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Motivation   
The   Global   Positioning   System   (GPS)   is   a   satellite-based   navigation   system   developed   and   
maintained   by   the   U.S.   Department   of   Defense.   GPS   delivers   worldwide   coverage   with   a   
constellation   of   thirty   two   satellites   and   counting.   
  

Because   of   its   free,   open,   and   dependable   nature,   GPS   has   become   an   essential   element   of   
global   information.   Nowadays,   the   GPS   navigation   system   is   present   in   almost   every   technology   
from   cell-phones,   to   ships   and   planes,   and   even   smartwatches   that   can   track   our   fitness   
activities.   By   providing   services   such   as   location,   navigation,   tracking,   mapping,   and   timing;   
GPS   has   the   ability   to   boost   productivity   across   the   globe   and   even   save   human   lives.   For   
example,   numerous   applications   such   as   banking   systems,   financial   markets,   and   
communication   networks   rely   on   precise   time   synchronization.   Not   to   mention,   that   GPS   
preserves   humans   lives   by   preventing   traffic   accidents,   and   assisting   search   and   rescue   efforts.   
  

Overview   
For   our   6.111   final   project,   we   decided   to   implement   an   FPGA   based   GPS   receiver   to   perform   
real   time   GPS   localization.   This   involves   acquiring   the   raw   antenna   signal   with   a   software   
defined   radio,   detecting   GPS   signals,   tracking   satellites,   and   finally   using   the   timings   to   solve   for   
a   geographical   location.   Due   to   time   constraints   and   some   challenges   that   we   faced   during   the   
implementation   process,   the   current   system   uses   a   Teensy   to   transmit   GPS   data   downloaded   
from   the   internet.   Then,   the   system   detects   GPS   satellites,   tracks   their   signals   and   decodes   the   
Navigation   Data.   Finally,   the   time   information   contained   on   the   Navigation   Data   is   used   to   
display   the   day   of   the   week,   hour,   and   minutes.     
  

The  project  was  inspired  by  the  GNSS-SDR  project  [1].  Existing  "Software"  GPS  receiver               
implementations  using  FPGAs  have  been  demonstrated  using  a  mixture  of  an  FPGA  and  a                
co-processor   [2][3].   
  
  
  

   



Project   Goals   
  

Baseline   
● Detect   satellites   in   line   of   sight   
● Obtain   UTC   time   from   satellite   

  
Desired   Functions   

● Get   satellites   information   (doppler   shift,   difference   time   of   arrival,   NAV   data)  
● Track   a   set   of   at   least   four   satellites   

  
Stretch   goals   

● Feed   satellites’   information   into   a   Teensy   to   solve   for   receiver   location   (x,y.z   coordinates)   
● Implement   location   solver   module   on   the   FPGA   
● Display   receiver   location   on   LCD   

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



System   Block   Diagram   
  

  
Fig1.   Top   level   Block   Diagram   

  



  
Fig2.   Search   Module   Block   Diagram   

  
  

  
         Fig3.   Tracker   Module   Block   Diagram   

  
   



Implementation   

I. Teensy   as   a   GPS   transmitter   
Due   to   difficulty   in   getting   the   software   defined   radio   to   output   not   clean   signals,   and   for   
repeatability   during   testing,   we   decided   to   use   a   Teensy   to   simulate   the   SDR.   It   sends   an   
in-phase,   out-of-phase,   as   well   as   clock   sync   signal   to   the   FPGA,   exactly   the   same   signals   the   
SDR   would   send.   The   connection   schematic   is   the   following:   

  
Fig   4.   Connection   between   Teensy   and   FPGA   PMOD   port.   The   ADC   port   was   used   because   of   its   lack   of   100Ohm   series   resistors.   

Since   the   sample   frequencies   are   ~4Mhz,   these   would   have   been   problematic.   

II. GPS   search   (td_search.sv)   
The   first   step   in   the   synchronization   process   is   to   perform   a   coarse   alignment   of   the   incoming   
GPS   signal   with   the   locally   generated   signal.   In   this   state   the   replica   signal   is   brought   within   one   
code   chip   time   of   the   incoming   signal.   This   module   takes   an   input   the   superimposed   satellite’s   
signals   (in-phase   and   quadrature   components)   and   outputs   the   C/A   code   phase   and   carrier   
signal   doppler   shift   once   the   correlation   has   overcome   a   threshold   value,   which   indicates   that   a   
satellite   has   been   found.   
  

Since   satellites   are   always   transmitting   the   C/A   code,   when   the   receiver   begins   collecting   data   
phase   of   the   C/A   code   is   unknown.   In   this   module,   we   perform   a   correlation   over   8000   samples   
for   a   total   2ms   of   data   with   a   local   code   stored   in   memory.   In   addition,   to   the   code   phase,   the   
carrier   wave   frequency   is   also   estimated.   For   this,   the   module   tests   a   total   of   100   doppler   shifts   
(with   frequency   bins   of   200Hz)   to   map   a   doppler   range   of   +-10KHz.   The   cost   of   performing   this   
two   dimensional   search   space   is   of    8000*4000*100=3.2   billion   operations,   which   at   100Mhz   
takes   64   seconds,   which   is   acceptable   considering   the   fact   that   we   perform   the   acquisition   of   all   
satellites   in   parallel,   searching   the   whole   space   takes   32   seconds.The   spreading   code   has   a   
high   correlation   value   only   when   it   is   aligned   perfectly   in   time   with   itself.     



  
          Fig4.   Two   Dimensional   Search   Space   

  
We   initially   implemented   the   search   module   using   FFTs,   i.e.   performing   the   time   domain   
convolutions   as   multiplications   in   the   frequency   domain.   However   this   approach   was   somewhat   
problematic   since   frequency   domain   multiplication   corresponds   to    circular    convolution   in   the   
time   domain,   and   we   were   being   affected   by   time   aliasing,   so   convolution   was   not   exactly   what   
we   wanted.   To   get   a   true   convolution,   we   would   need   to   add   padding,   i.e.   increase   the   FFT   size.     
Even   with   an   8192   FFT,   the   bram   usage   was   pretty   high,   and   it   became   increasingly   difficult   to   
debug.   Simulations   would   take   longer   to   launch   than   straight   up   compiling   to   hardware   (sad,   but   
true).   And   running   simulations   took   forever.   This   made   optimizing   bitwidths   a   lengthy   process,   
since   sometimes   we   needed   to   take   not   the   top   bits,   nor   the   bottom   bits   of   the   output,   but   
somewhere   in   the   middle   and   it   was   a   bit   of   an   art.   

  

III. Handoff   Controller   (in   top_level.sv)   
The   handoff   controller   receives   an   output   from   the   GPS   search   module,   and   dispatches   this   
information   (satellite   id,   doppler   shift,   phase   shift)   to   one   of   the   available   tracker   modules.   It   also   
checks   whether   the   satellite   is   already   being   tracked   or   not,   since   we   do   not   want   to   track   the   
same   satellite   twice.   This   code   resides   in   the   top-level   module,   as   it   is   basically   some   glue   logic   
that   needs   to   interface   with   both   the   search   and   tracker   modules.   The   operation   is   the   following:   

● Gets   a   32   bit   array   indicating   whether   a   satellite   was   detected   at   position   i.   
● Chooses   the   first   satellite   in   this   array,   gets   its   ID   and   compares   this   against   a   mask   of   

the   currently   tracked   satellites.   
● If   the   mask   passes,   ie.   we   are   not   tracking   the   satellite   yet,   it   dispatches   the   information   

to   the   first   available   tracker.   If   no   more   trackers   are   available   (all   have   their   “busy”   signal   
set   to   1),   it   discards   the   data.   

  



IV. GPS   tracker   (x8)   (gps_tracker.sv)   
  

After   the   signal   acquisition   process,   a   fine   synchronization   is   needed.   The   goal   of   this   process   is   
to   maintain   the   local   oscillator   in   synchrony   with   the   incoming   signal   to   within   half   a   chip   time.   
This   module   takes   as   inputs   the   GPS   raw   signal,   the   satellite   ID,   the   C/A   phase,   and   the   carrier   
doppler   from   the   search   module.   As   outputs,   it   produces   the   satellite   ID,   an   updated   C/A   code   
phase   and   carrier   frequency   doppler,   as   well   as   a   locked   state   and   the   navigation   data.   The   
main   components   of   this   module   are   an   Early-Late   Gate   Synchronizer,   a   Costas   Loop,   a   
Numerically   Controlled   Oscillator(NCO)   and   a   FSM.     
  

The   FSM   starts   in   the   WAITING_INFO   state   until   it   receives   a   new   satellite   from   the   search   
module.   Then,   it   enters   the   WAITING_SYNC   state   that   ensures   that   c/a   code   is   properly   
referenced.   Finally,   it   reaches   the   TRACKING   state   where   the   satellites   are   being   tracked.     
  

The   Early-Late   Gate   Synchronizer   is   a   delay   locked   loop   that   multiplies   the   incoming   GPS   
signal   with   two   versions   of   the   C/A   code,   which   are   delayed   and   advanced   by   t   =   Tc/2,   where   Tc   
is   the   chip   time.   The   cross   correlated   values   are   then   subtracted   in   order   to   produce   the   error   
signal.   We   subtract   the   early   error   Pe   from   the   late   error   Pl,   so   that   if   we   are   delayed   we   
increase   the   phase   (Pl-Pe   >   0).   Then,   the   error   signal   is   passed   through   a   loop   filter   that   
produces   an   updated   C/A   code   that   is   in   phase   with   the   incoming   signal.   This   PLL   does   not   
require   a   local   oscillator   for   the   acquisition   codes   because   the   C/A   codes   for   all   satellites   have   
been   previously   generated   and   stored   in   memory.     
  

                                                   
Fig5.   Early,   Late,   and   Prompt   C/A   codes   

  
The   Costas   loop,   also   known   as   the   carrier   tracking   loop,   uses   the   prompt   C/A   code   and   two   
locally   generated   copies   of   the   carrier   wave.   The   first   copy   has   the   same   phase   as   the   received   
carrier,   while   the   second   copy   has   a   +90°   phase   shift.   It   multiplies   the   incoming   signal   with   the   
prompt   C/A   code   and   performs   a   correlation   over   1ms   for   each   of   the   carrier   wave   copies.   Then,   
the   two   correlated   outputs   are   low   pass   filtered   and   multiplied   in   order   to   obtain   the   carrier   
phase   error   which   is   then   fed   to   the   local   sine/cosine   generator.   Normally,   this   feedback   would   
operate   as   in   a   phase-locked   loop,   changing   the   local   oscillator   frequency.   We   found   that   this   
feedback   was   not   enough   for   a   PLL   lock,   so   we   also   introduced   an   explicit   phase   feedback   to   
the   local   oscillator.   That   way,   in   the   presence   of   an   error   on   the   q   arm   of   the   Costas   Loop,   the   
local   oscillator   changes   both   its   frequency   and   its   phase,   achieving   lock   within   100ms.   
  



  
Fig   6.   Tracker   locking   onto   NAV   data.   The   Costas   Loop   maintains   one   arm   near   zero,   while   the   other   one   has   the   data   encoded   on   
the   sign   bit.   Note   that   the   timescale   in   the   simulation   is   not   correct.   In   real   time,   the   lock   takes   around   100ms,   which   corresponds   to   
100   iterations   of   the   PLL.   

V. Nav   decoder   (x8)   (nav_decoder.sv)   
  

When   the   Costas   loop   is   locked,   the   upper   branch   of   the   PLL   outputs   the   demodulated   
navigation   data.   This   module   obtains   the   navigation   data   from   the   tracker   module   as   an   input   
and   outputs   the   time   in   two   different   ways.   First,   it   outputs   the   number   of   seconds   since   
midnight   Sunday   and   secondly,   it   outputs   the   number   of   weeks   since   January   6th   1980.   Note   
that   since   this   is   a   given   as   a   10   bit   number,   there   is   a   rollover   every   19.6   years.   
  

In   order   to   decode   the   navigation   data,   there   are   a   sequence   of   steps   to   be   taken.   First,   the   
module   waits   until   the   NAV   data   stabilizes,   and   finds   a   data   edge   to   sync   to.   Bits   are   then   
extracted   from   First   the   module   finds   the   beginning   of   the   TLM   word   by   performing   correlation   
operation   with   an   8-bits   known   preamble   pattern   (1000   1011).   Once   a   match   has   been   found   
then   the   positions   of   the   TLM   and   HOW   words   are   known   and   the   desired   data   can   be   decoded.   
Then,   we   look   for   in   the   first   subframe   for   the   start   of   the   time   of   week   (17   bits   long)   and   week   
number   (10   bits   long)   information,   we   decode   each   of   the   bits   and   finally   check     that   each   word   
passes   the   6-bit   parity   bit   check.   If   this   is   the   case   then   the   time   information   has   been   
successfully   decoded.   
  



  
Fig7.   NAV   Data   is   transmitted   as   a   series   of   frames,   which   are   composed   of   subframes.   Most   of   the   relevant   information   for   a   
position   lock   can   be   obtained   from   a   single   subframe.   Multiple   subframes   are   required   for   almanac   information,   which   usually   helps   
GPS   receivers   find   satellites   in   the   future.   
  

  
Fig8.   Structure   of   NAV   Message   Word   1,   which   includes   the   preamble.   This   is   transmitted   at   the   start   of   every   subframe   (every   6s)   

  
  

VI. Time   display   (time_display.sv)   
    

This   module’s   goal   is   to   show   in   the   seven   segments   display   the   time   of   the   week   information.   It   
accepts   as   inputs   the   time   of   the   week   from   the   navigation   decoder   module   and   it   outputs   the   
time   of   the   week   in   the   following   format.     

  
Fig9..   Display   Format   
  

Similarly,   this   module   gets   as   input   the   week   number   from   the   navigation   decoder   module   and   it   
outputs   the   year   and   month.   
  

The   implementation   is   relatively   straight   forward.   The   modules   utilizes   two   counters   to   keep   
track   of   the   number   of   minutes   and   hours.   Aslo,   It   utilizes   two   additional   counters   to   keep   track   
of   the   year   and   month.   It   can   perform   the   desired   computations   within   microseconds.     
  



  

Lessons   Learned   &   Advice   
- While   operating   in   the   frequency   domain   might   make   convolutions   operation   easier,   one   

should   take   care   of   circular   convolution.   In   order   to   avoid   the   circular   or    spatial-aliasing   
result,   we   simply   have   to   pad   the   two   signals   with   zeros   out   to   a   DFT   size   that   is   large   
enough   to   contain   the   linear   convolution   result—the   result   of   ordinary   non-circular   
convolution.   

- When   developing   signal   processing   modules,   writing   a   version   of   the   pipeline   in   a   high   
level   programming   language   can   prove   extremely   useful.   This   allowed   us   to   understand   
which   signal   processing   components   we   really   needed,   and   made   debugging   numerical   
errors   a   lot   easier.   Once   a   floating-point   simulation   works,   coding   a   bit-perfect   simulation   
is   also   a   valuable   tool,   as   it   allows   for   step-by-step   comparison   with   Verilog   output.   One   
must   be   conscious   of   bit   widths   and   careful   with   overflows,   since   a   Python3   int,   for   
example   is   unbounded!.   Using   numpy   with   explicit   int   data   types   can   help   mitigate   this   
inconsistency.  

Future   Work   
- Decoding   orbital   information:   At   this   point   the   implementation   is   able   to   decode   the   

navigation   data.   However,   we   are   only   displaying   time   information.   As   a   next   step   we   
would   like   to   combine   the   orbital   information   and   along   with   the   time   information   for   a   
minimum   of   four   satellites   and   feed   it   into   an   equation   solver   to   determine   the   receiver   
location.   

- Determine   receiver’s   location:   Once   the   orbital   and   time   information   have   been   obtained   
the   next   logical   step   would   be   to   implement   a   location   solver   in   our   FPGA.   This   is   not   a   
straightforward   task   since   the   system   of   equations   is   not   linear.   

- Finally,   one   really   could   feature   would   be   to   display   the   receiver   coordinates   in   a   display   
or   be   able   to   pinpoint   the   user   in   a   map.      

   

https://www.sciencedirect.com/topics/engineering/spatial-aliasing


Conclusions   
Overall,   we   are   proud   to   have   successfully   implemented   a   FPGA   based   GPS   receiver.   We   were   
able   to   detect   the   satellites   in   "line   of   sight"   and   accurately   track   the   signal   in   order   to   
demodulate   the   Navigation   data.   The   highlighted   objectives   of   the   projects   were   achieved;   
however,   as   mentioned   in   the   future   steps   section   there   is   still   additional   work   that   needs   to   be   
done   in   order   to   get   the   receiver   location.     

  
  
  

   



Appendix   A   -   Verilog   Code   
Refer   to   the   github   repo:   
https://github.mit.edu/psales/fpga-gps-receiver/tree/master/tests/td_search/td_search.srcs   
This   includes   code   and   testbenches   for   all   modules.   

Appendix   B   -   Non-Verilog   Code   
Our   github   repo   also   contains   several   supporting   code   we   used   during   the   testing   phase.   These   
include:   

● Jupyter   notebooks:   these   were   used   to   test   the   SNR   on   the   sample   signals.   
Implementing   the   search   and   tracker   module   on   Python   also   allowed   us   to   get   a   good   
understanding   of   the   signal   processing   pipeline   before   attempting   to   implement   it   on   
logic.   Considering   the   amount   of   numerical   debugging   we   had   to   do   in   Python,   this   
proved   to   be   a   huge   time   saver.   The   modules   contained   here   are:   

○ fft_search:   a   FFT-based   search   function   to   find   satellite   doppler   and   phase.   
○ td_search:   a   time-domain   implementation   of   the   search   function.   We   used   this   

during   development   and   testing   of   the   verilog   module,   and   got   the   verilog   and   
Python   modules   to   output   bit-consistent   results.   

○ tracker:   an   implementation   of   the   tracker   module.   It   initially   used   floating   point  
values   for   testing,   and   then   it   was   converted   to   operate   on   integers.   We   used   this   
to   fine   tune   the   Costas   Loop   parameters,   which   were   then   used   on   the   Verilog   
version   of   the   module.   

○ translator:   this   contains   various   functions,   including   a   C/A   code   generator,   .coe   
file   generators,   as   well   as   some   code   that   thresholds   the   sample   data   and   saves   
it   to   a   file   which   can   then   be   easily   read   by   a   verilog   testbench.   

● Teensy:   this   is   a   small   Arduino   project   that   sends   serial   data   captured   from   the   USB.   It   
uses   direct   port   manipulation   to   avoid   delays   due   to   function   calls.   It   is   by   no   means   
perfect,   but   it   does   the   job   and   is   capable   of   accepting   samples   at   around   1-2Msps.   
There   is   also   a   python   (slow)   and   C   (faster)   data   sender   that   runs   on   the   computer   and   
sends   data   to   the   Teensy   over   USB.   

Appendix   C   -   SDR   
We   initially   planned   to   use   the   system   together   with   a   software   defined   radio,   so   we   could   
capture   incoming   GPS   signals   in   real   time.   We   chose   the   HackRF   Software   Defined   radio   for   its   
low   cost,   high   sampling   rate   and   clock   stability   (1ppm   needed   for   GPS   applications).     
  

This   SDR   also   features   a   CPLD   that   implements   some   glue   logic   between   the   ADC   and   the   
microcontroller   that   then   communicates   with   the   host   computer.   Conveniently,   some   unused   
CPLD   pins   are   exposed   on   a   pin   header.   We   planned   to   modify   the   open   source   logic   running   
on   the   CPLD   so   that   it   would   replicate   the   ADC   outputs   on   this   header.   As   mentioned   in   the   
main   section,   we   only   require   1   bit   precision   on   the   in-phase   and   out-of-phase   RF   lines.   The   

https://github.mit.edu/psales/fpga-gps-receiver/tree/master/tests/td_search/td_search.srcs


modification   we   planned   would   have   compared   the   incoming   signal   with   the   average   value,   and   
then   output   a   sign   bit   for   both   lines,   as   well   as   a   sample   clock   for   synchronization.   
  

Before   proceeding   with   modifications,   we   did   some   tests   with   the   SDR   connected   to   a   host   
computer.   We   used   the   open   source   program   Gqrx   ( https://gqrx.dk/ ),   which   gives   a   waterfall   plot   
around   the   center   frequency.   This   was   useful   in   determining   the   correct   gain   settings   for   the   
analog   frontend.   We   then   recorded   some   test   signals   at   1575.420MHz   using   the   hackrf-tools   
command   line   utility 1 .   Note   that   for   GPS   signal   reception,   one   must   enable   the   bias-t   (option   in   
hackrf-transfer   command)   which   presents   a   DC   voltage   on   the   SMA   connector   to   power   the   
LNA   on   the   GPS   antenna.   
  

We   obtained   some   signals   and   then   processed   them   using   both   GNSS-SDR   (see   appendix   D),   
as   well   as   our   Python   implementation   of   the   search   module   (see   appendix   B).   We   found   that   the   
spectrum   we   obtained   was   much   more   noisy   than   the   sample   signal,   and   that   the   range   of   the   
signal   only   covered   a   small   range   of   the   8bit   ADC   resolution.   While   we   only   needed   the   MSB   of   
the   signal,   looking   at   the   full   signal   range   was   useful   in   determining   whether   we   were   getting   a   
good   reading   or   if   it   was   dominated   by   noise.   We   confirmed   that   the   noise   was   higher   than   the   
sample   we   got   off   the   internet   by   performing   an   FFT   and   seeing   much   higher   wideband   
frequency   content.   
  

GNSS-SDR   was   able   to   find   some   satellites,   but   it   was   never   able   to   attain   lock   and   decode   a   
full   NAV   data   subframe,   presumably   due   to   noise.   We   also   ran   the   code   through   our   python   
receiver   and   confirmed   that   the   SNR   after   correlation   with   the   correct   C/A   code   phase   and   
doppler   shift   was   only   around   3.   Considering   that   this   corresponds   to   the   peak   C/A   correlation   
with   the   average   over   the   other   phases,   getting   a   clean   peak   with   good   isolation   was   not   
possible.   
  

At   some   point,   we   decided   to   try   with   a   new   antenna   and   obtained   slightly   better   results.   We   
were   not   able   to   run   many   more   tests   as   we   left   campus   shortly   after.   We   ultimately   decided   to   
use   recorded   data   intended   for   the   GNSS-SDR   project   for   repeatability 2 .   
  

Appendix   D   -   GNSS-SDR   
  

During   our   SDR   signal   testing,   and   to   evaluate   the   sample   signal   we   downloaded,   we   used   
GNSS-SDR.   This   is   an   open   source   project   implementing   a   software   defined   GPS   receiver   on   a   
computer.   It   takes   as   input   an   SDR   signal   stream   or   a   pre   recorded   sample.   It   detects   satellites,   

1  see   more   at:    https://github.com/mossmann/hackrf/wiki/Software-Support ,   
http://manpages.ubuntu.com/manpages/hirsute/en/man1/hackrf_info.1.html   
  

2  sample   data   available   at    https://gnss-sdr.org/my-first-fix/   
  

https://gqrx.dk/
https://github.com/mossmann/hackrf/wiki/Software-Support
http://manpages.ubuntu.com/manpages/hirsute/en/man1/hackrf_info.1.html
https://gnss-sdr.org/my-first-fix/


tracks   them,   decodes   NAV   data,   and   finds   a   position   solution.   It   also   presents   useful   information   
about   the   satellites   found   in   the   signal   and   their   doppler   shift.     
  

We   used   this   as   a   benchmark   to   see   if   the   signals   the   SDR   was   capturing   were   good   enough.   If   
this   program   was   unable   to   solve   for   a   location,   it   was   unlikely   our   FPGA   implementation   could.     


