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Overview 
SpaceSynth is a musical instrument controlled by movement. Through 3D tracking of the players 
hands and head, our gesturally controlled synthesizer allows its users to physically interact with 
their music, manipulate, and explore new sounds in their space. By extracting a number of 
features with the help of a camera, such as horizontal and vertical positions of both hands, their 
proximity to each other and to the device, as well as the spatial location of the player’s head, 
SpaceSynth gives users the control and room for expression they need for creating and 
interacting with their audio in real time. The audio generation component, based around two 
subtractive synthesizer engines is designed for simplicity as well as customizability when 
needed. Adjustments to the frequency, amplitude, tuning, filter cutoff, and waveshapes of both 
synthesizers are  possible either through the gesture-based controls or physical switches on the 
FPGA device, and allow for full control over the timbre and sound of the instrument. An LFO 
can optionally be enabled with its own configurable frequency, amplitude, and waveshape, to 
provide even greater variety and creative control of the sound. 

Block Diagram 
Figure 1 shows a high level overview of the system. The camera_to_mask module, shown with 
greater detail in figure 2, receives images from the camera and extracts data about the spatial 
positioning of the user’s limbs. The synthesizer module, shown in figure 3, is one of the main 
building blocks of our audio system  and accepts various audio parameters to generate and 
manipulate waveforms. The top_level module bridges the gap between these two, defining how 
the spatial data affects the various parameters of the synthesizers and adding extra features like 
an LFO and a VGA display to enhance the user experience. In the following sections, we explain 
how each of these modules work in greater detail. 
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Figure 1: High-level block diagram of most important components of the top_level module 

 

 

Figure 2: High-level block diagram describing the overall operation of the camera_to_mask 
module 

 

 

Figure 3: High-level block diagram describing the audio path through the synthesizer 
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Audio System  

Oscillator (Prajwal) 
 
The oscillator module is responsible for creating a signed 16-bit waveform with a configurable 
frequency and waveshape. The waveforms are generated with the help of a 32-bit phasor, which 
is simply a 32-bit counter that increments by a certain amount at the 48kHz sampling rate, 
resulting in a sawtooth waveform of a fixed amplitude as the counter repeatedly fills up at a 
constant rate and overflows. This sawtooth shape of the phasor can be seen in Figures 4 through 
7 below. As the name suggests, this phasor generates the phase information needed to create the 
output waveforms. Because we want to be able to control the frequency of the output waveforms, 
we need to be able to control how quickly it completes one period, that is, how quickly the phase 
of that waveform goes from 0 to 2𝝿. Since the phasor is responsible for providing the phase 
information for the output waveform, this means that we need to update the the phasor counter 
such that it goes from 0 (corresponding to a phase of 0) to 2x1032 (corresponding to a phase of 
2𝝿) at the desired frequency of the output waveform. The amount by which the counter is 
incremented during each sample is given by the equation below.  
 

hase step desired f requency) p = ( ×  48kHz
2×1032

  
 
The frequency input to the oscillator module is defined by a 12-bit number, so the maximum 
frequency is limited to 4095Hz. With the help of the phasor, we can create four fundamental 
waveshape types: sine, square, triangle, and sawtooth.  
 
The sawtooth waveform is the simplest to generate, since the phasor is already a sawtooth wave. 
If a sawtooth output is desired, we can simply take the top 16 bits of the phasor, which is 
unsigned, and invert the MSB to create the signed output waveform. Figure 4 shows the phasor 
waveform on top and the output sawtooth on the bottom. 

 
Figure 4: Phasor (top) and output sawtooth waveform (bottom) in simulation 

The triangle waveform can be thought of as back to back sawtooth waveforms with half the 
period. In other words, in the time the phasor needs to ramp up from zero to its maximum value, 
the triangle needs to ramp up from zero to its maximum value and ramp back down from its 
maximum value to zero. To accomplish this, we take note that the MSB of the phasor, i.e. 
phasor[31], can be used as an indicator for the halfway point of the phase, since it has a value of 
0 for half the time and a value of 1 for the other half. While this bit is 0, we simply take 
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phasor[30:15] which produces an upward sloping ramp with twice the frequency of the phasor. 
Then when phasor [31] is 1, we switch the direction of that ramp by using 16'hFFFF - 
phase[30:15], which produces a downward sloping ramp with twice the frequency of the phasor. 
Finally, the MSB is flipped to make it a signed waveform before being sent out as a triangle 
wave. The output waveform is shown in Figure 5. 

 
Figure 5: Phasor (top) and output triangle waveform (bottom) in simulation 

 
The square wave, shown in Figure 6, is created in a similar way, except instead of using a ramp 
for each half of the phase, we just use a single high or low value. While phasor[31] is 0, we 
output a high value of 16'hFFFF, and when it is 1, we output a low value of 0. Once again, the 
MSB of this output is flipped to convert it to a signed value. 

 
Figure 6: Phasor (top) and output square waveform (bottom) in simulation 

 
The sine waveshape is slightly more complex to generate. Instead of calculating the value of 
sine(phase) for each sample, we instead use an 8-bit look-up-table (LUT) which stores the 
amplitude information for one period of a sine wave. The sine LUT, the code for which is 
generated by a python script, holds the 16-bit unsigned amplitudes of a sine waveform at 256 
different points during its period. By passing the upper 8 bits of the phasor, phase[31:24], into 
this module, we can cycle through these 256 points and get on the output a sine waveform with 
the same frequency as the phasor. Similar to the rest, the MSB is flipped before being sent out as 
a signed 16-bit waveform, as shown in Figure 7. 

 
Figure 7: Phasor (top) and output square waveform (bottom) in simulation 
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Mixer (Prajwal) 
 
The mixer module is used to combine two signed 16-bit waveforms into one without clipping. 
This is a combinational module which simply right-shifts both inputs to halve their gains and 
adds them together to form the output.  

The mixer module is used to combine the output of the two oscillators inside each synthesizer 
module, as well as to combine the output of both synthesizers in top_level before they are sent 
out as the main audio. 
 

Filter (Prajwal) 
 
After the oscillators, the second most important component of a subtractive synthesizer is the 
low pass filter, which attenuates, or  “subtracts”, frequency components of the oscillator 
waveforms to shape the sound of the synth. For ease of implementation and because we don’t 
need a perfect passband and stopband for this application, we chose to use a single first-order IIR 
filter to accomplish this. A first-order IIR filter is a simple recursive filter with the difference 
equation shown below. 

[n] y[n ] b x[n] x[n ]y = a1 − 1 +  0 + b1 − 1   
The output of the filter is determined by the current input, the previous input, the previous 
output, as well as the coefficients a1, b0, and b1. These coefficients are what determine the 
behavior of the filter, and most importantly, its cutoff frequency. Rather than calculating these 
coefficients on the FPGA for any given cutoff frequency, a python script was used to generate 
another 8-bit look up table with calculated coefficients corresponding to a range of cutoff 
frequencies.  
The python script works by first choosing the range of cutoff frequencies for the filter. For the 
filter ultimately used in the project, this range was from 100Hz to 5000Kz. This range is then 
divided into 256 frequency steps which serve as the indices of the lookup table. For each 
frequency step, the ratio of the desired cutoff frequency to the system nyquist frequency (24kHz) 
is calculated and plugged into scipy’s iir filter function, which outputs the values of the three 
coefficients for a lowpass iir filter with that desired cutoff.  
 
These values are then multiplied by 214 to convert them to fixed point numbers and formatted 
into a case statement and put into the filter_coeffs module, which delivers the appropriate filter 
coefficients for a chosen cutoff frequency among the 256 calculated. When the filter is updated 
by the user, the main filter module updates its a0 term, b0 term, and b1 term with the help of this 
filter_coeffs module.  
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assign mixed_out = (wave1_in>>>1)+(wave2_in>>>1); 



 

To implement the difference function above, the main filter module needs to perform a number 
of multiplication and addition operations with fairly large numbers. To use resources most 
efficiently and to ensure that all the operations meet timing requirements, we employ an FSM to 
perform the steps of the difference equation sequentially rather than in parallel. Figure 8 
summarizes the steps of this process along with the state transitions. First, a single, 
combinational multiplier is set up with two 16-bit factors—mult1 and mult2—with a 32-bit 
output   mult_out, where mult_out = mult1*mult2. When a sample from a waveform enters the 
filter module, mult1 is set to b0, mult2 is set to the value of the input waveform, and the FSM 
enters its first state. The combinational multiplication is performed over the next clock cycle and 
as the FSM enters the new state, the result, left-shifted to compensate for the 214 multiplication 
from earlier, is added to a running sum. Mult1 is then assigned to hold the next term b1, mult 2 is 
assigned to to hold the previous value of the waveform, and the FSM state is updated again. This 
process repeats until the difference equation has been calculated including all three terms, 
whereupon the sum now contains the output of the filter. The lower 15 bits of this sum along 
with the top sign bit are passed to the output. Because the filter module runs at a 65Mhz clock 
compared to the much slower sampling rate of 48kHz, there is plenty of time for calculating the 
filter output via this sequential method before the next sample comes in. 

 
Figure 8: State transition diagram for first order IIR filter calculation 

 
The size of the fixed-point normalized coefficients was chosen through a bit of trial and error. 
For most of the cutoff frequency steps, the IIR filter coefficients provided by the scipy iirfilter 
function were extremely small, so they needed to be multiplied by a fairly large number to scale 
them to fixed point numbers with enough precision. A larger scaling factor would give more 
usable digits and thus a higher precision representation of the filter coefficients, while a lower 
scaling factor would give fewer digits and less precision. However, going too large would mean 
more cascaded adders on the FPGA when it came time to multiply the terms and more difficulty 
getting the multiplications and additions to fit into a single clock cycle. A 214 scaling was 
eventually chosen as the scaling factor by first starting at 230 and lowering a couple of times until 
the implemented design met timing constraints.  
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Amplitude Control (Prajwal) 
 
After the signal has been processed by the filter and before it leaves the synthesizer output, the 
gain of the signal is adjusted by the amplitude_control module. This is another combinational 
module that works by right-shifting the signal to reduce its amplitude. Since we are working with 
16-bit signals, we can technically shift the signal by up to 16 bits, for 16 different volume levels 
with a -6dB drop in loudness between each step. Practically however, the lowest three or four 
volume levels are unusable, since at this point, there will not be enough bits of information 
remaining to accurately represent the audio waveform without adding in a lot of quantization 
noise. As an extreme example, shifting the signal by 15 bits to its lowest volume level will leave 
just 1 bit of signal information remaining, turning any input waveform into basically a square 
wave. 
 

Synthesizer (Prajwal) 
 
The synthesizer module is a higher-level module that collects all of the above components and 
defines the path the signal takes through them. The main audio generating components inside the 
synthesizer module are two oscillator modules. The frequency input to the synthesizer directly 
sets the frequency of one of these oscillators, referred to as osc_1. The frequency input to the 
other oscillator (osc_2) is instead tuned to a number of octaves above or below that of osc_1. 
Conveniently octaves are logarithmic units, where an increase of one octave corresponds to a 
doubling of the frequency. As a result, the frequency of osc_2 can be calculated simply by 
shifting the input frequency left or right by the number of octaves we want to be above or below 
it. 

The output of both oscillators is combined using the mixer module, the output of which is 
directed through the filter, followed by the amplitude controller, and finally sent to the output.  
 
The waveshapes of both oscillators can be individually controlled, and when mixed together 
create an audio waveform that is rich in harmonics. By changing the filter cutoff frequency we 
can change how much of these harmonics are attenuated and consequently alter the timbre off 
the sound. 
 

LFO (Prajwal) 
 
An LFO, or low frequency oscillator is a separate oscillator whose frequency is typically below 
the audible frequency range, i.e. 20Hz or less. The purpose of an LFO is not to generate audio, 
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osc2_frequency = frequency_in<<octave 



 

but to act as a modulation source to alter one or more parameters of the synthesizer. In our 
system, we used an LFO to modulate the frequency, or pitch, of both synthesizers. 
 
The LFO was created in the top_level module, and consisted of an oscillator module feeding into 
an amplitude control module. Both of these modules work the same way as they do in the main 
synthesizer modules, with the exception that the LFO oscillator generally receives a much lower 
frequency input.  
 
To modulate the frequency of both of the synthesizers, the 16-bit signed waveform is simply 
added to the frequency input to both synthesizers. When the LFO waveform has a positive value, 
it adds to the frequency input of the synthesizers and increases their pitch. A negative value of 
the LFO waveform decreases the frequency of the synthesizers and results in a lower pitch. The 
amplitude of the LFO affects how much the pitch changes by and the frequency of the LFO 
affects the rate at which the pitch changes occur.  
 
This is not the most ideal way to implement a LFO on pitch, but it is the one that involves the 
least amount of computation. To see why this is not the best method, consider a situation where 
the synthesizer is set to a base frequency of 300Hz, and the LFO has an amplitude of 150. When 
added together, the synth frequency reaches a minimum of 150Hz, which is 1 octave lower than 
the base frequency, and a maximum of 450Hz, which is only 0.5 octaves above the base 
frequency. This discrepancy occurs because addition is a linear change while changes in pitch 
are perceived logarithmically. Moreover, with this addition approach, the LFO, at the same 
amplitude, has different effects on the pitch of the sound at different base frequencies. For 
example consider another situation where the synthesizer is set to a base frequency of 60Hz, and 
the LFO has the same amplitude of 150. In this case, when added together, the synth frequency 
reaches a maximum of 210Hz, which is a little less than 2 octaves above the base frequency, and 
a minimum of -90Hz, which causes the unsigned frequency variable to roll over. To prevent 
these problems and create an LFO that has the same effect on pitch regardless of the base 
frequency, the formula below should be used to calculate the new frequency. 
 

new f requency) base f requency) ( = ( × 2((LF O normalized)×(modulation depth))  
 

LFO normalized refers to the LFO waveform normalized to oscillate between +1 and -, and the 
modulation depth is the number of octaves the LFO should shift the base frequency at maximum 
amplitude. Because of the complexity and additional fpga resources required to perform this 
calculation using fixed point numbers, and because we were satisfied with the pitch changes 
produced by the LFO through the addition method, we made the choice to stick with the former. 
This works well enough in our system because the range of base frequencies requested from the 
synthesizers—usually between 200Hz and 520Hz—is fairly small, so the effect that the LFO has 
on the pitch of the sound will be more or less consistent across the frequency range.  
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The effect of a large LFO amplitude on a small base frequency value was an issue that still 
needed to be dealt with. In these cases, the frequency value rolls over and produces unpleasant 
high frequency tones. To prevent this, a simple conditional statement, highlighted below, is used 
to check if the signed value of the frequency will go below zero. If so, the frequency is simply 
set to 0Hz, but if not, the LFO is added as usual.This effectively hard clips the frequency value 
so it never goes below zero . 

PWM Audio Out (Prajwal) 
 
All the audio waveforms inside the FPGA are represented as signed 16-bit numbers  that hold 
information about the amplitude level of that waveform at a particular point in time. However, 
these digital, signed 16-bit numbers can’t directly be listened to as audio. The pwm module 
bridges this gap between numerical representation of waveforms and an actual analog audio 
signal we can listen to.  
 
The audio output jack on the FPGA board is preceded by a 4th order Butterworth lowpass filter, 
which can be used to create an analog waveform from the digital output of the FPGA. This is 
done by using a high frequency digital carrier wave, whose pulse width is modulated by the 
amplitude of the desired waveform. As the carrier wave passes through the low pass filter, it 
essentially gets integrated, and the filter outputs an analog waveform whose amplitude is 
proportional to the width of the pulse.  
  
A common way to create this digital PWM signal is to use a fast moving ramp signal to compare 
the digital waveform against as demonstrated in Figure 9. In our system, we use a 16-bit ramp 
that increments by 256 on every input clock edge. With a 65Mhz clock, this results in a ramp 
with a frequency of approximately 250kHz. This ramp is compared against the digital output 
waveform of the system, which is converted to an unsigned number before being sent into the 
module. When the amplitude value of the ramp is above that of the waveform, the PWM output 
to the filter is pulled low (i.e. 0) and when the amplitude value of the ramp is below that of our 
waveform, the PWM signal is pulled to a high impedance state (i.e. Z).  
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synth1_frequency <= (red_area>=detection_threshold)? 
(lfo_enabled?(($signed(lfo_out+12'd200+red_center_h_index)>=12'sd0)?(12'd200+red_center_h_index
+lfo_out):12'd0):(12'd200+red_center_h_index)):12'd0; 



 

 
Figure 9: Ramp waveform and desired signal (top) with the resulting PWM waveform 
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Controls Extraction 

Camera_to_mask (Sage) 
 
The camera to mask module is responsible for reading from the camera and converting these 
readings into several pieces of processed information that will be used as inputs to the sound 
generation modules and for the displays. These pieces include per-color classifications (booleans 
for red, green, and blue) of the pixels every frame, and the centroid in (x, y) space and area of 
each group of classified pixels. This module effectively returns a “mask” filtering the video for 
each of the red, green, and blue LEDs. Each mask is simply a frame of pixels that are either 
black or one of {red, green, blue}. The mask can then be used to display a black screen with a 
moving, colored blob, representing the corresponding LED in space, and containing crosshairs 
meeting at the center. This information is stored in a dual-port BRAM frame buffer (1x76800 for 
each color) for such use. Additionally, the raw video pixels are stored in a 12x76800 BRAM. 
 
The first step in implementation of camera_to_mask is obtaining the pixels from the camera by 
interfacing with the camera reading code. From the camera starter code, a 16.25MHz clock 
called xclk is created by counting every 4th rising edge of the 65MHz system clock (so, 25% the 
speed of our system clock). The camera is driven with this clock via the pin jbclk_p from the JB 
PMOD port on the FPGA side. The JB pin 0 holds the returning pixel clock, pclk, from the 
camera. This clock, along with vsync and href are used by the provided camera_read module to 
read and output the incoming 320x240 frames of pixels serially. The module outputs 16 bit 
pixels, a storage address for BRAM, the (x, y) coordinates of the pixel (a modification we made 
to the code), and booleans indicating whenever a new valid pixel is outputted as well as 
whenever all the pixels in a frame have been outputted.  
 
The serially outputted pixels then enter a processing pipeline as shown in figure 10 below.  
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Figure 10: Block and Timing Diagrams of pixel storage pipelines in camera_to_mask 

 
of BRAM. The first option is to simply send the raw output pixel to image_bram, for which there 
is only a latency of 1 as it is sequentially converted from a 16 bit 5-6-5 RGB value to a 12 bit 
value holding the upper 4 bits of each color. The second option is to send the pixel into red, blue, 
and green BRAMs which contain the classified pixels. For example, a red LED pixel in red 
BRAM will be stored as a 1’b1 and anything else will be stored as a 0. This is done by first 
passing the pixel through an RGB to HSV converter module, rgb_2_hsv, which converts the 
pixels from RGB values to HSV values. We take full advantage of the available RGB resolution 
by passing all 5 bits of red (concatenated with three zeros for the 8-bit input requirement), all 6 
bits of green (concatenated with two zeros), and all 5 bits of blue (concatenated with two zeros). 
The decision to switch to an HSV color space was made to reduce the amount of color 
bleeding/incorrect classifications that would be present in thresholding RGB values. This module 
takes twenty-two cycles per new pixel (at pclk), and since pixels are coming in at a rate of 1/4th 
the system clock, there is an overall latency of six 65MHz clock cycles.  
 
Continuing on path 2, the hsv values are then thresholded and stored in BRAM as 1s or 0s at the 
per-pixel incrementing input address (1st port) provided by cam_read. depending on if they 
meet that color BRAM’s thresholding criteria.  
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Thresholding (Sage) 
 
Thresholding (chroma keying) the camera images was approached by using trial and error from 
several different angles.  
 
Thresholds for hue were created by examining an HSV palette and choosing rough boundaries. 
Then, these values were fine-tuned experimentally by using the VGA display of the color masks. 
Despite a suggestion to try thresholding only based on hue from past experience, we found that 

doing this created too much noise and therefore 
saturation and value needed to also be considered. As 
value was raised, more noise was picked up, and as it 
was reduced, less of the LEDs were detected. We 
settled on an optimal value for each LED 
experimentally. For saturation, a number had to be 
chosen such that it is low enough to overcome the 
effects of light from the LEDs reducing the saturation 
of the pixels on the LED but high enough to filter out 
non-red, blue, or green sources of light. Additionally, 

  Figure 11: HSV palette         other objects in the room that were in fact red, blue, or 
green needed to not fall into the thresholds. The success we had with this was mostly in thanks to 
the use of LEDs themselves and their characteristic lower saturation than non-illuminated 
objects. Still, we struggled to get the camera readings correctly classified even after tuning the 
threshold values:  
 
One challenge we faced with using LEDs was related to the aforementioned reduced saturation 
due to the light. Because the LEDs were so bright, the camera picked many of the pixels up as 
high value white pixels. We reduced the brightness on the physical LEDs to a much lower setting 
and found that this improved the issue of the light overpowering the color. Interestingly, the 
different colored lights responded differently to this tuning, with each color requiring a different 
optimal brightness. We also tuned the camera control settings in ov7670_control.ino, including 
the RBG gains and automatic gain and exposure control to optimize for noise reduction and 
picking up enough LED.  Because of the success we had with this and thresholding, we did not 
find it necessary to rely on the ILA or a calibration module for experimentally determining the 
HSV value of a particular pixel, though this approach was considered.  
 
Another challenge we had was with noise created by the LEDs casting shadows on our clothing, 
arms, nearby objects, and the other 1-2 LEDs. While the aforementioned reduction in brightness 
significantly relieved this issue, and probably enough to not have significant error in the area 
calculations, there was still a non-trivial amount of noise due to shadows that would interfere 
with the center calculations. We decided to cover the LEDs with socks as a form of containing 
and softening/smoothing the light.  
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One observation was that the brightness of the  circular lights on the LEDs overpowered the 
color and they were not picked up by the thresholding. Thus, the color masks appeared as 
colored circles with smaller black circles (the lights) inside of them. Each LED responded 
differently to the thresholding. Interestingly, this effect was prevalent in the green lights, and less 
in the red, and the opposite effect existed in the blue. Because of the uniform distribution of 
these lights on the circular LED face, this effect did not interfere with the center-finding 
calculations. However, there would certainly be a decrease in area. Since area is a relative 
control in our case, a simple scaling of the green area relative to the red and red relative to blue 
would have been a sufficient solution, but we found the effects of different area scales to be 
insignificant for our purposes. Another possible solution that might have been worth exploring 
was using the HSL color space, with the value from HSV replaced with lightness by HSL.  
 
While most of these designs helped make the thresholding more robust to lighting changes, we 
left available different switches (7-10) containing different threshold settings for users to choose 
what works best for them. 
 
Returning to the block diagram on page 10, we can see that camera_to_mask uses the booleans 
stored in BRAM to output 12 bit classified pixels that are either red (12’hF00), green (12’h0F0), 
or blue (12’h00F), or it returns the raw image pixel. The 2nd port address to select a value from 
BRAM is provided as an input to the module.  
 
Finally, the last responsibility of camera_to_mask is outputting the centroid and area of each 
frame. This is done by passing the pixels and corresponding indices from camera_read directly 
into the center_finder module and routing the results as output to camera_to_mask.  
 
The camera_to_mask module was built incrementally as we added increasing functionality and 
control extraction to it. In retrospect, earlier planning of strictly what will be contained in and 
outside of the module would have saved the module from growing very large and perhaps a bit 
too bulky. Breaking down camera_to_mask into smaller modules—especially separating the 
instantiation center_finder from the module—would have been a cleaner and safer design 
decision. One plausible breakdown would be: a module to receive the data from the camera 
hardware and pass it through camera_read (this would be entirely on pclk), a module that, 
receiving these values at pclk, passes them through the pipeline in figure 10, but still on pclk, and 
a third module that extracts the frames from BRAM (now crossing clock domains to 65 mhz) and 
interfaces with center finding to extract the center and area controls (using BRAM address to 
calculate indices). On page 19 is a discussion of challenges encountered with the overall timing 
of the pipelines which dives further into the design improvements we learned. First, we discuss 
the center finder module and displays. 
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Center Finder  (Prajwal) 
 
The center_finder module performs a simple center of mass calculation on each frame of the 
thresholded masks. There are three separate instances of center_finder inside camera_to_mask, 
each responsible for finding the centroid and area of one of the three thresholded colors. Each of 
these instances is fed with binary values corresponding to whether or not a pixel falls within its 
thresholding bounds along with that pixel’s horizontal and vertical location in the frame.  
 
Inside the module, an FSM, whose state transition diagram is shown in figure 12,  performs the 
center finding operation on each frame. At the start of each frame, the all values are zeroed and 
initialized before the FSM enters an “IDLE” state. Here, we check whether or not a new pixel 
has been received, and whether or not that pixel has a value of 1, meaning it did fall inside the 
thresholding bounds for that color. If both of these conditions are met, the FSM moves to its 
“NEWPIXEL” state, where the horizontal index and vertical index of that pixel are added to a 
running sum. Another variable, num_pixel, keeps track of how many of these active pixels are 
counted in each frame. The FSM then returns to its “IDLE” state where it once again waits for 
the aforementioned conditions to be met. This process continues until the indices of the incoming 
pixel indicate that we are reaching the end of the frame. At this point, the FSM transitions to its 
“DONE” state, where a divider IP begins the process of dividing the horizontal index and 
vertical index sums by the number of pixels counted. The results of these divisions are the 
horizontal and vertical indices of the center of mass of thresholded pixels. 

 
Figure 11: Simplified state transition diagram for center_finder FSM 

 
Because division is a costly process in terms of resources and most importantly, time, the size of 
the division had to be chosen carefully so as to minimize the number of clock cycles needed to 
perform the division. The dividend would reach its maximum size if the index of every pixel in 
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the frame was added together. For the horizontal index sum, this would mean the sum 
(0+1+2+3…+319) for all 240 rows. The equation below, where n and m are the maximum 
horizontal and vertical indices,  can be used to find that the largest number this will reach. 
 

(n )/2 240 19(319 ) 2249600 m × n + 1 =  × 3 + 1 = 1  
 

This tells us that the minimum size of our dividend needs to be 24 bits to hold the maximum 
possible sum. The divisor, which is just a count of the number of active pixels, can reach a 
maximum of 76800—i.e.the number of pixels in one 320x240 frame—which can fit into a 17 bit 
number. With these sizes, an unsigned division with the help of the divider ip takes  26 clock 
cycles to divide. To accommodate for the delay, we simply stop the FSM a little bit early. Instead 
of letting it run to the last pixel in the frame, we transition to the “DONE” state as soon as we 
reach the beginning of the last row of pixels. This doesn’t really affect the precision of the center 
finder, and gives us plenty of time before the next frame starts for the division to complete.  
 
One thing to note is that the center_finder  module runs on the common 65Mhz clock , while 
new pixels only enter at the slower p_clk_in. To compensate for this difference, the FSM only 
moves forward when a change is detected in the pixel’s indices, which indicates that a new pixel 
has been received. When in “IDLE”, the FSM checks the current indices and compares them to 
the values they had the last time it checked. The pixel is only considered for the “NEWPIXEL” 
state if these indices are new. 
 

Displays (in top level) (Sage) 
 
The code responsible for routing the correct pixels to the 1024 x 768 VGA is found in the top 
level. The VGA-related assignments are organized in a series of conditionals found in an 
always_ff block. In this block, assignments are made to current_pixel, which the vga_r, vga_g, 
and vga_b pins for the VGA circuit are assigned to combinationally.  
 
The flow of conditional logic is as follows, in pseudocode:  
 
For top half of the VGA display: 
if sw[2] and in top left 320x240 pixels of screen: 

//want to display raw video  
current_pixel <= corresponding raw image pixel  
address to pull from BRAM <= current location of VGA pixel  

else if ~sw[2] and in top left 320x240 pixels of screen: 
//want to display red mask 
current_pixel <= is this location on a crosshair ? is red area above threshold ? Magenta : 
corresponding red mask pixel : corresponding red mask pixel 

else if ~sw[2] and in second 320 pixels of top 240 pixels screen: 
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//want to display blue mask 
if this location is a region divider, current_pixel <= yellow 
else do same as red, but for blue mask 
 

else if ~sw[2] and in third 320 pixels of top 240 pixels screen: 
//same as red, but for green mask 

 
The first line of pseudocode indicates that sw[2] is an option for the user to see their raw video 
(of course with the synthesizers still working). Otherwise, the three side-by-side color masks will 
be displayed. 
 
The magenta crosshairs are only displayed when the area of that LED is above a detection 
threshold. This was decided to provide a nicer visual that lets the user know the red pixels on the 
screen are only being tracked when the system believes it is an actual LED. The value of the 
detection threshold was experimentally chosen to be 200 so that the user can stand far away from 
the camera (~5 feet) and still control the synths. If the threshold is not passed, the red or black 
pixel that would otherwise be in that location is displayed instead of the crosshair pixel.  
 
The word “corresponding” in the pseudocode refers to whatever pixel in the raw video/r/g/b 
mask frame buffer matches the indices of the 320x240 sub-screen on the 1024x768 VGA. The 
way this pixel is obtained is by a combinational assignment to the corresponding BRAM 2nd 
port address. The current coordinates on the VGA are converted to an index in the flattened, 
76800 long array of BRAM address space, representing a single 320x240 camera frame:  
 
 
assign blue_buff_output_pixel_addr = (hcount-11'd320)+vcount*32'd320; 
assign red_buff_output_pixel_addr = hcount+vcount*32'd320; 
assign green_buff_output_pixel_addr = (hcount-11'd640)+vcount*32'd320; 
 
Note that hcount and vcount are variables in top-level that come from the xvga module.  
 
Initially, these address assignments were updated in the sequential conditional blocks. For 
example, the pseudocode above for the red mask originally looked like this:  
 
else if ~sw[2] and in top left 320x240 pixels of screen: 

//want to display red mask 
current_pixel <= is this location on a crosshair ? is red area above threshold ? Magenta : 
corresponding red mask pixel : corresponding red mask pixel 
red_buff_output_pixel_addr <= hcount+vcount*32'd320; 

 
However, a cleaner code that avoids inconsistent pipeline delays between hcount, vcount, and the 
address assignment follows the previous design. See the two block diagrams below for the 
distinction.  
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Figure 13: Original pipeline: inconsistent timings of hcount and vcount  

 
Figure 14: Improved, cleaner pipeline with only one timing for hcount and vcount 

 
For the bottom half of the VGA, we follow a similar trend of conditionally setting the current 
pixel to the correct bar graph pixel. To create the bar graphs, we had to choose a mapping of 
ranges of values from the original camera frame to ranges of values in the bar graph (i.e., height 
of bar graph in number of pixels). To neatly fit onto the screen with labels, we had about 400 
pixels of height to use. 
 
The ranges for the bar graphs were chosen so that we could avoid the overhead of using divider 
IPs. For the horizontal position, the range is exactly the horizontal range of the camera 0-319, 
resulting in a 320-pixel tall bar. An analogous 240 range was chosen for y position. Area was a 
little more difficult because 76800 distinct possibilities (max area is 240*320) could not fit in a 
single bar graph. We chose a range of 300 pixels, so the 76800 range was bucketed by 
normalizing to 300. Fortunately, we could avoid scaling by 300 with a multiplier then dividing 
by 76800 with a divider by instead right shifting 76800 eight times as 76800/256 is exactly 300.  
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image_ROM_synth (Sage) 
 
This module creates the picture blob for any picture displays using ROM that we would like to 
display. We wanted to display some visual of the controls and LED movements changing in 
real-time for users to understand the effect their movements have and gain an intuition for the 
response and range of motion they can adopt.  
 
This module uses the code from lab 3’s picture_blob, with modifications to BRAM sizes and 
address widths to support our particular image dimensions and the use of all three colors instead 
of a grayscale. After deciding between multiple images, the image we chose to display was 
indeed on a grayscale, so the code would produce sufficient results if kept in grayscale, but we 
chose to leave it using all three color maps should we wish to add colored pictures in the future. 
 
We used the Python code from lab 3 to convert our custom image files into coe files.  

 
Figure 151: Display of pixel masks and controls  

 
Figure 15 shows the final display that was used. The words seen on the screen are the 
custom-created 1024x190 image that was stored in ROM.  
 
Each bar graph shows the value of a different physical parameter relating to the above LED. 
From left to right, there are three bar graphs for each of red, blue, and g1reen. Of each triplet of 
bar graphs, the left bar represents the y-position of the LED, the middle bar represents the 

1  Notice that the lights are being picked up instead of their surroundings, contrary to the 
thresholding discussion. This occurred toward the end of the project for one of the two students 
in the team and is possibly attributed to lighting changes or use of a thicker sock. 
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x-position, and the right bar represents the area/depth. Above each bar graph is a description of 
which parameter is affected and which oscillator (LFO or Oscillator 1 of a particular 
Synthesizer) the parameter modulates. Ultimately, the left and right blue bars were not needed 
for any synth controls. Since adding the third blue LED was part of our stretch goals, we left the 
bar graphs less finalized, keeping the unused graphs so that the user can still see a visual of 
where the blue LED is on the screen and its area, just as the user can with the red and green 
LEDs. This also leaves the synthesizer more open ended should someone want to play with the 
code to add or change the controls.  

Challenges with timing (Sage) 
 
We now continue with a discussion of timing challenges that spanned pipelines in 
camera_to_mask and top_level. After implementation, we noticed a few timing issues that 
could be seen on the display and crosshair locations. Debugging these was one of the more 
tedious processes in the project. First, there were artifacts of pixels on the left edges of the 
display’s sub-screens. These were bars a few pixels wide that should have been displayed on the 
right borders, at hcount = 319, 639, 959 but were instead displaying on the left borders.  

Figure 16: Organization of display when viewing masks, labeled with pixel values 
 

Below are two images of what this effect looked like in the beginning. The bars appear to be 
several pixels wide. On the raw video, there is also a ~6 pixel wide black bar and a blue bar (the 
blue bar was determined to be a part of the camera setup rather than a pipeline issue, and the 
black bar was at some point resolved in our series of many timing changes/debug attempts). 
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We examined our pipelines and found multiple cycles of delay in current_pixel relative to hsync 
and vsync. Looking at the original top_level displays pipeline in Figure 10, it takes 4  
cycles to update current_pixel after a vsync, hsync, and blank are provided. These delays would be 
responsible for the bar of pixels noticed in the raw video display, but not other displays, since, 
despite our creation of sub-screens, hcount still wraps around only once at 1023. 

 
Figure 17: VGA timing artifacts in raw video (left) and green mask (right)  

 
Upon attempts to delay vsync, hsync, and blank by 4 cycles using shifting arrays, we saw 
improvements in the artifact width but it was not entirely gone. It took 5 cycles of delay to fully 
remove the artifact, but we could not find the source of the 5th cycle. This was likely some other 
subtle delay, perhaps not in top_level, that we covered up without solving the root of the issue. 
We then turned our attention to the pixel masks and the camera_to_mask module. The red 
mask’s bar was not gone, even though it consumes the same location as the raw video, however, 
as we then expected, it at least had an improved width relative to the green and blue masks’ bars. 
Since entirely removing the raw video artifact was not enough to remove the red bar, it means 
there was another source of error unique to the color masks. Perhaps fixing things in 
camera_to_mask would resolve the extra unknown cycle in the raw video as well. 
 
Examining camera_to_mask allowed us to find remaining pipeline flaws, but a full fix was not 
achieved. As seen in Figure 10, the series purple registers in the diagram were placed as delays 
to align path timings. This reduced the mask artifacts down to a couple pixels wide.  
 
Along our path of debugging, we also encountered an issue where, in contrast to Figure 17, the 
pixels on the left were the same pixel for a few locations in space. We resolved this by removing 
a bug that stretched the pixels, putting the same ones multiple times in BRAM. 
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Figure 18: Stretched pixels on left-hand side of the screen 

Another possible source of timing misalignment was the crossing of clock domains in 
camera_to_mask. Pixels were being outputted at a rate of pclk, but they were being analyzed at 
the speed of a 65 mhz clock. While the code ensured that new processing only occurred when a 
valid new pixel was introduced (so as to avoid the same pixel being stored in BRAM multiple 
times), we concluded it would be cleaner to only cross clock domains through one place: the 
BRAM. We changed rgb_to_hsv and the always_ff in figure 10 to run on pclk instead of the 
65mhz clock, and then adjust the register delays accordingly. However, this produced no changes 
on the display, and even introduced some other strange display bugs. Despite cleaning the code 
by doing the above, the drawbacks that it introduced suggested that not everything had been 
exhaustively aligned, and it would be messy to continue to make those improvements one by 
one, so we had to revert to those modules using 65mhz and relying on their internal mechanisms 
for processing new pixels once every four cycles as mentioned above. In the future, a design that 
crosses clock domains more cautiously and meticulously is significant.  
 
Another issue that was more pressing was the center finding calculations. As the LEDs moved to 
the right edge of the screen and began to go off the screen, the crosshairs would move 
significantly to the right. That is, much more than would be expected should the source of this 
only be the extra pixels on the left hand side. This only became prevalent after several pipeline 
alignments for the display bars had been made. We looked to camera_to_mask and center_finder 
to try to make further changes. These included delaying the horizontal and vertical indices going 
into center_finder so that they are associated with the correct pixel and trying a number of 
delays on the BRAM input address for testing whether this has an effect. We did not have much 
luck with these changes, and   decided to revert a few of our earlier changes for the sake of 
sparing the effect it had on the crosshairs.  

24 



 

 
Figure 19: low crosshair accuracy after improvement to pixel bars (ignore the yellow bar on the 

right, used for debugging purposes) 
 
Further, after changing to the improved displays pipeline that avoids inconsistencies with hcount 
and vcount, (Figure 14), the aforementioned delay to hsync, vsync, and blank is reduced to three. 
However, we still found that anything lower than five re-introduced the raw image pixel bar. 
 
Ultimately, we made several attempts to discover and remove the somewhat scattered sources of 
timing delay across camera_to_mask and top_level, and some solutions worked and were kept, 
while others were discarded, and others did not work. It was a balance of tradeoffs in displays 
and crosshair calculations, and though we were able to reduce our pixel bars and remove the 
stretched pixels to an extent, we mostly erred on the side of crosshair calculations. Overall, 
several design insights were learned:  
 
For any system whose calculations and displays rely on camera and frames of pixels, and more 
generally for any clocked system on which there is more than a single pipeline path (so, basically 
all clocked systems), planning the pipelines down to the clock cycle is very important. We spent 
a good deal of time considering the logical relationships of our modules, logics, and pipeline 
paths, but in the future we would spend more time drawing block diagrams on a 
per-cycle/pipeline path basis that would have allowed us to exhaustively consider the timing 
relationships. This would result in a less cautious approach of building these modules and their 
relationships, avoiding a build up of timing issues that were only faced by the end of most of the 
implementation.  
 
 

25 



 

Top_level (Sage) 
 
The top level module assembles together the results of camera readings and the audio generation 
by linking the parameters received from camera_to_mask to the frequencies and amplitude of 
the two synthesizer’s primary oscillators, the LFO amplitude and frequency, and the synth 
oscillators’ waveshapes. The LFO waveshape (four options) is changed with sw[0:1]. The low 
pass filter cutoff frequency is tuned by the separation distance of the hands. We initially planned 
to use separation distance in two dimensions, but to avoid the cost of implementing a square root 
as seen in the quadratic formula, we chose to only evaluate the separation distance in the x 
dimension. Similar to the requirement for a threshold area to be surpassed for crosshair display, 
all controls only update the audio generation parameters if the responsible thresholded colorblob 
surpasses the threshold area of 200. Additionally, the LFO can be toggled on or off using sw14 
on the FPGA. 
 

External Code Sources and References 

Camera starter code, Joe Steinmeyer  
Includes: 
camera setup code found in camera_to_mask  
cam_read 

rgb_2_hsv, Kevin Zheng 
Image blob code, Lab 3 
Audio starter code, Lab 5a 
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Appendix 
All project code can be found at the following Github link: 
https://github.mit.edu/prajtm/SpaceSynth 
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