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System Overview 

 The NES Audio Synthesizer is a recreation of the original NES audio pipeline with some 

added features. The NES (Nintendo Entertainment System) is a video game console released in 

1985 which has a characteristic sound often mimicked in modern video games. Our system aims 

to play music made for the NES by using original game data and recreating the same waveforms 

produced by the NES. This is achieved entirely in SystemVerilog. 

 

 The system contains many features beyond emulation of the NES audio pipeline, 

including gamepad input, SD card usage, display output, and a full debugger. Each feature in this 

system diagram is discussed below. 
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Original NES Hardware 

The original NES uses a few basic components to play music: A 6502-based 8-bit CPU, a 

5-channel Audio Processing Unit (APU), and an 8-bit data bus to interface with ROM storage on 

cartridges. The following paragraphs discuss how these components work on the NES. 

 
 

CPU 

The 6502 CPU is a fairly basic processor. It consists of an accumulator register (A) which 

stores the result of an arithmetic operation, two working registers (X and Y), a 16-bit program 

counter (PC) which points to the location of the next opcode in memory, an 8-bit stack pointer 

(SP) which points to the current stack index in memory, and a status register (SR) which 

indicates some results about the most recent instruction. 

The CPU functions using 8-bit opcodes; only 151 of the 256 possible opcodes are valid 

instructions. Many of these opcodes perform the same operation (of which there are 56) but 

address different registers or memory. Some opcodes are also followed by 1 or 2 bytes of 

immediate data. As input, the CPU reads one opcode from memory per instruction cycle and 

may optionally read bytes from memory. As output, the CPU updates its internal registers and 

may optionally write bytes to memory. Opcodes may perform a wide variety of functions, 

including transferring data between internal registers and performing basic arithmetic. 

Arithmetic operations, performed by the Arithmetic Logic Unit (ALU), include addition, 

subtraction, bit shifting, and bit comparisons. More particular functionality of these opcodes is 

discussed in the CPU Emulation section. 
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The CPU also responds to interrupts via an external IRQ pin. When an interrupt occurs, 

the CPU jumps to a preset location in memory and begins executing code there. Interrupts may 

be disabled by certain instructions that set the interrupt disable bit in the SR; this bit is 

automatically set when an interrupt occurs so as to prevent repeated triggers for the same 

interrupt. The CPU may also be stalled by an external RDY pin, which several devices take 

advantage of, including the APU. 

The CPU is clocked at 1.79MHz. It takes at least 2 of these cycles (and up to 8) to 

complete an instruction. The length of time required for a given instruction depends on its 

complexity; those which access memory multiple times and/or perform arithmetic to determine 

the output address take more cycles. In addition, any instruction may take an extra 1 or 2 cycles 

depending on whether it takes a branch and/or its memory access falls on one of the 256-byte 

page boundaries, as extra arithmetic is required to calculate the next memory and/or PC 

addresses. 

 

Memory Bus 

The CPU interfaces with all devices on a 16-bit address bus and the aforementioned 8-bit 

data bus. This provides 65,536 bytes to be addressed, though only a subset of this references 

actual devices. Bytes 0x0000-0x07FF are routed to actual RAM on the NES. A program may 

use RAM to store arbitrary data, though the CPU performs stack operations exclusively at 

0x0100-0x01FF. Bytes 0x2000-0x2007 access the Picture Processing Unit (PPU), which 

is not discussed here. Bytes 0x4000-0x4017 access the APU. Bytes 0x8000-0xFFFF 

access ROM storage on cartridges. Any byte ranges not mentioned are either unused or mirrors 

of their preceding byte ranges. 

 

Audio 

The APU receives bytes from the CPU via the memory bus and generates waveforms in 

response. It produces 5 independent waveforms: two square waves, one triangle wave, one noise 

wave, and one delta-modulation wave which can play PCM samples. These waves are passively 

mixed in several stages to produce a mono audio output. 

 Each square wave’s frequency, duty cycle, and volume may be controlled independently. 

In addition, the APU includes several function blocks which can automatically modulate 

frequency and volume over time based on preset commands. This requires relatively little CPU 

overhead to produce many varied waveforms. 

 The triangle wave’s frequency may be controlled, but its volume and general shape are 

constant. On the NES, its volume may be slightly modulated based on other channels’ outputs 

due to the complicated, non-linear mixing. This feature is not present in our implementation. 

 The noise wave is based on a pseudo-random number generator which may be controlled 

to produce different frequencies of noise. The effect is generally similar to white noise, though 

notably sharper and more percussive. 

 More particular functionality of each channel, as well as mixing, is discussed in the APU 

Emulation section.  
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Emulation 

Each of the modules discussed in the Original NES Hardware section has been emulated 

with varying levels of abstraction to create a system that produces waveforms almost identical to 

those of the NES. The result is a system that can play music with an authentic sound, and without 

requiring any of the picture processing or user input of the original NES pipeline. 

 

CPU 

The 6502 CPU has been emulated at an instruction-level; that is, it completes instructions 

with the same accuracy and within the same amount of time as the original 6502, but does not 

perform the exact same operations on each cycle during which the instruction takes place. 

Instructions are instead completed on the 25MHz system clock, taking anywhere from 5 to 17 of 

those cycles. After completing an instruction, the CPU waits a specified amount of time that it 

would have taken for the original 6502 to complete the same instruction. 

 On reset, the PC is set to the 16-bit word stored at 0xFFFC-0xFFFD. On an interrupt 

(IRQ), the PC is set to the 16-bit word stored at 0xFFFE-0xFFFF. The addresses stored in 

those locations are determined by the external memory. This is how the CPU determines where 

to begin fetching instructions. 

 All 151 opcodes are implemented. Each opcode read from memory is decoded by the 

module cpu_decode. This module is entirely combinational, providing its result within one 

cycle. It outputs a human-readable struct d_inst which contains the following: 

• Instruction type: One of 56 basic operations 

• Addressing type: Absolute, indirect, zero-page, and several other variations of these 

• Sources (1 and 2): Source registers for ALU input 

• Destination: Destination register for ALU output 

• Memory read/write flags: Set if the instruction reads or writes a byte from or to memory 

(a single instruction may do both) 

• Data address: Location in memory to perform a read and/or write 

• Indirect address: Location in memory which contains the target data address (in case of 

indirect addressing mode) 

• Length: Number of bytes the instruction contains (1, 2, or 3) 

• Cycles: Number of 1.79MHz cycles this instruction should take (2 to 7) 

Most of this decoded information is passed into the module cpu_execute, which 

performs any arithmetic operations and informs the CPU of what results to write to registers or 

memory. This module is entirely combinational, providing its result within one cycle. It outputs a 

human-readable struct e_inst which contains the following: 

• Data: The 8-bit value to write to memory 

• Next A/X/Y/PC/SP/SR: The values to write into each of the A/X/Y/PC/SP/SR registers 

• Extra cycles: Number of extra 1.79MHz cycles this instruction should take based on 

whether a branch is taken or memory access crosses a page boundary (0, 1, or 2) 
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All of the d_inst parameters determine the path taken by the overall CPU state 

machine, and thus how many 25MHz cycles it takes to execute. The next state is always 

determined by the logic branch_state, which takes into consideration addressing modes, 

memory access modes, and stack operation types. There are 19 CPU states defined in cpu.sv. 

Most of these states exist so that the CPU may wait for memory access to complete before 

continuing execution, which takes 3 cycles per byte accessed. No single instruction passes 

through all 19 states; the most lengthy instructions are those which read 2 immediate bytes, read 

1 data byte, and write 1 data byte, taking 17 cycles. Below is a simulation of the CPU executing 

the ASL instruction with absolute addressing, which reads a byte from memory, performs a 

single left bit shift, and writes the result to the same location in memory: 

 
This opcode (0E) reads a value from memory, modifies it, and writes it back. This is indicated 

by src1 being “SRC_DATA” and dest being “DEST_DATA”. 0xA9 is read from 0x8000 

and 0x52 is written back. It takes 17 cycles at 25Mhz. 

 Stack operations represent a significant portion of the CPU state machine. A different 

state exists for each possible stack operation (STACK_A, STACK_SR, STACK_PCH, and 

STACK_PCL). Some instructions (BRK and RTI) push or pull both SR (1 byte) and PC (2 bytes) 

to or from the stack. In the case of a push (BRK), PC is pushed before SR. Thus, in the case of a 

pull (RTI), SR must be pulled before PC since pulling accesses the stack from the most recently 

added element. This results in a complicated determination of the next state when stack 

operations are involved. Due to its abstract implementation, the emulated CPU is more flexible 

than the original 6502. It could write up to 4 bytes to the stack (A, SR, and PC) at once, but no 

official instruction does this. It could also combine stack operations with complex (indirect) 

addressing modes in a single operation, but official instructions never do both. 

 The emulated CPU handles interrupts similarly to the 6502. An IRQ input causes the 

CPU to jump to the IRQ vector in memory when it goes high. In the emulated CPU, a rising edge 

on the IRQ input is detected and latched at any time, but it is not acted on until the CPU reaches 
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the pre-fetch (stall) state. At this point, if an IRQ has been detected, the CPU injects a BRK 

instruction instead of reading the next opcode. A BRK instruction is a software-generated 

interrupt which pushes the PC and SR to the stack, sets the interrupt disable flag of the SR, and 

jumps to the IRQ vector. The externally generated interrupt must perform the same tasks, so it 

was decided to simply inject a BRK instruction rather than create special states to handle the 

interrupt routine. The CPU maintains a flag indicating whether the BRK instruction currently in 

the pipeline was software-generated or injected by the IRQ detection, which is used to determine 

whether to set or clear one of the flags in the SR register when pushing it to the stack. If a BRK 

instruction is in the pipeline, the CPU jumps to the IRQ vector only after it finishes executing the 

instruction. 

Aside from the lack of cycle-accurate memory access, the emulated CPU includes the 

following functional differences with the original 6502: 

• Non-maskable interrupts (NMIs): The 6502 has a separate NMI pin to trigger interrupts 

that cannot be disabled internally. This is not implemented here since it is only used in 

the NES graphics pipeline. 

• Stall on invalid opcodes: in the case of invalid opcodes, the 6502 performs some 

undefined function or halts completely. The emulated CPU instead detects an invalid 

opcode and triggers an error state. In this state, the CPU stalls until a reset or IRQ occurs. 

• Stall on external input: like the 6502, the emulated CPU may be stalled by an external 

stall input, but it does so only after the current instruction has finished and it is ready 

to fetch the next opcode. The 6502 may be stalled at any cycle during execution. 

• Debugger interface: The emulated CPU includes a separate 32-bit data bus used by the 

debugger to read and/or modify the A/X/Y/PC/SP/SR registers as well as the instruction 

and cycle counters. The CPU also outputs its current status (waiting or executing) so the 

debugger may selectively stall. 

CPU Design Insights 

 The cpu_decode module contains a case statement with 151 elements to decode each 

of the 151 possible opcodes. This was facilitated by using a Python script to parse some info 

from a website detailing each opcode and generate SystemVerilog code. While this is the most 

straight-forward way to decode opcodes, and perhaps the quickest, it can be done much more 

concisely. Certain bits in every opcode are common amongst opcodes that perform similar 

functions or have the same addressing modes. It is possible to split an opcode into bit-fields and 

perform a case selection on those smaller bit-fields. However, there are many exceptions to the 

regularities of these bit-fields, so it becomes a much less straight-forward operation when done 

this way. 

 The 6502 contains a bug with indirect addressing which had to be emulated. When the 

location of an indirect address lies on a page boundary (i.e. 0x02FF-0x0300), the 6502 fails to 

carry when incrementing the address. In effect, it reads from 0x02FF and then 0x0200 instead 

of 0x0300. This “feature” is easily missed but should certainly be emulated because programs 

will occasionally expect this behavior. 
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 Where in the state machine interrupts are handled is important because interrupts set the 

interrupt disable bit, which disables further interrupts from being detected. Our first CPU 

implementation erroneously checked for the interrupt disable bit after execution when deciding 

whether to jump to the IRQ vector. As a result, if a BRK instruction occurred (either from 

software or injected by the IRQ handler), then the interrupt disable bit would be set during 

execution of that BRK instruction. Then, when it came time to jump to the IRQ vector, interrupts 

were already disabled, and no action was taken. The solution was to check the interrupt disable 

bit before instruction execution and act on it after execution. 

 Most incorrect CPU behavior was discovered through comparisons with the popular 

FCEUX emulator for computers. It is strongly recommended to use the debugger of this 

emulator or a similar tool and compare every detail, such as the values of each register after 

execution, the values written to memory, and the number of instructions run before a particular 

breakpoint. The number of instructions has been the best tool for comparison because incorrectly 

executed instructions usually lead to incorrect branches, and thus a different number of 

instructions execute before a routine ends. It is very unlikely that two CPUs would execute the 

same number of instructions while only one of them made a fatal error. 

 

Memory Bus 

The emulated memory bus mimics the original very closely, consisting only of 16 bits for 

addressing and 8 bits for data. There are main devices, which have an address output and may 

perform reads and writes, and secondary devices, which have an address input and may be 

written to or read from. Each device has a data-in port and a data-out port. Instead of connecting 

all memory devices with wires only, each main data-out port is connected to a MUX that delivers 

data to all secondary devices depending on which main device is trying to read or write. 

Similarly, each secondary data-out port is connected to a MUX that delivers data to all main 

devices depending on the address range: 

 
Only the data bus is shown here. The address bus follows a similar layout, but uni-directional. 
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When accessing any address other than 0x4000-0x4017, main data is routed to the 

memory module. This module consists of two RAM blocks – one for storing data during 

execution (as the NES RAM does) and one for storing program data. The latter emulates an NES 

cartridge. Which RAM block is accessed depends on the address range, discussed in the Original 

NES Hardware section. 

 While the program data address range (0x8000-0xFFFF) consists of only 32kB (15 

bits) of addressing space, up to 1MB (20 bits) of addressing is allowed with the use of mappers. 

Many types of mappers are found in NES cartridges, though our implementation uses a mapping 

scheme developed specifically for the NSF file format. 

 The 32kB address space is split into 8 banks, each 4kB in size. Similarly, the 1MB 

address space is split into 256 banks, each 4kB. Each of the 8 banks in the 15-bit address space 

may be mapped to any of the 256 banks in the 20-bit address space. Thus, a device may switch 

banks in order to access the entire 20-bit address space while only outputting addresses in the 15-

bit range (0x8000-0xFFFF). 

 Banks are switched by writing values to a dedicated location in memory. Memory 

addresses 0x5FF8-0x5FFF are reserved for this. Each of these locations corresponds to one of 

the banks in the 15-bit address space; 0x5FF8 is bank 0 (0x8000-0x8FFF), 0x5FF9 is bank 

1 (0x9000-0x9FFF), etc. To set a bank, a program can write an 8-bit value to one of these 

locations, and that bank (0 to 7) in the 15-bit address space will then point to a bank (0 to 255) in 

the 20-bit address space determined by the value written. 

 

 Although our implementation uses the full 20-bit addressing, only 18 bits are actually 

routed to the RAM block. This is because the Nexys 4 DDR does not have 1MB of block RAM, 

so instead only 262kB is used. 
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 When accessing addresses 0x4000-0x4017, main data is instead routed to the APU. 

All addresses except 0x4015 are write-only, and the APU uses these writes to determine its 

function. APU registers are discussed further in the APU Emulation section. 

Memory Bus Design Insights 

 In our design, memory mapping was implemented fairly late. Most testing was done 

using a single 64kB block of RAM, one byte allocated for every address in the 16-bit address 

space. Programs that do not use bank switching were used for early testing. Thus, all COE files 

used to initialize RAM during testing were 64kB. Having a continuous block of RAM with no 

bank switching makes clear exactly what code is being run at any point, and how memory is 

being modified. This also makes it much simpler to compare results with an emulator debugger. 

 

APU and Mixing 

 
 The APU is comprised of 5 sound channels: 2 Square Wave Channels, one Triangle 

Wave Channel, one Noise Wave Channel, and a Delta Modulation Channel (DMC) that plays 

samples from memory. Each channel is built with some fundamental units, some of which are 

shared between channels. The CPU sends relevant data to the APU through memory mapped 

registers, with addresses $4000 - $4017. Registers $4000-$4007 are used by the Square Channel, 

$4008-$400B are used by the Triangle Channel, $400C-$400F are used by the Noise Channel, 

and $4010-$4013 are used by the DMC. Register $4015 is used to enable or disable each 

Channel, and also functions as a status register that can communicate interrupt requests (IRQs) 

and Channel status to the CPU. Finally, register $4017 is used by the APU’s frame counter, 

which is used to generate pulses that other channels use. 
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 The overall system uses a 25MHz clock, which is used to generate pulses at 1.79MHz, 

the CPU clock speed. The units within each channel require pulses at different frequencies, 

which are generated by the divider module and frame counter module. The divider module 

simply takes in the 25MHz clock, a pulse signal, and a period P as input, and outputs a pulse 

when P + 1 input pulses have occurred. The frame sequencer is used to generate three signals: a 

240Hz pulse (pulse_e) used by many units, a 120Hz pulse (pulse_l) used by other units, and a 

60Hz pulse used as an IRQ to the CPU if bit 6 of register $4017 is clear. It has a second mode 

that never outputs IRQs, and outputs the other 2 pulses at 4/5 frequency when bit 7 of register 

$4017 is set. The frame sequencer module uses the frequencies of the American Version of the 

NES, and thus the APU will not work for the PAL version. 

Square Channels 

 
 The Square Channels use pulse_e, pulse_l, and a pulse at half the CPU clock speed 

(generated by a divider with period 2). There are 2 Square Channels, where Channel 1 uses 

registers $4000-$4003, and Channel 2 uses registers $4004-$4007. Bit 0 of register $4015 is used 

to enable Channel 1, and bit 1 is used to enable Channel 2. The Square Channel is built from 5 

units: an Envelope Generator, a Sweep Unit, a Length Counter, a Divider, and a Sequencer. 

 The Envelope Generator is responsible for determining the output volume of the Square 

Channel. It is also capable of volume decay, used to fade out notes. It uses bits 0 – 5 of 

$4000/$4004 as inputs, as well as the 240Hz pulse, pulse_e. Bits 0-3 determine the Generator’s 

output volume if a constant volume is desired, or they determine the period Pd for the decay 

timer. If bit 4 is set, the volume should be constant, otherwise it will decay at a rate of 

240Hz/(Pd+1). If bit 5 is set, the volume will loop back to max volume (15) once it reaches 0. 

The Generator is reset whenever there is a write to register $4003/$4007. 

 The Sweep Unit is used to sweep the Divider’s period up or down, and is also responsible 

for muting the channel if the desired output frequency is too high or too low. It uses registers 

$4001/$4005 as inputs, as well as the 120Hz pulse, pulse_l. The unit sweeps the current Divider 

frequency by right-shifting the current period, then adding or subtracting that value from the 
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current period. Bits 0-2 are used to determine how many bits the current period should be shifted 

before the addition/subtraction. Bit 3 is used to determine whether the operation is addition or 

subtraction, i.e. whether the sweep in frequency is down or up. If bit 3 is set. Square Channel 1 

subtracts the shifted period + 1 from the current period, whereas Square Channel 2 subtracts just 

the shifted period. If bit 3 is 0, the shifted period is added to the current period. 

 Bits 4-6 set the sweep period Ps, so the sweep frequency becomes 120Hz/(Ps + 1). Bit 7 

enables the sweep function, if it is 0 then the sweep unit never updates the current period. If the 

current period is ever less than 8, which would create extremely high frequency notes, or if the 

sweep function is enabled and the target period is higher than 2047, which would create 

extremely low frequency notes, the sweep unit mutes the channel. The Sweep Unit is reset 

whenever there is a write to register $4001/$4005. 

 The Length Counter is used to control note duration when it is enabled and not halted. It 

is enabled by bit 0/1 of register $4015. When the Length Counter is disabled, it also disables the 

channel. Bit 5 of register $4000/$4004 will halt the Length Counter when set, allowing for 

indefinitely long notes. The length counter is clocked by pulse_l, which will count down from a 

length L when not halted, muting the channel if it reaches 0. The length L is determined by a 

look up table (LUT) indexed by bits 3-7 of register $4003/$4007. The values for L in the LUT 

seem to correspond to typical note durations, such as quarter or eighth notes, at various BPMs. 

The values were found at https://wiki.nesdev.com/w/index.php/APU_Length_Counter, where 

previous enthusiasts seem the have reverse engineered the entire operation of the NES. The 

Length Counter is reset whenever there is a write to register $4003/$4007. 

 The Divider used by the Square Channels is the same described above. In this case, it 

takes in an 895KHz pulse generated by dividing the 1.79MHz pulse signal by 2. The period is 

initialized as the concatenation of bits 0-2 of register $4003/$4007 with bits 0-7 of register 

$4002/$4006, extended to 12 bits ({1’b0, r3[2:0], r2}). If the sweep is enabled, in takes this as 

input and begins sweeping the frequency. The Divider input period Pdiv is either the original 

period if the Sweep Unit is disabled, or the current period based on the Sweep Unit output, which 

is constantly updating. The Divider’s output frequency will be 895KHz/(Pdiv + 1). 

 Finally, the Sequencer is used to generate the square wave itself at the desired duty cycle. 

It uses the Divider output pulse as a clock. Bits 6-7 of register $4000/$4004 determine the 

desired duty cycle: 12.5% if 0, 25% if 1, 50% if 2, and 75% if 3. The Sequencer, as its name 

implies, generates an 8-step sequence. Based on the duty cycle, that sequence is 0 for a 

percentage of the steps equal to the duty cycle, and 1 for the rest. If the sequencer is outputting a 

1, the channel is muted. If it is outputting a 0, the channel outputs the volume generated by the 

Envelope Generator. Since there are 8 steps in each sequence, the overall output frequency will 

be Fdiv/8, or 895KHz/(8*(Pdiv + 1)), or even better, 1.79MHz/(16*(Pdiv + 1)). The sequencer will 

be reset to its first step whenever there is a write to $4003/$4007. 

 

 

 

 

https://wiki.nesdev.com/w/index.php/APU_Length_Counter
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Triangle Channel 

 
 The Triangle Channel uses pulse_e, pulse_l, and the CPU clock pulse at 1.79MHz. It uses 

registers $4008-$400B, though register $4009 is unused. Bit 2 of register $4015 is used to enable 

the Triangle Channel. The Triangle Channel is built from 4 units: a Length Counter, a Linear 

Counter, a Divider, and a Sequencer. 

 The Triangle Channel’s Length Counter behaves identically to the Square Channels’ 

Length Counter. The relevant registers are different, on the other hand. Bit 2 of register $4015 is 

used to enable the unit. Bit 7 of register $4008 will halt the unit. The LUT index is determined 

by bits 3-7 of register $400B. The unit is reset whenever there is a write to register $400B. 

 Unlike other units, the note duration for the Triangle Channel can also be controlled by 

the Linear Counter. It can count a number of pulses from 0 to 127, allowing for much more 

accurate duration control. It uses bits 0-7 of register $4008 as inputs, as well as pulse_e. Bits 0-6 

determine the desired duration, Tl. Bit 7 halts the unit alongside halting the Length Counter. If 

Bit 7 is cleared, the system will begin to count down the desired duration, muting the channel 

once it reaches 0. The actual duration in this case will be determined by whichever had a shorter 

duration between the Length Counter and Linear Counter. The Linear Counter is reloaded with 

Tl whenever there is a write to register $400B. 

 The Triangle Channel’s Divider behaves identically to the Square Channels’ Divider, but 

it has a constant period. The period Pdiv is determined by the concatenation of bits 0-2 of register 

$400A with bits 0-7 of register $400B, extended to 12 bits ({1’b0, r2[2:0], r1}). Thus, its output 

frequency is 1.79MHz/(Pdiv + 1). 

 Finally, the Sequencer is used to generate the triangle wave itself. It uses the Divider 

output pulse as a clock. The Sequencer in this case generates a 32-step sequence. It begins at 0, 

then counts up to 15 once per Divider cycle. Once it reaches 15, it stays there for a cycle, then 

begins counting down to 0. Once it reaches 0, it stays there for a cycle and starts the whole 

process again. Since there are 32 steps in each sequence, the overall output frequency will be 

1.79MHz/(32*(Pdiv + 1)). If the channel is ever muted by one of its units, it first counts back 
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down to 0 before actually being muted. This was done to remove popping noises that became 

apparent when the Triangle Channel was being muted by transitioning directly to an output of 0. 

Noise Channel 

 
 The Noise Channel generates noise waves used for percussion and sound effects by 

creating waves with pseudo-random frequencies. It uses pulse_e, pulse_l, and a pulse at half the 

CPU clock speed. It uses registers $400C-$400F, though register $400D is unused. Bit 3 of 

register $4015 is used to enable the Noise Channel. The Noise Channel is built from 4 units: an 

Envelope Generator, a Length Counter, a Divider, and a Shift Register. 

 The Noise Channel’s Envelope Generator behaves identically to the Square Channels’ 

Envelope Generator. The relevant registers are different, on the other hand. Bits 0-3 of register 

$400C is used to determine the constant volume or Pd. Bit 4 of register $400C determines if the 

output should be constant or decay. Bit 5 of register $400C determines if the volume should 

loop. 

 The Noise Channel’s Length Counter behaves identically to the Square Channels’ Length 

Counter. The relevant registers are different, on the other hand. Bit 3 of register $4015 is used to 

enable the unit. Bit 5 of register $400C will halt the unit. The LUT index is determined by bits 3-

7 of register $400F. The unit is reset whenever there is a write to register $400F. 

 The Noise Channel’s Divider behaves identically to the Square Channels’ Divider, but it 

has a constant period. The period Pdiv is determined by the entries of a LUT. The index for this 

LUT is determined by bits 0-3 of register $400E, while its entries were found at 

https://wiki.nesdev.com/w/index.php/APU_Noise. Its output frequency can be calculated, but 

isn’t extremely relevant as the goal is to generate a wave with random frequency. 

 Finally, the Shift Register is used to make the wave’s frequency pseudo-random. This 

unit comprises a simple 15-bit right-shift register loaded with the value 1 at power-up. It has 2 

modes of operation based on bit 7 of register $400E. Whenever this unit receives a pulse from 

the Divider, it calculates the XOR value of bit 0 and either bit 6 (if the mode bit is set) or bit 1 (if 

https://wiki.nesdev.com/w/index.php/APU_Noise
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the mode bit is clear), then it shifts the bits in the register to the right once. It fills the new empty 

bit, bit 14, with the XOR calculated previously. This creates pseudo-randomness. If bit 0 of the 

shift register is set, the channel is muted, otherwise it outputs the volume generated by the 

Envelope Generator. 

DMC 

 
 The DMC reads and plays audio samples from memory. This requires the DMC to have 

direct memory access (DMA), making it much more complex than the other channels. It only 

uses the CPU clock pulse at 1.79MHz, and uses the registers $4010-$4013. Bit 4 of register 

$4015 is used to enable the DMC. The DMC is built from 3 units: a Divider, a Memory Reader, 

and an Output Unit. 

 The DMC’s Divider behaves identically to the Noise Channel’s Divider. The period Pdiv 

is determined by the entries of a LUT. The index for this LUT is determined by bits 0-3 of 

register $4010, while its entries were found at https://wiki.nesdev.com/w/index.php/APU_DMC. 

Its output frequency can be calculated, but isn’t extremely relevant as the goal is play samples 

rather than waveforms. 

 The Memory Reader is the most complex unit in the APU. It runs at 25MHz until it needs 

to access memory, at which point it runs at 1.79MHz. In order to access memory, the DMC must 

first stall out the CPU so that it doesn’t try to read data it should not be reading. The unit will 

need to read memory whenever the output unit requests more data or when the unit is enabled. 

Writing a 1 to bit 4 of register $4015, however, does nothing if the channel was already enabled 

or if the current sample is not done playing. This unit uses registers $4012 and $4013. Register 

$4012 sets the starting address A of the sample to be played. The actual address will be $C000 + 

(A << 5). Register $4013 sets the length Lsamp of the sample in bytes. The actual length will be 

(Lsamp << 4) + 1. The NSF Player module described in later sections is responsible for placing the 

correct data in the correct memory locations so that the DMA can access it. 

https://wiki.nesdev.com/w/index.php/APU_DMC
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When the channel is enabled, it starts the memory loading process by first sending the 

CPU a stall signal. The CPU can take up to 7 cycles at 1.79MHz to finish an instruction, and it 

won’t stall until then, so the Memory Reader sends a stall signal for 8 cycles. Once the 

penultimate stall cycle starts, the Memory Reader starts reading from memory at the location 

mentioned above. After it reads the data from memory, it stores it in a sample buffer, increments 

the current memory location by 1, and decrements the bytes_remaining counter (initially loaded 

with Lsamp) by 1. It also returns control of memory to the CPU and stops stalling it. As it plays 

the sample, it will continue to repeat this process whenever the current sample buffer has been 

used up by the Output Unit, always incrementing the memory and decrementing the 

bytes_remaining counter. If the memory location reaches the highest value $FFFF, it loops back 

to $8000. If the bytes_remaining counter reaches 0, it will either loop back to the starting 

memory address and reload its bytes_remaining counter if bit 6 of register $4010 is set, or send 

the CPU an IRQ if bit 7 of register $4010 is set. Once the system is done playing the current 

sample, it sends a signal to the Output Unit telling it there are no more samples. 

 The Output Unit is responsible for playing the sample using Delta Modulation. It uses the 

Divider output pulse as a clock, and uses register $4011. It starts with a load value of 0. The load 

value can be set to the value in bits 0-6 in register $4011 at any time by writing to register $4011. 

Otherwise, the load will be modified by the sample that was read from memory by the Memory 

Reader. When the unit receives a pulse from the Divider, it reads bit 0 from the current sample. 

If the bit is 1 and the current load is < 126, it adds 2 to the load. If the bit is 0 and the current load 

is > 1, it subtracts 2 from the load. The load should never leave the 0 – 127 range.  

After processing the current bit, the Output Unit shifts the sample right so it can read the 

next bit. After all bits have been processed, the unit checks if there are any samples left from the 

Memory Reader. If there are, the Output Unit reads the sample and tells the Memory Reader to 

read the next sample from memory. If there are no samples left, it silences itself by preventing 

any change to the load. This method plays out the desired samples, but the current 

implementation has a strange bug that also generates high frequency sounds alongside the 

samples. It seems like the load is going up and down at high frequencies even when the Output 

Unit should be silenced, but hours of troubleshooting have borne no fruit. Thus, due to lack of 

time, this issue persists. 

Mixing 

 The output of each channel is mixed before being played through PWM. The Square, 

Triangle, and Noise channels output a 4-bit number, while the DMC outputs a 7-bit number. A 

LUT approximation was used for the sake of convenience and due to limited processing speed. A 

31 entry LUT was used to mix the outputs of the 2 Square Wave Channels, while a 203 entry 

LUT was used to mix the outputs of the Triangle Wave Channel, Noise Wave Channel, and 

DMC. 

 The entries of the Square Channel Mixer LUT were calculated with the formula 

𝑠𝑞𝑟_𝑡𝑏𝑙[𝑛] =  𝑟𝑜𝑢𝑛𝑑 (255 ∗ (
95.52

8128

𝑛
+100

)), where n is the sum of the outputs of each Square 

Channel. The entries of the TND Mixer LUT were calculated using the formula 𝑡𝑛𝑑_𝑡𝑏𝑙[𝑛] =
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 𝑟𝑜𝑢𝑛𝑑 (255 ∗ (
163.67

24329

𝑛
+100

)), where n is the sum of the output of the DMC, twice the output of 

the Noise Channel, and thrice the output of the Triangle Channel. The entries of these LUTs will 

add up to a value between 0 and 255, and thus they are perfect as inputs to an 8-bit audio PWM 

module. These approximations are based on others’ work reverse engineering the NES, and the 

original equations were found at https://wiki.nesdev.com/w/index.php/APU_Mixer. 

  

https://wiki.nesdev.com/w/index.php/APU_Mixer.
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File System and Playback 

 Data used for playing songs is stored in files on an SD card. An individual file and song 

may be selected by the user. To facilitate this, a file interpreter and file select system were 

implemented. The file interpreter includes SD card access, file parsing, and playback control, 

while the file select system includes user input from an NES gamepad. 

File Structure 

Our implementation utilizes data stored on an SD card in raw binary format along with 

the instructor-provided sd_controller module. Data on the card is structured as a collection 

of files, each file starting at the beginning of an SD card sector (a block of 512 bytes), with a 

single string “END DATA” in the last sector to indicate there are no more files. 

 The files used are in NES Sound Format (NSF). NSF files are a repackaging of audio 

code found in original game ROMs. The code is prepended with a header, which includes a 

constant string “NESM” used to identify the beginning of a file when parsing the SD card. The 

NSF header follows a regular format which specifies how many songs are contained in the file, 

how to initialize memory banks before playing songs, the addresses of certain subroutines in the 

code, the speed at which songs should be played, and some human-readable metadata about the 

file. The header also contains some flags indicating whether the file uses any of the many NES 

expansion audio chips, none of which are emulated in our implementation. 

The code found in an NSF file may consist of any collection of opcodes (i.e. an arbitrary 

program), but it is guaranteed to contain an INIT routine which may be called once to initialize 

memory with the chosen song and a PLAY routine which may be called at regular intervals to 

achieve playback. The locations of these subroutines in the code is contained in the file header. 

Additionally, the code section may contain PCM data which is read by the DMA included in the 

APU for playing samples. Code may be up to 1MB in size, in agreeance with the 20-bit address 

space afforded by the 256 banks discussed in the Memory Bus section. 

 
Description of an NSF file header. Source: https://wiki.nesdev.com/w/index.php/NSF 
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NSF Player and SD Reader 

The nsf_player module is a large state machine responsible for parsing all files on the 

SD card, selecting a file based on user input, and managing playback. To do this, it interfaces 

with most other major modules, including the CPU, memory, SD controller, and file select. The 

NSF player is a main device on the memory bus. 

 On reset, the NSF player scans sectors sequentially on the SD card and increments the 

num_files counter every time it encounters the string “NESM” found in a file header. It also 

stores the SD sector associated with the header of each file. It stops scanning once it encounters 

the string “END DATA”. At this point, it waits for a file selection event and outputs the number 

of files it found (0 to 16) as well as a scan_done flag for use by other modules. 

 When an external file_select pulse occurs, the module latches the file input (0 to 

15) and points the SD controller to the sector associated with that file’s header. Then, all RAM 

(addresses 0x0000-0x7FFF) is initialized to 0. The file header is read from the SD card and 

some information is stored in registers for later use, including the offset address for loading code 

data, the INIT and PLAY routine addresses, playback speed, and an initialization value for each 

of the 8 memory banks. 

 After reading the header, the module enters the READ_DATA state. In this state, the 

module transfers every byte of data from the SD card to a corresponding location in the 262kB 

RAM block of the memory module (with the offset determined by the file header). For each byte 

received from the SD card, the memory address is incremented by 1. Code data from the NSF 

file is intended to be loaded into a contiguous block of memory and then accessed by the CPU 

with bank mappers. However, the NSF player utilizes the same 16-bit address bus as other main 

memory modules, so it must also use bank switching in order to write more than 4kB of code 

data into RAM contiguously. The NSF player uses only bank 0 mapping; that is, it only writes to 

memory in the 0x8000-0x8FFF range. For every SD byte received in the READ_DATA state, 

the module checks if the current memory address is at the end of a bank (i.e. the last 12 bits are 

0xFFF). If it is, it stops reading the sector, increments the current bank by 1, writes the new 

bank value to 0x5FF8, and then re-reads the sector where it left off. Similarly, if the current 

byte counter indicates the end of an SD sector, it increments the current sector and signals to the 

SD controller to begin a new sector read.  

 After loading file data into RAM, the NSF player loads further initialization values at the 

following locations: 

• 0x5000-0x5024: Custom routine used for handling playback 

• 0x5080: 0 

• 0x5081: Song selection (0-255) 

• 0x5082: Region (0 for NTSC, 1 for PAL) 

• 0x5FF8-0x5FFF: Initial values for banks 0-7, specified by the file header 

• 0xFFFC-0xFFFD: 0x5021 (custom reset vector value) 

• 0xFFFE-0xFFFF: 0x5000 (custom IRQ vector value) 
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After loading these values into memory, the NSF player enters its IRQ generation state, 

where it generates an IRQ pulse at the playback rate specified by the NSF file header. This rate is 

most often 60Hz. The IRQ pulse is fed into the CPU, and playback begins on the first IRQ. In 

this state, the NSF player watches for a pulse on the file_select input to select a new file. It 

also watches for a pulse on the play_pause input, which causes the player to toggle the CPU 

stall output. When the stall output is high, the CPU is stalled and ceases playback. 

The custom handling routine loaded into 0x5000-0x5024 was developed to allow the 

CPU to playback songs rather autonomously, requiring only an external interrupt to keep timing. 

It consists of the following instructions: 

0x5000: SEI  ; Set interrupt disable flag 

0x5001: LDX #$FF ; Load X with 0xFF 

0x5003: TXS  ; Transfer X to SP (initialize the stack) 

0x5004: LDA $5080 ; Load A with the value stored at 0x5080 

0x5007: CMP #$81 ; Check if A == 0x81 

0x5009: BNE $5011 ; If A != 0x81, go to 0x5011 

0x500B: JSR PLAY ; Call PLAY routine and return 

0x500E: JMP $5021 ; Go to 0x5021 

0x5011: LDA #$81 ; Load A with 0x81 

0x5013: STA $5080 ; Store A at 0x5080 

0x5016: LDA $5081 ; Load A with the value at 0x5081 (song selection) 

0x5019: LDX $5082 ; Load X with value at 0x5082 (region selection) 

0x501C: LDY #$00 ; Clear Y 

0x501E: JSR INIT ; Call INIT routine and return 

0x5021: CLI  ; Clear interrupt disable flag 

0x5022: JMP $5022 ; Jump to 0x5022 (i.e. loop infinitely)  

Address 0x5021 is pointed to by the reset vector while address 0x5000 is pointed to by the 

IRQ vector. Thus, on reset, the CPU goes to 0x5021, and on IRQ, it goes to 0x5000. The NSF 

player ensures these vectors contain the correct values by writing to 0xFFFC-0xFFFF in the 

WRITE_VECTORS state. This section of code also contains the addresses of the PLAY and 

INIT routines derived from the file header. 

 On reset, the CPU goes to JMP $5022; this instruction is stored at 0x5022, so it jumps 

to itself and goes nowhere. This is equivalent to an infinite loop that can only be broken by a 

reset or interrupt. 

 On interrupt, the memory byte at 0x5080 is read. Its value (0x00 or 0x81) indicates 

whether the INIT routine has already been run, which must happen only once each time a song is 

loaded. If the value at 0x5080 is 0x00, then it branches to 0x5011. At 0x5011, the value 

0x81 is written to 0x5080 to ensure it will not branch here again, the song selection is loaded 

into A, and the INIT routine is called. The INIT routine will eventually return the CPU to the 

next instruction (0x5021). If the value at 0x5080 is 0x81, it will instead call the PLAY 

routine, which will also eventually return the CPU to the next instruction (0x500E). Regardless 

of which routine is called, the CPU will end at 0x5022, where it waits for the next interrupt. 

 It is expected that both the INIT and PLAY routines end with an RTS instruction, which 

will ultimately return the CPU to 0x5022 where it may wait for an interrupt. It is also expected 

that the INIT routine will properly initialize memory to play a particular song based on the 

value of A when INIT is called. 
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NSF Player Design Insights 

 Initializing RAM to 0 in the NSF player pipeline seems unnecessary considering the state 

of RAM on the original NES is not defined on reset. A program (i.e. an NSF file) is not supposed 

to assume the RAM contains any particular values prior to writing those values. However, one 

file (Super Mario Bros. 3) refused to play in our initial tests. After extensive debugging and 

comparisons with a working emulator, it appeared that Super Mario Bros. 3 was failing because 

it would halt if a certain location in RAM did not contain 0 on startup. Thus, it was decided all 

RAM should be cleared prior to loading a file. It is unclear if this is a fault in the NSF file or if 

our CPU is somehow failing to run some instructions which are meant to clear the RAM on 

startup. 

The end of sector condition (i.e. when the 512th SD byte has been reached) is actually 

checked one cycle after the end of memory bank condition. Thus, if the end of the SD sector is 

encountered at the same time as the end of a memory bank, it will switch banks before starting a 

new sector read. It is important not to act on both conditions in the same cycle because, if they 

do both occur, that would result in either not incrementing the sector or not incrementing the 

bank depending on what order in which they are checked. 

Handling memory banks while writing file data to RAM is not truly necessary. The 

alternative is to use a separate 20-bit memory bus between the NSF player and the 1MB RAM 

block. This separate bus was avoided in order to keep the memory structure streamlined and true 

to the original hardware, but in hindsight, it would have been much simpler to expand the 

memory bus and avoid the complicated state machine required to handle bank switching. 

 

File Select and NES Gamepad Controller 

 
 The file select systems allows users to select what songs they wish to play from 

whichever files are present on the SD card. It also allows them to control the music playback 
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volume, pause and unpause playback, and choose a different song if the user wishes to do so. 

This was done by utilizing a simple finite state machine with three states: “FILE_SELECT”, 

“SONG_SELECT”, and “PLAYING”. The state machine is controlled directly through the 

buttons of an NES Gamepad. Each state will process the button inputs differently in order to 

implement its intended behavior. 

The NES Gamepad itself is a simple 8-bit shift register with pull-up resistors. Pushing a 

button connects the shift register’s input pins to ground, setting the input signal to 0. The shift 

register also has a latch and pulse input, and a single output. Once the shift register receives a 

high latch signal, it latches the current state of all 8 buttons. After latching, it will begin to output 

the button states through its single output pin, shifting one state out each input pulse. The order it 

outputs the button states is: “A”, “B”, “Select”, “Start”, “Up”, “Down”, “Left”, “Right”. Finally, 

the controller waits until the next latch signal to begin outputting again. Communication from the 

FPGA was handled by the controller_poll module, which sends a latch signal at 500Hz, then 

reads out the button states at 50KHz, storing them sequentially in a buffer. Once all states are in, 

the module outputs the negated contents of the buffer since the NES Gamepad has active low 

output. 

In order for the FPGA to communicate with the NES Gamepad, they were connected via 

5 wires soldered to the Gamepad’s connector. The white Vcc wire was connected to 3.3V and the 

black Ground wire was connected to GND. The latch signal, the brown wire in this case, was 

connected to jb[0], and the pulse signal, the orange wire in this case, was connected to jb[1]. 

Finally, the output signal, the yellow wire in this case, was connected to ja[0]. 

When the file select system is in the “FILE_SELECT” state, it allows users to select what 

file they wish to load. The Up and Down buttons on the NES Gamepad control the file_index 

variable, which goes from 0 to the total number of files (minus 1) in the SD card, a value the 

NSF Player module determines. The Select and B buttons do nothing in this state, while the Start 

button is used to reset the file_index to 0, and the A button is used to confirm the desired file. 

Pressing A also moves the system to the next state, the “SONG_SELECT” state, and resets the 

song_index variable to 0. 

In the “SONG_SELECT” state, the Up and Down buttons are used to control the current 

song_index variable, which goes from 0 to the total number of songs (minus 1) on the loaded 

NSF file, a value the NSF Player module reads from the loaded file. Here, the Select and B 

buttons are used to return to the previous state, the “FILE_SELECT” state. The Start button is 

used to reset the song_index to 0, and the A button is used to confirm the desired song. Pressing 

A also moves the system to the next state, the “PLAYING” state, and sends the NSF Player 

module the file_select signal, which will let the system start playback of the desired song. 

Finally, when the system is in the “PLAYING” state, the Up, Down, and A buttons do 

nothing. The Select button will return the system to the “FILE_SELECT” state, while the B 

button will return the system to the “SONG_SELECT” state. Here, the Start button is used to 

pause or unpause audio playback without restarting the song. 

 At any point in time, the Left button is used to decrease the system volume, and the 

Right button is used to increase the system volume. The current volume, which varies from 1/8 

of the max volume to the max volume, is displayed via the FPGA LEDs above the switches. The 
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current file_index is displayed through the 4th digit (from left to right) of the hex display, while 

the current song_index is displayed through the 7th and 8th digits of the hex display. 
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Display 

VGA was used to display the waveforms synthesized by the APU as well as the current 

file select state. The VGA module from Lab 3 was modified to use a 25MHz clock and display at 

a resolution of 640x480. Originally, the goal was to implement an entire file select GUI over 

VGA, but the hex display was used instead due to time constraints. 

Waveform Visualizer 

In order to better demonstrate the output of our APU implementation, a simple waveform 

visualizer was implemented. The level_display module samples and displays four 4-bit 

waveforms from the APU (two square waves, one triangle wave, and one noise wave) in real 

time. Display data is output in the form of a 640x480 60Hz VGA signal. 

 

 Each wave is sampled using the level_sample module. This module waits for a rising 

edge (a transition from zero to non-zero) on a channel, then collects 320 samples. It collects 

samples at a rate specified by an external pulse input. In this case, all channels are sampled at 

15kHz. This is fast enough that it completes in the time required to display the waveform but 

slow enough that it captures many peaks and troughs of the waveform rather than a small local 

area. In order to allow more time for sampling, the module begins sampling on every other frame 

rather than every frame. This results in a maximum sampling period of 840,000 clock cycles (2 

frames at 640x480). Because the system runs at 25MHz, this means the sampling rate must be 

greater than 9.5kHz in order to capture 320 samples within 2 frames. 

The number of samples collected is 320 because the horizontal display resolution is 640, 

a multiple of 320. Thus, the module may determine which sample to display by simply dividing 

the current horizontal pixel count by 2 and indexing the sample buffer with the result. The 4-bit 
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samples themselves are multiplied by 4 in order to scale them up to a possible 64 pixels in 

height, which makes them much more visible on screen. 

Because waveforms are displayed in real time, they must be displayed as soon as they are 

available. However, using the same buffer to both capture and display the samples results in 

screen tearing because sampling will need to occur for more than a frame’s worth of time, and 

sampling will inevitably alter the values while the waveform is in the process of being displayed. 

To avoid this, two buffers were used: one to store samples, and one to store the displayed 

waveform. Sampling may occur while the waveform is being displayed, but the display buffer is 

only updated once every other frame, outside the visible area of the waveform. 

 

File Select Display 

File select system state is displayed on the monitor through the title_blob module. When 

the state is “FILE_SELECT”, “Select a File” is displayed. When the state is “SONG_SELECT”, 

“Select a Song” is displayed. When the state is “PLAYING”, “ Now Playing ” is displayed 

(including spaces). This module takes in a coordinate (x_in, y_in) that represents the top left 

corner of the displayed message. The module interfaces with a font ROM loaded with a COE file 

containing data to display characters indexed by their ASCII representation. For example, 

inputting $41 into the ROM’s address will cause it to output data that the title_blob module uses 

to display the character “A”. The ROM outputs 64 bits, which encodes 8 rows of 8 bits, each of 

which informs the module whether that relative bit position should be empty or not.  

The title_blob module is designed to display a single line of text. The number of 

characters to display can be modified by changing the parameter NUM_ITEMS, but users must 

also change the parameter SIZE_ITEMS to allocate enough bits for NUM_ITEMS. Therefore, 

the relevant space on the screen would be the space where hcount is greater or equal to x_in but 

less than WIDTH*NUM_ITEMS, and where vcount is greater than or equal to y_in but less than 

HEIGHT, where HEIGHT and WIDTH are both 8 by default to match the output of the ROM. 

The relevant positions within this space would be curnt_x = hcount – x_in, and curnt_y = vcount 

– y_in.  

Each text character is encoded into ASCII by 1 byte. This means that the character being 

examined at any point is the character at index [(NUM_ITEMS – (curnt_x >> 3))* - 1]. In other 

words, if the curnt_x is from 0 to 7, character 0 is being examined; if curnt_x is from 8 to 15, 

character 1 is being examined, and so on and so forth. The module then sends the current 

character into the ROM, and reads the relevant data to determine whether the pixel should be 

empty or not. As mentioned above, the ROM outputs 64 bits, which must be split into 8 rows of 

8 bits. The y index of this array will be dependent on the current relative y position, which is 

curnt_y. Since only a single line of text is displayed, only 8 bits of height are significant, and 

thus only the 3 least significant bits of curnt_y will be useful.  Meanwhile, the most significant 

bits of curnt_x were used to determine what the current character is, but the 3 least significant 

bits determine the x position of the pixel within the character.  

Since each row is separated by 8 bits within the ROM data, the y coordinate will 

increment every 8 bits, thus each row starts at bits 0, 8, 16, and so on. This means the top 3 bits 

of the pixel coordinate will be encoded by curnt_y[2:0]. Within each row, the x coordinate will 
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be used to determine what the current pixel is. Thus, the current pixel’s coordinate within the 64 

bits coming from the ROM will be {curnt_y[2:0], curnt_x[2:0]}. This was attempted, but all 

characters were displayed upside down, so the correct coordinate is {~curnt_y[2:0], 

curnt_x[2:0]}. 

The title_display module looks at each pixel position using this logic to determine 

whether said position should be empty or not. The ROM, however, takes 2 cycles to output, 

therefore some pipelining was utilized to ensure there was enough time to process each pixel. 

The module was originally designed in a fashion that would allow it to interface with the NSF 

Player module and RAM to display file names. The NSF Player would write the titles of each file 

within the SD card into the RAM, which the display module would then read and display when 

in the “FILE_SELECT” state. Time constraints required that the display module be simplified 

into its current state. 
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Debugger 

 In order to ensure proper functionality of the CPU and NSF player modules, a capable 

debugger was developed. The debugger serves no purpose in the final audio pipeline of our 

system but was crucial during the entire development process. The debugger is a main memory 

device, able to read from or write to any location in memory. It shares a separate 32-bit data bus 

with the CPU to allow reading or writing of the CPU’s A/X/Y/PC/SP/SR registers, instruction 

counter, and cycle counter. It also may stall or reset the CPU. It interfaces with a serial terminal 

via bi-directional UART at 38,400bps. 

 There are 25 debugger commands, each consisting of 2 characters. For example, the 

“read A” command (RA) returns the value of the CPU’s A register. The command is executed as 

soon as a valid sequence of 2 characters is sent through the terminal. In the case of an invalid 

command, the debugger simply prints “INVALID”. Every character typed is sent back through 

the terminal in order to provide the user feedback of what commands have been sent. All 

command parameters and all printed results are in hexadecimal, although the print command 

(PR) prints each byte from memory directly as a single char rather converting it to a 2-char 

hexadecimal representation. Most commands either write a single value to a single register or 

read a value from a single register or memory location. However, the load (LD), dump (DP), and 

print (PR) commands take a length argument of up to 65,535 bytes, allowing the user to write or 

read that many bytes to or from memory at once. This is especially useful for reading whole 

blocks of memory, in which case the memory contents are returned as a continuous string of 

bytes. 

 
The commands shown here are: RD, WR, DP, PR, RI, RC, PC, RA, RX, RY, RP, and RR.  

All of them except WR return a result on the next line. 
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Most debugger states consist of waiting for user input. This is done by waiting for the 

UART receive module to send a valid pulse, which indicates a new byte is available. Each 

byte received via UART is passed through a decoder that converts the ASCII char to the 

hexadecimal number it represents (‘0’ through ‘9’ are 0-9, while ‘A’-‘F’ and ‘a’-‘f’ are 10-15). 

This number conversion is used anytime the debugger expects a number parameter, such as an 

address, length, or data value. Similarly, each byte produced as a command result is converted to 

its 2-char ASCII representation. The largest results (CPU counter values) may be 4 bytes, so the 

hex-to-ASCII conversion outputs 8 ASCII chars. The actual number of chars displayed (2, 4, or 

8) depends on the command. 

 Most debugger states print something when user input occurs. Printing is achieved 

through dedicated PRINT and WAIT_PRINT states. A 128-bit shift buffer may be loaded with 

up to 16 chars before entering the PRINT state. The upper-most char of this buffer is printed, the 

buffer is left-shifted to remove the sent char, and the system waits for the UART transmit 

module to finish transmission. After this, the process repeats if there are any non-zero values left 

in the buffer. After printing, the system returns to return_state, which should be defined 

before first entering the PRINT state. 

 Aside from accessing registers and memory, the debugger provides several CPU control 

commands. It may stall (ST), run/unstall (RN), single step (SS), or set a breakpoint (BK). The 

single step command steps through one CPU instruction by unstalling the CPU, waiting for the 

CPU to complete the instruction, then stalling again. The breakpoint command works similarly, 

but takes an address argument. It unstalls the CPU, waits for the CPU PC to reach the specified 

address, then stalls it. This results in the CPU being stalled before the instruction at the specified 

address is executed. 
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Possible Improvements 

Jackson 

 The CPU likely still needs improvements because there are select songs that will not 

play. This is most likely due to some instruction behaving improperly only in edge cases and 

could be resolved with more debugging time. Many improvements were made during 

development by stepping through assembly routines on both our debugger and the FCEUX 

debugger and comparing outputs. With enough time, this process could be repeated for all songs 

that fail to play and eventually reveal an issue. 

 In addition, the CPU could be expanded to support unofficial instructions. This is not 

necessary for audio playback since no NSF files are known to use unofficial instructions, but 

there are some NES games and other executables that make use of them. If unofficial instructions 

were implemented, the CPU would be functionally complete compared to the original 6502. 

 The NSF player could be expanded to read the names of files from NSF headers as well. 

This is a fairly trivial addition but was not included since there is no GUI to display names. 

 The waveform visualizer always displays the first sample on the left edge of the screen, 

so waveforms appear anchored there. It would be more effective to display the first sample in the 

center of the screen, which would require sampling both before and after the trigger point. 

 

Victor 

The most glaring issue is that the DMC generates high frequency sound as it plays 

samples. This can significantly impact the output sound quality, and can be fairly painful if the 

user tries to listen to the music at high volume. Based on ILA observations, the cause of this 

problem seems to lie somewhere in the DMC’s Output Unit. If this issue can be resolved, the 

output sound will be a nearly perfect recreation of the sound generated by the original NES 

hardware. 

 Originally, the VGA display was intended to allow users to see all files within the SD 

card. Each file has data about its file name, which would be read by the NSF Player, saved into 

RAM, and displayed on the monitor during file selection. The display would then act as a GUI, 

highlighting the current user selection, thus allowing users to select a particular file. Once a file 

was selected, the monitor would display all songs within that file. The NSF Player already 

outputs the total number of songs within the current file, thus the monitor would simply need to 

display the correct number of choices. Again, the user would be able to select a particular song, 

which would then initiate audio playback. At this point, the monitor would display the 

waveforms as it currently does. These functions were not implemented due to lack of time, and 

thus could be improved in the future. 


