
1

FPGA Digital Audio Workstation

Julian Espada
Nathan Ramesh

2

Table of Contents

Table of Contents 2

Overview 3

Milestones 4

Commitment (all accomplished) 4

Goal (all accomplished) 4

Stretch (did not have time to complete, noted in future
improvements section) 4

Modules 5

Input Handler 5

Debounce 5

Octave 6

Tone Generator 7

LUTs 7

Recorder 8

Metronome 9

Waveform_select & track_select 9

Mixer 9

Seven_seg_controller 10

Xvga 10

Display 10

Block Diagram 13

Challenges 13

Future Improvements 14

Lessons Learned / Advice for Future Projects 16

Julian: 16

Nathan: 16

Source Files 17

Appendix 18

References 18

Acknowledgments 18

3

Overview

Our project is an implementation of a digital audio workstation (DAW),

such as Garageband, Logic, Ableton, FL Studio, etc. This software
enables producers to record, edit, and mix audio. DAWs typically

include digital instruments, the ability to record multiple tracks
over each other, and loopable playback. Our simplified design has four

different recordable tracks, each with a synthesizer instrument with 8

different sounds spanning 8 octaves, and is played using a standard
USB computer keyboard using the keys shown below.

Each of these tracks has three requirements to be played:

■ 13 bits to indicate which notes in the octave are being played

■ 3 bits to indicate which octave is being played

■ 3 bits to indicate which instrument is being played
The record function saves the state of these 19 bits 4 times a second

for 64 seconds for each instrument (four 19x256 BRAMs, which are
actually implemented as 20x256 to provide slack for extra

functionality). In converting these bits to 8 bit 48 kHz audio, we use
8 bit look up tables of 8 predefined waveforms (sine, saw, square,

triangle, experimental random coefficients, and some combinations).

The entire system runs on a 65 MHz clock that drives the XVGA display

at 60 Hz and allows us a little bit more slack with critical path
delay.

Our motivation for this project comes from both of our passion for

music and a desire to learn about interfacing with HID devices and
digital signal processing.

4

Milestones

Commitment (all accomplished)

Live synthesizer playing​: Input is read from a USB keyboard, parsed
into audio waveforms of a certain instrument, and output by the
headphone jack.

Choose waveform of synth (sine, square, saw, etc.)​: The user can
select the waveform for the audio to be played through, given a

variety of “instrument” options.
Display instrument view​: The system outputs VGA to a monitor to
display a piano with the played notes denoted, along with some
indicator of the waveform being selected.

Goal (all accomplished)

Recording​: Input can be saved to a recording or played live, this is
managed by the track module.

Multi-track support​: Multiple tracks exist and the input can be routed
into whichever is desired.

Mixing​: The multiple tracks can be mixed together at varying volumes
to produce the output.

Display track view​: The current track has a display featuring the
waveform recorded/played live.

Stretch (did not have time to complete, noted in future
improvements section)

Effects​: Tracks can be routed through effects modules where the user
may select effects to apply to them.
Stereo mixing (panning)​: The mixer features panning of tracks
left/right.
Velocity control​: The input module can read note velocity (effective
volume) and route that through to output.
Automation​: The mixer might automatically adjust dynamics over time.
Display effects view​: Selected effects are displayed on the monitor.

5

Modules

Input Handler

This module serves to turn the keyboard serial data into a useful

format for the DAW to process. The format we chose for both space
constraints and consideration of practicality is a 13-bit binary

number encoding of whether each individual key in a given octave (plus
the octave of the root) is currently being pressed or not, and a 3-bit

binary number encoding the octave chosen. This saves on space compared
to the 88-bit format we proposed, and allows for the same

functionality given the keyboard only allows for one octave to be
played at a given time anyway.

This module has a nested keyboard_handler module containing the serial
receiver and outputting a 32-bit shift buffer of the four most-recent

8-bit keyboard scan codes. The keyboard input comes in through the ps2
data emulator built-in to the FPGA, and an HID-supported keyboard is

plugged directly into the USB host port on the FPGA. The
keyboard_handler’s sequential element clocked on the ps2 data clock,

which is clocked by the keyboard at some frequency much less than the
FPGA clock only when information is being sent. The ps2_data and

ps2_clk lines are debounced for 10 cycles at 65MHz to deal with any
noise and synchronize the different clock domains.

A scan code preceded with the “F0” scancode indicates a key release,
and a lack thereof indicates a key press, so we use a simple state

machine with state transitions on updates in the scancode buffer to
determine how to update the notes and octave in response to a new scan

code.

Debounce

This module serves to eliminate any noise caused by “bouncing”, a
mechanical phenomenon where a button or transducer takes some

stabilization time in the transition between states before it’s output
can be guaranteed to be what is expected. The buttons on the FPGA are

susceptible to bouncing, as are the ps2 data and clk lines (due to the
fact that these are relying on quartz clocking inside the keyboard).

6

Additionally, debouncers are useful as modules which synchronize
external signals operating under a different clock domain to our

system’s 65Mhz clock, as they are effectively sampling the data at our
preferred system clock speed.

Recorder

This is the module that takes in the output from the input module and

writes it to recording RAM if necessary, saving the state of user
input every quarter second.

Each of the tracks has one BRAM with each having width 20 and depth

256. The 20 bits is to store the set of notes being played, the
octave, and the instrument (there is one extra bit for flexibility

with adding features). The 256 bits means the BRAM can store 256
quarter seconds of data, i.e. 64 seconds. When in recording mode, this

module writes the current state of the inputs to the BRAM

corresponding to the currently selected track (for all other tracks,
it will simply read the BRAM).

This module is also responsible for storing the latest valid index in

each BRAM, which effectively gives the user the ability to reset a
given track. When the user wants to clear a track, it resets this

latest valid index to 0. The index increments when recording past it.
These indices are an output for use by the display module.

This module also generates signals when the beat counter increments

for the metronome module.

Metronome

This small module creates the audio for the metronome. To do this, it
uses signals generated from the recorder counter (which keeps track of

the current beat), to determine when to output sound and when to
output silence. It uses tone generators just like octave in order to

generate the audio.

7

Octave

This is the module that takes the output from the recorder module

(i.e. the data that says what notes, octaves, and instruments should
be currently playing) and outputs an 8 bit audio_out for each track.

Accordingly, there are four instances of this module in top_level, one
for each track.

By design, all notes currently being played will be in the same

octave, as opposed to having a different octave for each note. To
evaluate the audio_out signal, there are 13 tone generators, one for

each note. The tone generator, described below, takes in an octave and
instrument and produces one 8 bit audio output.

The relevant thirteen tone generator outputs are then added together
to produce an octave output. Here, relevant means that the input to

the octave module indicates that particular note should be playing.
The one complication here is that because the audio is limited to 8

bits, simply adding together will cause overflow and not work as
intended. To fix this issue, the audio is bit shifted before adding.

To prevent it from being too quiet when only one note is playing, the
bit shift amount depends on the number of notes currently being

played. To prevent clipping after adding the mixer and metronome,
everything is bit shifted one more than it needs to be. For example,

if two notes are meant to be played at the same time, they could each

be bit shifted by 1 (i.e. divided by 2) before adding so that when
they are added their sum fits in 8 bits. Because we add an extra bit

of padding, our shifts are as follows:

■ 1 note: shift by 1

■ 2 notes: shift by 2

■ 3-4 notes: shift by 3

■ 5-8 notes: shift by 4

■ 9-13 notes: shift by 5
The sum of these shifted values is then output as the audio of the

octave (i.e. the track).

Note that shifting by 4 does lose a considerable amount of data about
the waveform, since a 4 bit sine value is less accurate than 8.

However, since 4 notes are playing at the same time, it is very hard
to detect this difference.

8

One effect of doing different amounts of bit shifts based on the

number of notes is that the volume of each individual note isn’t
fixed-a note will sound louder if it is the only thing being played on

its track than if multiple notes are sharing the track with it.
Effectively, instead of each note being the same volume so that the

output gets louder with more notes, we keep the octave/track volume
constant and vary the relative volumes of the notes to achieve that.

Tone Generator

The tone generator module takes in an octave and instrument, both 3

bits, as well as a parameter that helps determine the frequency of the
resulting wave. Using an internal counter, along with the parameter,

it cycles through LUT values at a speed that produces the appropriate
frequency. Because changing octaves multiplies/divides the frequency

by 2, these can be encoded as simple bit shifts.

Each instance of this module contains 8 LUT modules, returning the

output of the one corresponding to the instrument input.

LUTs

The 8-bit lookup tables store one period of several common waveforms

such as sine, triangle, saw, and square. There is also one with just

random values, and a couple combinations of sine waves of different
frequencies (adding overtones).

Certain waveforms (e.g. square wave) that do not have to be

implemented with an 8 bit lookup table like this are still implemented
this way to show that the design will work for an arbitrary set of

waveforms.

One disadvantage to using lookup tables like this is that to do the
lookups, all lookups need to happen even though only one of them ends

up being used. Thus, after performing the lookups there has to be some

sort of layered MUX to choose between them. As the number of waveforms
increases, so does the propagation delay of this MUX.

9

However, because all the lookups are performed anyway, this opens up
the option to mix the waveforms relatively easily. That is, the

current implementation makes it easy to add a feature that would allow
a user to use a waveform that is 50% sine and 50% saw. An alternate

RAM implementation of these look up tables that wouldn’t involve
looking up all of the values would not have this flexibility as

easily, since it would only be able to be read once per clock cycle.

Waveform_select & track_select

These modules take in a clocked 1-bit signal (associated with
debounced btnd and btnu for waveform and track selection,

respectively) and perform simple state transitions between the 8
available waveforms and 4 available tracks. The difference between the

modules is in the use-case and the bit depth of the switched output.

Mixer

This module takes in information about the four tracks and the
metronome “track” and adds them together, using volume information

from the FPGA switches to determine how much weight should be
associated with each track. Track 0’s volume is determined by

sw[15:13], track 1 by sw[12:10], track 2 by sw[9:7], track 3 by
sw[6:4], and the metronome by sw[3:1]. Firstly, all tracks were bit

shifted by 7 - volume, where volume is a 3-bit number corresponding to

the track’s respective volume level. Afterwards, we bit shift each
track right by 2 and sum them to yield the input, as to prevent

overflow when adding them. Note that, unlike the octave module,
everything is always shifted by 2​. This makes it so that there are no
surprises in volume changes. The mixer doesn’t care if three tracks
are playing or one track is playing; track 1 at volume 5 will still

sound the same. This approach is somewhat rudimentary as we lose
precision due to the shifting and the effect on the perceived volume

is very vast as perceived through the audio jack, but it fulfills the
purpose of controlling volume levels of tracks independently for

mixing.

10

Seven_seg_controller

This module serves primarily as a debugging feature and doesn’t have a

primary feature, in the course of the project we have used it to
verify scan codes, counters, notes, and volumes. Currently it just

displays the latest valid beat of the currently selected track and the
current beat (0 to 255).

Xvga

This module serves to generate the signals necessary to adhere to the

1024x768 @60Hz XVGA protocol we designed our FPGA to support. Entirely
stateful, gives the top_level an hcount, vcount, vsync, hsync, and

blank signal to be turned into the signal at the VGA port. hcount and
vcount are used in the top_level and display to represent the position

of the current pixel being rendered. hsync, vsync, and blank are
signals which serve to control the timing of VGA events such as

row/column switching and blanking of the screen.

Display

This module generates all of the graphics to be displayed on the
screen by outputting a 12-bit color pixel which is routed to VGA in

top_level. This module is broken down into a number of sections
dedicated to controlling related aspects of the screen, namely the

keyboard, track config, waveform heatmap, and text icons. All of these

are then tied together with the pixel selection multiplexer.

Within the 65MHz, our system has
plenty of time to handle the

designated graphics with minimal
pipelining, so we resorted to

delegating pipelining to the image
ROMs and otherwise handling

propagation delay by multiplexing
between the different sections of the

screen.

All portions of the display can be

broken down largely into

11

rectangle_blobs and selectable_blobs, both of which are effectively
wrapped bounding-boxes. A pixel is input into one of these modules,

bounds checking is performed, and if the pixel falls inside the box,
it’s color is changed to that of the box; otherwise, the pixel input

is assigned to the output. The selectable_blobs, in addition to the
feature mentioned previously, take in a 1-bit selection signal which

determines what color the inside of the bounding box should be. The
waveform_heatmap uses more complex pixel-selection by internally

storing a circular buffer of the number of notes being played at any
instance in a recording per track. The horizontal position of the

considered pixel is linearly transformed into an index in this buffer,

which is routed to a colormap, which is
routed to the output if it passes a

boundary check.

The keyboard display shows one octave of a
keyboard containing all the white and

black keys between two adjacent octaves of
the note C. Signaled by keypresses on

valid keys, the notes on the keyboard will
fill with red (if white) or blue (if

black) to indicate that the respective key

is being pressed. This module consists
solely of in-series rectangle_blobs as mentioned before.

The track config shows an array of rectangles arranged in a way to

convey to the user what volume level, octave, and instrument they
currently have selected. A row in this array corresponds to a label

(volume, octave, instrument) and a column corresponds to a level (e.g.
the highest octave/volume/instrument ID is the rightmost column). This

module also consists solely of in-series rectangle_blobs as mentioned
before.

The waveform heatmap shows four “bar lines” corresponding to the four
tracks, and a beat-counter bar which moves along the tracks to

indicate where the current beat lies. As the recording of a track
becomes populated with notes, the respective track’s bar line will

become populated with colors indicating the number of notes being
played at a given time. Deep blue indicates one note, cyan indicates

12

two, green indicates three, according to the last 3-bits of the number
of notes being pressed at a given time.

While the rest of the audio architecture is structured to handle more

than 7 notes being played simultaneously on one track, the waveform
heatmap was chosen to support this limit as many keyboards do not work

well with large numbers of simultaneous keypresses, the volume mixing
is performed such that large numbers of notes become fairly quiet due

to the number of bit shifts needed to support 8-bit audio integrity,
and the impracticality of actually recording more than 7 notes on one

octave for a piece of music.

The text icons just denote labels for the octave, volume, and

instrument selectors on the track config and the selected tracks on
the keyboard and waveform displays. The text icons corresponding to

the track config are static, but the icons indicating selections of
tracks are highlighted in red to indicate a selected track and black

otherwise.

The pixel select multiplexer effectively shortens the path that any
pixel has to take by parallelizing mutually-exclusive graphics on the

screen and choosing whichever output is unequal to it’s input (the

background color), or the background color if none match. This
eliminates the need for introducing pipelining and increasing the

overall signal delay in pixels, which would introduce new issues with
the VGA interface.

13

Block Diagram

Challenges

■ Waveform Heatmap: The heatmap of
notes in each track proved to be a

more challenging feat than was
initially expected. Our initial idea

was to display the exact waveform
stored in the BRAM, but doing this

proved challenging as it would mean
introducing way more inputs to route

each BRAM from the respective track (octave) to the display. Our

14

workaround was to display a similar amount of information by
displaying note counts per timeslot, which is much easier to

route properly. The synchronization of the BRAM and display
contents proved somewhat challenging as well, but this was

mitigated by designating the track reset behavior as resetting a
“latest_valid_beat” for which anything after this beat in the

buffer is ignored.

■ 8 bit audio clipping: As mentioned earlier, to prevent audio from
clipping when adding multiple raw waveforms together, it is

critical to make sure that they don’t exceed the maximum 8 bits
we allow. To do this, we do simple divisions with bit shifts to

try to equalize the volume of the instrument no matter how many

notes are being played. This works great when 1, 2, or 4 notes
are being played, but 3 notes and 5+ notes sound a little bit

quieter than one might expect. This is hard to notice, but is it
noticeable. One way to deal with this is to use a better

approximation for 1/3 than 1/4. For example, we could have used
5/16 or even 21/64. To keep it simple, and because it is hard to

notice anyway, we stuck with the easy ratios.

■ Display division by 3: For desired proportions on the display, we
wanted to give notes in the heatmap a width of 2 pixels and a

spacing 1 pixel, summing to an effective 3 pixels per note.
However, this introduced much more complicated math via higher

propagation delay into the conversion from hcount to circular

buffer index, and required us to risk losing a substantial amount
of slack with 10-bit multiplies or equivalent sums of bit-shifts.

This challenge was resolved by simply changing the proportions
such that the note spacing was 0 but note width remained 2. This

made the required linear transformation able to be reduced into a
simple bit shift and subtraction by a constant, which is much

faster computationally. Also, this leaves more space for any
other modules we might decide to add.

Future Improvements

■ Transpose button: Right now, the synthesizers can only be played
in the default key, C major. We would like to add a feature to

transpose. We initially had the idea of changing the sampling

15

rate, but this would change the fidelity of the audio which feels
more like a hack than a true solution.

■ Instrument waveform display: The ability to see a period of the

waveform of the instrument currently selected would be a nice
immersive step which could help users better identify the

instruments they are using.

■ Expansion of keyboard options: Our project currently relies on
the FPGA buttons and switches for a lot of its functionality.

Ideally, the keyboard would be able to control everything, so
integrating these features into keys could be a potential

improvement.

■ Testbenching: Our current project relies very little on
testbenching. In the future, this would save a lot of time in

implementing new features.

■ Smarter keyboard sampling: Notes are currently sampled at the

metronome beat, so if the player has inconsistent rhythm or is
playing faster than the metronome supports, these notes are not

picked up by the recording.

■ Stereo support: The FPGA currently supports mono output. Mixers
tend to allow for panning of tracks. It could be a neat

improvement to figure out how to convert a signal from a mono
port into a stereo-interpretable format.

■ Digital effects: The ability to apply various convolutional

filters (distortion, envelope, low-pass) over the audio on
multiple tracks.

■ Automation: The ability to program dynamics in mixing over-time

(fade-ins, etc).

■ Velocity control: The ability to control per-note effective
“volume” by interpreting keyboard commands as controlling a

measure of how hard a note is being pressed.

■ Audio Pipelining: Right now, all the audio calculations are done
in a single cycle because they can be. As more instruments and

tracks get added, this will no longer be the case. Luckily, the

48 kHz output (vs. the 65 MHz clock) means there are over a
thousand clock cycles to produce output. Taking multiple cycles

could also allow switching to BRAM look up tables.

16

Lessons Learned / Advice for Future Projects

Julian:

From this project, I learned that version control in Vivado projects

is a nightmare and a good .gitignore is absolutely essential to get
version-controlled work done effectively. I also learned firsthand why

testbenching is so essential, as I’d dismissed the main module I spent
my time working on (display) as too difficult to testbench, but

probably ended up wasting many hours in synthesis that I could have
saved if I took the time to build and work with a proper testbench.

Additionally, I learned the importance of synchronizing inputs and

clock domain crossing, as unsynchronized keyboard inputs initially led

to very unpredictable keyboard behavior. Clock domain crossing between
our system’s 100MHz clock and the clock wizard’s 65MHz clock resulted

in our WNS(worst negative slack) being off-puttingly bad, as where
these signals intersected it was seemingly expecting processing at

around 6.5GHz (the least common multiple frequency between the two).
This clock domain issue could have been fixed by synchronization, but

we chose to clock everything at 65MHz as we didn’t need the 100MHz
throughput and a higher tolerance for slack was desired for our

calculations.

As far as insight for future projects goes, I would strongly advise

prioritizing testbenching and maybe even test-first programming as the
amount of time and stress saved in the long-run by having functional

tests is very notable. I would also stress the importance of
thoroughly analyzing any external sources used or studied, as I had

originally used Digilent-provided code for USB keyboard input and
discovered that there was actually a major flaw in it, where repeated

keypresses could not be detected due to a misplaced if statement. My
assumption that the external source was correct led to my dismissal of

the issue as pertaining to something I wrote and tacked many hours of
needless debugging onto my original time budget.

Nathan:

+1 on Julian’s version control comment.

17

I think the main thing I learned is organizational. There were dozens
of ways to implement the audio pipeline. The way it is currently set

up, the recorder module has to know about all 4 tracks instead of each
track having its own recorder module. The reason it works this way is

because it prevents additional logic being required in top_level to be
able to decide which tracks to use the recorded values from and which

tracks to just pass the input values through (when currently
recording). Of course, it could really work either way. Before I

realized it would be easier to set the recorder up like this though, I
had all different bit depths of values to control the modules. It

wasn’t a huge deal to change them, but it was a little annoying. So I

would say my advice here is to just have a very good picture of how
everything will fit together before starting (i.e. exactly which

modules will be responsible for holding exactly what).

We did originally have a whole block diagram for exactly that. But the
design changed slightly each time we realized better ways to do

things, and we didn’t stop to update the diagram. For example, for
generating audio, originally I thought the best way to do it would be

to store a period of each waveform of each note and to read them all
at the same speed. While perhaps easier, it would take up far more

space than the way we ended up implementing it, which is to just store

one period of each waveform and to read it at an appropriate pace to
achieve the desired note. There are disadvantages (like doing it for

all notes, even ones you are not playing), but it is far easier to
implement and gets the job done.

Source Files

The source code for our project can be found at the following link:

https://github.mit.edu/jesp1999/FPGA-DAW​.

https://github.mit.edu/jesp1999/FPGA-DAW

18

Appendix

References

[1]

https://reference.digilentinc.com/learn/programmable-logic/tutorials/n
exys-4-ddr-keyboard-demo/start

[2]
https://reference.digilentinc.com/reference/programmable-logic/nexys-4

-ddr/reference-manual

Acknowledgments

We would like to thank Joe and Gim for a wonderful semester. We would
especially like to thank Joe for all the help and patience in office

hours and for being a fun and entertaining lecturer and Gim for
mentoring our project and helping us get up and running with the USB

keyboard input. Also a big thank you to the TAs and all the LAs that
helped us along the way.

https://reference.digilentinc.com/learn/programmable-logic/tutorials/nexys-4-ddr-keyboard-demo/start
https://reference.digilentinc.com/learn/programmable-logic/tutorials/nexys-4-ddr-keyboard-demo/start
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/reference-manual

