

blue_mapped;

 logic [11:0] next_out;

 assign next_out = {red_mapped[7:4], green_mapped[7:4],

blue_mapped[7:4]};

 logic [6:0] col;

 logic [16:0] row;

 assign col = (hcount_in - x_in);

 assign row = (vcount_in - y_in + y_offset);

 // calculate rom address and read the location

 assign image_addr = col + (row * WIDTH);

 targets_rom

rom1(.clka(pixel_clk_in), .addra(image_addr), .douta(image_bits)

);

 // use color map to create 4 bits R, 4 bits G, 4 bits B

 // since the image is greyscale, just replicate the red

pixels

 // and not bother with the other two color maps.

 71

 targets_red_cm rcm

(.clka(pixel_clk_in), .addra(cm_addr), .douta(red_mapped));

 targets_green_cm gcm

(.clka(pixel_clk_in), .addra(cm_addr), .douta(green_mapped));

 targets_blue_cm bcm

(.clka(pixel_clk_in), .addra(cm_addr), .douta(blue_mapped));

 always_comb begin

 case(sprite_type)

 CHERRY: begin

 y_offset = 0;

 end

 STRAWBERRY: begin

 y_offset = 128;

 end

 ORANGE: begin

 y_offset = 256;

 end

 APPLE: begin

 y_offset = 384;

 end

 BOMB: begin

 y_offset = 512;

 end

 default: begin

 y_offset = 0;

 end

 72

 endcase

 end

 // note the one clock cycle delay in pixel!

 always_ff @ (posedge pixel_clk_in) begin

 cm_addr <= image_bits;

 if ((hcount_in >= x_in+3 && hcount_in < (x_in+width)) &&

 (vcount_in >= y_in && vcount_in < (y_in+height))

 && next_out != 12'hFFF)

 pixel_out <= {next_out[11:1], 1'b1}; //allows

'black' pixels to not get covered by background

 else pixel_out <= 0;

 end

endmodule

module background_rom(input wire pixel_clk_in,

 input wire [9:0] vcount_in,

 input wire [10:0] hcount_in,

 output logic [11:0] pixel_out);

 localparam WIDTH = 256;

 logic [16:0] image_addr, row;

 logic [7:0] image_bits, cm_addr, red_mapped, green_mapped,

blue_mapped, col;

 logic [11:0] next_out;

 assign next_out = {red_mapped[7:4] >> 1, green_mapped[7:4]

>> 1, blue_mapped[7:4] >> 1};

 73

 assign col = hcount_in % 256;

 bg_im_rom

rom1(.clka(pixel_clk_in), .addra(image_addr), .douta(image_bits)

);

 bg_red_cm

rcm(.clka(pixel_clk_in), .addra(cm_addr), .douta(red_mapped));

 bg_green_cm

gcm(.clka(pixel_clk_in), .addra(cm_addr), .douta(green_mapped));

 bg_blue_cm

bcm(.clka(pixel_clk_in), .addra(cm_addr), .douta(blue_mapped));

 always_comb begin

 if(vcount_in < 400) begin

 row = vcount_in;

 image_addr = (col + row * WIDTH) % (128*30);

 end else begin

 row = vcount_in - 400;

 image_addr = col + row * WIDTH;

 end

 end

 always_ff @(posedge pixel_clk_in) begin

 cm_addr <= image_bits;

 pixel_out <= next_out;

 74

 end

endmodule

`default_nettype none

module RNG (

 input wire clk_65mhz,

 input wire reset_in,

 input wire trigger_next_state_in,

 output logic [15:0] rng_out);

 parameter INITIAL_STATE = 0;

 logic [15:0] rng_state;

 logic [15:0] temp1;

 logic [15:0] temp2;

 logic after_initial_state = 1'b0;

 // debating whether or not "trigger_next_state_in" is even

necessary or if

 // we can just have this cycling every clock cycle and the

 // randomness comes from the unpredictability of when you

call

 // it, although having a trigger makes testing the sequence

eaiser

 always_ff @ (posedge clk_65mhz) begin

 75

 if (reset_in) begin

 rng_state <= INITIAL_STATE;

 after_initial_state <= 1'b0;

 end else if (trigger_next_state_in) begin

 // cycles through all 65,535 values in a

deterministic

 // order before repeating cycle

 temp1 = after_initial_state ? (rng_state ^

(rng_state << 5)) : (INITIAL_STATE ^ (INITIAL_STATE << 5));

 temp2 = temp1 ^ (temp1 >> 7);

 rng_state = temp2 + 16'd28383;

 rng_out <= rng_state;

 after_initial_state <= 1'b1;

 end else begin

 rng_out <= rng_state;

 end

 end

endmodule // RNG

`default_nettype wire

`default_nettype none

module seven_seg_controller(input wire clk_in,

 input wire rst_in,

 input wire [31:0] val_in,

 76

 output logic[6:0] cat_out,

 output logic[7:0] an_out

);

 logic[7:0] segment_state;

 logic[31:0] segment_counter;

 logic [3:0] routed_vals;

 logic [6:0] led_out;

 binary_to_seven_seg my_converter

(.bin_in(routed_vals), .hex_out(led_out));

 assign cat_out = ~led_out;

 assign an_out = ~segment_state;

 always_comb begin

 case(segment_state)

 8'b0000_0001: routed_vals = val_in[3:0];

 8'b0000_0010: routed_vals = val_in[7:4];

 8'b0000_0100: routed_vals = val_in[11:8];

 8'b0000_1000: routed_vals = val_in[15:12];

 8'b0001_0000: routed_vals = val_in[19:16];

 8'b0010_0000: routed_vals = val_in[23:20];

 8'b0100_0000: routed_vals = val_in[27:24];

 8'b1000_0000: routed_vals = val_in[31:28];

 default: routed_vals = val_in[3:0];

 endcase

 77

 end

 always_ff @(posedge clk_in)begin

 if (rst_in)begin

 segment_state <= 8'b0000_0001;

 segment_counter <= 32'b0;

 end else begin

 if (segment_counter == 32'd100_000)begin

 segment_counter <= 32'd0;

 segment_state <=

{segment_state[6:0],segment_state[7]};

 end else begin

 segment_counter <= segment_counter +1;

 end

 end

 end

endmodule //seven_seg_controller

`default_nettype wire

`default_nettype none //prevents system from inferring an

undeclared logic

module binary_to_seven_seg(

 input wire [3:0] bin_in, //declaring input

explicitely

 output logic [6:0] hex_out); //declaring output

explicitely

 78

 always_comb begin

 case(bin_in)

 4'b0000 : hex_out = 7'b0111111;

 4'b0001 : hex_out = 7'b0000110;

 4'b0010 : hex_out = 7'b1011011;

 4'b0011 : hex_out = 7'b1001111;

 4'b0100 : hex_out = 7'b1100110;

 4'b0101 : hex_out = 7'b1101101;

 4'b0110 : hex_out = 7'b1111101;

 4'b0111 : hex_out = 7'b0000111;

 4'b1000 : hex_out = 7'b1111111;

 4'b1001 : hex_out = 7'b1100111;

 4'b1010 : hex_out = 7'b1110111;

 4'b1011 : hex_out = 7'b1111100;

 4'b1100 : hex_out = 7'b0111001;

 4'b1101 : hex_out = 7'b1011110;

 4'b1110 : hex_out = 7'b1111001;

 4'b1111 : hex_out = 7'b1110001;

 endcase

 end

endmodule //binary_to_hex

`default_nettype wire

`default_nettype none

module display(

 79

 input wire clk_65mhz,

 input wire reset,

 input wire [11:0] pixel,

 output logic [3:0] vga_r, vga_g, vga_b,

 output logic [10:0] hcount,

 output logic [9:0] vcount,

 output logic hsync, vsync, blank,

 output logic vga_hsync, vga_vsync

);

 xvga

xvga0(.vclock_in(clk_65mhz), .reset(reset), .hcount_out(hcount),

.vcount_out(vcount),

 .hsync_out(hsync), .vsync_out(vsync), .blank_out(bla

nk));

 always_comb begin

 vga_r = ~blank ? pixel[11:8] : 0;

 vga_g = ~blank ? pixel[7:4] : 0;

 vga_b = ~blank ? pixel[3:0] : 0;

 vga_hsync = ~hsync;

 vga_vsync = ~vsync;

 end

endmodule

 80

`default_nettype wire

`default_nettype none

module xvga(input wire vclock_in,

 input wire reset,

 output logic [10:0] hcount_out, // pixel number

on current line

 output logic [9:0] vcount_out, // line number

 output logic vsync_out, hsync_out,

 output logic blank_out);

 parameter DISPLAY_WIDTH = 1024; // display width

 parameter DISPLAY_HEIGHT = 768; // number of lines

 parameter H_FP = 24; // horizontal front

porch

 parameter H_SYNC_PULSE = 136; // horizontal sync

 parameter H_BP = 160; // horizontal back

porch

 parameter V_FP = 3; // vertical front porch

 parameter V_SYNC_PULSE = 6; // vertical sync

 parameter V_BP = 29; // vertical back porch

 // horizontal: 1344 pixels total

 // display 1024 pixels per line

 logic hblank,vblank;

 81

 logic hsyncon,hsyncoff,hreset,hblankon;

 assign hblankon = (hcount_out == (DISPLAY_WIDTH -1));

 assign hsyncon = (hcount_out == (DISPLAY_WIDTH + H_FP - 1));

//1047

 assign hsyncoff = (hcount_out == (DISPLAY_WIDTH + H_FP +

H_SYNC_PULSE - 1)); // 1183

 assign hreset = (hcount_out == (DISPLAY_WIDTH + H_FP +

H_SYNC_PULSE + H_BP - 1)); //1343

 // vertical: 806 lines total

 // display 768 lines

 logic vsyncon,vsyncoff,vreset,vblankon;

 assign vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT -

1)); // 767

 assign vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT +

V_FP - 1)); // 771

 assign vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT +

V_FP + V_SYNC_PULSE - 1)); // 777

 assign vreset = hreset & (vcount_out == (DISPLAY_HEIGHT +

V_FP + V_SYNC_PULSE + V_BP - 1)); // 805

 // sync and blanking

 logic next_hblank,next_vblank;

 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;

 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

 always_ff @(posedge vclock_in) begin

 if(reset) begin

 82

 hcount_out <= 0;

 vcount_out <= 0;

 hblank <= 0;

 hsync_out <= 1;

 vblank <= 0;

 vsync_out <= 1;

 blank_out <= 0;

 end else begin

 hcount_out <= hreset ? 0 : hcount_out + 1;

 hblank <= next_hblank;

 hsync_out <= hsyncon ? 0 : hsyncoff ? 1 : hsync_out; //

active low

 vcount_out <= hreset ? (vreset ? 0 : vcount_out + 1) :

vcount_out;

 vblank <= next_vblank;

 vsync_out <= vsyncon ? 0 : vsyncoff ? 1 : vsync_out; //

active low

 blank_out <= next_vblank | (next_hblank & ~hreset);

 end

 end

endmodule

`default_nettype wire

`default_nettype none

 83

module debounce (input wire reset_in, clock_in, noisy_in,

 output logic clean_out);

 parameter DEBOUNCE_COUNT = 1000000;

 logic [19:0] count;

 logic new_input;

 always_ff @(posedge clock_in)

 if (reset_in) begin

 new_input <= noisy_in;

 clean_out <= noisy_in;

 count <= 0; end

 else if (noisy_in != new_input) begin new_input<=noisy_in;

count <= 0; end

 else if (count == DEBOUNCE_COUNT) clean_out <= new_input;

 else count <= count+1;

endmodule

`default_nettype wire

