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Overview 

Our project is an implementation of a digital audio workstation (DAW), 

such as Garageband, Logic, Ableton, FL Studio, etc. This software 
enables producers to record, edit, and mix audio. DAWs typically 

include digital instruments, the ability to record multiple tracks 
over each other, and loopable playback. Our simplified design has four 

different recordable tracks, each with a synthesizer instrument with 8 

different sounds spanning 8 octaves, and is played using a standard 
USB computer keyboard using the keys shown below. 

 

 
 

Each of these tracks has three requirements to be played: 

■ 13 bits to indicate which notes in the octave are being played 

■ 3 bits to indicate which octave is being played 

■ 3 bits to indicate which instrument is being played 
The record function saves the state of these 19 bits 4 times a second 

for 64 seconds for each instrument (four 19x256 BRAMs, which are 
actually implemented as 20x256 to provide slack for extra 

functionality). In converting these bits to 8 bit 48 kHz audio, we use 
8 bit look up tables of 8 predefined waveforms (sine, saw, square, 

triangle, experimental random coefficients, and some combinations).  
 

The entire system runs on a 65 MHz clock that drives the XVGA display 

at 60 Hz and allows us a little bit more slack with critical path 
delay. 

 
Our motivation for this project comes from both of our passion for 

music and a desire to learn about interfacing with HID devices and 
digital signal processing. 
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Milestones 

Commitment (all accomplished) 

Live synthesizer playing​: Input is read from a USB keyboard, parsed 
into audio waveforms of a certain instrument, and output by the 
headphone jack. 

Choose waveform of synth (sine, square, saw, etc.)​: The user can 
select the waveform for the audio to be played through, given a 

variety of “instrument” options. 
Display instrument view​: The system outputs VGA to a monitor to 
display a piano with the played notes denoted, along with some 
indicator of the waveform being selected. 

Goal (all accomplished) 

Recording​: Input can be saved to a recording or played live, this is 
managed by the track module. 

Multi-track support​: Multiple tracks exist and the input can be routed 
into whichever is desired. 

Mixing​: The multiple tracks can be mixed together at varying volumes 
to produce the output. 

Display track view​: The current track has a display featuring the 
waveform recorded/played live. 

 

Stretch (did not have time to complete, noted in future 
improvements section) 

Effects​: Tracks can be routed through effects modules where the user 
may select effects to apply to them. 
Stereo mixing (panning)​: The mixer features panning of tracks 
left/right. 
Velocity control​: The input module can read note velocity (effective 
volume) and route that through to output. 
Automation​: The mixer might automatically adjust dynamics over time. 
Display effects view​: Selected effects are displayed on the monitor. 
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Modules 

Input Handler 

This module serves to turn the keyboard serial data into a useful 

format for the DAW to process. The format we chose for both space 
constraints and consideration of practicality is a 13-bit binary 

number encoding of whether each individual key in a given octave (plus 
the octave of the root) is currently being pressed or not, and a 3-bit 

binary number encoding the octave chosen. This saves on space compared 
to the 88-bit format we proposed, and allows for the same 

functionality given the keyboard only allows for one octave to be 
played at a given time anyway. 

 

This module has a nested keyboard_handler module containing the serial 
receiver and outputting a 32-bit shift buffer of the four most-recent 

8-bit keyboard scan codes. The keyboard input comes in through the ps2 
data emulator built-in to the FPGA, and an HID-supported keyboard is 

plugged directly into the USB host port on the FPGA. The 
keyboard_handler’s sequential element clocked on the ps2 data clock, 

which is clocked by the keyboard at some frequency much less than the 
FPGA clock only when information is being sent. The ps2_data and 

ps2_clk lines are debounced for 10 cycles at 65MHz to deal with any 
noise and synchronize the different clock domains. 

 

A scan code preceded with the “F0” scancode indicates a key release, 
and a lack thereof indicates a key press, so we use a simple state 

machine with state transitions on updates in the scancode buffer to 
determine how to update the notes and octave in response to a new scan 

code. 
 

Debounce 

This module serves to eliminate any noise caused by “bouncing”, a 
mechanical phenomenon where a button or transducer takes some 

stabilization time in the transition between states before it’s output 
can be guaranteed to be what is expected. The buttons on the FPGA are 

susceptible to bouncing, as are the ps2 data and clk lines (due to the 
fact that these are relying on quartz clocking inside the keyboard). 

 



6 

Additionally, debouncers are useful as modules which synchronize 
external signals operating under a different clock domain to our 

system’s 65Mhz clock, as they are effectively sampling the data at our 
preferred system clock speed.  

 

Recorder 

This is the module that takes in the output from the input module and 

writes it to recording RAM if necessary, saving the state of user 
input every quarter second.  

 
Each of the tracks has one BRAM with each having width 20 and depth 

256. The 20 bits is to store the set of notes being played, the 
octave, and the instrument (there is one extra bit for flexibility 

with adding features). The 256 bits means the BRAM can store 256 
quarter seconds of data, i.e. 64 seconds. When in recording mode, this 

module writes the current state of the inputs to the BRAM 

corresponding to the currently selected track (for all other tracks, 
it will simply read the BRAM).  

 
This module is also responsible for storing the latest valid index in 

each BRAM, which effectively gives the user the ability to reset a 
given track. When the user wants to clear a track, it resets this 

latest valid index to 0. The index increments when recording past it. 
These indices are an output for use by the display module.  

 
This module also generates signals when the beat counter increments 

for the metronome module.  

 

Metronome 

This small module creates the audio for the metronome. To do this, it 
uses signals generated from the recorder counter (which keeps track of 

the current beat), to determine when to output sound and when to 
output silence. It uses tone generators just like octave in order to 

generate the audio.  
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Octave 

This is the module that takes the output from the recorder module 

(i.e. the data that says what notes, octaves, and instruments should 
be currently playing) and outputs an 8 bit audio_out for each track. 

Accordingly, there are four instances of this module in top_level, one 
for each track.  

 
By design, all notes currently being played will be in the same 

octave, as opposed to having a different octave for each note. To 
evaluate the audio_out signal, there are 13 tone generators, one for 

each note. The tone generator, described below, takes in an octave and 
instrument and produces one 8 bit audio output. 

 

The relevant thirteen tone generator outputs are then added together 
to produce an octave output. Here, relevant means that the input to 

the octave module indicates that particular note should be playing. 
The one complication here is that because the audio is limited to 8 

bits, simply adding together will cause overflow and not work as 
intended. To fix this issue, the audio is bit shifted before adding. 

To prevent it from being too quiet when only one note is playing, the 
bit shift amount depends on the number of notes currently being 

played. To prevent clipping after adding the mixer and metronome, 
everything is bit shifted one more than it needs to be. For example, 

if two notes are meant to be played at the same time, they could each 

be bit shifted by 1 (i.e. divided by 2) before adding so that when 
they are added their sum fits in 8 bits. Because we add an extra bit 

of padding, our shifts are as follows: 

■ 1 note: shift by 1 

■ 2 notes: shift by 2 

■ 3-4 notes: shift by 3 

■ 5-8 notes: shift by 4 

■ 9-13 notes: shift by 5 
The sum of these shifted values is then output as the audio of the 

octave (i.e. the track). 
 

Note that shifting by 4 does lose a considerable amount of data about 
the waveform, since a 4 bit sine value is less accurate than 8. 

However, since 4 notes are playing at the same time, it is very hard 
to detect this difference. 
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One effect of doing different amounts of bit shifts based on the 

number of notes is that the volume of each individual note isn’t 
fixed-a note will sound louder if it is the only thing being played on 

its track than if multiple notes are sharing the track with it. 
Effectively, instead of each note being the same volume so that the 

output gets louder with more notes, we keep the octave/track volume 
constant and vary the relative volumes of the notes to achieve that. 

 

Tone Generator 

The tone generator module takes in an octave and instrument, both 3 

bits, as well as a parameter that helps determine the frequency of the 
resulting wave. Using an internal counter, along with the parameter, 

it cycles through LUT values at a speed that produces the appropriate 
frequency. Because changing octaves multiplies/divides the frequency 

by 2, these can be encoded as simple bit shifts. 

 
Each instance of this module contains 8 LUT modules, returning the 

output of the one corresponding to the instrument input.  
 

LUTs 

The 8-bit lookup tables store one period of several common waveforms 

such as sine, triangle, saw, and square. There is also one with just 

random values, and a couple combinations of sine waves of different 
frequencies (adding overtones).  

 
Certain waveforms (e.g. square wave) that do not have to be 

implemented with an 8 bit lookup table like this are still implemented 
this way to show that the design will work for an arbitrary set of 

waveforms.  
 

One disadvantage to using lookup tables like this is that to do the 
lookups, all lookups need to happen even though only one of them ends 

up being used. Thus, after performing the lookups there has to be some 

sort of layered MUX to choose between them. As the number of waveforms 
increases, so does the propagation delay of this MUX.  
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However, because all the lookups are performed anyway, this opens up 
the option to mix the waveforms relatively easily. That is, the 

current implementation makes it easy to add a feature that would allow 
a user to use a waveform that is 50% sine and 50% saw. An alternate 

RAM implementation of these look up tables that wouldn’t involve 
looking up all of the values would not have this flexibility as 

easily, since it would only be able to be read once per clock cycle.  
 

Waveform_select & track_select 

These modules take in a clocked 1-bit signal (associated with 
debounced btnd and btnu for waveform and track selection, 

respectively) and perform simple state transitions between the 8 
available waveforms and 4 available tracks. The difference between the 

modules is in the use-case and the bit depth of the switched output. 
 

Mixer 

This module takes in information about the four tracks and the 
metronome “track” and adds them together, using volume information 

from the FPGA switches to determine how much weight should be 
associated with each track. Track 0’s volume is determined by 

sw[15:13], track 1 by sw[12:10], track 2 by sw[9:7], track 3 by 
sw[6:4], and the metronome by sw[3:1]. Firstly, all tracks were bit 

shifted by 7 - volume, where volume is a 3-bit number corresponding to 

the track’s respective volume level. Afterwards, we bit shift each 
track right by 2 and sum them to yield the input, as to prevent 

overflow when adding them. Note that, unlike the octave module, 
everything is always shifted by 2​. This makes it so that there are no 
surprises in volume changes. The mixer doesn’t care if three tracks 
are playing or one track is playing; track 1 at volume 5 will still 

sound the same. This approach is somewhat rudimentary as we lose 
precision due to the shifting and the effect on the perceived volume 

is very vast as perceived through the audio jack, but it fulfills the 
purpose of controlling volume levels of tracks independently for 

mixing.  
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Seven_seg_controller 

This module serves primarily as a debugging feature and doesn’t have a 

primary feature, in the course of the project we have used it to 
verify scan codes, counters, notes, and volumes. Currently it just 

displays the latest valid beat of the currently selected track and the 
current beat (0 to 255). 

 

Xvga 

This module serves to generate the signals necessary to adhere to the 

1024x768 @60Hz XVGA protocol we designed our FPGA to support. Entirely 
stateful, gives the top_level an hcount, vcount, vsync, hsync, and 

blank signal to be turned into the signal at the VGA port. hcount and 
vcount are used in the top_level and display to represent the position 

of the current pixel being rendered. hsync, vsync, and blank are 
signals which serve to control the timing of VGA events such as 

row/column switching and blanking of the screen. 
 

Display 

This module generates all of the graphics to be displayed on the 
screen by outputting a 12-bit color pixel which is routed to VGA in 

top_level. This module is broken down into a number of sections 
dedicated to controlling related aspects of the screen, namely the 

keyboard, track config, waveform heatmap, and text icons. All of these 

are then tied together with the pixel selection multiplexer. 
 

Within the 65MHz, our system has 
plenty of time to handle the 

designated graphics with minimal 
pipelining, so we resorted to 

delegating pipelining to the image 
ROMs and otherwise handling 

propagation delay by multiplexing 
between the different sections of the 

screen. 
 

All portions of the display can be 

broken down largely into 
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rectangle_blobs and selectable_blobs, both of which are effectively 
wrapped bounding-boxes. A pixel is input into one of these modules, 

bounds checking is performed, and if the pixel falls inside the box, 
it’s color is changed to that of the box; otherwise, the pixel input 

is assigned to the output. The selectable_blobs, in addition to the 
feature mentioned previously, take in a 1-bit selection signal which 

determines what color the inside of the bounding box should be. The 
waveform_heatmap uses more complex pixel-selection by internally 

storing a circular buffer of the number of notes being played at any 
instance in a recording per track. The horizontal position of the 

considered pixel is linearly transformed into an index in this buffer, 

which is routed to a colormap, which is 
routed to the output if it passes a 

boundary check. 
 

The keyboard display shows one octave of a 
keyboard containing all the white and 

black keys between two adjacent octaves of 
the note C. Signaled by keypresses on 

valid keys, the notes on the keyboard will 
fill with red (if white) or blue (if 

black) to indicate that the respective key 

is being pressed. This module consists 
solely of in-series rectangle_blobs as mentioned before. 

 
The track config shows an array of rectangles arranged in a way to 

convey to the user what volume level, octave, and instrument they 
currently have selected. A row in this array corresponds to a label 

(volume, octave, instrument) and a column corresponds to a level (e.g. 
the highest octave/volume/instrument ID is the rightmost column). This 

module also consists solely of in-series rectangle_blobs as mentioned 
before. 

 

The waveform heatmap shows four “bar lines” corresponding to the four 
tracks, and a beat-counter bar which moves along the tracks to 

indicate where the current beat lies. As the recording of a track 
becomes populated with notes, the respective track’s bar line will 

become populated with colors indicating the number of notes being 
played at a given time. Deep blue indicates one note, cyan indicates 
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two, green indicates three, according to the last 3-bits of the number 
of notes being pressed at a given time. 

 
While the rest of the audio architecture is structured to handle more 

than 7 notes being played simultaneously on one track, the waveform 
heatmap was chosen to support this limit as many keyboards do not work 

well with large numbers of simultaneous keypresses, the volume mixing 
is performed such that large numbers of notes become fairly quiet due 

to the number of bit shifts needed to support 8-bit audio integrity, 
and the impracticality of actually recording more than 7 notes on one 

octave for a piece of music. 

 
The text icons just denote labels for the octave, volume, and 

instrument selectors on the track config and the selected tracks on 
the keyboard and waveform displays. The text icons corresponding to 

the track config are static, but the icons indicating selections of 
tracks are highlighted in red to indicate a selected track and black 

otherwise. 
 

The pixel select multiplexer effectively shortens the path that any 
pixel has to take by parallelizing mutually-exclusive graphics on the 

screen and choosing whichever output is unequal to it’s input (the 

background color), or the background color if none match. This 
eliminates the need for introducing pipelining and increasing the 

overall signal delay in pixels, which would introduce new issues with 
the VGA interface. 
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Block Diagram 

 
 

 
 

 

Challenges 

■ Waveform Heatmap: The heatmap of 
notes in each track proved to be a 

more challenging feat than was 
initially expected. Our initial idea 

was to display the exact waveform 
stored in the BRAM, but doing this 

proved challenging as it would mean 
introducing way more inputs to route 

each BRAM from the respective track (octave) to the display. Our 
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workaround was to display a similar amount of information by 
displaying note counts per timeslot, which is much easier to 

route properly. The synchronization of the BRAM and display 
contents proved somewhat challenging as well, but this was 

mitigated by designating the track reset behavior as resetting a 
“latest_valid_beat” for which anything after this beat in the 

buffer is ignored. 

■ 8 bit audio clipping: As mentioned earlier, to prevent audio from 
clipping when adding multiple raw waveforms together, it is 

critical to make sure that they don’t exceed the maximum 8 bits 
we allow. To do this, we do simple divisions with bit shifts to 

try to equalize the volume of the instrument no matter how many 

notes are being played. This works great when 1, 2, or 4 notes 
are being played, but 3 notes and 5+ notes sound a little bit 

quieter than one might expect. This is hard to notice, but is it 
noticeable. One way to deal with this is to use a better 

approximation for 1/3 than 1/4. For example, we could have used 
5/16 or even 21/64. To keep it simple, and because it is hard to 

notice anyway, we stuck with the easy ratios.  

■ Display division by 3: For desired proportions on the display, we 
wanted to give notes in the heatmap a width of 2 pixels and a 

spacing 1 pixel, summing to an effective 3 pixels per note. 
However, this introduced much more complicated math via higher 

propagation delay into the conversion from hcount to circular 

buffer index, and required us to risk losing a substantial amount 
of slack with 10-bit multiplies or equivalent sums of bit-shifts. 

This challenge was resolved by simply changing the proportions 
such that the note spacing was 0 but note width remained 2. This 

made the required linear transformation able to be reduced into a 
simple bit shift and subtraction by a constant, which is much 

faster computationally. Also, this leaves more space for any 
other modules we might decide to add. 

 

Future Improvements 

■ Transpose button: Right now, the synthesizers can only be played 
in the default key, C major. We would like to add a feature to 

transpose. We initially had the idea of changing the sampling 
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rate, but this would change the fidelity of the audio which feels 
more like a hack than a true solution. 

■ Instrument waveform display: The ability to see a period of the 

waveform of the instrument currently selected would be a nice 
immersive step which could help users better identify the 

instruments they are using. 

■ Expansion of keyboard options: Our project currently relies on 
the FPGA buttons and switches for a lot of its functionality. 

Ideally, the keyboard would be able to control everything, so 
integrating these features into keys could be a potential 

improvement. 

■ Testbenching: Our current project relies very little on 
testbenching. In the future, this would save a lot of time in 

implementing new features. 

■ Smarter keyboard sampling: Notes are currently sampled at the 

metronome beat, so if the player has inconsistent rhythm or is 
playing faster than the metronome supports, these notes are not 

picked up by the recording. 

■ Stereo support: The FPGA currently supports mono output. Mixers 
tend to allow for panning of tracks. It could be a neat 

improvement to figure out how to convert a signal from a mono 
port into a stereo-interpretable format. 

■ Digital effects: The ability to apply various convolutional 

filters (distortion, envelope, low-pass) over the audio on 
multiple tracks. 

■ Automation: The ability to program dynamics in mixing over-time 

(fade-ins, etc). 

■ Velocity control: The ability to control per-note effective 
“volume” by interpreting keyboard commands as controlling a 

measure of how hard a note is being pressed. 

■ Audio Pipelining: Right now, all the audio calculations are done 
in a single cycle because they can be. As more instruments and 

tracks get added, this will no longer be the case. Luckily, the 

48 kHz output (vs. the 65 MHz clock) means there are over a 
thousand clock cycles to produce output. Taking multiple cycles 

could also allow switching to BRAM look up tables.  
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Lessons Learned / Advice for Future Projects 

Julian: 

From this project, I learned that version control in Vivado projects 

is a nightmare and a good .gitignore is absolutely essential to get 
version-controlled work done effectively. I also learned firsthand why 

testbenching is so essential, as I’d dismissed the main module I spent 
my time working on (display) as too difficult to testbench, but 

probably ended up wasting many hours in synthesis that I could have 
saved if I took the time to build and work with a proper testbench.  

 
Additionally, I learned the importance of synchronizing inputs and 

clock domain crossing, as unsynchronized keyboard inputs initially led 

to very unpredictable keyboard behavior. Clock domain crossing between 
our system’s 100MHz clock and the clock wizard’s 65MHz clock resulted 

in our WNS(worst negative slack) being off-puttingly bad, as where 
these signals intersected it was seemingly expecting processing at 

around 6.5GHz (the least common multiple frequency between the two). 
This clock domain issue could have been fixed by synchronization, but 

we chose to clock everything at 65MHz as we didn’t need the 100MHz 
throughput and a higher tolerance for slack was desired for our 

calculations. 
 

As far as insight for future projects goes, I would strongly advise 

prioritizing testbenching and maybe even test-first programming as the 
amount of time and stress saved in the long-run by having functional 

tests is very notable. I would also stress the importance of 
thoroughly analyzing any external sources used or studied, as I had 

originally used Digilent-provided code for USB keyboard input and 
discovered that there was actually a major flaw in it, where repeated 

keypresses could not be detected due to a misplaced if statement. My 
assumption that the external source was correct led to my dismissal of 

the issue as pertaining to something I wrote and tacked many hours of 
needless debugging onto my original time budget. 

Nathan: 

+1 on Julian’s version control comment. 
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I think the main thing I learned is organizational. There were dozens 
of ways to implement the audio pipeline. The way it is currently set 

up, the recorder module has to know about all 4 tracks instead of each 
track having its own recorder module. The reason it works this way is 

because it prevents additional logic being required in top_level to be 
able to decide which tracks to use the recorded values from and which 

tracks to just pass the input values through (when currently 
recording). Of course, it could really work either way. Before I 

realized it would be easier to set the recorder up like this though, I 
had all different bit depths of values to control the modules. It 

wasn’t a huge deal to change them, but it was a little annoying. So I 

would say my advice here is to just have a very good picture of how 
everything will fit together before starting (i.e. exactly which 

modules will be responsible for holding exactly what). 
 

We did originally have a whole block diagram for exactly that. But the 
design changed slightly each time we realized better ways to do 

things, and we didn’t stop to update the diagram. For example, for 
generating audio, originally I thought the best way to do it would be 

to store a period of each waveform of each note and to read them all 
at the same speed. While perhaps easier, it would take up far more 

space than the way we ended up implementing it, which is to just store 

one period of each waveform and to read it at an appropriate pace to 
achieve the desired note. There are disadvantages (like doing it for 

all notes, even ones you are not playing), but it is far easier to 
implement and gets the job done.  

 

Source Files 

The source code for our project can be found at the following link: 

https://github.mit.edu/jesp1999/FPGA-DAW​. 
 

https://github.mit.edu/jesp1999/FPGA-DAW
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