

SpaceSynth

Prajwal Tumkur Mahesh
Sage Simhon

11 December 2020

1

Table of Contents
Table of Contents 2

Overview 3

Block Diagram 3

Audio System 5
Oscillator (Prajwal) 5
Mixer (Prajwal) 7
Filter (Prajwal) 7
Amplitude Control (Prajwal) 9
Synthesizer (Prajwal) 9
LFO (Prajwal) 9
PWM Audio Out (Prajwal) 11

Controls Extraction 13
Camera_to_mask (Sage) 13
Thresholding (Sage) 15
Center Finder (Prajwal) 17
Displays (in top level) (Sage) 18
image_ROM_synth (Sage) 21
Challenges with timing (Sage) 22
Top_level (Sage) 26

External Code Sources and References 26

Acknowledgments 26

Appendix 26

2

Overview
SpaceSynth is a musical instrument controlled by movement. Through 3D tracking of the players
hands and head, our gesturally controlled synthesizer allows its users to physically interact with
their music, manipulate, and explore new sounds in their space. By extracting a number of
features with the help of a camera, such as horizontal and vertical positions of both hands, their
proximity to each other and to the device, as well as the spatial location of the player’s head,
SpaceSynth gives users the control and room for expression they need for creating and
interacting with their audio in real time. The audio generation component, based around two
subtractive synthesizer engines is designed for simplicity as well as customizability when
needed. Adjustments to the frequency, amplitude, tuning, filter cutoff, and waveshapes of both
synthesizers are possible either through the gesture-based controls or physical switches on the
FPGA device, and allow for full control over the timbre and sound of the instrument. An LFO
can optionally be enabled with its own configurable frequency, amplitude, and waveshape, to
provide even greater variety and creative control of the sound.

Block Diagram
Figure 1 shows a high level overview of the system. The camera_to_mask module, shown with
greater detail in figure 2, receives images from the camera and extracts data about the spatial
positioning of the user’s limbs. The synthesizer module, shown in figure 3, is one of the main
building blocks of our audio system and accepts various audio parameters to generate and
manipulate waveforms. The top_level module bridges the gap between these two, defining how
the spatial data affects the various parameters of the synthesizers and adding extra features like
an LFO and a VGA display to enhance the user experience. In the following sections, we explain
how each of these modules work in greater detail.

3

Figure 1: High-level block diagram of most important components of the top_level module

Figure 2: High-level block diagram describing the overall operation of the camera_to_mask
module

Figure 3: High-level block diagram describing the audio path through the synthesizer

4

Audio System

Oscillator (Prajwal)

The oscillator module is responsible for creating a signed 16-bit waveform with a configurable
frequency and waveshape. The waveforms are generated with the help of a 32-bit phasor, which
is simply a 32-bit counter that increments by a certain amount at the 48kHz sampling rate,
resulting in a sawtooth waveform of a fixed amplitude as the counter repeatedly fills up at a
constant rate and overflows. This sawtooth shape of the phasor can be seen in Figures 4 through
7 below. As the name suggests, this phasor generates the phase information needed to create the
output waveforms. Because we want to be able to control the frequency of the output waveforms,
we need to be able to control how quickly it completes one period, that is, how quickly the phase
of that waveform goes from 0 to 2𝝿. Since the phasor is responsible for providing the phase
information for the output waveform, this means that we need to update the the phasor counter
such that it goes from 0 (corresponding to a phase of 0) to 2x1032 (corresponding to a phase of
2𝝿) at the desired frequency of the output waveform. The amount by which the counter is
incremented during each sample is given by the equation below.

hase step desired f requency) p = (× 48kHz
2×1032

The frequency input to the oscillator module is defined by a 12-bit number, so the maximum
frequency is limited to 4095Hz. With the help of the phasor, we can create four fundamental
waveshape types: sine, square, triangle, and sawtooth.

The sawtooth waveform is the simplest to generate, since the phasor is already a sawtooth wave.
If a sawtooth output is desired, we can simply take the top 16 bits of the phasor, which is
unsigned, and invert the MSB to create the signed output waveform. Figure 4 shows the phasor
waveform on top and the output sawtooth on the bottom.

Figure 4: Phasor (top) and output sawtooth waveform (bottom) in simulation

The triangle waveform can be thought of as back to back sawtooth waveforms with half the
period. In other words, in the time the phasor needs to ramp up from zero to its maximum value,
the triangle needs to ramp up from zero to its maximum value and ramp back down from its
maximum value to zero. To accomplish this, we take note that the MSB of the phasor, i.e.
phasor[31], can be used as an indicator for the halfway point of the phase, since it has a value of
0 for half the time and a value of 1 for the other half. While this bit is 0, we simply take
5

phasor[30:15] which produces an upward sloping ramp with twice the frequency of the phasor.
Then when phasor [31] is 1, we switch the direction of that ramp by using 16'hFFFF -
phase[30:15], which produces a downward sloping ramp with twice the frequency of the phasor.
Finally, the MSB is flipped to make it a signed waveform before being sent out as a triangle
wave. The output waveform is shown in Figure 5.

Figure 5: Phasor (top) and output triangle waveform (bottom) in simulation

The square wave, shown in Figure 6, is created in a similar way, except instead of using a ramp
for each half of the phase, we just use a single high or low value. While phasor[31] is 0, we
output a high value of 16'hFFFF, and when it is 1, we output a low value of 0. Once again, the
MSB of this output is flipped to convert it to a signed value.

Figure 6: Phasor (top) and output square waveform (bottom) in simulation

The sine waveshape is slightly more complex to generate. Instead of calculating the value of
sine(phase) for each sample, we instead use an 8-bit look-up-table (LUT) which stores the
amplitude information for one period of a sine wave. The sine LUT, the code for which is
generated by a python script, holds the 16-bit unsigned amplitudes of a sine waveform at 256
different points during its period. By passing the upper 8 bits of the phasor, phase[31:24], into
this module, we can cycle through these 256 points and get on the output a sine waveform with
the same frequency as the phasor. Similar to the rest, the MSB is flipped before being sent out as
a signed 16-bit waveform, as shown in Figure 7.

Figure 7: Phasor (top) and output square waveform (bottom) in simulation

6

Mixer (Prajwal)

The mixer module is used to combine two signed 16-bit waveforms into one without clipping.
This is a combinational module which simply right-shifts both inputs to halve their gains and
adds them together to form the output.

The mixer module is used to combine the output of the two oscillators inside each synthesizer
module, as well as to combine the output of both synthesizers in top_level before they are sent
out as the main audio.

Filter (Prajwal)

After the oscillators, the second most important component of a subtractive synthesizer is the
low pass filter, which attenuates, or “subtracts”, frequency components of the oscillator
waveforms to shape the sound of the synth. For ease of implementation and because we don’t
need a perfect passband and stopband for this application, we chose to use a single first-order IIR
filter to accomplish this. A first-order IIR filter is a simple recursive filter with the difference
equation shown below.

[n] y[n] b x[n] x[n]y = a1 − 1 + 0 + b1 − 1
The output of the filter is determined by the current input, the previous input, the previous
output, as well as the coefficients a1, b0, and b1. These coefficients are what determine the
behavior of the filter, and most importantly, its cutoff frequency. Rather than calculating these
coefficients on the FPGA for any given cutoff frequency, a python script was used to generate
another 8-bit look up table with calculated coefficients corresponding to a range of cutoff
frequencies.
The python script works by first choosing the range of cutoff frequencies for the filter. For the
filter ultimately used in the project, this range was from 100Hz to 5000Kz. This range is then
divided into 256 frequency steps which serve as the indices of the lookup table. For each
frequency step, the ratio of the desired cutoff frequency to the system nyquist frequency (24kHz)
is calculated and plugged into scipy’s iir filter function, which outputs the values of the three
coefficients for a lowpass iir filter with that desired cutoff.

These values are then multiplied by 214 to convert them to fixed point numbers and formatted
into a case statement and put into the filter_coeffs module, which delivers the appropriate filter
coefficients for a chosen cutoff frequency among the 256 calculated. When the filter is updated
by the user, the main filter module updates its a0 term, b0 term, and b1 term with the help of this
filter_coeffs module.

7

assign mixed_out = (wave1_in>>>1)+(wave2_in>>>1);

To implement the difference function above, the main filter module needs to perform a number
of multiplication and addition operations with fairly large numbers. To use resources most
efficiently and to ensure that all the operations meet timing requirements, we employ an FSM to
perform the steps of the difference equation sequentially rather than in parallel. Figure 8
summarizes the steps of this process along with the state transitions. First, a single,
combinational multiplier is set up with two 16-bit factors—mult1 and mult2—with a 32-bit
output mult_out, where mult_out = mult1*mult2. When a sample from a waveform enters the
filter module, mult1 is set to b0, mult2 is set to the value of the input waveform, and the FSM
enters its first state. The combinational multiplication is performed over the next clock cycle and
as the FSM enters the new state, the result, left-shifted to compensate for the 214 multiplication
from earlier, is added to a running sum. Mult1 is then assigned to hold the next term b1, mult 2 is
assigned to to hold the previous value of the waveform, and the FSM state is updated again. This
process repeats until the difference equation has been calculated including all three terms,
whereupon the sum now contains the output of the filter. The lower 15 bits of this sum along
with the top sign bit are passed to the output. Because the filter module runs at a 65Mhz clock
compared to the much slower sampling rate of 48kHz, there is plenty of time for calculating the
filter output via this sequential method before the next sample comes in.

Figure 8: State transition diagram for first order IIR filter calculation

The size of the fixed-point normalized coefficients was chosen through a bit of trial and error.
For most of the cutoff frequency steps, the IIR filter coefficients provided by the scipy iirfilter
function were extremely small, so they needed to be multiplied by a fairly large number to scale
them to fixed point numbers with enough precision. A larger scaling factor would give more
usable digits and thus a higher precision representation of the filter coefficients, while a lower
scaling factor would give fewer digits and less precision. However, going too large would mean
more cascaded adders on the FPGA when it came time to multiply the terms and more difficulty
getting the multiplications and additions to fit into a single clock cycle. A 214 scaling was
eventually chosen as the scaling factor by first starting at 230 and lowering a couple of times until
the implemented design met timing constraints.

8

Amplitude Control (Prajwal)

After the signal has been processed by the filter and before it leaves the synthesizer output, the
gain of the signal is adjusted by the amplitude_control module. This is another combinational
module that works by right-shifting the signal to reduce its amplitude. Since we are working with
16-bit signals, we can technically shift the signal by up to 16 bits, for 16 different volume levels
with a -6dB drop in loudness between each step. Practically however, the lowest three or four
volume levels are unusable, since at this point, there will not be enough bits of information
remaining to accurately represent the audio waveform without adding in a lot of quantization
noise. As an extreme example, shifting the signal by 15 bits to its lowest volume level will leave
just 1 bit of signal information remaining, turning any input waveform into basically a square
wave.

Synthesizer (Prajwal)

The synthesizer module is a higher-level module that collects all of the above components and
defines the path the signal takes through them. The main audio generating components inside the
synthesizer module are two oscillator modules. The frequency input to the synthesizer directly
sets the frequency of one of these oscillators, referred to as osc_1. The frequency input to the
other oscillator (osc_2) is instead tuned to a number of octaves above or below that of osc_1.
Conveniently octaves are logarithmic units, where an increase of one octave corresponds to a
doubling of the frequency. As a result, the frequency of osc_2 can be calculated simply by
shifting the input frequency left or right by the number of octaves we want to be above or below
it.

The output of both oscillators is combined using the mixer module, the output of which is
directed through the filter, followed by the amplitude controller, and finally sent to the output.

The waveshapes of both oscillators can be individually controlled, and when mixed together
create an audio waveform that is rich in harmonics. By changing the filter cutoff frequency we
can change how much of these harmonics are attenuated and consequently alter the timbre off
the sound.

LFO (Prajwal)

An LFO, or low frequency oscillator is a separate oscillator whose frequency is typically below
the audible frequency range, i.e. 20Hz or less. The purpose of an LFO is not to generate audio,
9

osc2_frequency = frequency_in<<octave

but to act as a modulation source to alter one or more parameters of the synthesizer. In our
system, we used an LFO to modulate the frequency, or pitch, of both synthesizers.

The LFO was created in the top_level module, and consisted of an oscillator module feeding into
an amplitude control module. Both of these modules work the same way as they do in the main
synthesizer modules, with the exception that the LFO oscillator generally receives a much lower
frequency input.

To modulate the frequency of both of the synthesizers, the 16-bit signed waveform is simply
added to the frequency input to both synthesizers. When the LFO waveform has a positive value,
it adds to the frequency input of the synthesizers and increases their pitch. A negative value of
the LFO waveform decreases the frequency of the synthesizers and results in a lower pitch. The
amplitude of the LFO affects how much the pitch changes by and the frequency of the LFO
affects the rate at which the pitch changes occur.

This is not the most ideal way to implement a LFO on pitch, but it is the one that involves the
least amount of computation. To see why this is not the best method, consider a situation where
the synthesizer is set to a base frequency of 300Hz, and the LFO has an amplitude of 150. When
added together, the synth frequency reaches a minimum of 150Hz, which is 1 octave lower than
the base frequency, and a maximum of 450Hz, which is only 0.5 octaves above the base
frequency. This discrepancy occurs because addition is a linear change while changes in pitch
are perceived logarithmically. Moreover, with this addition approach, the LFO, at the same
amplitude, has different effects on the pitch of the sound at different base frequencies. For
example consider another situation where the synthesizer is set to a base frequency of 60Hz, and
the LFO has the same amplitude of 150. In this case, when added together, the synth frequency
reaches a maximum of 210Hz, which is a little less than 2 octaves above the base frequency, and
a minimum of -90Hz, which causes the unsigned frequency variable to roll over. To prevent
these problems and create an LFO that has the same effect on pitch regardless of the base
frequency, the formula below should be used to calculate the new frequency.

new f requency) base f requency) (= (× 2((LF O normalized)×(modulation depth))

LFO normalized refers to the LFO waveform normalized to oscillate between +1 and -, and the
modulation depth is the number of octaves the LFO should shift the base frequency at maximum
amplitude. Because of the complexity and additional fpga resources required to perform this
calculation using fixed point numbers, and because we were satisfied with the pitch changes
produced by the LFO through the addition method, we made the choice to stick with the former.
This works well enough in our system because the range of base frequencies requested from the
synthesizers—usually between 200Hz and 520Hz—is fairly small, so the effect that the LFO has
on the pitch of the sound will be more or less consistent across the frequency range.

10

The effect of a large LFO amplitude on a small base frequency value was an issue that still
needed to be dealt with. In these cases, the frequency value rolls over and produces unpleasant
high frequency tones. To prevent this, a simple conditional statement, highlighted below, is used
to check if the signed value of the frequency will go below zero. If so, the frequency is simply
set to 0Hz, but if not, the LFO is added as usual.This effectively hard clips the frequency value
so it never goes below zero .

PWM Audio Out (Prajwal)

All the audio waveforms inside the FPGA are represented as signed 16-bit numbers that hold
information about the amplitude level of that waveform at a particular point in time. However,
these digital, signed 16-bit numbers can’t directly be listened to as audio. The pwm module
bridges this gap between numerical representation of waveforms and an actual analog audio
signal we can listen to.

The audio output jack on the FPGA board is preceded by a 4th order Butterworth lowpass filter,
which can be used to create an analog waveform from the digital output of the FPGA. This is
done by using a high frequency digital carrier wave, whose pulse width is modulated by the
amplitude of the desired waveform. As the carrier wave passes through the low pass filter, it
essentially gets integrated, and the filter outputs an analog waveform whose amplitude is
proportional to the width of the pulse.

A common way to create this digital PWM signal is to use a fast moving ramp signal to compare
the digital waveform against as demonstrated in Figure 9. In our system, we use a 16-bit ramp
that increments by 256 on every input clock edge. With a 65Mhz clock, this results in a ramp
with a frequency of approximately 250kHz. This ramp is compared against the digital output
waveform of the system, which is converted to an unsigned number before being sent into the
module. When the amplitude value of the ramp is above that of the waveform, the PWM output
to the filter is pulled low (i.e. 0) and when the amplitude value of the ramp is below that of our
waveform, the PWM signal is pulled to a high impedance state (i.e. Z).

11

synth1_frequency <= (red_area>=detection_threshold)?
(lfo_enabled?(($signed(lfo_out+12'd200+red_center_h_index)>=12'sd0)?(12'd200+red_center_h_index
+lfo_out):12'd0):(12'd200+red_center_h_index)):12'd0;

Figure 9: Ramp waveform and desired signal (top) with the resulting PWM waveform

12

Controls Extraction

Camera_to_mask (Sage)

The camera to mask module is responsible for reading from the camera and converting these
readings into several pieces of processed information that will be used as inputs to the sound
generation modules and for the displays. These pieces include per-color classifications (booleans
for red, green, and blue) of the pixels every frame, and the centroid in (x, y) space and area of
each group of classified pixels. This module effectively returns a “mask” filtering the video for
each of the red, green, and blue LEDs. Each mask is simply a frame of pixels that are either
black or one of {red, green, blue}. The mask can then be used to display a black screen with a
moving, colored blob, representing the corresponding LED in space, and containing crosshairs
meeting at the center. This information is stored in a dual-port BRAM frame buffer (1x76800 for
each color) for such use. Additionally, the raw video pixels are stored in a 12x76800 BRAM.

The first step in implementation of camera_to_mask is obtaining the pixels from the camera by
interfacing with the camera reading code. From the camera starter code, a 16.25MHz clock
called xclk is created by counting every 4th rising edge of the 65MHz system clock (so, 25% the
speed of our system clock). The camera is driven with this clock via the pin jbclk_p from the JB
PMOD port on the FPGA side. The JB pin 0 holds the returning pixel clock, pclk, from the
camera. This clock, along with vsync and href are used by the provided camera_read module to
read and output the incoming 320x240 frames of pixels serially. The module outputs 16 bit
pixels, a storage address for BRAM, the (x, y) coordinates of the pixel (a modification we made
to the code), and booleans indicating whenever a new valid pixel is outputted as well as
whenever all the pixels in a frame have been outputted.

The serially outputted pixels then enter a processing pipeline as shown in figure 10 below.

13

Figure 10: Block and Timing Diagrams of pixel storage pipelines in camera_to_mask

of BRAM. The first option is to simply send the raw output pixel to image_bram, for which there
is only a latency of 1 as it is sequentially converted from a 16 bit 5-6-5 RGB value to a 12 bit
value holding the upper 4 bits of each color. The second option is to send the pixel into red, blue,
and green BRAMs which contain the classified pixels. For example, a red LED pixel in red
BRAM will be stored as a 1’b1 and anything else will be stored as a 0. This is done by first
passing the pixel through an RGB to HSV converter module, rgb_2_hsv, which converts the
pixels from RGB values to HSV values. We take full advantage of the available RGB resolution
by passing all 5 bits of red (concatenated with three zeros for the 8-bit input requirement), all 6
bits of green (concatenated with two zeros), and all 5 bits of blue (concatenated with two zeros).
The decision to switch to an HSV color space was made to reduce the amount of color
bleeding/incorrect classifications that would be present in thresholding RGB values. This module
takes twenty-two cycles per new pixel (at pclk), and since pixels are coming in at a rate of 1/4th
the system clock, there is an overall latency of six 65MHz clock cycles.

Continuing on path 2, the hsv values are then thresholded and stored in BRAM as 1s or 0s at the
per-pixel incrementing input address (1st port) provided by cam_read. depending on if they
meet that color BRAM’s thresholding criteria.

14

Thresholding (Sage)

Thresholding (chroma keying) the camera images was approached by using trial and error from
several different angles.

Thresholds for hue were created by examining an HSV palette and choosing rough boundaries.
Then, these values were fine-tuned experimentally by using the VGA display of the color masks.
Despite a suggestion to try thresholding only based on hue from past experience, we found that

doing this created too much noise and therefore
saturation and value needed to also be considered. As
value was raised, more noise was picked up, and as it
was reduced, less of the LEDs were detected. We
settled on an optimal value for each LED
experimentally. For saturation, a number had to be
chosen such that it is low enough to overcome the
effects of light from the LEDs reducing the saturation
of the pixels on the LED but high enough to filter out
non-red, blue, or green sources of light. Additionally,

 Figure 11: HSV palette other objects in the room that were in fact red, blue, or
green needed to not fall into the thresholds. The success we had with this was mostly in thanks to
the use of LEDs themselves and their characteristic lower saturation than non-illuminated
objects. Still, we struggled to get the camera readings correctly classified even after tuning the
threshold values:

One challenge we faced with using LEDs was related to the aforementioned reduced saturation
due to the light. Because the LEDs were so bright, the camera picked many of the pixels up as
high value white pixels. We reduced the brightness on the physical LEDs to a much lower setting
and found that this improved the issue of the light overpowering the color. Interestingly, the
different colored lights responded differently to this tuning, with each color requiring a different
optimal brightness. We also tuned the camera control settings in ov7670_control.ino, including
the RBG gains and automatic gain and exposure control to optimize for noise reduction and
picking up enough LED. Because of the success we had with this and thresholding, we did not
find it necessary to rely on the ILA or a calibration module for experimentally determining the
HSV value of a particular pixel, though this approach was considered.

Another challenge we had was with noise created by the LEDs casting shadows on our clothing,
arms, nearby objects, and the other 1-2 LEDs. While the aforementioned reduction in brightness
significantly relieved this issue, and probably enough to not have significant error in the area
calculations, there was still a non-trivial amount of noise due to shadows that would interfere
with the center calculations. We decided to cover the LEDs with socks as a form of containing
and softening/smoothing the light.

15

One observation was that the brightness of the circular lights on the LEDs overpowered the
color and they were not picked up by the thresholding. Thus, the color masks appeared as
colored circles with smaller black circles (the lights) inside of them. Each LED responded
differently to the thresholding. Interestingly, this effect was prevalent in the green lights, and less
in the red, and the opposite effect existed in the blue. Because of the uniform distribution of
these lights on the circular LED face, this effect did not interfere with the center-finding
calculations. However, there would certainly be a decrease in area. Since area is a relative
control in our case, a simple scaling of the green area relative to the red and red relative to blue
would have been a sufficient solution, but we found the effects of different area scales to be
insignificant for our purposes. Another possible solution that might have been worth exploring
was using the HSL color space, with the value from HSV replaced with lightness by HSL.

While most of these designs helped make the thresholding more robust to lighting changes, we
left available different switches (7-10) containing different threshold settings for users to choose
what works best for them.

Returning to the block diagram on page 10, we can see that camera_to_mask uses the booleans
stored in BRAM to output 12 bit classified pixels that are either red (12’hF00), green (12’h0F0),
or blue (12’h00F), or it returns the raw image pixel. The 2nd port address to select a value from
BRAM is provided as an input to the module.

Finally, the last responsibility of camera_to_mask is outputting the centroid and area of each
frame. This is done by passing the pixels and corresponding indices from camera_read directly
into the center_finder module and routing the results as output to camera_to_mask.

The camera_to_mask module was built incrementally as we added increasing functionality and
control extraction to it. In retrospect, earlier planning of strictly what will be contained in and
outside of the module would have saved the module from growing very large and perhaps a bit
too bulky. Breaking down camera_to_mask into smaller modules—especially separating the
instantiation center_finder from the module—would have been a cleaner and safer design
decision. One plausible breakdown would be: a module to receive the data from the camera
hardware and pass it through camera_read (this would be entirely on pclk), a module that,
receiving these values at pclk, passes them through the pipeline in figure 10, but still on pclk, and
a third module that extracts the frames from BRAM (now crossing clock domains to 65 mhz) and
interfaces with center finding to extract the center and area controls (using BRAM address to
calculate indices). On page 19 is a discussion of challenges encountered with the overall timing
of the pipelines which dives further into the design improvements we learned. First, we discuss
the center finder module and displays.

16

Center Finder (Prajwal)

The center_finder module performs a simple center of mass calculation on each frame of the
thresholded masks. There are three separate instances of center_finder inside camera_to_mask,
each responsible for finding the centroid and area of one of the three thresholded colors. Each of
these instances is fed with binary values corresponding to whether or not a pixel falls within its
thresholding bounds along with that pixel’s horizontal and vertical location in the frame.

Inside the module, an FSM, whose state transition diagram is shown in figure 12, performs the
center finding operation on each frame. At the start of each frame, the all values are zeroed and
initialized before the FSM enters an “IDLE” state. Here, we check whether or not a new pixel
has been received, and whether or not that pixel has a value of 1, meaning it did fall inside the
thresholding bounds for that color. If both of these conditions are met, the FSM moves to its
“NEWPIXEL” state, where the horizontal index and vertical index of that pixel are added to a
running sum. Another variable, num_pixel, keeps track of how many of these active pixels are
counted in each frame. The FSM then returns to its “IDLE” state where it once again waits for
the aforementioned conditions to be met. This process continues until the indices of the incoming
pixel indicate that we are reaching the end of the frame. At this point, the FSM transitions to its
“DONE” state, where a divider IP begins the process of dividing the horizontal index and
vertical index sums by the number of pixels counted. The results of these divisions are the
horizontal and vertical indices of the center of mass of thresholded pixels.

Figure 11: Simplified state transition diagram for center_finder FSM

Because division is a costly process in terms of resources and most importantly, time, the size of
the division had to be chosen carefully so as to minimize the number of clock cycles needed to
perform the division. The dividend would reach its maximum size if the index of every pixel in

17

the frame was added together. For the horizontal index sum, this would mean the sum
(0+1+2+3…+319) for all 240 rows. The equation below, where n and m are the maximum
horizontal and vertical indices, can be used to find that the largest number this will reach.

(n)/2 240 19(319) 2249600 m × n + 1 = × 3 + 1 = 1

This tells us that the minimum size of our dividend needs to be 24 bits to hold the maximum
possible sum. The divisor, which is just a count of the number of active pixels, can reach a
maximum of 76800—i.e.the number of pixels in one 320x240 frame—which can fit into a 17 bit
number. With these sizes, an unsigned division with the help of the divider ip takes 26 clock
cycles to divide. To accommodate for the delay, we simply stop the FSM a little bit early. Instead
of letting it run to the last pixel in the frame, we transition to the “DONE” state as soon as we
reach the beginning of the last row of pixels. This doesn’t really affect the precision of the center
finder, and gives us plenty of time before the next frame starts for the division to complete.

One thing to note is that the center_finder module runs on the common 65Mhz clock , while
new pixels only enter at the slower p_clk_in. To compensate for this difference, the FSM only
moves forward when a change is detected in the pixel’s indices, which indicates that a new pixel
has been received. When in “IDLE”, the FSM checks the current indices and compares them to
the values they had the last time it checked. The pixel is only considered for the “NEWPIXEL”
state if these indices are new.

Displays (in top level) (Sage)

The code responsible for routing the correct pixels to the 1024 x 768 VGA is found in the top
level. The VGA-related assignments are organized in a series of conditionals found in an
always_ff block. In this block, assignments are made to current_pixel, which the vga_r, vga_g,
and vga_b pins for the VGA circuit are assigned to combinationally.

The flow of conditional logic is as follows, in pseudocode:

For top half of the VGA display:
if sw[2] and in top left 320x240 pixels of screen:

//want to display raw video
current_pixel <= corresponding raw image pixel
address to pull from BRAM <= current location of VGA pixel

else if ~sw[2] and in top left 320x240 pixels of screen:
//want to display red mask
current_pixel <= is this location on a crosshair ? is red area above threshold ? Magenta :
corresponding red mask pixel : corresponding red mask pixel

else if ~sw[2] and in second 320 pixels of top 240 pixels screen:
18

//want to display blue mask
if this location is a region divider, current_pixel <= yellow
else do same as red, but for blue mask

else if ~sw[2] and in third 320 pixels of top 240 pixels screen:
//same as red, but for green mask

The first line of pseudocode indicates that sw[2] is an option for the user to see their raw video
(of course with the synthesizers still working). Otherwise, the three side-by-side color masks will
be displayed.

The magenta crosshairs are only displayed when the area of that LED is above a detection
threshold. This was decided to provide a nicer visual that lets the user know the red pixels on the
screen are only being tracked when the system believes it is an actual LED. The value of the
detection threshold was experimentally chosen to be 200 so that the user can stand far away from
the camera (~5 feet) and still control the synths. If the threshold is not passed, the red or black
pixel that would otherwise be in that location is displayed instead of the crosshair pixel.

The word “corresponding” in the pseudocode refers to whatever pixel in the raw video/r/g/b
mask frame buffer matches the indices of the 320x240 sub-screen on the 1024x768 VGA. The
way this pixel is obtained is by a combinational assignment to the corresponding BRAM 2nd
port address. The current coordinates on the VGA are converted to an index in the flattened,
76800 long array of BRAM address space, representing a single 320x240 camera frame:

assign blue_buff_output_pixel_addr = (hcount-11'd320)+vcount*32'd320;
assign red_buff_output_pixel_addr = hcount+vcount*32'd320;
assign green_buff_output_pixel_addr = (hcount-11'd640)+vcount*32'd320;

Note that hcount and vcount are variables in top-level that come from the xvga module.

Initially, these address assignments were updated in the sequential conditional blocks. For
example, the pseudocode above for the red mask originally looked like this:

else if ~sw[2] and in top left 320x240 pixels of screen:

//want to display red mask
current_pixel <= is this location on a crosshair ? is red area above threshold ? Magenta :
corresponding red mask pixel : corresponding red mask pixel
red_buff_output_pixel_addr <= hcount+vcount*32'd320;

However, a cleaner code that avoids inconsistent pipeline delays between hcount, vcount, and the
address assignment follows the previous design. See the two block diagrams below for the
distinction.

19

Figure 13: Original pipeline: inconsistent timings of hcount and vcount

Figure 14: Improved, cleaner pipeline with only one timing for hcount and vcount

For the bottom half of the VGA, we follow a similar trend of conditionally setting the current
pixel to the correct bar graph pixel. To create the bar graphs, we had to choose a mapping of
ranges of values from the original camera frame to ranges of values in the bar graph (i.e., height
of bar graph in number of pixels). To neatly fit onto the screen with labels, we had about 400
pixels of height to use.

The ranges for the bar graphs were chosen so that we could avoid the overhead of using divider
IPs. For the horizontal position, the range is exactly the horizontal range of the camera 0-319,
resulting in a 320-pixel tall bar. An analogous 240 range was chosen for y position. Area was a
little more difficult because 76800 distinct possibilities (max area is 240*320) could not fit in a
single bar graph. We chose a range of 300 pixels, so the 76800 range was bucketed by
normalizing to 300. Fortunately, we could avoid scaling by 300 with a multiplier then dividing
by 76800 with a divider by instead right shifting 76800 eight times as 76800/256 is exactly 300.

20

image_ROM_synth (Sage)

This module creates the picture blob for any picture displays using ROM that we would like to
display. We wanted to display some visual of the controls and LED movements changing in
real-time for users to understand the effect their movements have and gain an intuition for the
response and range of motion they can adopt.

This module uses the code from lab 3’s picture_blob, with modifications to BRAM sizes and
address widths to support our particular image dimensions and the use of all three colors instead
of a grayscale. After deciding between multiple images, the image we chose to display was
indeed on a grayscale, so the code would produce sufficient results if kept in grayscale, but we
chose to leave it using all three color maps should we wish to add colored pictures in the future.

We used the Python code from lab 3 to convert our custom image files into coe files.

Figure 151: Display of pixel masks and controls

Figure 15 shows the final display that was used. The words seen on the screen are the
custom-created 1024x190 image that was stored in ROM.

Each bar graph shows the value of a different physical parameter relating to the above LED.
From left to right, there are three bar graphs for each of red, blue, and g1reen. Of each triplet of
bar graphs, the left bar represents the y-position of the LED, the middle bar represents the

1 Notice that the lights are being picked up instead of their surroundings, contrary to the
thresholding discussion. This occurred toward the end of the project for one of the two students
in the team and is possibly attributed to lighting changes or use of a thicker sock.

21

x-position, and the right bar represents the area/depth. Above each bar graph is a description of
which parameter is affected and which oscillator (LFO or Oscillator 1 of a particular
Synthesizer) the parameter modulates. Ultimately, the left and right blue bars were not needed
for any synth controls. Since adding the third blue LED was part of our stretch goals, we left the
bar graphs less finalized, keeping the unused graphs so that the user can still see a visual of
where the blue LED is on the screen and its area, just as the user can with the red and green
LEDs. This also leaves the synthesizer more open ended should someone want to play with the
code to add or change the controls.

Challenges with timing (Sage)

We now continue with a discussion of timing challenges that spanned pipelines in
camera_to_mask and top_level. After implementation, we noticed a few timing issues that
could be seen on the display and crosshair locations. Debugging these was one of the more
tedious processes in the project. First, there were artifacts of pixels on the left edges of the
display’s sub-screens. These were bars a few pixels wide that should have been displayed on the
right borders, at hcount = 319, 639, 959 but were instead displaying on the left borders.

Figure 16: Organization of display when viewing masks, labeled with pixel values

Below are two images of what this effect looked like in the beginning. The bars appear to be
several pixels wide. On the raw video, there is also a ~6 pixel wide black bar and a blue bar (the
blue bar was determined to be a part of the camera setup rather than a pipeline issue, and the
black bar was at some point resolved in our series of many timing changes/debug attempts).

22

We examined our pipelines and found multiple cycles of delay in current_pixel relative to hsync
and vsync. Looking at the original top_level displays pipeline in Figure 10, it takes 4
cycles to update current_pixel after a vsync, hsync, and blank are provided. These delays would be
responsible for the bar of pixels noticed in the raw video display, but not other displays, since,
despite our creation of sub-screens, hcount still wraps around only once at 1023.

Figure 17: VGA timing artifacts in raw video (left) and green mask (right)

Upon attempts to delay vsync, hsync, and blank by 4 cycles using shifting arrays, we saw
improvements in the artifact width but it was not entirely gone. It took 5 cycles of delay to fully
remove the artifact, but we could not find the source of the 5th cycle. This was likely some other
subtle delay, perhaps not in top_level, that we covered up without solving the root of the issue.
We then turned our attention to the pixel masks and the camera_to_mask module. The red
mask’s bar was not gone, even though it consumes the same location as the raw video, however,
as we then expected, it at least had an improved width relative to the green and blue masks’ bars.
Since entirely removing the raw video artifact was not enough to remove the red bar, it means
there was another source of error unique to the color masks. Perhaps fixing things in
camera_to_mask would resolve the extra unknown cycle in the raw video as well.

Examining camera_to_mask allowed us to find remaining pipeline flaws, but a full fix was not
achieved. As seen in Figure 10, the series purple registers in the diagram were placed as delays
to align path timings. This reduced the mask artifacts down to a couple pixels wide.

Along our path of debugging, we also encountered an issue where, in contrast to Figure 17, the
pixels on the left were the same pixel for a few locations in space. We resolved this by removing
a bug that stretched the pixels, putting the same ones multiple times in BRAM.
23

Figure 18: Stretched pixels on left-hand side of the screen

Another possible source of timing misalignment was the crossing of clock domains in
camera_to_mask. Pixels were being outputted at a rate of pclk, but they were being analyzed at
the speed of a 65 mhz clock. While the code ensured that new processing only occurred when a
valid new pixel was introduced (so as to avoid the same pixel being stored in BRAM multiple
times), we concluded it would be cleaner to only cross clock domains through one place: the
BRAM. We changed rgb_to_hsv and the always_ff in figure 10 to run on pclk instead of the
65mhz clock, and then adjust the register delays accordingly. However, this produced no changes
on the display, and even introduced some other strange display bugs. Despite cleaning the code
by doing the above, the drawbacks that it introduced suggested that not everything had been
exhaustively aligned, and it would be messy to continue to make those improvements one by
one, so we had to revert to those modules using 65mhz and relying on their internal mechanisms
for processing new pixels once every four cycles as mentioned above. In the future, a design that
crosses clock domains more cautiously and meticulously is significant.

Another issue that was more pressing was the center finding calculations. As the LEDs moved to
the right edge of the screen and began to go off the screen, the crosshairs would move
significantly to the right. That is, much more than would be expected should the source of this
only be the extra pixels on the left hand side. This only became prevalent after several pipeline
alignments for the display bars had been made. We looked to camera_to_mask and center_finder
to try to make further changes. These included delaying the horizontal and vertical indices going
into center_finder so that they are associated with the correct pixel and trying a number of
delays on the BRAM input address for testing whether this has an effect. We did not have much
luck with these changes, and decided to revert a few of our earlier changes for the sake of
sparing the effect it had on the crosshairs.

24

Figure 19: low crosshair accuracy after improvement to pixel bars (ignore the yellow bar on the

right, used for debugging purposes)

Further, after changing to the improved displays pipeline that avoids inconsistencies with hcount
and vcount, (Figure 14), the aforementioned delay to hsync, vsync, and blank is reduced to three.
However, we still found that anything lower than five re-introduced the raw image pixel bar.

Ultimately, we made several attempts to discover and remove the somewhat scattered sources of
timing delay across camera_to_mask and top_level, and some solutions worked and were kept,
while others were discarded, and others did not work. It was a balance of tradeoffs in displays
and crosshair calculations, and though we were able to reduce our pixel bars and remove the
stretched pixels to an extent, we mostly erred on the side of crosshair calculations. Overall,
several design insights were learned:

For any system whose calculations and displays rely on camera and frames of pixels, and more
generally for any clocked system on which there is more than a single pipeline path (so, basically
all clocked systems), planning the pipelines down to the clock cycle is very important. We spent
a good deal of time considering the logical relationships of our modules, logics, and pipeline
paths, but in the future we would spend more time drawing block diagrams on a
per-cycle/pipeline path basis that would have allowed us to exhaustively consider the timing
relationships. This would result in a less cautious approach of building these modules and their
relationships, avoiding a build up of timing issues that were only faced by the end of most of the
implementation.

25

Top_level (Sage)

The top level module assembles together the results of camera readings and the audio generation
by linking the parameters received from camera_to_mask to the frequencies and amplitude of
the two synthesizer’s primary oscillators, the LFO amplitude and frequency, and the synth
oscillators’ waveshapes. The LFO waveshape (four options) is changed with sw[0:1]. The low
pass filter cutoff frequency is tuned by the separation distance of the hands. We initially planned
to use separation distance in two dimensions, but to avoid the cost of implementing a square root
as seen in the quadratic formula, we chose to only evaluate the separation distance in the x
dimension. Similar to the requirement for a threshold area to be surpassed for crosshair display,
all controls only update the audio generation parameters if the responsible thresholded colorblob
surpasses the threshold area of 200. Additionally, the LFO can be toggled on or off using sw14
on the FPGA.

External Code Sources and References

Camera starter code, Joe Steinmeyer
Includes:
camera setup code found in camera_to_mask
cam_read

rgb_2_hsv, Kevin Zheng
Image blob code, Lab 3
Audio starter code, Lab 5a

Acknowledgments
We’d like to thank Prof Joe Steinmeyer for the excellent lectures and mentoring that helped
make this project possible. We’d also like to thank Brian Sennet, our industry mentor from Bose,
as well as all the TAs that helped us get this project off the ground, solve problems, and make
improvements to our system as we brought it to its final state.

Appendix
All project code can be found at the following Github link:
https://github.mit.edu/prajtm/SpaceSynth

26

https://github.mit.edu/prajtm/SpaceSynth

