ENIGMA on an FPGA

6.111 Final Report

bhanly, sabina22
December 11, 2021

Contents
1 Overview
2 Background
3 Setup
3.1 Changing Settings . . . . . . .. ... o
4 System Design
5 Goals
5.1 Baseline Goals . . . . ... .. ... oo
5.2 Stretch Goals . . . . . . ... o
5.3 Extreme Stretch Goal . . . .. ... ... ... ... ... ..
6 Modules
6.1 enigma . . . . . .. .. e
6.1.1 rotors [Bianca] . . . .. ... ... ... L.
6.1.2 mirror [Bianca] . . . .. ... L oo
6.1.3 steckerbrett [Biancal . . . .. . ... ... L.
6.1.4 memory [Sabinal . . .. ... .o Lo
6.1.5 rev_memory [Sabinal . . ... ... Lo Lo
6.1.6 daily_settings [Sabina] . . . .. ... ..o 0oL
6.2 Displays [Bianca] . . . . . . ... .. o
6.2.1 display . . . . . ..o
6.2.2 fancydisplay . . . .. ... ...
6.3 comms [Sabina] . . . . ... Lo L oL
6.3.1 serialtx . ...
6.3.2 serialrx . . ... oL
6.4 keyboard [Sabina] . . . . . ... ... L Lo
6.4.1 PS2Reciever. . . . . .. . ...
6.4.2 keyboard_debouncer . . . ... ... ... L.



7 Cracking Enigma

7.1 Choice of Approach . . . . . . . ... ... ... ...
7.2 Memory . . . . ...
7.3 Modules . . . . . . L
7.3.1 evelbftoplevel . . . .. ... oo
7.3.2 evebftryingset . ... ... ...
7.3.3 eve_bf bruteforcepy . ... .. ... ... L.
7.3.4 evetoplevel . ... ...
7.3.5 evedailysettings . . . . .. ... L oL
7.3.6 evefindds . ... ... ... ... .
7.3.7 interface.py . . . . ...

7.4 Points of failure
8 Conclusion
9 Code

10 References

12
12
12
13
13
13
13
13
13
14
14
14

15

15

15



1 Overview

For our project, we attempted to simulate an Enigma machine on the Nexys
DDR 4.

2 Background

The Enigma machine was an encryption device used extensively by the Germans
in the Second World War. It was considered to be very secure and thus was
used to encrypt top-secret messages. The machines were regularly updated and
the added complexity made them progressively more cryptographically secure.
Here are some of the most important versions.

1. Rotor Machine: This initial version had 4 cipher wheels and a cog-
wheel driven stepping mechanism. There were knobs for setting the initial
position of the wheels and for switching between encoding and decoding.

2. Enigma C: This version replaced one of the cipher wheels with a reflector,
aka UKW, which connected the output letters in pairs, thus making the
machine symmetric. The reflector could be set in different positions (more
options available in further models).

3. Enigma I This is the first model only available to the German Army.
It evolved from the Reichwehr Enigma D, which had an extra plugboard
(aka Steckerbrett) at the front. Some of the advanced versions included
two extra rotors, increasing the security 10 times.

4. Schliisselgerit 39 (Feburary 1943) This new machine coupled each
rotor with a Hagelin pinwheel in order to allow for variable stepping of
the rotors.

5. Enigma Uhr (July 1944) This version had a new Steckerbrett, which
allowed for 40 positions, and removed the constraint that the plug con-
nections be pair-wise.

3 Setup

The Nexys DDR 4 is connected to a keyboard via the USB slot, to a monitor via
the VGA port, and to a second FPGA through the JA and JB ports as shown
in Figure 1.

The keyboard is used to send an unencrypted message to the FPGA which
then encrypts the message and displays it on both the monitor and the computer.
This ciphertext is also sent to the other FPGA which then encrypts the message
again and displays it. If the second FPGA has the same starting settings as
the first one this second encryption decrypts the message back into readable
plaintext.

Our inputs from the board and their uses are as follows:



A Port (transmit)

Figure 1: FPGA connections

1. Center Button (btnc) - resets everything
2. Right Button (btnr) - starts the settings changing process

3. Upper Button (btnu) - while changing settings, allows the user to enter
the current value for the current feature and move to the next feature to
be changed

4. Down Button (btnd) - resets just the enigma module

5. sw[15] - the leftmost switch establishes the mode of operation, off means
the FPGA is transmitting and taking input from the keyboard, on means
it’s receiving and taking input from the other FPGA.

6. sw[14] - the next switch determines if we're using the steckerbrett or not

7. sw[4:0] - the rightmost switches determine the day (i.e. which settings
we should use

8. sw[9:5] - these switches are used for changing settings

All the button inputs are debounced before use.

3.1 Changing Settings

The top_level module had a simple FSM to set new settings. If the user presses
the btnr button then the FSM starts in the state ROTORI, if the user then
hits the btnu button the FPGA takes in the switches sw[7:5] as an input for
what the rotor number of the first rotor should be the FSM then moves to the
POS1 state. If the user then hits the button btnu again the FPGA takes in the
switches sw[9:5] as an input for what position the first rotor should start in and



then the FSM moves to the ROTOR2 state. This acts just just like the ROTOR1
state except its for the second rotor, the FSM then cycles through the POS2,
ROTOR3, POS3 states. After you hit btnu in the POS3 state and the FPGA
takes in the starting position based on switches it moves to the INPUT_SET
state where it inputs this new state into the enigma. It then switches to the
DONE state and the enigma will now be encrypting with the given settings.

4 System Design

The system had four major subsystems: enigma, comms, display, and keyboard.
Figure 2 shows the overall structure of the code, while Figure 3 details the
Enigma module structure.

/ top_level \
B Display '—da\a out—»
day_for_settings[4:0]——»

ar_n
hange
new_set[123:0]

phsync——»
new_char_out

char_out[4:0]

pvsy

Fancy_Display blank

pl

naw_char_ir
—char_in[4:0—|

pixel

Comms

Keyboard

\ ps2 ldaba datain  data out /
| |

| o

Figure 2: Overall Block Diagram

The main FSM, shown in Figure 4, illustrates the different states the machine
isin, and how it moves between them. The leftmost switch decides where we take
our input from; this can only be changed when we're not currently encrypting
anything. If our input is from keyboard, whenever we have a new letter available,
we encrypt it; once that’s done, we send the it out through comms, and return
back to wait for other letters. If we take our input from comms, when there’s a
new letter available, we decrypt it, then go back to wait for others.

5 Goals

We split this section into three parts, detailing our baseline goals, stretch goals,
and extreme stretch goal.



Daily_settings ‘

=

T T T
starting_setting(4:0] | starting_setting(4:0] ] starting_setting[4:0]
rolor_number{2:0] l rotor_number]2:0] l rolor_number{2:0]
v

Stepper rotor

Stepper rotor pos_in[4:0)
) Memory new_pos._in Mirror
Memory i pos_out4:0}
P 4:0) B
os_out_past[4:0] . Rev_memory| leew_pos ou
new_pos_out_post:

char_out{4:0]—»
ow char ev-charat—>| - steckerbrett
e

y pas_in_pre{4:0]
First stepper os._in_pre}

new_pos_in_pre-
rotor

pairdal4:0], pairlb[4:0]

char_in[4:0] pairda[4:0], pairdb[4:0]

Enigma

new_char_out new_char_in
char_in[4:0]
1
char_out{4:91]
|

i

Figure 3: Enigma Module Block Diagram

Finished
Decrypting

Comms In

new letter
is available

letter is
encrypted

Decrypting

sw[0]=0

letter is queued
up for sending

Finished
Encrypting

Keyboard

letter is

new letter encrypted

is available

Figure 4: Enigma Finite State Machine

5.1 Baseline Goals

Our baseline goals were to have a fully functional basic system, specifically:



1. a functional enigma module, including 3 rotors and a mirror module
2. a simple display module, to see what the outcome of the encryption is

3. a communication module, so we can pass encrypted messages between two
FPGAs

4. a way to take input from the keyboard
5. have all the above integrated into a single system

In addition, we wanted to have tested our system extensively, which we
accomplished with a mix of testbenches and simulations for any module for
which that would be feasible, as well as manual testing.

5.2 Stretch Goals

Our stretch goals which were fully implemented were to
1. create a fancier display through VGA
2. add a steckerbrett(plugboard) to the encryption process

Another stretch goal was to have four rotors and a variable stepping pattern,
this was not done on the board but the code is modularized in such a way that
lends itself to the easy addition of as many motors as desired and the ability to
change the stepping pattern of each rotor.

5.3 Extreme Stretch Goal

Our extreme stretch goal was to crack Enigma (as in, decode messages knowing
the internal structure of the machine, but not knowing any specific settings).
For implementation details, check out the "Eve’s System Modules” section.

6 Modules

6.1 enigma

Overall encryption module which takes in a character and passes it through a
steckerbrett and multiple rotors and then reflects off a mirror and back through
the rotors and steckerbrett in order to encrypt the character. It also sets the
initial starting settings of the rotors and steckerbrett through a call to the
daily_settings module.

In terms of the difficulty and process of making enigma. The rotor modules
were the most difficult modules to make in enigma due to having to thoroughly
understand and read up on the enigmas inner workings in order to get the
math right. The memory, mirror, steckerbrett, and daily_settings modules were
mostly a matter of figuring out how to connect them to the other modules and



(3] (i) L

i

o

reflactor slow roter medium rotor fast rator

Figure 5: How the internal pieces are wired together on the Enigma

then a lot of time copying settings in and translating characters to the numbers
used to represent them. At one point I even made a python script to convert
the settings from the keysheet we used in to usable verilog code since there were
SO many.

6.1.1 rotors [Bianca]

In an actual enigma a signal passes through each rotor twice, once going towards
the mirror and once after it passes through and heads back out. To model this,
both sets of rotor modules have two sets of character inputs and outputs, one
to be used for signals before and one for signals after the mirror. The rotor
encrypts a character by having an internal wiring or mapping which sends one
character to another. This is accomplished in the rotor modules by having it
call sub-modules memory and rev_memory with memory being the mapping
for when characters go through prior to the mirror and rev_memory being the
reverse for when they pass back through the other way after the mirror. The
rotor module will pass characters coming in into the respective module and take
the mapping out in order to encrypt the character. Additionally, each rotor will
rotate or step after a certain number of characters have passed through it. This
number is determined by the rotors position in the enigma and the type of
enigma being used. In order to simulate this rotation, there was a logic called
rotation which keeps track of how rotated the rotor should be. This way when
a character comes in, the module offsets the character by the amount the rotor
is rotated to before sending it to memory and then offsetting it back when it
is passed out again in order to keep the relative positioning real rotors would
have.

The rotors also have different individual starting settings: the walzenlage,
choice and order of wheels, and the ringstellung, starting position. The order
part of the walzenlage is taken care of in the enigma module as the rotors are
connected there in order. The choice of rotor is passed into the rotor module as
rotor_number and used when calling memory so that it passes back the correct



internal wiring according to the chosen rotor. The ringstellung is taken care of
through the starting_setting input. This way when the rotor is reset, the logic
rotation is set to that input so the rotor begins in that rotated position.

first_rotor The first rotor on an enigma always steps every time so as soon
as a new character comes in from before the mirror it steps the rotor and then
encrypts the character.

stepper_rotor This module is very similar to first_rotor with the main
difference being the stepping. Because rotors in positions other than the first had
different stepping patterns this module has a parameter, steps, which denotes
how many characters it should have pass through it before it steps/rotates. This
makes it easy to place as many rotors as desired with variable stepping patterns
into the enigma.

6.1.2 mirror [Bianca]

The mirror takes in a character and sends it back out as a different character
based on a preset mapping.

6.1.3 steckerbrett [Bianca]

Also known as a plugboard. Takes in as an input 20 characters which denote
the ten pairs of letters. When a character is then passed in to it, if it is a part
of a pair, it is mapped to its pair and if it isnt it passes through unchanged.

6.1.4 memory [Sabina]

This is mainly used as storage - the internal registers are hard-coded with the
internal wirings of all the 8 rotors. Whenever a request come in with a letter
and a rotor number, it returns the corresponding output letter at the next clock
cycle.

6.1.5 rev_memory [Sabina]

Similar to the memory module, it has the same mappings, just in the opposite
direction.

6.1.6 daily_settings [Sabina]

This module is a simulation of the monthly sheets and stores the settings of
the machine. It outputs which rotors are being used, in what order, what their
letter offsets are in the starting position, and the steckerboard pairs.

Since we wanted the settings to be changeable, we decided to have the hard-
coded settings at reset (instead of having them combinatorial like in the previous
two modules). It allows settings for a certain day to be changed through the
read and new_set inputs.



6.2 Displays [Bianca]

The FPGA displayed the encrypted characters through two displays, one on the
monitor and one through the serial communicator to the computer.

6.2.1 display

The display module used the serial reporter protocol from lab 2 to send the
ASCII for the encrypted character to the laptop programming the FPGA. This
was done by having an always_comb block to map the incoming character to
its appropriate ascii value and then initiating the sending over serial when
new_char_in the indicator for a new character coming in was high

6.2.2 fancy_display

The fancy display module uses VGA to display the glowlamp part of the enigma
on a monitor and light up the letter that the enigma module encrypted. This
was done by modifying the animation code from lab 3. The glowlamp image
was rendered using the picture_blob module with a greyscale color map. The
lit indicator on the letter which was encrypted was done by modifying the blob
module to be circular instead and having the position of it change based on a
mapping of letters to pixel position on the screen.

The more tedious part of this code was figuring out how to create the circular
blob since there ended up being a lot of timing issues so the module needed to
be pipelined to fit timing constraints. However in the process of this there were

Y i
(R i
Ul

(O D)
/

10



Additionally, in order to figure out the mapping of the lit indicators position
for every letter I had to find the pixel position of the center of every letter on
the glowlamp image and put that into the verilog which ended up being very
tedious.

6.3 comms [Sabina]

This module allows two FPGAs to communicate with each other. While we
wanted to connect the devices via ethernet, we decided against that as we real-
ized that we only needed one data line. In the end, we settled on using the JA
and JB ports for transmitting and receiving data, respectively.

These modules are also used to communicate with the computer through
python scripts (both for sending display data, and for sending/receiving data in
the breaking enigma section). The UART ports are used for that purpose.

It integrates a transmitting and a receiving module.

6.3.1 serial_tx

This module was taken form the Lab 3 submission. It takes in an 8-bit value to
be transmitted, appends a 0 bit at the start and a 1 bit at the end, then sets
data_out to the next bit to be transmitted with a frequency that matches the
baud rate used by the python script.

6.3.2 serial_rx

serial _rx is the receiving module. It samples the data line at every clock
cycle, and when it stops being high over a longer period of time (corresponding
to nothing being sent), it starts reading the transmitted bits, ignoring the first
and the last bits in the 10-bit transmission (always 0 and always 1 respectively).

6.4 keyboard [Sabina]

We used the code from this Github project to get the data from the keyboard
to the FPGA. From there we had to parse keycodes. When you press a key, an
8-bit scancode (e.g. 1B) corresponding to that key is sent out; when you release
that key, the scancode sent out is 16 bits, "F0” and the code of the released key
(e.g. FO1B). We used that knowledge to select the keycode from right before
the key was released as the one of interest, and we used the diagram from here
to map the keycodes to letters.

6.4.1 PS2Reciever

This is very close to the Keyboard Demo code, we added an output signal so
we know when the data was parsed.

11


https://github.com/Digilent/Nexys-4-DDR-Keyboard
https://digilent.com/reference/learn/programmable-logic/tutorials/nexys-4-ddr-keyboard-demo/start

6.4.2 keyboard_debouncer

We changed the name of the module, as it was similar to the module that we
used to debounce the buttons.

7 Cracking Enigma

In addition to the Enigma main project, our last stretch goal was cracking it.
Decrypting original Enigma messages was done by knowing some words that
were used a lot (e.g. weather report). This assumption was used to figure out
the day’s settings, after which you could figure out what any of the messages
on that day.

To break our version of ENIGMA, we assumed that we have access to the
same source files as the ENIGMA project except for the daily settings (i.e.
we know the internal system structure). We also assumed that the first 12
characters sent after reset are always ”SIXONEONEONE”.

We decided to do this in two stages:

1. Run the algorithm for all the possible settings (done once, compiled in
cribsheet.txt)

2. At each reset (e.g. every ”day”), take the first 12 received letters and
compare them with the cribsheet; then find the settings it corresponds to
and use those settings for the rest of the incoming letters until the next
reset.

Therefore, we have created 2 extra Vivado projects: eve_bf for bruteforcing
all the possible solutions, and eve for using those pre-calculated values to decode
incoming messages.

7.1 Choice of Approach

We realize this is not the most feasible way to decrypt, and obviously wouldn’t be
perfectly-implementable in real life. However, given that we want to have a fully
automated process with no human input (as opposed to manually checking for
real words, as was done to decode messages while Enigmas were actively used),
and given the tight schedule that we were on for the stretch goals, we added
these extra constraints to make it more manageable for now.

Since this part of the project was started when there was no steckerbrett, and
because introducing the steckerbrett will multiply the number of possibilities by
a factor bigger than 1000, leading to a 62+ GB file and 5000 hours cribsheet.txt
generation, we're going to assume that encryption does not use a steckerbrett
in this case.

7.2 Memory

Since the first part is a bruteforcing algorithm, the results were going to take
up a lot of memory. For each possible setting that we want to account for in

12



the cribsheet, we need 3 bytes for storing the settings and 7.5 bytes for storing
the encoded 12-letter preamble. Assuming a choice of 3 rotors out of 8, we have
336 possible rotor groups; each of those can have 26 starting positions, therefore
we get 336 * 263 (almost 6 million) possibilities. Therefore, the total amount of
storage needed is 62MB.

The generation of the file for the roughly 100,000 initial entries took less
than 5 minutes, and we expect the generation of the complete file to take less
than 5 hours. If this time would pose an issue (e.g. if we were to remove the
no-steckerbrett constraint), the code can be optimized to run multiple instances
of the enigma module in parallel (as currently we only have one).

7.3 Modules

We named our other projects eve (which is the name usually given to the
eavesdropper in cryptography literature) and eve_bf (the bf comes from Brute
Force).

7.3.1 eve_bf top_level

This is the main module of the bruteforcing algorithm. We go through all the
possible settings combinations, and for each of them, we try it (by calling the
trying set module), then send the outcome to the computer through the the
UART port.

7.3.2 eve_bf trying set

The helper method for top_level, it takes the new settings as an input and
uses them to encrypt ”SIXONEONEONE”.

7.3.3 eve_bf bruteforce.py

The script listens for data from the FPGA, then parses it in chunks of 11 bytes,
and then adds the resulted values in a file (cribsheet.txt).

7.3.4 eve top_level

The top_-level module for the eavesdropper is similar to the main project
top-level, but it’s missing the keyboard module.

7.3.5 eve daily_settings

One of our goals with this was to have as much as possible compatible with
the main enigma project source files as possible. Therefore, this module (which
is called by the enigma module both in Eve’s project and the main one), had
to have the same inputs and outputs, but fulfill the job of providing the daily
settings that were infered by find_ds.

13



7.3.6 eve find_ds

This module is responsible for finding the right settings. It sends a request to the
computer with the encoded preamble, and waits for it to find the corresponding
settings. Then, once the computer is sending data back, it parses it and outputs
the settings.

7.3.7 interface.py

This is the python script that interfaces with the FPGA, by receiving the re-
quest, looking it up, and sending back the settings.

7.4 Points of failure

There are a lot of bugs (observed and potential) with the current implementa-
tion. We’d like to discuss some of them here.

At some point between trying the first versions of the breaking enigma code
and the time of this writing, some bugs have appeared in the enigma module
that only manifest themselves in the eve project. So far, the hours of trying to
find them have yielded no success. Therefore, we have been unable to further
generate, or even recreate, cribsheet . txt.

Something else we found after this broke: while cribsheet.txt was being
generated, the python script had a bug that, if the numerical value of a byte it
received was smaller than 128, it would crop all the leading zeros when stringing
it together with the other received bytes. Since the condition we implemented
to check for the arrival of one full 10.5 byte settings result was based on the
length of the string (88 bits), we assume that most of these data points we got
were in fact a mixture of multiple data points we wanted. This also means that
the current file is useless. While we think we fixed the bug after the fact, there’s
no way for us to tell if it worked in practice until we fix the first bug.

The file is also larger than expected. At the time of its generation, it only
had 3 rotor orders to go through, so only 3 * 263 = 52, 728 settings. However,
it quite obviously did not stop writing to the file. I had to interrupt it at some
point, even though I was very curious to see where it would stop, but it looked
like it just wouldn’t. Combined with the knowledge of the previous bug, the
file should have been shorter, which is even more concerning. It seems like the
FPGA didn’t stop sending data once it was supposed to be done going through
all the options. There might be some kind of infinite loop in there, although
not one we could spot at a first glance. And since, as mentioned before, the
simulation is broken for other reasons, it’s hard to debug that.

There are other potential pitfalls that we would need a somewhat working
project to check for them.

We realized after the fact that txt files likely encode Os and 1s as more than
1 bit each, therefore if we store it as a txt file, its size would be much larger
(presumably 8 times bigger, ignoring the semicolons and spaces). Indeed, the
current file with almost 100,000 entries is 7.87MB, as opposed to 10.5 % 93,873

14



which amounts to slightly less than 1MB. A change we would like to make is to
change it to a .pickle file, so it hopefully takes less storage, especially as we add
in all the rotor order options.

Also, it is possible that among the 6 million options, the preamble has the
same encoding with more than one option, so when we search for that, they
collide (and e.g. it returns the wrong settings, therefore the rest of the mes-
sage is still gibberish). We don’t know if it will be a problem, and if it is, we
haven’t found a good solution of how to avoid it (except for, of course, making
the preamble longer and thus decreasing the probability that any of them col-
lide). That said, there are currently 25'2 = 59,604, 644, 775, 390, 625 possible
mappings for our 12-letter preamble, so the probability of collisions is quite low,
even if we add using the plugboard as an option.

Once we get eve_bf to work, we’ll be able to generate a good cribsheet file
and test the other project, eve. Getting both of them to work would accomplish
our last goal, so we would like to keep working on that.

8 Conclusion

All in all, this was a successful project, since we accomplished all of our baseline
goals of having a working Enigma simulation, as well as all of our stretch goals
except for cracking Enigma.

9 Code

You can find our public GitHub repository here.

10 References

Glowlamp picture used in fancy_display:
https://cs.carleton.edu/faculty/awb/cs111/w20/lab7_images/enigma-top-view.
png
Technical details of the enigma and rotor and mirror wirings:
http://users.telenet.be/d.rijmenants/en/enigmatech.htm
https://www.cryptomuseun.com/crypto/enigma/working.htm
Message sheet used to have preset settings: http://users.telenet.be/d.
rijmenants/en/enigmaproc.htm
Keyboard tutorial and GitHub:
https://digilent.com/reference/learn/programmable-logic/tutorials/
nexys-4-ddr-keyboard-demo/start
https://github.com/Digilent/Nexys-4-DDR-Keyboard

15


https://github.mit.edu/sabina22/6111enigma/
https://cs.carleton.edu/faculty/awb/cs111/w20/lab7_images/enigma-top-view.png
https://cs.carleton.edu/faculty/awb/cs111/w20/lab7_images/enigma-top-view.png
http://users.telenet.be/d.rijmenants/en/enigmatech.htm
https://www.cryptomuseum.com/crypto/enigma/working.htm
http://users.telenet.be/d.rijmenants/en/enigmaproc.htm
http://users.telenet.be/d.rijmenants/en/enigmaproc.htm
https://digilent.com/reference/learn/programmable-logic/tutorials/nexys-4-ddr-keyboard-demo/start
https://digilent.com/reference/learn/programmable-logic/tutorials/nexys-4-ddr-keyboard-demo/start
https://github.com/Digilent/Nexys-4-DDR-Keyboard

	Overview
	Background
	Setup
	Changing Settings

	System Design
	Goals
	Baseline Goals
	Stretch Goals
	Extreme Stretch Goal

	Modules
	enigma
	rotors [Bianca]
	mirror [Bianca]
	steckerbrett [Bianca]
	memory [Sabina]
	rev_memory [Sabina]
	daily_settings [Sabina]

	Displays [Bianca]
	display
	fancy_display

	comms [Sabina]
	serial_tx 
	serial_rx

	keyboard [Sabina]
	PS2Reciever
	keyboard_debouncer


	Cracking Enigma
	Choice of Approach
	Memory
	Modules
	eve_bf top_level
	eve_bf trying_set
	eve_bf bruteforce.py
	eve top_level
	eve daily_settings
	eve find_ds
	interface.py

	Points of failure

	Conclusion
	Code
	References

