6.111 Final Project: Internet Controlled
Robot

By: Babuabel Wanyeki and Brandon Perez

2020

1 Introduction

2 Overview/Setup
2.1 Robot
2.1.1 Parts
2.1.2 Setup Overview
2.2 Controller
2.2.1 Parts
2.2.2 Setup Overview

3 Data Structures
4 Networking

5 Ethernet Interface(Babu)
5.1 Ethernet Reception
5.2 Ethernet Transmission

A O 0 N OO0 g oAb p oW

—_—\

6 Motor Control(Babu)

7 Distance Sensor(Babu)

8 Camera Sensor(Babu)

9 Controller Top Level - (Brandon)
10 VGA Display - Numbers(Brandon)
11 VGA Display - Camera(Brandon)

12 Development Process
12.1 Robot
12.2 Controller

13 Ideas/Conclusion

14 Verilog Source Code

14 Verilog Simulation Code
15 Python Server Code

16 Python Application Code
16.1 Robot
16.2 Controller

13
14
15
16
18
19

21
21
22

23
24
83
87

90
90
95

1 Introduction

COVID-19 has forced us to be apart during these times, but we figured we could take
advantage of this opportunity for our project. My partner and I live in different states right now,
so we thought that it would be interesting to be able to have one person control a robot in another
person’s room across the United States. Additionally, the robot will also be able to send sensor
data through the transmitter which the controller would be able to receive and display the data
using the VGA interface. Another reason that we chose to do this project is because it allowed us
to have a lot of learning opportunities throughout the semester, one of which being a deep
understanding of how Ethernet UDP protocol works.

The central idea of the two projects is that the two FPGAs, the controller and the robot,
will be able to communicate through a shared server on the internet. How this will work is that
the respective FPGA is connected to a PC via Ethernet(to enable high speed ~100 Mbps
reception and transmission), this means that we will be able to send video, sensor, and control
data appropriately. Second the corresponding PC will have to run a Python program, which we
created, that enables data to be sent on the server. Similarly, the other FPGA will also need to be
connected to a PC via Ethernet and the PC needs to be running a similar Python program. Once
this is done a reception and transmission connection should be established between the two
FPGAs, allowing video, sensor, and control data to be transmitted and received at the same time.

The controller will use the up(btnu), down(btnd) ,left(btnl), and right(btnr) buttons on the
FPGA in order to send control data packets to the robot. Additionally the controller will also
process all of the video and sensor data from the robot and display it on the VGA. The robot on
the other hand receives the controller data and translates that to forward, backward, left, or right
commands on the FPGA. This then gets sent to the motor driver for directional movement.
Additionally the robot takes in distance sensor data and camera pixel data and transmits that to
the controller FPGA for processing and display. In the end we have a working system that
enables the controller to control where the robot is moving while also using camera data and
proximity data to see where the robot is going.

2 Overview/Setup

2.1 Robot

Figure 1: Full robot setup with an ethernet connection to the PC

2.1.1 Parts

e Nexys4 DDR FPGA
o SMSC 10/100 Ethernet PHY (SMSC part number LAN8720A)
Windows PC
Portable Battery
Solderless Breadboard with a DC power jack
Robot Car Chassis with 2 motors
OV7670 Camera

e ESP8266 Microcontroller
e HC-SR04 Distance Sensor
e [9110 Motor Driver

2.1.2 Setup Overview

The FPGA is mounted on top of a portable battery character which is then placed on a
robotic car chassis. The robot chassis contains 2 motors in the back as well as a third wheel in the
front for balance. Additionally, on the back of the robot chassis is also a small solderless
breadboard which contains the connections to and from the FPGA PMOD pins and the HC-SR04
distance sensor, the L9110 motor driver, and the DC power jack.

In order to set up the robot, first connect the portable battery to the DC power jack on the
solderless breadboard. Next, also connect the portable battery to the FPGA, making sure that the
power is derived from the DC jack rather than a USB connection. Once finished, program the
FPGA with the compiled bitstream, and make sure that the FPGA is connected via an Ethernet
cord to the Windows PC. At this point no LEDs should light up.

Next, make sure that either the robotic user side or the controller user side turns on the
Internet server and runs the communications.sh bash file, which essentially starts the two server
Python files(RobotRX ControlTX.py and RobotTX ControlRX.py) concurrently. Lastly, run the
reception.py file and transmission.py file in order to receive and transmit the UDP data packets
to and from the servers. At this point 2 LEDs on the board should light up blue meaning a
connection to the reception and transmission servers. Now the robot is ready to communicate
with the server. Once the controller side programs their FPGA and runs the reception.py and
transmission.py python programs, then you can exchange data with the other FPGA anywhere in
the world.

2.2 Controller

Figure 2: Full Controller Setup with a VGA monitor

2.2.1 Parts

e Nexys 4 DDR
o 4 directional buttons(btnu, btnd, btnl, btnr, and btnc for resetting connection)
Windows PC
VGA Monitor
Ethernet/USB adapter
Ethernet cable

2.2.2 Setup Overview

| used a USB hub with a built in ethernet adapter to allow for a connection between my
PC and the FPGA board. | was concerned that a 3rd party adapter would lead to problems (like
dropping UDP packets), but it turned out to be quite capable for our purposes. Though the robot
side ethernet cable should be long enough to support mobility of the robot, the controller side
ethernet can be 3ft or less as long as the FPGA board can be placed close to both the computer
and monitor. The rest is a basic VGA display setup similar to lab 3.

Concerning the servers, | was unable to use the bash script even with a windows version
of bash installed on my pc. Beware of mac/pc compatibility. So, instead | would have to start the
above-mentioned transmission.py and reception.py scripts separately. We had the least trouble
when | performed the connection setup in the following manner. Have one of us start the
servers. | would then run the reception.py script. Connect the ethernet between the adapter and
FPGA. The blue reception LED would consequently light up. Then | would run the
transmission.py script and both reception and transmission LEDs would turn on.

3 Data Structures

The two most prominent data structures that must be addressed are those of the two
payloads (both transmitted and received). On the controller side, the transmitted payload contains
the robot command data, and the received payload contains the camera/sensor data. On the robot
side, the transmitted payload contains the camera/sensor data, and the received payload contains
the command data. Let us name these 2 different structures the sensor payload and the command
payload. Both payloads are 548 bytes (4384 bits) for consistency, and in order to maximize the
pixel data transmitted from the camera as the maximum payload allowed for UDP packets is 548
bytes.

The sensor payload is formatted in the following way. The first 34 bits contain the sensor
data. Though the maximum reading from the sensor was approximately 400, only requiring 9
bits, allotting 34 bits allowed for the camera data to evenly fit into the remaining bits. The
camera portion of the payload allowed for data for 150 pixels. Each pixel had a 17 bit address
(calculated from the row and column position to be used for writing to a RAM), and a 12 bit rgb
value. In total, each pixel took up 29 bits. 29*150 = 4350, which is also equal to the total number
of bits minus the sensor data bits (4384 - 34). See the diagram below.

34 bits 17 bits 12bits 17 bits 12bits 17 bils 12 bils

Proximity
Sensor
Data

Pixel 1 | Pixel 1 | Pixel 2 | Pixel 2 | Pixel 3 |Pixel 3

address| RGE |address| RGB |address| RGB e s

Figure 3: Data structure of how the Distance Sensor and Pixel Data are being sent.

The command payload is much simpler. The commands from the controller side are at
most a 3 bit number, so one only has to assign the first 3 bits of the payload to the output of the
top level controller module. For brevity’s sake, a diagram is not included for the command
payload.

4 Networking

Connection A
FPGA1_TX
FPGA2_RX

Connection B
FPGA1_RX
FPGA2_TX

PC2

FPGA 1 p) FPGA 2
Transmitter/Receiver Transmitter/Receiver

Figure 4: Networking block diagram. lllustrates the connection from the FPGA to the PC then
to the server and back down again on the other side.

The networking state machine that we developed for the FPGA is integral in order to get
the two FPGAs to communicate with each other. The parts of the network are illustrated above
and are FPGA1(Robot FPGA), PC1, Connection A, Connection B, PC2, and FPGA2(Control
FPGA). In general, FPGA1 and FPGA2 receive and transmit data to and from PC1 and PC2,
respectively, via the Ethernet UDP/IP protocol. Looking at FPGA1, we then have PC1
establishing a connection to the Connection A server and Connection B server via a Python
program with a simple state machine. Once a connection is made for Connection A a UDP
verification packet is then sent to the FPGA lighting up the 1 LEDs to blue and similarly for
Connection B which lights up another LED to blue. The same is done for FPGA2 and PC2 once
they establish a connection to the Connection A server and Connection B server. We chose the
UDP/IP protocol rather than the more popular TCP/IP protocol because it was simple,
connectionless, and faster for high speed streaming such as video streaming. UDP/IP however
has a drawback for its simplicity which is that sometimes packets get dropped and can even
arrive at the destination out of order from when you sent it. This isn’t a problem with streaming
data because as long as you don’t rely on only a few packets to make all of the decisions, but
instead on collections of control or video data, the overall message that you wanted to send
should be received.

5 Ethernet Interface(Babu)

2
012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Preamble MSB
Preamble_LSB

Destination MAC Address_MSB
Source MAC Address_MSB

Source MAC Address LSB

Offsets Octet 0 1
Octet Bit
0 0
4 32
8 64
12 96 Destination MAC Address_LSB
16 128
20 160 MAC Ethernet Type
24 192 | Version IHL Type of Service
28 224 Identification
32 256 Time to Live Protocol
36 288 IP Source MSB
40 320 IP Destination MSB
44 352 Source Port
48 384 UDP Length
52 416

52+ N 416+8*N

Version

Flags

0O 00 O0O0OO0OOOOOTODOOODOOQ OO O

PAYLOAD DATA

IHL

Total Length
Fragmentation Offset
IP Header Checksum
IP Source LSB

3

Type of Service

IP Destination LSB
Destination Port

CRC(From Byte 8 to Byte (52 + N))

Figure 5: Ethernet UDP/IP packet with a IPv4 header and UDP header.(technically the packet begins after
the preamble, bit 64, which indicates the start of the packet).

MII MAC I'F to RMIIMAC I/F

TX_EN
TXD[3:0]
TX ER

TX CLK <&
COL -

CRS =t
RX_DV &
RXD[3:0] <&
RX _ER <&
RX CLK -

TXD[1:0]

RMII PHY I/F to MII PHY I/F

TX EN

:

CRS DV

» TX_EN

B TXD[3:0]

B TX ER

|——TX CLK

~4—COL

RXD[1:0]

REF CLK

CRS
RX DV
RXD[3:0]
RX_ER

RX _CLK

1 I
50 MHz Reference Clock

(Sourced externally or from Switch ASIC)

Figure 6: External ethernet transmission and reception interface. The pins primarily used for
the project are the 2 bit transmit TXD, 2 bit RXD, the REF_CLK(50Mhz), the TX_EN, and the

CRC_DV(data valid).

10

First Bi
} MAC’s Serial Bit Stream

DO| D1 | D2 | D3 | D4 | D5 | D6 | D7

First : : : : : : Second
Nibble ——— T Nibble
I ! 1 I | 1
I ! I ! I !
I ! I ! I !
Di-Bit TXD[0J/RXD[0] LSB{pg e e e :
Steem . M1 - —- 4o N i
TXD[1/RXD[1] MsB2L
FIGURE 5. Bit Ordering

Figure 7: Bit ordering for transmission and reception of the Ethernet bits. You must swap the
nibbles as well as the semi-nibbles(or dibits). This means that if the received byte is
ab_cd_ef _gh(where received using big endian) then the actual data byte is gh_ef cd_ab.
Similarly if you want to send the data byte ab_cd_ef gh(send using big endian) you must
transmit gh_ef cd_ab.

5.1 Ethernet Reception

: IFG:
Wait <= .96 uS .
) - Verify Data and
Power Up Wait ~200ms IDLE &&)
~RX_Valid(for 2 cycles) | Send (\3/“‘ _f_’ag"’ad if
eritie!

RX_Valid && i
rxd = 2'b10 RX_Valid &&
4 Bytes Stored
PREAMBLE CRC Invalid Checksum
RX_Valid && RX_Valid &&
Preamble Detected Valid Checksum &&
N Bytes Stored

ETHERNET/MAC

HEADER PAYLOAD
RX_Valid &&
14 Bytes Stored RX_Valid &&

8 Bytes Stored
RX_VALID &&
IP HEADER 20 Bytes Stored UDP HEADER

11

Figure 8: Finite State Machine for the UDP/IP packet reception module

The Ethernet Reception module is how high speed sensor and control data is received by
the FPGA from the PC. This data comes into the module 2 bits at a time. How this module
functions, at a high level, is to decode the UDP Ethernet Packet as well as verify that the
information is valid. This verification is done through an IP address check, Port number check,
IP header checksum check, and lastly a Cyclic Redundancy Check for any errors during
transmission. Two important things to note are that overall the data is sent to you from the PC in
big endian in bytes and bits. The only exception is the CRC which is sent in little endian in bytes
and big endian in bits. Additionally, because of the external interface of the Ethernet
PHY (physical layer) you must swap the nibbles and the di-bits in a byte when you receive the
information in order to get the actual data.

Next I’ll do an overview of the state machine. To begin, the first state is Power Up. As
the name suggests, this state has a parameter that allows for a proper power up time. After power
up, the reception module goes to IDLE which means that it will wait for a signal of 2°b01 which
indicates the start of the preamble. The next stage is the preamble, so when the rolling received
information is a 64 bit hexadecimal of 64'h55 55 55 55 55 55 55 D5(remember that it’s
received big endian and that to swap the nibbles and semi-nibble(or di-bits) in every received
byte) then you go to the next stage. The next stages are for the MAC header, the IP Header, and
the UDP header. In all of these stages we know their appropriate sizes so we can transition states
when appropriate. Additionally the headers give us the length of the payload for the next stage.
One note is that if the header checksum is wrong(corrupted) we want to skip the payload and go
to the end stage cause it could have produced a wrong length and stay in the payload stage for a
long time. Another thing is that we must be calculating the CRC from the MAC header all the
way up to the end of the payload in order to verify the packet at the end. So, once the length of
the payload has been transversed and the payload is stored, stop calculating the CRC and go to
the reading CRC stage. Once done, we go to the end stage, or Inter-Frame Gap as it is called,
where we can stay for at most 48 clock cycles until we need to go back to IDLE and wait for
another packet. In the end stage, we can use the CRC calculated and the CRC received in order
to check if the packet is valid, additionally we can also check on the IP header checksums(the
UDP checksum is optional so we don’t check it) and IP addresses and ports.

5.2 Ethernet Transmission

12

Wait >= .96 uS
Fower Up Wait ~200ms: FPREAMELE &% IFG
~TX_Enableifor 2 cycles)
TX_Enable &&

Tx_Enable &8 4 Bytes Sent
Preamble Sent

CRC
ETHERMET/MAC
HEADER TX_Enable &&
M Byles Sent

PAYLOAD

TX_Enable &&
14 Byles Sent

TX_Enable &%
3 Byles Sent
Tx_Enable && I "
IP HEADER 20 Bytes Sent UDP HEADER

Figure 9: Finite State Machine for the Ethernet UDP/IP transmission module

14{1

The Ethernet Transmission module works in a lot of the same ways as the reception
module, but instead this time it's sending data instead of taking data in. Transmission is also sent
to the destination 2 bits at a time. At a high level it works by encapsulating variable payload data
of a fixed length within multiple relatively constant headers. In this implementation no header or
payload length changes, but the only data that changes after uploading to the FPGA is the
payload information, the destination port, and the CRC. Right now the Payload size is the
maximum of 548 bytes in order to fit in as much camera and sensor data as possible but it can go
to as low as 18 bytes. To reiterate, two important things to note are that overall the data you are
sending is in big endian in bytes and bits. Except for sending the CRC which is little endian in
bytes and big endian in bits. Additionally, because of the external interface of the Ethernet
PHY (physical layer) you must swap the nibbles and the di-bits in a byte when you transmit the
information in order to the PC to receive the original intended information.

Next, I’ll do an overview of the state machine. Similar to the reception, the first stage is
the preamble. Once you do the appropriate swapping of nibbles and di-bits, send the 64 bit
hexadecimal of 64'h55 55 55 55 55 55 55 DS, which indicates a start of a packet. After this
you send the MAC Header, IP Header, and UDP Header, then you transition to the payload.
Once you send your payload, making sure that you're calculating the CRC using everything but
the preamble, then you transition to the CRC stage. Here is the state where you send the
calculated CRC making sure that you send it little endian in bytes. Once finished, the module is
transitioned to the end state or Inter-Frame Gap where the module waits for at least 48 clock
cycles, equivalent to 12 sent bytes, until it can send another packet. Note that some computers

13

have flow control that drops packets that come in too fast. One solution that I found is to increase
the amount of cycles in the Inter-Frame Gap in order to space out the packets. On my Windows
PC computer, I found that 250 bytes or 1000 clock cycles in-between packets worked well, and
could still transmit data fast enough to stream video data.

6 Motor Control(Babu)

FORWARD:
Send Forward Signal

CTRL
Signal Sent
Go Forward Code
CTRL Signal Sent CTRL Signal Sent
i Go Left Code _ IDLE: Go Right Code—y RIGHT:
Send Left Signal Wait for FIFO input Send Right Signal
~—
CTRL Signal CTRL Signal
Sent Sent

—Stop Code *Go Backward Code

BACKWARD:
Send Backward
Signal

STOP:

Send Stop Signal

Figure 10: Finite State Machine for the Motor Control module

A_I(in) [B_I(in) A_O(out) |B_O(out) | motion

0 0 0 0 off

1 0 1 0 forward/backward
0 1 0 1 backward/forward
1 1 1 1 off

Table 1: 2 input control and 2 output control for one motor. The
motor direction of forward or backward depends on the wiring.

14

The motor controller module is used to convert the commands STOP =0, FORWARD =
1, BACKWARD =2, RIGHT = 3, LEFT = 4 into the robot’s motor movements. STOP indicates
that both motors are not moving. FORWARD indicates that both motors are moving forward.
BACKWARD indicates that both motors are moving backward. RIGHT means that the left
motor is moving forward and the right motor is not moving. LEFT means that the right motor is
moving forward and the left motor is not moving.

After making sure that the motor driver is connected to the portable battery via a DC
jack, then all that is needed in order to send input signals A_I and B_I to each individual motor
are 4 PMOD pins from the FPGA(2 for each motor). Then make sure that you wire the motors to
the output A_ O and B_O corresponding to each input. The module then just acts as a simple case
statement that takes the STOP, FORWARD, BACKWARD, RIGHT, and LEFT commands and
sets the inputs A_I and B_I for both motors.

7 Distance Sensor(Babu)

Dist. w (READ AND TRANSMIT:
IDLE Saveg TRANSMIT [« Read Pulse Length
J L d=1t* (340 m/s)/2

40 ms passed

Echo Signal Begins and Ends

£ 40 ms passed

W 10 uS Pulse -~ ECHO

Trigger J Sent ,L

Figure 11: Overview of the FInite State Machine for the distance sensor module. Note
that the distance equation above is for conversion to meters.

The HC-SR04 distance sensor inputs the echo pin(along with 5V and GND) and outputs
the trigger pin in order to calculate the distance of an object with a range of 2cm - 400cm.

Above, I created a rough finite state diagram of how the distance sensor is supposed to
work as a finite state machine. To begin, the module first starts out at the IDLE stage. After
40ms it sends out a trigger signal to the distance sensor. After 10us you disable the trigger signal.
You then wait in the echo stage and if you see an echo signal, count how many microseconds

15

until the signal ends. If you don’t see a signal for 40 ms then go back to the trigger. If you do see
a signal convert it to either cm or inches, then transmit/save it then go back to idle.

8 Camera Sensor(Babu)

Figure 12: Camera OV7670 sensor connection to FPGA. In addition to the camera sensor we
also had an ESP8266 to configure the FPGA.

The OV7670 camera sensor provided the video data that the robot transmitted to the
controller for the display. We had an ESP8266 microcontroller that used an 12C in order to
configure the OV7670 so all the FPGA had to do was process the camera data.

To begin, using the camera_read module we were able to acquire the 16 bit pixel
RGB565 pixel data by using VSYNC_in and HREF_in pins in order to do row capture. Once we
could read frames pixel by pixel we then put the data into an asynchronous input and output
bram. This allowed us to save pixel data in one OV7670 pixel clock speed and output data into

16

the Ethernet Transmission 50 MHZ clock speed. Additionally, the 16 bit RBG565 was converted
to RGB444 by taking the highest 4 bits from the red, blue, and green bits. From here data could
be read at 50 MHZ and transmitted through the Ethernet to be displayed on the controller side.

9 Controller Top Level - (Brandon)

[Ethernet]

payload_in l

/l’::'p Level Controller

payload_out
button_input -
» button_input
- ———# Conirol
switches clk_50mhz
- —
payload_in & B
clk_100mhz T vga_r P
—— - dk50mhz| & yga Display vga_b =
cli_G65mhz =
= vga

S s >

S ;

Figure 13: Controller Top Level Block Diagram

The side operating the controller must perform two tasks. One is to prepare commands
for the robot from the button inputs to use as a transmitted payload. The other is to interpret the
received packets that contain the camera and sensor data in order to display them both on a VGA
monitor. For consistency, we will read and write the payloads according to a 50mhz clock
(created by the clock wizard IP). The VGA display module will need an additional 65mhz pixel
clock. The switches will allow for different settings of the display (camera on/off and 2x
resolution).

Controller Interface

The controller itself was straightforward to implement. Our idea was to use the buttons
on the FPGA as a sort of d-pad (directional pad) for the robot. Pressing btnu would make the car
go forward, pressing btnl would make the car go left, etc. We reserved btnc for resetting the
ethernet connection. We then made sure to debounce btnl, btnu, btnr, and btnd at the system

17

clock rate (100 mhz). Whenever any of these buttons was pressed the corresponding value was
passed to the transmitted payload register. These were determined by the following mapping.

forward 1

backwards 2

right

left

o |~ | W

stop

Table 2: Command
mapping

When no buttons were being pressed, the payload would simply be 0 and force the robot
to stop. There is a delay when sending any of these commands, so during testing we made sure
to only press the buttons for short periods of time or in pulses so as to avoid having the robot
move further than expected and possibly crash.

VGA Overview

AGA Display (P \
50 mhz = 5 : pixel_number
kil hoount » Number Display o vga_r
65 mhz : sensor_data g J 4 N b’
—_— VCoun —_— voa
Top %t - OR S
payload s
»> : Wa_
pixel_camera = —
¥ Camera Display L
camera_data —
—_—T

S oA

Figure 14: VGA Overview Block Diagram

In essence, the vga module takes in the 548 byte payload and writes the proper rgb pixel
values to the vga pins in order to display both the video from the camera feed and the numbers
that represent the reading on the sensor. Much of the raster logic comes from lab 3, where
hcount and vcount represent the current position of the pixel on the screen that is being

18

overwritten. This is done with a pixel clock of 65mhz. However, it is important to note that the
payload is being updated at the top level clock, 50 mhz. The first 34 bits contain the sensor
data, which will be used as the input for the number display logic. The remaining bits contain the
RAM addresses (17 bits), and rgb values (12 bits) for 150 pixels. We can only write one pixel
value to the RAM at a time, so we used a counter to be able to iterate over all of the 150 pixel
representations in the payload. From there, we simultaneously read and write to a RAM for our
video image one pixel at a time.

10 VGA Display - Numbers(Brandon)

/ Number Display \
digit_addr_1
sensor_data L digit_addr_10
E——— igit Coun
3 digit_adﬂr_*.ﬂﬁ >
EROM
rgb_100

hcount L

> hcountivcount pl_1
vcount »

» [.
] | : pixel |out
pixel_clk o Top - pxl_10 OR &

» | ——————» >

A A Tens h
r'y Hundreds [P*_100
> r
| R
pixel_clk

\ /

Figure 15: VGA number display block diagram

In order to display the numbers on screen that represented the readings from the sensor,
we had to perform the following. First, we generated a single port BROM from the 48x48
provided COE file for integers 0-9. The BROM would be 4 bits wide and 23040 bits deep since
each of the COE entries was 4 bits, each number was 48*48 pixels, and there were 10 integers
total. From our estimations from experimenting with the sensor, the readings never appeared to
go over 400, so we decided that three digits would be sufficient for the representation.

We decided to place the hundreds digit at coordinates 700, 50. This would allow enough
room for the 640 pixel wide image for the video on the left. We then shifted the other digits by
50 as each was 48 pixels wide, so their final positions were ((700, 50), (750, 50), (800, 5)).

19

Each of the digit instantations required the following basic inputs. The row and column
position of the digit, the horizontal & vertical screen count, and the corresponding value for the
digit. The address of the current corresponding pixel could be found by the following calculation
(2304*digit_in) + (hcount in-x_in) + ((vcount in-y in)*WIDTH). The data output by the
BROM at this address is a 4 bit value for a grayscale pixel.

Determining the values for each of these digits however is not as straightforward as
reading the value directly from the UDP packet. Instead, we have to utilize a counter to
determine the current value for the ones place, the tens place, and the hundreds place. Using
three separate registers for each of the digits, we increment the values of these registers in the
following manner. Every cycle we increment the ones place until it hits 9, then reset it to zero.
Whenever the one place value is 9, then the tens place value will increment by 1 unless its value
is 9, in which case it will be set to 0. Then, whenever the tens place value is 9, the hundreds
place will increment by 1 unless its value is 9, in which case it will be set to 0. All of these
registers will continue to increment in this fashion until the counter reaches the given sensor data
value or a predetermined refresh threshold (1000 in our case since the maximum sensor reading
is 400) is reached.

In order to test this module, we first used the switches in lieu of the data packets to
generate a value to be passed to the number display module. To start off, we used switches 0-2
for low value integers, but switches 0-9 could be used to test numbers in the hundreds range
since 10g2(1000)~10. In addition to this testing method, we used a counter that incremented
every second (using a divisor parameter of 25 million for a 50mhz clock). We found the latter to
be more effective in demonstrating a larger range of numbers for testing.

11 VGA Display - Camera(Brandon)

/ Camera Display \

F/F
hcount i addr_in 2
veount ; addr_out : Dual-port pixel_out |
camera_data _h pixel data_in : BRAM =
double_on : Top g
pixel_clk il N

 — o

Figure 16: VGA Camera display block diagram

20

Instead of a single-port BROM that was used for the number display, we required a
dual-port BRAM for the camera display. The BRAM had a 12 bit width, and 76800 bit depth.
76800 comes from the 320*240 resolution of the input data. Then there is a 12 bit RGB value for
each pixel. The reason that we use a dual-port BRAM is so that we can both read and write
simultaneously. We write new values from the incoming UDP packet, which contains the
corresponding address to the BRAM, and then we read values from the appropriate address
according to hcount and vcount. It is important to note that these are performed at different clock
speeds. Since all of the data is being transmitted and received at 50mhz, for consistency we
decided to also write to the BRAM at 50mhz. However, since the VGA display is running at a
65mhz clock, we are reading the values from the BRAM at 65mhz. Also note to make sure that
write-enable is always high.

Also, when assigning the current pixel value, it is important to zero out all other pixels
outside of the 320x240 boundaries, otherwise the last pixel value at say for instance position
(320,1) will be carried over to position (321,1) and so on.

In addition to the 320x240 resolution, we decided to implement a 640x480 resolution
option. We determined that a nearest neighbor interpolation scheme would suffice for our
purposes. So, for each pixel in the 320x240 representation, 4 pixels would take on that original
pixel’s value for the 640x480 representation. I believe that this is most easily seen with the
following tables. The upper table is like a 2x2 image. Its values are then interpolated to a 4x4

image.

R

B

Table 3:

original 2x2

image
R R G G
R R G G
B B R R
B B R R
Table 4: Interpolated 4x4
image

21

This can be done by first assigning a switch to toggle between the two resolutions. Then
the image boundaries must be changed to 640x480. Then, rather than creating another 640x480
BRAM, we can just use the same values from the original 320x240 BRAM and use the following
algorithm to determine the appropriate pixel address.

1. If hcount is even, divide by 2 for a new hcount. If hcount is odd, subtract 1 and divide by
2 for a new hcount.

2. Ifvcount is even, divide by 2 for a new vcount. If vcount is odd subtract 1 and divide by
2 for a new vcount.

These “new” hcounts and vcounts will produce the same address as the 320x240 representation
for the same pixel value when performing the following calculation, addr = 320*(vcount _in) +
hcount in. In the actual code, the altered address is calculated in one line instead of using “new”
hcount and vcount registers which would introduce a one-cycle delay.

A possible discrepancy that we should address is that the above calculation had to be
changed because of the position of the camera. It was easier to mount the camera on its side
rather than upright, so we swapped hcount and vcount in order to rotate the resulting image 90
degrees. So, the final line that appears in the code is addr = 320*(hcount_in) + vcount_in.

12 Development Process

Overall throughout the whole development process one of the most important things that
we used is Version Control with Git. This allowed us to experiment more and to also go back
whenever we made a mistake. Additionally it also allowed us to check each other's work if
something was wrong. One thing to note however is that merge conflicts may arise if each
partner pushes their implementation files. To avoid these, we had to frequently delete those files
and pull again.

Since both of us we were apart during the entire development process, communicating
chat messages and Facetime also allowed us to keep up to date with each other's work. Next
we’ll go through some of the development process for the Robot and the Controller.

12.1 Robot

The most difficult part of the Robot development process was developing the Ethernet
Transmission and Reception modules. Due to the fact that the documentation is unclear, I had to
do a lot of trial and error, multiple simulations, and also consult multiple sources. Some of the
most significant problems was to remember that even though you mostly receive and transmit in
big endian in byte and bits you must also swap the nibbles and the semi-nibbles(or dibits) before

22

you transmit or before you save the data. Additionally, the CRC is also received and transmitted
in little endian in bytes but big endian in bits(you must still also swap nibbles and semi-nibbles).

Aside from the ethernet development, the Motor Controller module was relatively
straightforward as it was basically controlled by digital inputs and could be represented by a
truth table. The distance sensor was a little bit more difficult because we had both a trigger and
an echo signal and you didn't want to send a trigger when the echo was arriving. This however
wasn’t too much of a problem because the documentation was comprehensive enough to
understand what was going on and to fix any bugs. Additionally, code had been written in
Arduino C++ to program the HC-SR04 module, so studying that wasn’t too difficult. The other
module was the camera sensor. Luckily, the microcontroller handled the configuration for the
OV7670 so we didn’t have to worry about developing a I2C module. However, we still had to
read from the camera sensor as well as save it onto a bram module, which took a little bit more
time. Next, was the integration of all of the modules and the creation of a state machine to handle
a connection to the PC and the server. This took a little bit of time because any bugs that might
have been hidden in any of the modules showed up. For example I had to make sure not to send a
UDP packet when the other packet was still being transmitted. This required that I create a
tx_busy signal. However, due to the timing specification of the UDP protocol this was more
difficult that I anticipated because I needed to make it combinational instead of sequential which
took a little bit more thought and debugging. Lastly, was the server and PC python files. This
part wasn’t too difficult because I could test it independently from the FPGA and it didn’t need
to be compiled. The most difficult part of this was to think about what happens if packets are
dropped, because this could lead to an infinite loop. The solution to this was to resend some
essential messages if needed.

12.2 Controller

The button input commands were easy enough to test on my side and was really only a
matter of integration with the overall top level module. We actually tested the robot commands
towards the end of the development process because of our confidence that it would work
smoothly. Looking back, I think we made the right choice by focusing on other modules when
we were working together on zoom calls.

Having completed lab 3 definitely helped with VGA development, but I did have to go
back through and refresh myself on the integration of the xvga module and how hsync, vsync,
hcount, vcount, vga r, etc were all interconnected as I encountered bugs. From there the problem
became how do we correctly interpret the incoming binarized sensor data for a base 10 display
and calculate the appropriate ROM addresses. I found a viable solution involving counters and
was able to get the numbers module working fairly quickly.

The camera display module was probably the module that I had the most concerns about
as it was difficult to test unless we had the server running and the camera on the robot side was
on. I had no camera on my side, so the only times that I could evaluate the integrity of the

23

module was when we both had set apart time to do so. Luckily, we still managed to test and
debug in a timely manner.

13 Ideas/Conclusion

Given more time, we would have liked to do more with the video data. There were some
artifacts and even though the quality of the OV7670 is not great in the first place, there are
definitely some processing techniques that could have yielded a more impressive picture. We
talked about trying to implement a low pass filter, which would smooth some of the jaggedness.
Another smoothing technique we could have implemented is to convolve the pixel values with a
Gaussian kernel before displaying. One problem that was visible in the demo was a vertical
choppiness artifact. This would make if there seemed to be a lag in the horizontal bars as an
expected artifact of the rastering pattern. It turns out that the vertical bar artifact actually comes
from the horizontal bar artifact since we switched hcount and vcount to compensate for the
camera’s position. We discussed that one way to fix this problem all-together would be to create
two RAMs instead of one. One would continue to update the pixel values for the entire image at
the 50 mhz clock rate, but the other would serve as a buffer that would only refresh at a
designated framerate. This way, even though the framerate might drop, the video would seem
smoother.

For fun, it would be interesting to use a different controller interface like a PS/2 keyboard
or even the on-board accelerometer. The robot only takes one command at a time, so it would
also be a nice challenge to find a data format and motor scheme that would allow for more
flexible steering, making the robot go left and forward instead of just left for instance.

In the end, we were happy that we were not only able to establish a connection, but also
interact with the other partner’s hardware in such tangible ways despite being halfway across the
country. Though from the beginning we believed that we could control the robot one way or
another, we were not very confident that we could adequately stream video with our setup.
However, after hours of debugging and zoom calls we finally were able to see Babu’s face on the
monitor. This was a great lesson in many areas including ethernet communication, servers and
display logic.

14 Verilog Source Code

// camera_read.sv

module camera read (
input p_ clock in,
input vsync in,
input href in,
input [7:0] p data in,
output logic [15:0] pixel data out,
output logic pixel valid out,
output logic frame done out

)

logic [1:0] FSM state = 0;
logic pixel half = 0;

localparam WAIT FRAME START = 0;

localparam ROW CAPTURE = 1;

always ff@ (posedge p clock in)
begin

case (FSM_state)

WAIT FRAME START: begin //wait for VSYNC
FSM state <= (!vsync_in) ? ROW _CAPTURE : WAIT FRAME START;
frame done out <= 0;
pixel half <= 0;

end

ROW CAPTURE: begin
FSM state <= vsync in ? WAIT FRAME START : ROW CAPTURE;
frame done out <= vsync in ? 1 : 0;
pixel valid out <= (href in && pixel half) 2 1 : 0;
if (href in) begin
pixel half <= ~ pixel half;

24

if (pixel half) pixel data out[7:0] <= p data in;
else pixel data out[15:8] <= p data in;
end
end

endcase

end

endmodule

// display 8hex.sv
module display 8hex(

input clk in,

input [31:0] data in,

output
output

)

localparam bits = 13;

logic [bits:0]

logic [6:0]

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

assign

logic [6:0]
logic [7:0]

segments [0]
segments[1]
segments[2]
segments[3]
segments[4]
segments[5]
segments[6]
segments[7]
segments[8]
segments[9]
segments[10]
segments[11]
segments[12]
segments[13]
segments([14]

segments[15]

counter

// system clock

// 8 hex numbers, msb first

seg_out, // seven segment display output

strobe out // digit strobe

= 0; // clear on power up

segments[15:0]; // 16 7 bit memories

7'bl100 _0000; // inverted logic
7'bl11 1001; // gfedcba
7'b010_0100;

7'b011 0000;
7'b001_1001;

7'0001 0010;

7'0000 0010;

7'b111 1000;
7'b000_0000;

7'p001 _1000;
7'0000_1000;

7'0000 _0011;
7'b010_0111;

7'p010 _0001;
7'b000_0110;
7'p000_1110;

25

always ff @(posedge clk in) begin
// Here I am using a counter and select 3 bits which provides
// a reasonable refresh rate starting the left most digit
// and moving left.
counter <= counter + 1;
case (counter[bits:bits-2])
3'b000: begin // use the MSB 4 bits
seg out <= segments([data in[31:28]];
strobe out <= 8'b0111 1111 ;

end

3'b001: begin
seg _out <= segments[data in[27:24]];
strobe out <= 8'b1011 1111 ;

end

3'b010: begin
seg_out <= segments([data in[23:20]];
strobe out <= 8'b1101 1111 ;
end
3'b011: begin
seg _out <= segments[data in[19:16]];
strobe out <= 8'bl1110 1111;
end
3'b100: begin
seg out <= segments([data in[15:12]];
strobe out <= 8'bl111 0111;

end

3'p101: begin
seg out <= segments[data in[11:8]];
strobe out <= 8'bl111 1011;

end

3'b110: begin
seg_out <= segments[data in[7:4]];
strobe out <= 8'bl111 1101;

end

3'blll: begin

seg out <= segments([data in[3:0]];

strobe out <= 8'bl111l 1110;

end

endcase
end

endmodule

/l distance_sensor.sv

// The default is in inches else it's in centimeters

module distance sensor# (parameter INCHES = 1) (
input clk 50mhz,
input echo,
input button reset,
output logic trigger,
output logic [9:0] distance
) 7

logic [31:0] us_counter;

logic temp trigger;

logic [5:0] one us counter;

logic [8:0] ten us counter;

logic [20:0] fourty ms counter;

assign trigger = temp_ trigger;

always ff @ (posedge clk 50mhz) begin
if (button reset)begin
one us counter <= 0;
ten us counter <= 0;
fourty ms counter <= 0;
temp trigger <= 0;
distance <= 0;
end else begin

one us counter <= ((one us counter ==

0)

? 6'd50

one us_counter)

27

28

ten us counter <= ((ten_us_counter == 0) ? 9'd500: ten us counter) - 1;
fourty ms counter <= ((fourty ms counter == 0) ? 21'd2 000 000: fourty ms counter) - 1;
if ((ten us counter == 0) && temp trigger) temp trigger <= 0;

if ((one_us_counter == 0)) begin

if (echo)begin
us_counter <= us_counter + 1;

end else if (us_counter) begin
distance <= (us _counter / (INCHES ? 148 : 58));
us counter <= 0;

end

end

if ((fourty ms counter == 0)) begin
temp trigger <= 1;
end
end
end

endmodule

/ motor_control.sv
// Note forward, and backward is based on motor orientation and wiring

//IA IB | OA OB

/ /L L L L (OFF)

//H L H L (FORWARD)
//L H I H (BACKWARD)
//H H H H (OFF)

module motor control (
input logic [2:0] control,// input control
output logic [3:0] motor// {AIA,AIB,BIA,BIB}
)

// Control States in GrayCode
localparam STOP = 3'b000;
localparam FORWARD = 3'b001;
localparam BACKWARD = 3'b010;
localparam RIGHT = 3'b011;

localparam LEFT = 3'b100;

always comb begin

// Assume motor A 1s on the left and motor B 1is on the right

case (control)
STOP: motor = {1'b0,1'b0,1'b0,1'b0};
FORWARD: motor = {1'bl1,1'b0,1'b1l,1'b0};
BACKWARD: motor = {1'b0,1'bl,1'b0,1'bl};
RIGHT: motor = {1'b0,1'b0,1'b1l,1'b0};
LEFT: motor = {1'bl,1'b0,1'b0,1'b0};
default: motor = {1'b0,1'b0,1'b0,1'b0}; // Default signal is STOP

endcase

end

endmodule

/l phy_init.sv

module phy init(
input clk,
input logic button reset,
inout logic eth crsdv,
inout logic [1:0] eth rxd,
output logic eth rxerr,
output logic eth intn,
output logic eth rstn,// Used to reset the PHY
output logic phy rst done

) 7
localparam RESET = 0;

localparam DONE = 1;

localparam RESET BEFORE = 5 000 000;
localparam RESET AFTER = 400;

logic state;

// Reset

assign eth crsdv = (state == RESET) ? 1'b0O : 1'bz;
assign eth rxd = (state == RESET) ? 2'bll: 2'bzz;
assign eth rxerr = (state == RESET) ? 1'bO : 1'bz;

assign eth intn = (state == RESET) 2 1'bl : 1'bz;

logic [22:0] counter;

always ff @ (posedge clk) begin
if (button reset) begin
state <= RESET;
counter <= 0;
eth rstn <= 0;
phy rst done <=0;
end else begin
case (state)
RESET: Dbegin
if (counter == RESET BEFORE - 1) eth rstn <= 1;
if (counter == (RESET BEFORE + RESET AFTER - 1)) begin
state <= DONE;
end
end
DONE : begin
phy rst done <= 1;
end
default: state <= DONE;

endcase

if (state == RESET) counter <= counter + 1;
end
end

endmodule

// top_level_controller.sv
module top level controller (

input clk 100mhz,

// Ethernet Pins

input logic eth mdio,
inout logic [1:0] eth rxd,

inout logic eth crsdv,// valid receive

output logic eth mdc,
output logic eth rstn,
output logic eth txen,
output logic [1:0] eth txd,

30

output
output

output

logic
logic

logic

// LEDs

output
output
output

output

output

logic
logic
logic

logic

logic

// Buttons

eth refclk,
eth intn,

eth rxerr,

ledl6 b,
ledlo6 r,
ledl7 b,
ledl7 r,

[15:0] led,

input btnc,btnr,btnd,btnl,btnu,

output
output
output
output
output

//VGA display

logic[3:0] vga r,
logic[3:0] vga b,
logic[3:0] vga g,
logic vga hs,

logic vga vs,

// Hex display

output logic ca,cb,cc,cd,ce,ct,cq,

output

logic

// switches

input

[15:0]

[7:0] an,

sw,

// HC-SR04 Pins

output logic trigger, // jal[0]

input logic echo // jall]

) 8

// Clock variables

logic clk 50mhz;

// 50 and 65 (pixel) mhz clock instance

31

32

clk wiz 2 clk50 65divider(.clk inl(clk 100mhz),.clk outl(clk 50mhz), .clk out2(clk 65mhz));

// Seven segment display
logic [6:0] segments;
logic [31:0] display data; // Input data for the display

assign {cg, cf, ce, cd, cc, cb, ca} = segments[6:0];

// Clock assignment

assign eth refclk = clk 50mhz;

// HC-SR04 Distance sensor Logic

logic [31:0] distance;

// Codes
localparam RX INIT

"FPGA RX INIT";

localparam RX CONN

"PC to FPGA RX CONNECTED";

localparam TX INIT "FPGA TX INIT";

localparam TX CONN "PC to FPGA TX CONNECTED";

localparam ROBOT_TO_CONTROL = "ROBOT -> CONTROL";
localparam CONTROL_TO_ROBOT = "CONTROL -> ROBOT";
// Ports

localparam RX FPGA PORT = 5001;
localparam TX FPGA PORT = 5001;
localparam RX PC PORT = 5003;

localparam TX PC PORT 1024;

// hex display instance
display 8hex hex display(.clk in(clk 50mhz), .data in(display data), .seg out (segments),

.strobe out (an));

// PHY ETHERNET LOGIC —=-—=-—-=—=—=—=———————————

localparam PAYLOAD BYTES = 548;

logic phy rst done;

// Restart and initialize the PHY
phy init init(

.clk(clk 50mhz),

.button reset (btnc),

.eth rxerr(eth rxerr),

.eth intn(eth intn),

.eth crsdv(eth crsdv),

.eth rxd(eth rxd),

.eth rstn(eth rstn),

.phy rst done(phy rst done)

logic reset;
logic left;
logic right;
logic forward;

logic backward;

//BUTTON LOGIC
debounce deb c(.reset in(reset), .clock in(clk 100mhz), .noisy in(btnc),

.clean out (reset));

debounce deb 1(.reset in(reset), .clock in(clk 100mhz), .noisy in(btnl),
.clean out (left));

debounce deb r(.reset in(reset), .clock in(clk 100mhz), .noisy in(btnr),
.clean out (right));

debounce deb u(.reset in(reset), .clock in(clk 100mhz), .noisy in(btnu),
.clean out (forward)) ;

debounce deb d(.reset in(reset), .clock in(clk 100mhz), .noisy in(btnd),

.clean out (backward)) ;

logic [(PAYLOAD BYTES << 3) - 1 : 0] payload out;

logic [(PAYLOAD BYTES << 3) - 1 : 0] payload buffer =0;

//DRIVER CONTROLS

//DIRECTION MAP
// forward = 1
// backward = 2
// right = 3

// left = 4

// stop = 0

always ff @ (posedge clk 50mhz) begin

if (forward) begin
payload buffer[3:0] <=

end

else if (backward) begin
payload buffer[3:0] <=

end

else if (right) begin
payload buffer([3:0] <=

end

else if (left) begin
payload buffer[3:0] <=

end

else begin
payload buffer[3:0] <=
end

end

4'dl;

4'd2;

4'd3;

4'd4;

0; //0 means

stop

udp_pkt receive# (.PAYLOAD BYTES (PAYLOAD BYTES),

.FPGA IP 1(169),
.FPGA_IP 2(254),

.FPGA_IP 3(255),

34

.FPGA TP 4(255),
.FPGA_PORT (RX_FPGA_PORT),

.PC_IP 1(169),

.PC_IP 2(254),

.PC_IP 3(63),

.PC_IP 4(159),

.PC_PORT (RX PC PORT)
) rec(
.clk(clk 50mhz),
.rxd(eth rxd),
.rx_valid(eth crsdv),
.payload out (payload out),
.button reset (btnc),

.phy rst done(phy rst done));

logic tx busy;

logic input valid;

logic [239:0] payload in;

logic [15:0] send port;

udp pkt send test# (.PAYLOAD BYTES (PAYLOAD BYTES),
.IFG _BYTES (250),

.FPGA IP 1(169),
.FPGA_IP 2(254),
.FPGA_IP 3(255),
.FPGA_IP 4(255),
.FPGA_PORT (TX_FPGA_PORT),

.PC_IP 1(169),
.PC_IP 2(254),
.PC_IP 3(63),
.PC_TP_4(159)

) send test (
.clk(clk 50mhz),
.button reset (btnc),

.txen (eth txen),

35

/7

.txd(eth txd),

.t payload(payload in),
.input valid(input valid),
.tx busy(tx busy),

.send port (send port),

.phy rst done(phy rst done)
);
logic [26:0] counter;

logic [31:0] timer;

logic [3:0] state;

0;
iy

localparam START RX

localparam START TX

// Send a message to the Receive and Transmit Ports
localparam SEND RX = 2;
localparam SEND TX = 3;

// Receive a message to the Receive and Transmit Ports

localparam RECEIVE RX =

4;
localparam RECEIVE TX = 5;

// Send and Recieve a message from the other FPGA

localparam FPGA TO FPGA CONN = 6;

// Normal state for receiving and transmitting data

localparam NORMAL = 7;

localparam END = 8;

localparam TIME OUT 5 000 000;// .5 sec timeout
assign display data = state;

assign display data = payload out[31:0];
// Server Initialization

always ff @(posedge clk 50mhz) begin

36

if (btnc) begin

end

counter <= 0;

timer <= 0;

payload in <= 0;

input valid <= 0;

state <= START RX;

send port <= RX PC PORT;
ledle b <=

0
ledl6 r <= 0;
ledl7 b <=0
ledl7 r <= 0
else begin
case (state)

START RX: begin
if (~tx busy) begin
send port <= RX PC PORT;
state <= SEND RX;
payload in <= RX INIT;
input valid <= 1;
end else begin
input valid <= 0;
end
end
SEND RX: begin
input valid <= 0;
if (~tx busy) begin
state <= RECEIVE RX;
timer <= 0;
end
end
RECEIVE RX: begin
if (payload out[(23 << 3) - 1 : 0] == RX CONN) begin
ledlt b <= 1;
ledl6 r <= 0;
state <= START TX;
end else if (timer == TIME OUT - 1) begin
timer <= 0;

state <= START RX;

37

//

end

end

end

else begin

timer <= timer + 1;

START TX: begin

1f(~

end

end

end

SEND TX:

tx busy) begin

send port <= TX PC PORT;
state <= SEND TX;
payload in <= TX INIT;
input valid <= 1;

else begin

input valid <= 0;

begin

input valid <= 0;

1f(~

end

end

tx busy) begin
state <= RECEIVE TX;

timer <= 0;

RECEIVE TX: begin

if (payload out[(23 << 3) - 1 : 0] ==

end

end

end
end

NORMAL:

ledl7 b <= 1;
ledl7 r <= 0;
state <= FPGA TO FPGA CONN;

state <= NORMAL;

TX CONN) begin

else if (timer == TIME OUT - 1) begin

timer <= 0;
state <= START TX;
else begin

timer <= timer + 1;

begin

if (payload out[(4 << 3) - 1 : 0]
ledl6 b <= 0;
ledlo r <= 1;

== "STOP")begin

38

39

ledl7 b <= 0;
ledl7 r <= 1;
state <= END;
end
if (~tx busy) begin
input valid <= 1;
// payload in <= "yo";
payload in <= payload buffer;
end else begin
input valid <= 0;
end
end
END: begin
// Do Nothing
end
endcase
end

end

//Beginning of VGA logic (546 bytes for pixel input data)

logic [(PAYLOAD BYTES << 3)-1-34:0] camera packet; //first 34 bits reserved for sensor data
assign camera packet = payload out[(PAYLOAD BYTES)-1:34];
logic [33:0] sensor data;

assign sensor data = payload out[33:0];

//VGA Display
vga_ display vga disp(
.clk 50mhz(clk 50mhz),
.clk 65mhz(clk 65mhz),

.sw(sw),

.vga_r(vga r),
.vga_b(vga b),
-vga_g(vga_g),
.vga_hs(vga hs),

.vga_vs(vga_vs),

.reset (reset),

.camera_data_ in(camera packet),
.data_in(sensor data vga),

.led(led)

);
endmodule

/l top_level_robot.sv
module top level robot (

input clk 100mhz,

// Ethernet Pins

input logic eth mdio,
inout logic [1:0] eth rxd,

inout logic eth crsdv,// valid receive

output logic eth mdc,
output logic eth rstn,
output logic eth txen,
output logic [1:0] eth txd,
output logic eth refclk,
output logic eth intn,

output logic eth rxerr,

// LEDs

output logic ledlé6 b,
output logic ledlé6 r,
output logic ledl7 b,
output logic ledl7 r,

output logic [15:0] 1led,

// Buttons

input btnc,

// Hex display
output logic ca,cb,cc,cd,ce,ct,cq,

output logic [7:0] an,

// switches

input [15:0] sw,

// HC-SR04 Pins
output logic trigger, // jc[0]
input logic echo, // jcll]

// Camera pins
input [7:0] ja, //pixel data from camera
input [2:0] jb, //other data from camera (including clock return)

output jbclk, //clock FPGA drives the camera with

// VGA display

output logic[3:0] vga r,
output logic[3:0] vga b,
output logic[3:0] wvga g,
output logic vga hs,

output logic vga vs,

// MOTOR A and MOTOR B Pins
output logic AIA,
output logic AIB,
output logic BIA,

output logic BIB,

// Button Inputs
input btnr,
input btnd,
input btnl,
input btnu

)7

// Clock variables

42

logic clk 50mhz;
logic clk 65mhz;

// 50 mhz and 65 mhz clock instance
clk wiz 3 clk50 65divider (.clk_inl (clk 100mhz),.clk outl (clk 50mhz), .clk out2(clk_65mhz)) ;

// Seven segment display
logic [6:0] segments;
logic [31:0] display data; // Input data for the display

assign {cg, cf, ce, cd, cc, cb, ca} = segments[6:0];

// Clock assignment

assign eth refclk = clk 50mhz;

// HC-SR04 Distance sensor Logic

logic [9:0] distance;

// Connection Codes

localparam RX INIT = "FPGA RX INIT";

localparam RX CONN = "PC to FPGA RX CONNECTED";
localparam TX INIT = "FPGA TX INIT";

localparam TX CONN = "PC to FPGA TX CONNECTED";
localparam ROBOT TO CONTROL = "ROBOT -> CONTROL";

localparam CONTROL TO ROBOT "CONTROL -> ROBOT";
// Ports

localparam RX FPGA PORT = 5001;

localparam TX FPGA PORT = 5001;

5003;

1024;

localparam RX PC PORT

localparam TX PC PORT

// MOTOR CONTROLLER LOGIC

// Commands

// STOP = 3'b000;,
// FORWARD = 3'b001;
// BACKWARD = 3'b010;
// RIGHT = 3'b011;
// LEFT = 3'b100;

logic [2:0] motor ctrl;
logic [3:0] motor pins;

assign motor pins = {AIA,AIB,BIA,BIB};

motor control motors(.control (motor ctrl),

.motor (motor pins));

// CAMERA SENSOR LOGIC —=—=—=—=——————————m

logic xclk;

logic xclk count;

assign xclk = (xclk count == 2'b01);

assign jbclk = xclk;

logic [16:0] pixel addr in;
logic [16:0] pixel addr out;

logic pclk buff, pclk in;

logic vsync _buff, vsync in;
logic href buff, href in;
logic[7:0] pixel buff, pixel in;

logic [11:0] frame buff out;
logic [15:0] output pixels;
logic [15:0] old output pixels;
logic [12:0] processed pixels;
logic valid pixel;

logic frame done out;

localparam CAMX BUFF SIZE

320;

localparam CAMY BUFF SIZE 240;

localparam CAM BUFF SIZE = 76800; // 320 * 240

camera read my camera(.p _clock in(pclk in),
.vsync_in(vsync_in),
.href in(href in),

.p_data in(pixel in),

43

.pixel data out (output pixels),
.pixel valid out(valid pixel),

.frame done out (frame done out));

blk mem gen 0 bram(.addra(pixel addr in),
.clka(pclk in),
.dina (processed pixels),
.wea (valid pixel),
.addrb (pixel addr out),
.clkb(clk 50mhz),
.doutb (frame buff out));

always ff @(posedge pclk in)begin
if (frame done out)begin
pixel addr in <= 17'b0;
end else if (valid pixel)begin
pixel addr in <= pixel addr in +1;
end

end

always ff @ (posedge clk 50mhz) begin
pclk buff <= jb[0];
vsync buff <= jb[l];
href buff <= jb[2];
pixel buff <= ja;
pclk in <= pclk buff;
vsync_in <= vsync buff;
href in <= href buff;
pixel in <= pixel buff;
old output pixels <= output pixels;
xclk count <= xclk count + 2'b01;
processed pixels <= {output pixels[15:12],output pixels[10
end
// DISTANCE SENSOR LOGIC ——=—=—=—————=——————————
distance sensor dist sensor(.clk 50mhz (clk 50mhz),
.button reset (btnc),
.echo (echo),

.trigger (trigger),

:7],output pixels[4:1]};

44

.distance (distance));

// hex display instance
display 8hex hex display(.clk in(clk 50mhz), .data in(display data),

.strobe out (an));

// PHY ETHERNET LOGIC ——-——=-——————————————————
localparam PAYLOAD BYTES = 548;

logic phy rst done;
// Restart and initialize the PHY
phy init init(

.clk(clk 50mhz),

.button reset (btnc),

.eth rxerr(eth rxerr),

.eth intn(eth intn),

.eth crsdv(eth crsdv),

.eth rxd(eth rxd),

.eth rstn(eth rstn),

.phy rst done(phy rst done)
)

logic [(PAYLOAD BYTES << 3) - 1 : 0] payload out;
udp pkt receive# (.PAYLOAD BYTES (PAYLOAD BYTES),
.FPGA IP 1(169),
.FPGA IP 2(254),
.FPGA IP 3(255),
.FPGA IP 4(255),
.FPGA PORT (RX_ FPGA PORT),

.PC_IP 1(169),
.PC_IP 2(254),
.PC_IP 3(70),
.PC_IP 4(191),
.PC_PORT (RX_PC_PORT)
) rec(
.clk(clk 50mhz),
.rxd(eth rxd),

45

.seg_out (segments),

.rx _valid(eth crsdv),
.payload out (payload out),
.button reset (btnc),

.phy rst done(phy rst done));

logic tx busy;

logic input valid;

logic [(PAYLOAD BYTES << 3) - 1 : 0] payload in;

logic [15:0] send port;

udp pkt send test# (.PAYLOAD BYTES (PAYLOAD BYTES),
.IFG _BYTES (250),

.FPGA_IP 1(169),
.FPGA_IP 2(254),
.FPGA_IP 3(255),
.FPGA_IP 4(255),
.FPGA_PORT (TX_FPGA_PORT),

.PC_IP 1(169),
.PC_IP 2(254),
.PC_IP_3(70),
.PC_TP_4(191)

) send test (

.clk(clk 50mhz),
.button reset (btnc),
.txen (eth txen),

.txd(eth txd),

.t _payload(payload in),
.input valid(input valid),
.tx busy(tx busy),

.send port (send port),

.phy rst done(phy rst done)

)

logic [16:0] counter;

logic [7:0] count pixel;

logic [31:0] timer;
logic [3:0] state;

localparam START RX = 0;
localparam START TX = 1;

// Send a message to the Receive and Transmit Ports
localparam SEND RX = 2;
39

localparam SEND TX =

// Recelive a message to the Receive and Transmit Ports
localparam RECEIVE RX =

4;
localparam RECEIVE TX = 5;

// Send and Recieve a message from the other FPGA
localparam FPGA TO FPGA CONN = 6;

// Normal state for receiving and transmitting data

localparam NORMAL = 7;
localparam END = 8;

localparam TIME OUT = 5 000 000;// .5 sec timeout
localparam PIXELS PER PKT = 150;// (548 bytes * 8 - 34

assign pixel addr out = counter;
assign display data = payload out[3:0];

// Server Initialization
always ff @(posedge clk 50mhz) begin
if (btnc) begin
counter <= 0;
count pixel <= 0;
payload in <= 0;
input valid <= 0;
state <= START RX;

send port <= RX PC PORT;

bits) *8/(9 + 8 + 12)

47

ledl6 b <
ledle r <
ledl7 b <
ledl7 r <

~e

Il
o O o o
~

timer <= 0;
end else begin
case (state)
START RX: begin
if (~tx busy) begin
send port <= RX PC PORT;
state <= SEND RX;
payload in <= RX INIT;
input valid <= 1;
end else begin
input valid <= 0;
end
end
SEND RX: begin
input valid <= 0;
if (~tx busy) begin
state <= RECEIVE RX;
timer <= 0;
end
end
RECEIVE RX: begin
if (payload out[(23 << 3) - 1 : 0] == RX CONN) begin
ledl6 b <= 1;
ledl6 r <= 0;
state <= START TX;
end else if (timer == TIME OUT - 1) begin
timer <= 0;
state <= START RX;
end else begin
timer <= timer + 1;
end
end
START TX: begin

if (~tx busy) begin

48

end

end

end

SEND TX:

send port <= TX PC PORT;
state <= SEND TX;
payload in <= TX INIT;
input valid <= 1;

else begin

input valid <= 0;

begin

input valid <= 0;

1f(~

end

end

tx busy) begin
state <= RECEIVE TX;

timer <= 0;

RECEIVE TX: begin

if (payload out[(23 << 3) - 1 : 0] == TX CONN) begin

//

end

end

end
end

NORMAL:

ledl7 b <= 1;
ledl7 r <= 0;
state <= FPGA TO FPGA CONN;
state <= NORMAL;
timer <= 0;
else if (timer == TIME OUT - 1) begin
timer <= 0;
state <= START TX;
else begin

timer <= timer + 1;

begin
//Receiving
if (payload out[(4 << 3) - 1 : 0] == "STOP")begin

ledl6 b <
ledle r <

’
’

led17 b <

’

Il
= o = O

ledl7 r < g
state <= END;

end else begin

49

end
END:
end
endcase
end
end
endmodule

/ udp_pkt_receive.py

50

// Motor Control Information
motor ctrl <= payload out[2:0];

end

// Sending
if (~tx busy && count pixel == PIXELS PER PKT - 1) begin
input valid <= 1;
if(sw[0]) begin
payload in <= "STOP";
end
end else begin
input valid <= 0;
end
if (count pixel == 0 && ~sw[0]) begin
// Distance sensor 34 bits (happens once per packet sent)
payload in[0+:34] <= distance;
// counter is X pos + y pos*320 (17 bits)
// Pixel data 12 bits
payload in[34+:17] <= counter;
payload in[51+:12] <= frame buff out;
end else if(~sw[0]) begin
payload in[(63 + 5'd29 * (count pixel - 1))+:17] <= counter;
payload in[(80 + 5'd29 * (count pixel - 1))+:12] <= frame buff out;

end

counter <= (counter == CAM BUFF SIZE - 1) ? 0 : counter + 1;

count pixel <= (count pixel == PIXELS PER PKT - 1) ? 0 : count pixel + 1;
begin

// Do Nothing

// Note nibbles 1s 4-bits. snibbles means semi-nibble (or di-bits)which is 2-bits

module udp pkt receive

(

// "FPGA IP" - put an unused IP

parameter FPGA IP 1 =
parameter FPGA IP 2
parameter FPGA IP 3
parameter FPGA TP 4

// FPGA Port

parameter FPGA PORT

4

4

4

o o o O

14

5000,

// PC IP address for incoming data

parameter
parameter
parameter

parameter

PC IP 1
PC_IP 2
PC_IP 3
PC IP 4

// PC Port

parameter PC_ PORT

4

~

Il
o o o o

5000,

// Payload size parameter

parameter PAYLOAD BYTES = 30,

// Power Up parameter

parameter POWER UP CYCLES = 23'd8 000 000

input
input
input
input

input

output
output
output
output

logic
logic
logic

logic

logic
logic
logic

logic

clk,

button reset,
[1:0] rxd,

rx valid,

phy rst done,

[(PAYLOAD BYTES << 3) - 1 : 0] payload out,
valid indicator,
error indicator,

display data

// The number of bytes in parts of the Ethernet Frame

localparam int unsigned PREAMBLE SFD BYTES

87

localparam int unsigned MAC HEADER BYTES = 14;

localparam int unsigned IP HEADER BYTES = 20;

51

localparam int unsigned UDP_HEADER BYTES = 8;
localparam int unsigned CRC_BYTES = 4;
localparam int unsigned IFG BYTES = 12; // Ethernet Interframe

// The number of semi-nibbles in parts of the frame

localparam int unsigned PREAMBLE SFD SNIBBLES

4 * PREAMBLE SFD BYTES;

localparam int unsigned MAC HEADER SNIBBLES

4 * MAC HEADER BYTES;

localparam int unsigned IP HEADER SNIBBLES * IP HEADER BYTES;

I IS Iy D
*

localparam int unsigned UDP HEADER SNIBBLES * UDP_HEADER BYTES;

localparam int unsigned CRC_SNIBBLES = CRC BYTES;// CRC
localparam int unsigned IFG_SNIBBLES = * IFG BYTES;
logic [31:0] ip checksum;

logic [17:0] payload length snibbles;

logic [(PREAMBLE SFD BYTES << 3) - 1 : 0] preamble;
logic [(MAC_HEADER BYTES << 3) - 1 : 0] mac_header;
logic [(IP_HEADER BYTES << 3) - 1 : 0] ip header;
logic [(UDP_HEADER BYTES << 3) - 1 : 0] udp header;
logic [(PAYLOAD BYTES << 3) - 1 : 0] payload data;

// Received CRC

logic [(CRC_BYTES << 3) - 1 : 0] crc32 rx;
// Calculated CRC for verification

logic [(CRC_BYTES << 3) - 1 : 0] crc32 cal;

// Counters

logic [31:0] global counter;
logic [1:0] snibble counter;
logic [22:0] power up counter;

logic [5:0] ifg counter;

// States

localparam POWER UP = 0;
localparam IDLE = 1;
localparam PREAMBLE = 2;

localparam MAC HEADER = 3;// same as the ethernet header
localparam IP HEADER = 4;

Gap

52

localparam UDP_HEADER = 5;

localparam PAYLOAD = 6;

localparam CRC = 7;

localparam IFG = 8; // Ethernet Interframe Gap

logic [3:0] state;

logic [7:0] temp reg;

always ff @ (posedge clk)begin

if (button reset)begin
// Indicators
valid indicator <= 0;
error indicator <= 0;
display data <= 0;
// Counters
global counter <= 0;
snibble counter <= 0;
power up counter <= 0;
ifg counter <= 0;
// State
state <= POWER UP;
// Incoming data
preamble <=0;
mac_header <= 0;
ip header <= 0;
udp header <= 0;
payload data <= 0;
crc32 rx <= 0;
crc32 cal <= 32'hFF FF FF FF;
temp reg <= 0;
// output
payload out <= 0;

end

else begin
case (state)

// Reception Power Up
POWER UP: begin

54

if (power up counter == POWER UP CYCLES - 1)begin
state <= IDLE;
end
end
IDLE: begin
if (rx_valid)begin
if (rxd == 2'b01)begin
state <= PREAMBLE;
global counter <= 1;// start the global counter
snibble counter <= 1;// start the snibble counter

ifg counter <= 0; // clear the ifg counter

preamble <=0; // Clear the preamble
crc32 cal <= 32'hFF FF FF FF;// Reset the CRC
end
temp reg <= (temp reg << 2) | rxd;
end
end
PREAMBLE: begin
if (snibble counter == 0)begin
preamble <= (preamble << 8) | swap nibbles (temp reg);
end
temp reg <= (temp reg << 2) | rxd;
// Verify the correct preamble
if (((preamble << 8) | swap nibbles (temp reg)) == 64'h55 55 55 55 55 55 55 D5)
state <= MAC HEADER;
global counter <= PREAMBLE SFD SNIBBLES + 4 - 1;
end
MAC HEADER: begin
if (snibble counter == 0)begin
mac_header <= (mac_header << 8) | swap nibbles (temp reg);

crc32 cal <= compute crc(crc32 cal, swap nibbles(temp req)):;

end
temp reg <= (temp reg << 2) | rxd;
if (global counter == PREAMBLE SFD SNIBBLES +

MAC HEADER SNIBBLES + 4 - 1) state <= IP HEADER;
end

IP HEADER: begin

if (snibble counter == 0)begin

ip header <= (ip header << 8) | swap nibbles (temp reg);

crc32 cal <= compute crc(crc32 cal, swap nibbles(temp req)):;

end
temp reg <= (temp reg << 2) | rxd;
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES P
IP HEADER SNIBBLES + 4 - 1)
end
UDP_HEADER: begin
// Save the checksum
ip_ checksum <= (ip_header[144+:16] +
ip header[128+:16] +
ip header[112+:16] +
ip header([96+:16] +
ip header([80+:16] +
ip header[48+:16] +
ip header[32+:16] +
ip header[l6+:16] +

ip header[0+:1

6]

) 8

payload length snibbles <= (ip header[143:128] -

IP _HEADER BYTES

UDP_HEADER BYTES) << 2;

if (snibble counter == 0)begin

udp_header <= (udp_header << 8) | swap nibbles (temp_ reg);

55

state <= UDP HEADER;

crc32 cal <= compute crc(crc32 cal, swap nibbles (temp req)):;

end
temp reg <= (temp reg << 2) | rxd;
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES +
IP HEADER SNIBBLES P
UDP HEADER SNIBBLES + 4 - 1) state <= PAYLOAD;
end
PAYLOAD: begin
// Skip the payload if the checksum is invalid
if (ip_header[64+:16] != ~(ip _checksum[31:16] + ip checksum[15:0]))begin

state <= IFG;

end

56

if (snibble counter == 0)begin
payload data <= (payload data << 8) | swap nibbles (temp reg):;

crc32 cal <= compute crc(crc32 cal, swap nibbles(temp req)):;

end
temp reg <= (temp reg << 2) | rxd;
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES P
IP HEADER SNIBBLES <
UDP HEADER SNIBBLES +
payload length snibbles + 4 - 1) state <= CRC;
end
CRC: begin
if (snibble counter == 0)begin
crc32 rx <= (crc32 rx << 8) | swap nibbles (temp reg);
end
temp reg <= (temp reg << 2) | rxd;
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES +
IP HEADER SNIBBLES P
UDP HEADER SNIBBLES <
payload length snibbles +
CRC_SNIBBLES + 4 - 1) state <= IFG;
end

IFG: begin // Ethernet Interframe gap or END stage

// Verification

if (preamble == 64'h55 55 55 55 55 55 55 D5
&& mac_header[15:0] == 16'h08 00
&& ip header([159:144] == 16'h45 00

// CRC authentication.
&& reverse_ and invert (crc32 cal) ==
{crc32 rx[0+:8],crc32 rx[8+:8],crc32 rx[16+:8],crc32 rx[24+:8] }

// IP checksum authentication

&& ip header([64+:16] == ~(ip checksum[31:16] + ip checksum[15:0])
// PC IP authentication

&& ip header([56+:8] == PC _IP 1

&& ip header([48+:8] == PC_IP 2

&& ip header[40+:8] == BC_IP 3

&& ip header[32+:8] = BC_IP 4

begi

end

//FPGA Port authentication
&& udp_header[32+:16] == FPGA PORT

//FPGA IP authentication

&& ip header([24+:8] == FPGA IP 1
&& ip header([16+:8] == FPGA IP 2
&& ip header[8+:8] == FPGA IP 3
&& ip header[0+:8] == FPGA IP 4
)
n

// Valid data that can be outputted
payload out <= payload data;

// End this one clock cycle before

// you need to go to IDLE

if (ifg counter == IFG SNIBBLES - 4) begin

end

end
end
default:

endcase

// Need to reset these

state <= IDLE;

preamble <=0;

payload data <= 0;

crc32 cal <= 32'hFF FF FF FF;

// reset for good practice
global counter <= 1;
snibble counter <= 1;

ifg counter <=0;

mac_header <= 0;

ip header <= 0;
udp_header <= 0;

crc32 rx <= 0;

temp reg <= 0;

else if (~rx valid) begin

ifg counter <= ifg counter + 1;

state <= IDLE;

57

if (state != IDLE && state != IFG) begin
snibble counter <= snibble counter + 1;

end

if (state != IDLE && state != PREAMBLE && state != IFG)begin
global counter <= global counter + 1;

end

if (state == POWER UP && phy rst done) begin
power up counter <= power up counter + 1;

end

end

end

//Reverse nibbles in a byte and semi-nibbles (di-bits) in a nibble
// ex. In: ab cd ef gh ; Out: gh ef cd ab
function logic [7:0] swap nibbles (input logic [7:0] data);
swap nibbles = {data[l:0],data[3:2],
data[5:4],data[7:6]};

endfunction

// CRC-32 algorithm: Github Adam Christiansen MIT License
// For computing crc32
function [31:0] compute crc(input logic [31:0] crc,
input logic [7:0] data);

localparam int unsigned POLYNOMIAL = 32'h04 C1 1D B7;

compute crc = crc;

for(int j = 0;3<8;j++)begin

compute crc = {compute crc[30:0], 1'b0} ~
(data[j] == compute crc([31] ? 0 : POLYNOMIAL) ;
end

endfunction

//Reverse and invert bits in a 32-bit word
function [31:0] reverse and invert (input logic [31:0] data);
for(int 1 =0; i< 32; i++)begin
reverse and invert[i] = ~data[31-i];
end

endfunction

58

59

endmodule

/ludp_pkt_send_test.sv
module udp pkt send test

#(

// "IP source" - put an unused IP

parameter FPGA IP 1 = O,

4

parameter FPGA IP 2 0
0,
0

parameter FPGA IP 3

parameter FPGA IP 4

14

// FPGA PORT

parameter FPGA PORT 5000,

// "IP destination" - put the IP of the PC/Server you want to send to
parameter PC IP 1 =
parameter PC IP 2 =
parameter PC IP 3 =
parameter PC IP 4 =
// "Physical Address" - put the address of the PC/Server you want to send to - default broadcast

parameter PC ADDR 1 = 8'hff,

parameter PC ADDR 2 = 8'hff,
parameter PC ADDR 3 = 8'hff,
parameter PC ADDR 4 = 8'hff,
parameter PC ADDR 5 = 8'hff,

parameter PC ADDR 6 = 8'hff,
//FPGA Physical address: Can be anything really
parameter FPGA ADDR 1 = 8'haa,
parameter FPGA ADDR 2 = 8'hde,
parameter FPGA ADDR 3 = 8'had,
parameter FPGA ADDR 4 = 8'hbe,
parameter FPGA ADDR 5 = 8'hef,
parameter FPGA ADDR 6 = 8'haa,
// Ethernet Parameters
parameter PAYLOAD BYTES = 30, // Must be at least 18 for a total of at least 64 bytes
parameter POWER UP CYCLES = 5 000 000 + 400,
// Ethernet Interframe Gap for processing payload data
parameter IFG BYTES = 12,// Min is 12. Increase for more latency between packets
//Image params for later.

parameter IM X = 640,

60

parameter IM Y = 480,
parameter COLOR MODE = 1

input clk,

input logic button reset,

input logic[(PAYLOAD BYTES << 3) - 1:0] t payload,

input logic input valid, // should be a pulse
input logic phy rst done,

input logic [15:0] send port,

output logic tx busy,

output logic txen,

output logic [1:0] txd

// The number of bytes in parts of the Ethernet Frame

localparam int unsigned PREAMBLE SFD BYTES = 8;
localparam int unsigned MAC HEADER BYTES = 14;
localparam int unsigned IP HEADER BYTES = 20;
localparam int unsigned UDP HEADER BYTES = 8;
localparam int unsigned CRC BYTES = 4;

localparam int unsigned UDP_LENGTH = UDP_HEADER BYTES + PAYLOAD BYTES;// in bytes
localparam int unsigned IP LENGTH = IP HEADER BYTES + UDP HEADER BYTES + PAYLOAD BYTES;// in bytes

// The number of semi-nibbles in parts of the frame

localparam int unsigned PREAMBLE SFD SNIBBLES 4 * PREAMBLE SFD BYTES;

localparam int unsigned MAC HEADER SNIBBLES

4 * MAC HEADER BYTES;

localparam int unsigned IP HEADER SNIBBLES

* IP HEADER BYTES;

I Iy D D [N
*

localparam int unsigned UDP_ HEADER SNIBBLES * UDP_HEADER BYTES;

localparam int unsigned CRC_SNIBBLES = CRC_BYTES;// CRC
localparam int unsigned IFG SNIBBLES = * IFG BYTES;// interframe gap

localparam int unsigned PAYLOAD SNIBBLES = * PAYLOAD BYTES;// interframe gap

// Payload SNIBBLE Length is (IP LENGTH (read from the header) - IP HEADER BYTES -

UDP_HEADER BYTES) *4

61

// Payload SNIBBLE Length is also (UDP_LENGTH (read from the header) - UDP _HEADER BYTES) * 4
// The Ethernet type for the Ethernet header. This value indicates that

// IPv4 is used.

localparam int unsigned ETHER TYPE = 16'h0800;

// The IP version to use.

4;

localparam int unsigned IP VERSION

// The IP header length in 32-bit words.

localparam int unsigned IP HEADER LENGTH = 5;

// The IP type of service.

localparam int unsigned IP TOS = 8'h00;

// The IP fragment identification.

localparam int unsigned IP ID = 16'h0000;

// The IP flags.
localparam int unsigned IP FLAGS = 4'h0;

// The IP fragmentation offset.
localparam int unsigned IP FRAGMENTATION OFFSET = 12'h000;

// The IP time to live.

localparam int unsigned IP TTL = 255;

// The IP next level protocol to use. This is the User Datagram Protocol.

8'hll;

localparam int unsigned IP PROTOCOL

// verifies the validity of the ip header
localparam int unsigned IP CHECKSUM = {IP VERSION[3:0],IP HEADER LENGTH[3:0], IP TOS[7:0]} +
IP LENGTH[15:0]+
IP ID[15:0] +
{IP FLAGS[3:0],IP FRAGMENTATION OFFSET([11:0]} +
{IP TTL[7:0],IP_PROTOCOL[7:0]} +
{FPGA IP 1[7:0],FPGA IP 2[7:01} +
{FPGA IP 3[7:0], FPGA IP 4[7:0]} +
{PC_IP 1[7:0],PC IP 2[7:0]} +

62
{PC_IP 3[7:0],PC_IP 4[7:01} ;
localparam int unsigned UDP_CHECKSUM = 16'h0000;// Optional but it's normally zero
logic [(CRC BYTES << 3) - 1 : 0] crc32;
logic [31:0] global counter;// The size should actually be around 17 bits max
logic [1:0] snibble counter;
logic [22:0] power up counter;
logic [10:0] ifg counter;
localparam POWER UP = 0;

localparam IDLE = 1;

localparam PREAMBLE

2;
localparam IP HEADER = 4;
localparam MAC HEADER = 3;// same as the ethernet header

localparam UDP_HEADER 5;

localparam PAYLOAD = 6;

localparam CRC = 7;

// Ethernet Interframe gap where you can chill for 12 bytes time or 48 snibbles

// It is also the end stage so i1f you have corrupted data it'll just to this stage as well

localparam IFG = 8;

logic [3:0] state;
// Temporary register to hold a 4-bit nibble

logic [7:0] temp reg;

assign state out = state;

logic [7:0] pkt data[0:PREAMBLE SFD BYTES +
MAC HEADER BYTES +
IP HEADER BYTES P
UDP_HEADER BYTES +
PAYLOAD BYTES +

CRC_BYTES - 1];

assign tx busy = (state == IDLE && ~input valid) 2 0 : 1;

always ff @(posedge clk)begin
if (button reset)begin
//Counters
global counter <= 0;
snibble counter <= 0;
power up counter <= 0;
ifg counter <=0;
// State
state <= POWER UP;
temp reg <= 0;
// TX init
txen <= 0;
txd <= 0;
// crc
crc32 <= 32'hFF FF FF FF;
end
else begin
case (state)
// Rough power up time for the Ethernet PHY
POWER UP: begin
if (power up counter == POWER UP CYCLES - 1)begin
state <= IDLE;
end
end
IDLE: begin
// Preamble
pkt data[0] <= swap nibbles(8'h55);
pkt data[l] <= swap nibbles(8'h55);
pkt data[2] <= swap nibbles(8'h55);
pkt data[3] <= swap nibbles(8'h55);
pkt data[4] <= swap nibbles(8'h55);
pkt data[5] <= swap nibbles(8'h55);
pkt data[6] <= swap nibbles(8'h55);
pkt data[7] <= swap nibbles(8'hD5) ;
// Ethernet MAC Header
pkt data[8] <= swap nibbles(PC_ADDR 1);
pkt data[9] <= swap nibbles(PC_ADDR 2);
pkt data[l10] <= swap nibbles (PC ADDR 3);

pkt data[11]
pkt data[12]
pkt data[13]
pkt data[l4]
pkt data[l5]
pkt data[l6]
pkt data[17]
pkt data[18]
pkt data[19]
pkt data[20]
pkt data[21]
//IP header
pkt data[22]
pkt data[23]
pkt data[24]
pkt data[25]
pkt data[26]
pkt datal27]
pkt data[28]
pkt data[29]
pkt data[30]
pkt data[31]
pkt data[32]
pkt data[33]
pkt data[34]
pkt data[35]
pkt data[36]
pkt data[37]
pkt data[38]
pkt data[39]
pkt data[40]
pkt dataf[41]
//UDP Header
pkt data[42]
pkt data[43]
pkt data[44]
pkt data[45]
pkt data[46]

64

swap nibbles (PC_ADDR 4);

swap nibbles (PC _ADDR 5);
swap_nibbles (PC_ADDR 6) ;

swap nibbles (FPGA ADDR 1);
swap nibbles (FPGA ADDR 2);
swap nibbles (FPGA ADDR 3);
swap nibbles (FPGA ADDR 4);
swap nibbles (FPGA ADDR 5);
swap_nibbles (FPGA ADDR 6) ;
swap nibbles (ETHER TYPE[15:8]);
swap nibbles (ETHER TYPE([7:0]);

Swap_nibbles ({IP_VERSION [3:01, IP HEADER LENGTH [3:01});

swap nibbles (IP TOS[7:0]);

swap nibbles (IP LENGTH[15:8]);

swap nibbles (IP _LENGTH[7:0]);

swap nibbles (IP ID[15:8]);

swap nibbles (IP_ID[7:0]);

swap nibbles ({IP FLAGS[3:0],IP FRAGMENTATION OFFSET[11:8]});
swap nibbles (IP _FRAGMENTATION OFFSET[7:0]);

swap nibbles (IP TTL[7:0]);

swap nibbles (IP_PROTOCOL[7:0]) ;

swap nibbles ((~(IP _CHECKSUM[31:16] + IP CHECKSUM[15:0])) >> 8);
swap_nibbles ((~(IP_CHECKSUM[31:16] + IP CHECKSUM[15:0])));
swap nibbles (FPGA IP 1);

swap nibbles (FPGA IP 2);

swap_nibbles (FPGA IP 3);

swap nibbles (FPGA IP 4);

swap nibbles (PC _IP 1);

swap nibbles (PC_IP 2);

swap nibbles (PC IP 3);

swap nibbles (PC IP 4);

swap nibbles (FPGA PORT[15:8]);
swap nibbles (FPGA PORT[7:0]);
swap nibbles (send port[15:8]);
swap nibbles (send port[7:0]);
swap nibbles (UDP LENGTH[15:8]);

3)+:81);

65

pkt data[47] <= swap _nibbles (UDP_LENGTH[7:0]);
pkt data[48] <= swap nibbles (UDP CHECKSUM[15:8]);
pkt data[49] <= swap nibbles (UDP CHECKSUM[7:0]);
// PAYLOAD INFO

for(int i = 0;i < PAYLOAD BYTES;i++)begin

pkt data[i + 50] <= swap nibbles(t payload[((PAYLOAD BYTES - 1 - i) <<

end

// CRC32 calculate later (4 bytes)
pkt_data[PAYLOAD BYTES + 50 + 0] <= 8'h00;
pkt data[PAYLOAD BYTES + 50 + 1] <= 8'h00;
pkt data[PAYLOAD BYTES + 50 + 2] <= 8'h00;

pkt data[PAYLOAD BYTES + 50 + 3] <= 8'h00;

if (input valid) begin
state <= PREAMBLE;

temp reg <= pkt data[global counter >> 2];

global counter <= 1;// start the global counter at 1
snibble counter <= 1;// start the snibble counter at I
ifg counter <=0;
end
end
PREAMBLE: begin
txen <= 1;
if (snibble counter==0) begin
//next byte
temp reg <= pkt data[global counter >> 2];
end else begin
temp reg <= (temp reg << 2);
end
txd <= temp reg[7:6];
if (global counter == PREAMBLE SFD SNIBBLES - 1) state<=MAC HEADER;
end
MAC HEADER: begin
if (snibble counter==0) begin
//next byte

temp reg <= pkt data[global counter >> 2];

66

// return the pkt data to normal for the crc calculation
crc32 <= compute crc(crc32, swap nibbles (pkt data[global counter >> 2]));
end else begin
temp reg <= (temp reg << 2);
end
txd <= temp reg[7:6];
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES - 1) state<=IP HEADER;
end
IP HEADER: begin
if (snibble counter==0) begin
//next byte
temp reg <= pkt data[global counter >> 2];
crc32 <= compute crc(crc32, swap nibbles (pkt data[global counter >> 2]));
end else begin
temp reg <= (temp reg << 2);
end
txd <= temp reg[7:6];
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES +
IP HEADER SNIBBLES - 1) state<=UDP_HEADER;
end
UDP_HEADER: begin
if (snibble counter==0) begin
//next byte
temp reg <= pkt data[global counter >> 2];
crc32 <= compute crc(crc32, swap nibbles (pkt data[global counter >> 2]));
end else begin
temp reg <= (temp reg << 2);
end
txd <= temp reg[7:6];
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES +
IP HEADER SNIBBLES +
UDP_HEADER SNIBBLES - 1) state <= PAYLOAD;
end
PAYLOAD: begin

if (snibble counter==0) begin

16);

24) ;

67

temp reg <= pkt data[global counter >> 2];

crc32 <= compute crc(crc32, swap nibbles (pkt datal[global counter >> 2]));

end else begin
temp reg <= (temp reg << 2);
end
txd <= temp reg[7:6];
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES <
IP HEADER SNIBBLES +
UDP_HEADER SNIBBLES +
PAYLOAD SNIBBLES - 1) begin
state <= CRC;

// CRC is in little-endian by bytes

pkt data[PAYLOAD BYTES + 50 + 0] <= swap nibbles(reverse and invert (crc32));

pkt data[PAYLOAD BYTES + 50 + 1] <= swap nibbles (reverse and invert (crc32)

pkt data[PAYLOAD BYTES + 50 + 2] <= swap nibbles(reverse and invert (crc32)

pkt data[PAYLOAD BYTES + 50 + 3] <= swap nibbles(reverse and invert (crc32)

end
end
CRC: begin
if (snibble counter==0) begin
//next byte
temp reg <= pkt data[global counter >> 2];
end else begin
temp reg <= (temp reg << 2);
end
txd <= temp reg[7:6];
if (global counter == PREAMBLE SFD SNIBBLES +
MAC HEADER SNIBBLES <
IP HEADER SNIBBLES

+

UDP _HEADER SNIBBLES +

PAYLOAD SNIBBLES +

CRC_SNIBBLES - 1) state <= IFG;
end

IFG: begin // Ethernet Interframe gap or END stage

>>

>>

>>

end

end

txd <= (ifg counter == 0) ? temp reg[7:6]
txen <= (ifg counter == 0) 2 1 : 0 ;
if (ifg counter == IFG SNIBBLES - 1) begin

// Need to reset these
state <= IDLE;
crc32 <= 32'hFF FF_FF _FF;

// These ones are cleared for good practice

temp reg <= 0;
snibble counter <= 0;
global counter <= 0;
power up counter <= 0;
ifg counter <=0;
end else begin
ifg counter <= ifg counter + 1;
end
end
default: state <= IDLE;

endcase

if (state != IDLE && state != IFG) begin
snibble counter <= snibble counter + 1;
global counter <= global counter + 1;

end

if (state == POWER UP && phy rst done) begin
power up counter <= power up counter + 1;

end

// CRC-32 algorithm: Github Adam Christiansen MIT License

// For computing the checksum

function

[31:0] compute crc(input logic [31:0] crc,

input logic [7:0] data);
localparam int unsigned POLYNOMIAL = 32'h04 Cl1 1D B7;
compute crc = crc;
for(int j = 0;j<8;j++)begin

A

compute crc = {compute crc[30:0], 1'b0}

0

68

(data[j] == compute crc([31] ? 0 : POLYNOMIAL);

end

endfunction

//Reverse nibbles in a byte and semi-nibbles (di-bits) in a nibble
// ex. In: ab _cd ef gh ; Out: gh ef cd ab
function [7:0] swap nibbles (input logic [7:0] data);
swap nibbles = {data[l:0],data[3:2],
data([5:4],datal[7:6]};
endfunction
//Reverse and invert bits in a byte
function [31:0] reverse and invert (input logic [31:0] data);
for(int i =0; i< 32; i++)begin
reverse and invert[i] = ~data[31-i];
end
endfunction
endmodule

/Il vga_display.sv
localparam CAMERA BITS = 548*8-34; //number of bits for packet of camera data

module vga display(
input clk 50mhz,
input clk 65mhz,
input[15:0] sw,
input reset,

// input btnc, btnu, btnl, btnr, btnd,

input [9:0] data in, //sensor data to be displayed

input [CAMERA BITS-1:0] camera data in, //to be displayed (addr, raw data)

//VGA interface logics
output logic[3:0] vga r,
output logic[3:0] vga b,
output logic[3:0] vga g,
output logic vga hs,

69

70

output logic vga vs,

// leds for switches

output logic [15:0] led

assign led = sw; // turn leds on

//general VGA registers

logic [10:0] hcount; // pixel on current line

logic [9:0] vcount; // line number

logic hsync, vsync;

logic [11:0] rgb; //rgb value of current pixel

//rgb value of the current pixel of the numbers being displayed

logic [11:0] number pixel;

///CAMERA

logic [11:

logic [11:

logic [11:

logic [1l6:
RAM

logic [12:
packet

PIXEL REGISTERS

0] camera pixel;

0] double camera pixel; //for 2x resolution

0] raw cam data; //from the packet of camera data

0] cam addr; //the address of the current pixel to be used to read and write from the

0] counter = 0; //counter for iterating through all of the pixel data values 1in a

always ff @(posedge clk 50mhz) begin

cam addr <= camera data in[counter+:17]; //address requires 17 bits

71

raw_cam data<=camera data in[(counter+17)+:12]; //pixel data requires 12 bits

if (counter>=149*29) begin //restart after the 150th (or last) pixel in the data packet

counter<=0;

end
else begin

counter <= counter+29; //increase index by 29 (12 bits for pixel value, 17 for address
value)

end

end

xvga xvgal (.vclock in(clk 65mhz), .reset in(reset), .hcount out (hcount), .vcount out (vcount),

.hsync out (hsync), .vsync out (vsync), .blank out (blank));

logic phsync,pvsync,pblank; //number sync

logic chsync, cvsync, cblank; //camera sync

number image number (
.vclock in(clk 65mhz),

.reset _in(reset),

.data in(data in),
.hcount in(hcount), .vcount in(vcount),
.hsync_in (hsync), .vsync_in(vsync), .blank in(blank),

.phsync_out (phsync), .pvsync_out (pvsync), .pblank out (pblank), .pixel out (number pixel));

camera to picture camera 1 (
.clk 50mhz(clk 50mhz),
.pixel clk in(clk 65mhz),
.hcount in(hcount),

.vcount in(vcount),

.addr_in(cam_addr),

.raw_data in(raw cam data),

.double on(sw[2]), //turn on switch 2 for 640x320 image

.hsync_in(hsync), .vsync_in(vsync), .blank in(blank),

.chsync_out (chsync), .cvsync_out (cvsync), .cblank out (cblank),

.pixel out (camera pixel),
.double pixel out (double camera pixel)

);

logic b, hs,vs;

always ff @(posedge clk 65mhz) begin

if (sw[l:0] == 2'b01) begin // just number setting
hs <= phsync;
vs <= pvsync;

b <= pblank;

rgb<= number pixel;

end else if (sw[l:0] == 2'bl0) begin // just camera
hs <= phsync;
vs <= pvsync;

b <= pblank;

setting

72

rgb<= camera pixel;

end else if (sw[l:0] == 2'bll) begin //camera and number setting
hs <= phsync;
vs <= pvsync;

b <= pblank;

rgb<= number pixel | camera pixel;

end else if (sw[l:0] == 2'b0) begin //camera off
hs <= phsync;
vs <= pvsync;

b <= pblank;

rgb<=0;
end else begin
// default: camera and sensor data displaying
hs <= phsync;
vs <= pvsync;

b <= pblank;

rgb<= number pixel | camera pixel;
end

end

//From lab 3

// the following lines are required for the Nexys4 VGA circuit - do not change
assign vga r = ~b ? rgb[11:8]: 0O;

assign vga g = ~b ? rgb[7:4] : 0;

assign vga b = ~b ? rgb[3:0] : 0;

assign vga hs = ~hs;

assign vga vs = ~vs;

74

endmodule

module number image (
input vclock in, // 65MHz clock

input reset in, // 1 to initialize module

//from lab 3
input [10:0] hcount in, // horizontal index of current pixel (0..1023)

input [9:0] wvcount in, // vertical index of current pixel (0..767)

input hsync in, // XVGA horizontal sync signal (active low)
input vsync in, // XVGA vertical sync signal (active Ilow)
input blank in, // XVGA blanking (1 means output black pixel)
output logic phsync out, // horizontal sync

output logic pvsync out, // vertical sync

output logic pblank out, // blanking

output logic [11:0] pixel out, // pixel value // r=11:8, g=7:4, b=3:0

input [9:0] data in

);

assign phsync out = hsync in;

assign pvsync out = vsync in;

assign pblank out = blank in;

//x and y positions of numbers

logic [10:0] num x = 11'd700; //start numbers in center-right of screen (coords 700, 50)

logic [9:0] num y = 10'd50;

logic [11:0] num pixel ones; //for the ones digit
logic [11:0] num pixel tens; //for the tens digit
logic [11:0] num pixel hundreds; //for the hundreds digit

logic done;

logic [13:0] counter;
logic [3:0] ones;
logic [3:0] tens;
logic [3:0] hundreds;
logic [3:0] thousands;

logic [9:0] refresh counter = 0;

//MUST COUNT IN ORDER TO DISPLAY
always @ (posedge vclock in) begin
if (refresh counter>=1000) begin //refresh every thousand cycles
counter <= 0;
refresh counter<=0;
ones<=0;
tens<=0;
hundreds<=0;
thousands<=0;
end
else if (counter == data in)
done <= 1;
else begin
counter <= counter + 1;
refresh counter<=refresh counter+l;
ones <= ones == 9 ? 0 : ones + 1;
if (ones == 9) begin
tens <= tens == 9 ? 0 : tens + 1;
if (tens == 9) begin
hundreds <= hundreds == 9 ? 0 : hundreds + 1;
if (hundreds == 9) begin
thousands <= thousands + 1;
end
end
end
end

end

picture number number ones (
.pixel clk in(vclock in),
.digit in (hundreds),
.X_in(num x), .hcount in(hcount in),

.yfin(num_y),.vcountiin(vcount_in),

.pixel out (num pixel ones)):;

picture number number tens(
.pixel clk in(vclock in),
.digit in(tens),
.x _in(num x + 50), .hcount in(hcount in),

.y _in(num y), .vcount in(vcount in),

.pixel out (num pixel tens)):;

picture number number hundreds (

.pixel clk in(vclock in),

.digit _in(ones),

.X _in(num x + 100), .hcount in (hcount in),

.y _in(num y), .vcount in(vcount in),
.pixel out (num pixel hundreds));
always_comb begin
pixel out = num pixel ones | num pixel tens | num pixel hundreds;

end

endmodule

LILLLSLSSSS LSS SSS
//

// Pushbutton Debounce Module (video version - 24 bits)
//
SIS S S S S S S SSS S S S

module debounce (input reset in, clock in, noisy in,

output logic clean out);

logic [19:0] count;

logic new_ input;

always ff @ (posedge clock in)
if (reset in) begin
new input <= noisy in;
clean out <= noisy in;
count <= 0; end
else if (noisy in != new input) begin new input<=noisy in; count <= 0; end
else if (count == 1000000) clean out <= new_input;

else count <= count+l;

endmodule

//from lab 3
module xvga (input vclock in,
input reset in,
output logic [10:0] hcount out, // pixel number on current line
output logic [9:0] vcount out, // line number
output logic vsync out, hsync out,

output logic blank out);

parameter DISPLAY WIDTH = 1024; // display width
parameter DISPLAY HEIGHT = 768; // number of lines
parameter H FP = 24; // horizontal front porch
parameter H SYNC PULSE = 136; // horizontal sync
parameter H BP = 160; // horizontal back porch

parameter V FP = 3; // vertical front porch

78

parameter V SYNC PULSE = 6; // vertical sync

parameter V BP = 29; // vertical back porch

// horizontal: 1344 pixels total
// display 1024 pixels per line
logic hblank,vblank;

logic hsyncon,hsyncoff,hreset,hblankon;

assign hblankon = (hcount out == (DISPLAY WIDTH -1));

assign hsyncon = (hcount out == (DISPLAY WIDTH + H FP - 1)); //1047

assign hsyncoff = (hcount out == (DISPLAY WIDTH + H FP + H SYNC PULSE - 1)); // 1183

assign hreset = (hcount out == (DISPLAY WIDTH + H FP + H SYNC PULSE + H BP - 1) |reset in); //1343

// vertical: 806 lines total
// display 768 lines

logic wvsyncon,vsyncoff,vreset,vblankon;

assign vblankon = hreset & (vcount out == (DISPLAY HEIGHT - 1)); /7 767

assign vsyncon = hreset & (vcount out == (DISPLAY HEIGHT + V FP - 1)); // 771

assign vsyncoff = hreset & (vcount out == (DISPLAY HEIGHT + V_FP + V_SYNC PULSE - 1)); // 777
assign vreset = hreset & (vcount out == (DISPLAY HEIGHT + V _FP + V _SYNC PULSE + V BP -

1) |[reset _in); // 805

// sync and blanking
logic next hblank,next vblank;
assign next hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next vblank = vreset ? 0 : vblankon ? 1 : vblank;
always ff @(posedge vclock in) begin

hcount out <= hreset ? 0 : hcount out + 1;

hblank <= next hblank;

hsync_out <= hsyncon ? 0 : hsyncoff ? 1 : hsync out; // active low

vcount out <= hreset ? (vreset ? 0 : vcount out + 1) : vcount out;
vblank <= next vblank;

vsync_out <= vsyncon ? 0 : vsyncoff ? 1 : vsync out; // active low

blank out <= next vblank | (next hblank & ~hreset);
end

endmodule

module camera to picture(

input pixel clk in,

input clk 50mhz,
input [14:0] hcount in,

input [14:0] vcount in,

input [16:0] addr in,

input [11:0] raw data in,

input double on, //boolean of whether to double size or not

input hsync in, // XVGA horizontal sync signal (active low)
input vsync_ in, // XVGA vertical sync signal (active low)

input blank in, // XVGA blanking (1 means output black pixel)

output logic chsync out, // camera horizontal sync
output logic cvsync out, // camera vertical sync

output logic cblank out, // camera blanking

output logic [11:0] pixel out,
output logic [11:0] double pixel out

assign chsync out hsync in;

assign cvsync_out = vsync_in;

assign cblank out = blank in;

logic [11:0] video pixel;

79

80

logic [16:0] addr out;

always comb begin
//for 2x resolution
if (double on) begin //double size interpolation
if (vcount in[0] == 1'b0 && hcount in[0] ==1'b0) begin //even case
addr out = 320* (240- (hcount in>>1)) + (vcount in>>1);

end

else if (vcount in[0] == 1'bl && hcount in[0]==1'b0) begin
addr_out = 320* ((hcount in>>1)) + ((vcount in-1)>>1);

end

else if (vcount in[0]==1'b0 && hcount in[0]==1'bl) begin
addr_out = 320* (((hcount in-1)>>1)) + (vcount in>>1);

end

else if (vcount in[0]==1'bl && hcount in[0]==1'bl) begin
addr out = 320* (((hcount in-1)>>1)) + ((vcount in-1)>>1);
end

end

else begin //not double size
addr_out = 320* (hcount in) + vcount in;
end

end

//simultaneously write new data, and read current pixel according to vcount and hcount
camera dual ram cam 1(.clka(clk 50mhz), .wea(l), .addra(addr_in), .dina(raw data in),

.clkb(pixel clk in), .addrb(addr out), .doutb(video pixel));

always ff @(posedge pixel clk in) begin

if (~double on) begin //normal

if ((hcount in<320) && (vcount in<240)) begin
pixel out<= video pixel;

end

else begin // outside of border
pixel out<=0;

end

end

//1f double size
else begin
if ((hcount in<640) && (vcount in<480)) begin

pixel out<= video pixel;

end
else begin
pixel out<=0;
end
end

end

endmodule

module picture number
(parameter WIDTH = 48, // default picture width
HEIGHT = 48) // default picture height
(input pixel clk in,
input [10:0] x in,hcount in,
input [9:0] y in,vcount in,
input [3:0] digit in,
output logic [11:0] pixel out);

81

//only allow one 320x240 image

//only allow one 640x320 image

82
logic [14:0] image addr; s

/ num of bits for 256*24
logic [7:0]

40) SOM
240 ROM

image bits, red mapped, green mapped, blue mapped;

logic [3:0] greyscale bits;

Jhmammlh magmlsme Ha ARSAe — 2 9M)4
//€eacn numoer 1S 40740 = zZoU4

assign image addr

= (2304*digit in) + (hcount in-x in) + ((vcount in-y in)*WIDTH) ;

blk mem gen 1 rom2(.clka(pixel clk in), .addra(image addr), .douta(greyscale bits));

always ff @ (posedge pixel clk in) begin

if ((hcount in >= x in && hcount in <

(x_in+WIDTH)) &&

(vcount in >= y in && vcount in < (y in+HEIGHT)))

pixel out <= {greyscale bits, greyscale bits, greyscale bits};

else pixel out <= 0;
end

endmodule

14 Verilog Simulation Code

// udp_pkt_receive tb.sv

module udp pkt receive tb;

//make logics for inputs and outputs!

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

clk;

rst;

txen;

[1:0] txd;

tx busy;

[239:0] payload in;
[239:0] payload out;
[31:0] counter;
input valid;

phy rst done;

udp pkt send test#(.POWER UP CYCLES(2), .PAYLOAD BYTES(30)) send test (

.clk(clk),

.button reset(rst),

.txen (txen),

.txd (txd),

.t payload(payload in),
.input valid(input valid),
.tx busy(tx busy),

.send port (16'd5001),

.phy rst done(phy rst done)
)7

udp pkt receive# (.POWER UP CYCLES (2), .PAYLOAD BYTES(30)) rec(.clk(clk),

.rxd (txd),

.rx _valid(txen),
.payload out (payload out),
.button reset (rst),

.phy rst done(phy rst done));

//An always block in simulation **always** runs in the background

//this is your standard way of making a clock below:

//it says: every 5 ns, make clk be !clk

//still need to initialize clk in an initial block

always begin

#5; //every 5 ns switch...so period of clock is 10 ns...100 MHz clock

83

clk = !clk;
end

always @ (posedge clk) begin

if (~tx busy) begin
payload in <= counter;
input valid <= 1;
counter <= counter + 1;

end else begin
input valid <= 0;

end

end

//initial block...this is our test simulation
initial begin
Sdisplay("Starting Sim"); //print nice message
clk = 0; //initialize clk (super important)
rst = 0; //initialize rst (super important)
counter = 0;
payload in = 0;
input valid = 0;
phy rst done = 0;
#20 //wait a little bit of time at beginning
rst = 1; //reset system
payload in = 0;
counter = 0;
input valid = 0;
phy rst done = 0;
#20; //hold high for a few clock cycles
rst=0; //pull low
counter = 0;
phy rst done = 1;
input valid = 0;
#200000000; //wait a little bit

$finish;

end

endmodule

// udp_pkt_send_test tb.sv

module udp pkt send test tb;

//make logics for inputs and outputs!

logic clk;

logic rst;

logic txen;

logic [1:0] txd;

logic tx busy;

logic [239:0] payload in;

logic [31:0] counter;

logic input valid;

logic phy rst done;

udp pkt send test# (.POWER UP CYCLES(2)) send test (
.clk(clk),
.button reset(rst),
.txen (txen),
.txd (txd),
.t _payload(payload in),
.input valid(input valid),
.tx busy(tx busy),
.send port(16'd5001),
.phy rst done(phy rst done)
)

//An always block in simulation **always** runs in the background

//this 1is your standard way of making a clock below:

//it says: every 5 ns, make clk be !clk

//still need to initialize clk in an initial block

always begin
#5; //every 5 ns switch...so period of clock is 10 ns...100 MHz
clk = !clk;

end

always @ (posedge clk) begin

clock

85

if (~tx busy) begin
payload in <= counter;
input valid <= 1;
counter <= counter + 1;

end else begin
input valid <= 0;

end

end

//initial block...this 1is our test simulation
initial begin
Sdisplay("Starting Sim"); //print nice message
clk = 0; //initialize clk (super Iimportant)
rst = 0; //initialize rst (super important)
counter = 0;
payload in = 0;
input valid = 0;
phy rst done = 0;
#20 //wait a little bit of time at beginning
rst = 1; //reset system
payload in = 0;
counter = 0;
input valid = 0;
phy rst done = 0;
#20; //hold high for a few clock cycles
rst=0; //pull low
counter = 0;
phy rst done = 1;
input valid = 0;
#200000000; //wait a little bit
Sfinish;
end

endmodule

15 Python Server Code

// RobotRX_ControlTX.py

import socket

87

import time
Establishes a connection from the two PCs

Using the Server as a middle man

Get a message from RX and TX in any order
Send message to TX

Send message to RX

Go in to a loop where TX -> SERVER -> RX

o o w N

End the connection if you get a STOP message

wuon

DATA SIZE = 548

RESEND = 1

Server address and port
SERVER IP = "45.79.176.240"
SERVER PORT = 5004

TX IP address and port.
TX IP = None

TX PORT = 0

RX IP address and port.
RX TP = None

RX_PORT = 0

Socket Setup

sock = socket.socket (socket.AF INET, # Internet
socket.SOCK DGRAM) # UDP

sock.bind ((SERVER IP, SERVER PORT))

sock.setblocking (True)

STOP MESSAGE = int.from bytes (bytes ("STOP", "ascii"), "big")

STEP 1: Get message from RX and TX and in effect their addresses
print ("Starting Server 1")
while (TX IP is None) or (RX IP is None):

data, addr = sock.recvfrom(2)

if data == bytes("TX","ascii"):

(TX_IP,TX PORT) = addr

STEP 2: Send message to TX

for 1 in range (RESEND + 1):

sock.sendto (bytes ("Server to PC","ascii"), (TX IP,TX PORT))

elif data == bytes ("RX","ascii"):

(RX_IP,RX_PORT) = addr

STEP 3: Send message to RX

for i in range (RESEND + 1):

sock.sendto (bytes ("Server to PC","ascii"), (RX IP,RX PORT))

print ("CONTROL -> ROBOT init")

STEP 4 & STEP 5: Go into an infinite loop and stop 1s you get the stop message
while True:
data = sock.recv (DATA SIZE)

sock.sendto (data, (RX IP,RX PORT))

if (int.from bytes(data,"big") & OXFFFFFFFF == STOP_MESSACE) :
break

elif data == bytes ("TX","ascii"):
(TX_IP,TX PORT) = addr

for j in range (RESEND + 1):
sock.sendto (bytes ("Server to PC","ascii"), (TX IP,TX PORT))
elif data == bytes ("RX","ascii"):
(RX_IP,RX_PORT) = addr
for j in range (RESEND + 1):
sock.sendto (bytes ("Server to PC","ascii"), (RX IP,RX PORT))
print ("Server 1 Closed")

sock.close ()

/I RobotTX_ControlRX.py

import socket

import time

Establishes a connection from the two PCs
Using the Server as a middle man

1. Get a message from RX and TX in any order
2. Send message to TX

3. Send message to RX

5. Go in to a loop where TX -> SERVER -> RX

6. End the connection if you get a STOP message
RESEND = 1

DATA SIZE = 548

Server address and port
SERVER IP = "45.79.176.240"
SERVER PORT = 5010

TX IP address and port.
TX IP = None
TX PORT = 0

RX IP address and port.
RX TP = None
RX PORT = 0

Socket Setup

sock = socket.socket (socket.AF INET, # Internet
socket.SOCK DGRAM) # UDP

sock.bind ((SERVER IP, SERVER PORT))

sock.setblocking (True)
STOP_MESSAGE = int.from bytes (bytes ("STOP", "ascii"), "big")

STEP 1: Get message from RX and TX and in effect their addresses
print ("Starting Server 2")
while (TX IP is None) or (RX IP is None):
data, addr = sock.recvfrom(2)
if data == bytes ("TX","ascii"):
(TX_IP,TX PORT) = addr
STEP 2: Send message to TX
for i in range (RESEND + 1):

sock.sendto (bytes ("Server to PC","ascii"), (TX IP,TX PORT))

elif data == bytes("RX","ascii"):
(RX_IP,RX PORT) = addr

STEP 3: Send message to RX

89

for i in range (RESEND + 1):

sock.sendto (bytes ("Server to PC","ascii"),

print ("ROBOT -> CONTROL init")

STEP 4 & STEP 5: Go into an infinite loop and stop 1is you get the stop message

while True:
data = sock.recv (DATA SIZE)

sock.sendto (data, (RX IP,RX PORT))

(RX_IP,RX PORT))

if (int.from bytes(data,"big") & OXFFFFFFFEF == STOP MESSAGE) :
break

elif data == bytes ("TX","ascii"):
(TX_IP,TX PORT) = addr

for j in range (RESEND + 1):
sock.sendto (bytes ("Server to PC","ascii"),
elif data == bytes ("RX","ascii"):
(RX_IP,RX PORT) = addr
for j in range (RESEND + 1):
sock.sendto (bytes ("Server to PC","ascii"),
print ("Server 2 Closed")

sock.close ()

16 Python Application Code

16.1 Robot
I/ reception.py

import socket

import time

wwn

Uses WIFI on Mac OSX 11.0.1

Establishes a connection from the FPGA to the Server
Using the PC as a middle man

1. Get a message from the FPGA

2. Send message to the Server

(TX_IP,TX_ PORT))

(RX_IP,RX_PORT))

90

3. Get message from Server
4. Send a message to the FPGA
5. Go in to a loop where Server -> PC -> FPGA

End the connection if you get a STOP message

Note: Current Uncommented configuration is using a WIFI for the FPGA and

connecting an Ethernet to the MacBook
Wi

RESEND = 1

DATA SIZE = 548

PC IP address and port

RX PC IpP = ""

RX PC PORT = 5003

FPGA IP address and port.

FPGA IP = "224.0.0.246" # WIFI
FPGA IP = '169.254.255.255' #Ethernet
FPGA PORT = 5001

Server IP address and port
RX_SERVER IP = "45.79.176.240"
RX_SERVER PORT = 5004

Setup Socket

sock = socket.socket (socket.AF INET, # Internet
socket.SOCK _DGRAM) # UDP

sock.bind ((RX PC IP,RX PC PORT))

sock.setblocking (True)

Verification Codes

FPGA TO PC = int.from bytes (bytes ("FPGA RX INIT","ascii"), "big")

PC_TO FPGA = bytes("PC to FPGA RX CONNECTED","ascii™)

RX = bytes ("RX","ascii")

SERVER TO PC int.from bytes (bytes("Server to PC","ascii"),

STOP MESSAGE

int.from bytes (bytes ("STOP","ascii"), "big")

print ("Starting RX")
Step 1: Get message from the FPGA

print ("Waiting for FPGA...")

"big")

91

while True:
data, addr = sock.recvfrom(DATA SIZE)
if(int.from_bytes(data, "big") & OXFFFFFFFFFFFFFFFFFFFFFEEFE == FPGA_TO_PC):

break

Step 2: Send message to Server
print ("Sending to Server...")
for i in range (RESEND + 1):
sock.sendto (RX, (RX SERVER IP,RX SERVER PORT))

Step 3: Get message from Server
print ("Waiting for Server...")
while True:

data, addr = sock.recvfrom(DATA SIZE)

if (int.from bytes(data, "big") & OxFFFFFFFFFFFFFFFFFFFFFFFF == SERVER TO PC) :

break

Step 4: Send message to FPGA

print ("Sending to FPGA...")

for i in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))

Step 5 & Step 6:
Connection is now established so go into an infinite loop
stop if you get the STOP message
print ("RX connected")
while True:

data = sock.recv (DATA SIZE)

sock.sendto (data, (FPGA IP,FPGA PORT))

if (int.from bytes(data,"big") & OxXFFFFFFFF == STOP_MESSAGE) :

for j in range (RESEND + 1):
sock.sendto (data, (FPGA IP,FPGA PORT))

break

elif (int.from bytes(data, "big") & OXFFFFFFFFFFFFFFFFFFEFFFFFE == FPGA TO PC):

for j in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))
print ("RX Closed")

sock.close ()

92

/[transmission.py
import socket

import time

wwn

Uses WIFI on Mac OSX Big Sur 11.0.1

Establishes a connection from the FPGA to the Server
Using the PC as a middle man

1. Get a message from the FPGA

Send message to the Server

Get message from Server

Send a message to the FPGA

g W N

Go in to a loop where FPGA -> PC -> SERVER

End the connection if you get a STOP message

Note: Current Uncommented configuration is using a WIFI for the FPGA and
connecting an Ethernet to the MacBook

RESEND = 2

DATA SIZE = 548

PC IP address and port
TX PC IP = ""
TX PC_PORT = 1024

FPGA IP address and port.

FPGA IP = "224.0.0.246" # WIFI
FPGA IP = '169.254.255.255"' #Ethernet
FPGA PORT = 5001

Server IP address and port

TX SERVER IP = "45.79.176.240"

TX_SERVER PORT = 5010

TX SERVER PORT = 5004 # Communicate with self

Verification Codes
FPGA TO PC = int.from bytes (bytes ("FPGA TX INIT","ascii"), "big")
PC_TO FPGA = bytes("PC to FPGA TX CONNECTED","ascii")

TX = bytes ("TX","ascii")

STOP_MESSAGE = bytes ("STOP", "ascii")
SERVER TO PC = int.from bytes (bytes("Server to PC","ascii"), "big")
STOP MESSAGE = int.from bytes (bytes ("STOP", "ascii"), "big")

Setup Socket

sock = socket.socket (socket.AF INET, # Internet
socket.SOCK_DGRAM) # UDP

sock.bind ((TX PC IP,TX PC PORT))

sock.setblocking (True)

print ("Starting TX")
Step 1: Get message from the FPGA
print ("Waiting for FPGA...")
while True:
data, addr = sock.recvfrom(DATA SIZE)
if (int.from bytes(data, "big") & OxXFFFFFFFFFFFFFFFFFFFFFFFE == FPGA TO PC):

break

Step 2: Send message to Server
print ("Sending to Server...")
for i in range (RESEND + 1):
sock.sendto (TX, (TX SERVER IP,TX SERVER PORT))

Step 3: Get message from Server
print ("Waiting from Server...")
while True:

data, addr = sock.recvfrom(DATA SIZE)

if (int.from bytes(data, "big") & OxXFFFFFFFFFFFFFFFFFFFFFFFE == SERVER TO PC):

break

Step 4: Send message to FPGA

print ("Sending to FPGA...")

for i in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))

Step 5 & Step 6:
Connection is now established so go into an infinite loop

stop if you get the STOP message

94

print ("TX connected")
while True:
data = sock.recv (DATA SIZE)
sock.sendto (data, (TX SERVER IP,TX SERVER PORT))
if (int.from bytes(data,"big") & OXFFFFFFFF == STOP_MESSACE) :
for j in range (RESEND + 1):
sock.sendto (data, (TX SERVER IP,TX SERVER PORT))
break
elif (int.from bytes(data, "big") & OXFFFFFFFFFFFFFFFFFFFFFFFE == FPGA TO PC):
for j in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))
print ("TX Closed")

sock.close()

16.2 Controller

// reception.py

import socket

import time

wun

Uses WIFI on Mac OSX Catalina Version 10.15.7
Establishes a connection from the FPGA to the Server
Using the PC as a middle man

Get a message from the FPGA

Send message to the Server

Get message from Server

Send a message to the FPGA

Go in to a loop where Server -> PC -> FPGA

o s w N

End the connection if you get a STOP message

RESEND = 1

DATA STIZE = 548

PC IP address and port
RX PC_IP = ""

RX_PC_PORT = 5003

FPGA IP address and port.

95

FPGA IP = '169.254.255.255"' #Ethernet
FPGA PORT = 5001

Server IP address and port
RX SERVER IP = "45.79.176.240"
RX SERVER PORT = 5010

Setup Socket

sock = socket.socket (socket.AF INET, # Internet
socket.SOCK DGRAM) # UDP

sock.bind ((RX_PC_IP,RX PC PORT))

sock.setblocking (True)

Verification Codes

FPGA TO PC int.from bytes (bytes ("FPGA RX INIT","ascii"), "big")
PC TO FPGA = bytes("PC to FPGA RX CONNECTED", "ascii')

RX = bytes ("RX","ascii")

SERVER TO PC = int.from bytes (bytes("Server to PC","ascii"), "big")

STOP_MESSAGE = int.from bytes (bytes ("STOP", "ascii"), "big")

print ("Starting RX")
Step 1: Get message from the FPGA
print ("Waiting for FPGA...")
while True:
data, addr = sock.recvfrom(DATA SIZE)
if (int.from bytes(data, "big") & OxFFFFFFFFFFFFFFFFFFFFFFFF == FPGA TO PC):
print (addr)

break

Step 2: Send message to Server
print ("Sending to Server...")
for i in range (RESEND + 1):
sock.sendto (RX, (RX SERVER IP,RX SERVER PORT))

Step 3: Get message from Server
print ("Waiting from Server...")
while True:

data, addr = sock.recvfrom(DATA SIZE)

97

if(int.from_bytes(data, "big") & OXFFFFFFFFFFFFFFFFFFFFFEEFE == SERVER_TO_PC):
print (addr)
break

Step 4: Send message to FPGA

print ("Sending to FPGA...")

for i in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))

Step 5 & Step 6:
Connection 1is now established so go into an infinite loop
stop if you get the STOP message
while True:
data = sock.recv (DATA SIZE)

sock.sendto (data, (FPGA IP,FPGA PORT))

if (int.from bytes(data,"big") & OXFFFFFFFEF == STOP MESSAGE) :
break
elif (int.from_bytes(data, "big") & OXFFFFFFFFFFFFFFFFFFFFFEFFE == FPGA_TO_PC):

print ("Sending to FPGA...")
for j in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))
print ("RX Closed")

sock.close()

/[transmission.py

import socket

import time

wwn

Uses WIFI on Mac OSX Catalina Version 10.15.7
Establishes a connection from the FPGA to the Server
Using the PC as a middle man

1. Get a message from the FPGA

Send message to the Server

Get message from Server

Send a message to the FPGA

g o w N

Go in to a loop where FPGA -> PC -> SERVER

6. End the connection if you get a STOP message
RESEND = 1
DATA SIZE = 548

PC IP address and port
TX PC_IP = ""
TX PC_PORT = 1024

FPGA IP address and port.
FPGA IP = '169.254.255.255' #Ethernet
FPGA PORT = 5001

Server IP address and port

TX SERVER IP = "45.79.176.240"

TX_SERVER PORT = 5004

TX SERVER PORT = 5010 # Communicate with self

Verification Codes

FPGA TO PC = int.from bytes (bytes ("FPGA TX INIT","ascii"), "big")

PC_TO FPGA = bytes("PC to FPGA TX CONNECTED","ascii")

TX = bytes ("TX","ascii")

STOP_MESSAGE = bytes ("STOP","ascii")

SERVER TO PC = int.from bytes (bytes("Server to PC","ascii"),
STOP MESSAGE

int.from bytes (bytes ("STOP","ascii"), "big")

Setup Socket

sock = socket.socket (socket.AF INET, # Internet
socket.SOCK DGRAM) # UDP

sock.bind ((TX_PC _IP,TX PC PORT))

sock.setblocking (True)

print ("Starting TX")
Step 1: Get message from the FPGA
print ("Waiting for FPGA...")

while True:

data, addr = sock.recvfrom(DATA SIZE)

"big")

if (int.from bytes(data, "big") & OxFFFFFFFFFFFFFFFFFFFFFFFF == FPGA TO PC):

98

print (addr)

break

Step 2: Send message to Server
print ("Sending to Server...")
for i in range (RESEND + 1):
sock.sendto (TX, (TX SERVER IP,TX SERVER PORT))

Step 3: Get message from Server
print ("Waiting from Server...")
while True:
data, addr = sock.recvfrom(DATA SIZE)
if(int.from_bytes(data, "big") & OXFFFFFFFFFFFFFFFFFFFFFEEFE == SERVER TO_ PC) :
print (addr)

break

Step 4: Send message to FPGA

print ("Sending to FPGA...")

for i in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))

Step 5 & Step 6:
Connection is now established so go into an infinite loop
stop if you get the STOP message
while True:
data = sock.recv (DATA SIZE)
sock.sendto (data, (TX SERVER IP,TX SERVER PORT))

if (int.from bytes(data,"big") & OXFFFFFFFEF == STOP MESSAGE) :
break
elif (int.from_bytes(data, "big") & OXFFFFFFFFFFFFFFFFFFFFFEFFE == FPGA_TO_PC):

print ("Sending to FPGA...")
for j in range (RESEND + 1):
sock.sendto (PC_TO FPGA, (FPGA IP,FPGA PORT))
print ("TX Closed")

sock.close()

99

100

