
1

6.111 Final Project: Internet Controlled
Robot

By: Babuabel Wanyeki and Brandon Perez

2020

1 Introduction 3

2 Overview/Setup 4
2.1 Robot 4

2.1.1 Parts 4
2.1.2 Setup Overview 5

2.2 Controller 5
2.2.1 Parts 6
2.2.2 Setup Overview 6

3 Data Structures 7

4 Networking 8

5 Ethernet Interface(Babu) 8
5.1 Ethernet Reception 10
5.2 Ethernet Transmission 11

2

6 Motor Control(Babu) 13

7 Distance Sensor(Babu) 14

8 Camera Sensor(Babu) 15

9 Controller Top Level - (Brandon) 16

10 VGA Display - Numbers(Brandon) 18

11 VGA Display - Camera(Brandon) 19

12 Development Process 21
12.1 Robot 21
12.2 Controller 22

13 Ideas/Conclusion 23

14 Verilog Source Code 24

14 Verilog Simulation Code 83

15 Python Server Code 87

16 Python Application Code 90
16.1 Robot 90
16.2 Controller 95

3

1 Introduction

COVID-19 has forced us to be apart during these times, but we figured we could take
advantage of this opportunity for our project. My partner and I live in different states right now,
so we thought that it would be interesting to be able to have one person control a robot in another
person’s room across the United States. Additionally, the robot will also be able to send sensor
data through the transmitter which the controller would be able to receive and display the data
using the VGA interface. Another reason that we chose to do this project is because it allowed us
to have a lot of learning opportunities throughout the semester, one of which being a deep
understanding of how Ethernet UDP protocol works.

The central idea of the two projects is that the two FPGAs, the controller and the robot,
will be able to communicate through a shared server on the internet. How this will work is that
the respective FPGA is connected to a PC via Ethernet(to enable high speed ~100 Mbps
reception and transmission), this means that we will be able to send video, sensor, and control
data appropriately. Second the corresponding PC will have to run a Python program, which we
created, that enables data to be sent on the server. Similarly, the other FPGA will also need to be
connected to a PC via Ethernet and the PC needs to be running a similar Python program. Once
this is done a reception and transmission connection should be established between the two
FPGAs, allowing video, sensor, and control data to be transmitted and received at the same time.

The controller will use the up(btnu), down(btnd) ,left(btnl), and right(btnr) buttons on the
FPGA in order to send control data packets to the robot. Additionally the controller will also
process all of the video and sensor data from the robot and display it on the VGA. The robot on
the other hand receives the controller data and translates that to forward, backward, left, or right
commands on the FPGA. This then gets sent to the motor driver for directional movement.
Additionally the robot takes in distance sensor data and camera pixel data and transmits that to
the controller FPGA for processing and display. In the end we have a working system that
enables the controller to control where the robot is moving while also using camera data and
proximity data to see where the robot is going.

4

2 Overview/Setup

2.1 Robot

2.1.1 Parts

● Nexys4 DDR FPGA
○ SMSC 10/100 Ethernet PHY (SMSC part number LAN8720A)

● Windows PC
● Portable Battery
● Solderless Breadboard with a DC power jack
● Robot Car Chassis with 2 motors
● OV7670 Camera

Figure 1: Full robot setup with an ethernet connection to the PC

5

● ESP8266 Microcontroller
● HC-SR04 Distance Sensor
● L9110 Motor Driver

2.1.2 Setup Overview

The FPGA is mounted on top of a portable battery character which is then placed on a
robotic car chassis. The robot chassis contains 2 motors in the back as well as a third wheel in the
front for balance. Additionally, on the back of the robot chassis is also a small solderless
breadboard which contains the connections to and from the FPGA PMOD pins and the HC-SR04
distance sensor, the L9110 motor driver, and the DC power jack.

In order to set up the robot, first connect the portable battery to the DC power jack on the
solderless breadboard. Next, also connect the portable battery to the FPGA, making sure that the
power is derived from the DC jack rather than a USB connection. Once finished, program the
FPGA with the compiled bitstream, and make sure that the FPGA is connected via an Ethernet
cord to the WIndows PC. At this point no LEDs should light up.

Next, make sure that either the robotic user side or the controller user side turns on the
Internet server and runs the communications.sh bash file, which essentially starts the two server
Python files(RobotRX_ControlTX.py and RobotTX_ControlRX.py) concurrently. Lastly, run the
reception.py file and transmission.py file in order to receive and transmit the UDP data packets
to and from the servers. At this point 2 LEDs on the board should light up blue meaning a
connection to the reception and transmission servers. Now the robot is ready to communicate
with the server. Once the controller side programs their FPGA and runs the reception.py and
transmission.py python programs, then you can exchange data with the other FPGA anywhere in
the world.

2.2 Controller

6

2.2.1 Parts
● Nexys 4 DDR

○ 4 directional buttons(btnu, btnd, btnl, btnr, and btnc for resetting connection)
● Windows PC
● VGA Monitor
● Ethernet/USB adapter
● Ethernet cable

2.2.2 Setup Overview
I used a USB hub with a built in ethernet adapter to allow for a connection between my

PC and the FPGA board. I was concerned that a 3rd party adapter would lead to problems (like
dropping UDP packets), but it turned out to be quite capable for our purposes. Though the robot
side ethernet cable should be long enough to support mobility of the robot, the controller side
ethernet can be 3ft or less as long as the FPGA board can be placed close to both the computer
and monitor. The rest is a basic VGA display setup similar to lab 3.

Figure 2: Full Controller Setup with a VGA monitor

7

Concerning the servers, I was unable to use the bash script even with a windows version
of bash installed on my pc. Beware of mac/pc compatibility. So, instead I would have to start the
above-mentioned transmission.py and reception.py scripts separately. We had the least trouble
when I performed the connection setup in the following manner. Have one of us start the
servers. I would then run the reception.py script. Connect the ethernet between the adapter and
FPGA. The blue reception LED would consequently light up. Then I would run the
transmission.py script and both reception and transmission LEDs would turn on.

3 Data Structures

 The two most prominent data structures that must be addressed are those of the two
payloads (both transmitted and received). On the controller side, the transmitted payload contains
the robot command data, and the received payload contains the camera/sensor data. On the robot
side, the transmitted payload contains the camera/sensor data, and the received payload contains
the command data. Let us name these 2 different structures the sensor payload and the command
payload. Both payloads are 548 bytes (4384 bits) for consistency, and in order to maximize the
pixel data transmitted from the camera as the maximum payload allowed for UDP packets is 548
bytes.

The sensor payload is formatted in the following way. The first 34 bits contain the sensor
data. Though the maximum reading from the sensor was approximately 400, only requiring 9
bits, allotting 34 bits allowed for the camera data to evenly fit into the remaining bits. The
camera portion of the payload allowed for data for 150 pixels. Each pixel had a 17 bit address
(calculated from the row and column position to be used for writing to a RAM), and a 12 bit rgb
value. In total, each pixel took up 29 bits. 29*150 = 4350, which is also equal to the total number
of bits minus the sensor data bits (4384 - 34). See the diagram below.

The command payload is much simpler. The commands from the controller side are at

most a 3 bit number, so one only has to assign the first 3 bits of the payload to the output of the
top level controller module. For brevity’s sake, a diagram is not included for the command
payload.

Figure 3: Data structure of how the Distance Sensor and Pixel Data are being sent.

8

4 Networking

The networking state machine that we developed for the FPGA is integral in order to get

the two FPGAs to communicate with each other. The parts of the network are illustrated above
and are FPGA1(Robot FPGA), PC1, Connection A, Connection B, PC2, and FPGA2(Control
FPGA). In general, FPGA1 and FPGA2 receive and transmit data to and from PC1 and PC2,
respectively, via the Ethernet UDP/IP protocol. Looking at FPGA1, we then have PC1
establishing a connection to the Connection A server and Connection B server via a Python
program with a simple state machine. Once a connection is made for Connection A a UDP
verification packet is then sent to the FPGA lighting up the 1 LEDs to blue and similarly for
Connection B which lights up another LED to blue. The same is done for FPGA2 and PC2 once
they establish a connection to the Connection A server and Connection B server. We chose the
UDP/IP protocol rather than the more popular TCP/IP protocol because it was simple,
connectionless, and faster for high speed streaming such as video streaming. UDP/IP however
has a drawback for its simplicity which is that sometimes packets get dropped and can even
arrive at the destination out of order from when you sent it. This isn’t a problem with streaming
data because as long as you don’t rely on only a few packets to make all of the decisions, but
instead on collections of control or video data, the overall message that you wanted to send
should be received.

5 Ethernet Interface(Babu)

Figure 4: Networking block diagram. Illustrates the connection from the FPGA to the PC then
to the server and back down again on the other side.

9

Figure 5: Ethernet UDP/IP packet with a IPv4 header and UDP header.(technically the packet begins after
the preamble, bit 64, which indicates the start of the packet).

Figure 6: External ethernet transmission and reception interface. The pins primarily used for
the project are the 2 bit transmit TXD, 2 bit RXD, the REF_CLK(50Mhz), the TX_EN, and the
CRC_DV(data valid).

10

5.1 Ethernet Reception

Figure 7: Bit ordering for transmission and reception of the Ethernet bits. You must swap the
nibbles as well as the semi-nibbles(or dibits). This means that if the received byte is
ab_cd_ef_gh(where received using big endian) then the actual data byte is gh_ef_cd_ab.
Similarly if you want to send the data byte ab_cd_ef_gh(send using big endian) you must
transmit gh_ef_cd_ab.

11

The Ethernet Reception module is how high speed sensor and control data is received by

the FPGA from the PC. This data comes into the module 2 bits at a time. How this module
functions, at a high level, is to decode the UDP Ethernet Packet as well as verify that the
information is valid. This verification is done through an IP address check, Port number check,
IP header checksum check, and lastly a Cyclic Redundancy Check for any errors during
transmission. Two important things to note are that overall the data is sent to you from the PC in
big endian in bytes and bits. The only exception is the CRC which is sent in little endian in bytes
and big endian in bits. Additionally, because of the external interface of the Ethernet
PHY(physical layer) you must swap the nibbles and the di-bits in a byte when you receive the
information in order to get the actual data.

Next I’ll do an overview of the state machine. To begin, the first state is Power Up. As
the name suggests, this state has a parameter that allows for a proper power up time. After power
up, the reception module goes to IDLE which means that it will wait for a signal of 2’b01 which
indicates the start of the preamble. The next stage is the preamble, so when the rolling received
information is a 64 bit hexadecimal of 64'h55_55_55_55_55_55_55_D5(remember that it’s
received big endian and that to swap the nibbles and semi-nibble(or di-bits) in every received
byte) then you go to the next stage. The next stages are for the MAC header, the IP Header, and
the UDP header. In all of these stages we know their appropriate sizes so we can transition states
when appropriate. Additionally the headers give us the length of the payload for the next stage.
One note is that if the header checksum is wrong(corrupted) we want to skip the payload and go
to the end stage cause it could have produced a wrong length and stay in the payload stage for a
long time. Another thing is that we must be calculating the CRC from the MAC header all the
way up to the end of the payload in order to verify the packet at the end. So, once the length of
the payload has been transversed and the payload is stored, stop calculating the CRC and go to
the reading CRC stage. Once done, we go to the end stage, or Inter-Frame Gap as it is called,
where we can stay for at most 48 clock cycles until we need to go back to IDLE and wait for
another packet. In the end stage, we can use the CRC calculated and the CRC received in order
to check if the packet is valid, additionally we can also check on the IP header checksums(the
UDP checksum is optional so we don’t check it) and IP addresses and ports.

5.2 Ethernet Transmission

Figure 8: Finite State Machine for the UDP/IP packet reception module

12

The Ethernet Transmission module works in a lot of the same ways as the reception

module, but instead this time it's sending data instead of taking data in. Transmission is also sent
to the destination 2 bits at a time. At a high level it works by encapsulating variable payload data
of a fixed length within multiple relatively constant headers. In this implementation no header or
payload length changes, but the only data that changes after uploading to the FPGA is the
payload information, the destination port, and the CRC. Right now the Payload size is the
maximum of 548 bytes in order to fit in as much camera and sensor data as possible but it can go
to as low as 18 bytes. To reiterate, two important things to note are that overall the data you are
sending is in big endian in bytes and bits. Except for sending the CRC which is little endian in
bytes and big endian in bits. Additionally, because of the external interface of the Ethernet
PHY(physical layer) you must swap the nibbles and the di-bits in a byte when you transmit the
information in order to the PC to receive the original intended information.

Next, I’ll do an overview of the state machine. Similar to the reception, the first stage is
the preamble. Once you do the appropriate swapping of nibbles and di-bits, send the 64 bit
hexadecimal of 64'h55_55_55_55_55_55_55_D5, which indicates a start of a packet. After this
you send the MAC Header, IP Header, and UDP Header, then you transition to the payload.
Once you send your payload, making sure that you're calculating the CRC using everything but
the preamble, then you transition to the CRC stage. Here is the state where you send the
calculated CRC making sure that you send it little endian in bytes. Once finished, the module is
transitioned to the end state or Inter-Frame Gap where the module waits for at least 48 clock
cycles, equivalent to 12 sent bytes, until it can send another packet. Note that some computers

Figure 9: Finite State Machine for the Ethernet UDP/IP transmission module

13

have flow control that drops packets that come in too fast. One solution that I found is to increase
the amount of cycles in the Inter-Frame Gap in order to space out the packets. On my Windows
PC computer, I found that 250 bytes or 1000 clock cycles in-between packets worked well, and
could still transmit data fast enough to stream video data.

6 Motor Control(Babu)

Figure 10: Finite State Machine for the Motor Control module

A_I(in) B_I(in) A_O(out) B_O(out) motion

0 0 0 0 off

1 0 1 0 forward/backward

0 1 0 1 backward/forward

1 1 1 1 off

Table 1: 2 input control and 2 output control for one motor. The
motor direction of forward or backward depends on the wiring.

14

The motor controller module is used to convert the commands STOP = 0, FORWARD =

1, BACKWARD = 2, RIGHT = 3, LEFT = 4 into the robot’s motor movements. STOP indicates
that both motors are not moving. FORWARD indicates that both motors are moving forward.
BACKWARD indicates that both motors are moving backward. RIGHT means that the left
motor is moving forward and the right motor is not moving. LEFT means that the right motor is
moving forward and the left motor is not moving.

After making sure that the motor driver is connected to the portable battery via a DC
jack, then all that is needed in order to send input signals A_I and B_I to each individual motor
are 4 PMOD pins from the FPGA(2 for each motor). Then make sure that you wire the motors to
the output A_O and B_O corresponding to each input. The module then just acts as a simple case
statement that takes the STOP, FORWARD, BACKWARD, RIGHT, and LEFT commands and
sets the inputs A_I and B_I for both motors.

7 Distance Sensor(Babu)

The HC-SR04 distance sensor inputs the echo pin(along with 5V and GND) and outputs

the trigger pin in order to calculate the distance of an object with a range of 2cm - 400cm.
Above, I created a rough finite state diagram of how the distance sensor is supposed to

work as a finite state machine. To begin, the module first starts out at the IDLE stage. After
40ms it sends out a trigger signal to the distance sensor. After 10us you disable the trigger signal.
You then wait in the echo stage and if you see an echo signal, count how many microseconds

Figure 11: Overview of the FInite State Machine for the distance sensor module. Note
that the distance equation above is for conversion to meters.

15

until the signal ends. If you don’t see a signal for 40 ms then go back to the trigger. If you do see
a signal convert it to either cm or inches, then transmit/save it then go back to idle.

8 Camera Sensor(Babu)

The OV7670 camera sensor provided the video data that the robot transmitted to the

controller for the display. We had an ESP8266 microcontroller that used an I2C in order to
configure the OV7670 so all the FPGA had to do was process the camera data.

To begin, using the camera_read module we were able to acquire the 16 bit pixel
RGB565 pixel data by using VSYNC_in and HREF_in pins in order to do row capture. Once we
could read frames pixel by pixel we then put the data into an asynchronous input and output
bram. This allowed us to save pixel data in one OV7670 pixel clock speed and output data into

Figure 12: Camera OV7670 sensor connection to FPGA. In addition to the camera sensor we
also had an ESP8266 to configure the FPGA.

16

the Ethernet Transmission 50 MHZ clock speed. Additionally, the 16 bit RBG565 was converted
to RGB444 by taking the highest 4 bits from the red, blue, and green bits. From here data could
be read at 50 MHZ and transmitted through the Ethernet to be displayed on the controller side.

9 Controller Top Level - (Brandon)

The side operating the controller must perform two tasks. One is to prepare commands
for the robot from the button inputs to use as a transmitted payload. The other is to interpret the
received packets that contain the camera and sensor data in order to display them both on a VGA
monitor. For consistency, we will read and write the payloads according to a 50mhz clock
(created by the clock wizard IP). The VGA display module will need an additional 65mhz pixel
clock. The switches will allow for different settings of the display (camera on/off and 2x
resolution).

Controller Interface

The controller itself was straightforward to implement. Our idea was to use the buttons
on the FPGA as a sort of d-pad (directional pad) for the robot. Pressing btnu would make the car
go forward, pressing btnl would make the car go left, etc. We reserved btnc for resetting the
ethernet connection. We then made sure to debounce btnl, btnu, btnr, and btnd at the system

Figure 13: Controller Top Level Block Diagram

17

clock rate (100 mhz). Whenever any of these buttons was pressed the corresponding value was
passed to the transmitted payload register. These were determined by the following mapping.

When no buttons were being pressed, the payload would simply be 0 and force the robot

to stop. There is a delay when sending any of these commands, so during testing we made sure
to only press the buttons for short periods of time or in pulses so as to avoid having the robot
move further than expected and possibly crash.

VGA Overview

In essence, the vga module takes in the 548 byte payload and writes the proper rgb pixel

values to the vga pins in order to display both the video from the camera feed and the numbers
that represent the reading on the sensor. Much of the raster logic comes from lab 3, where
hcount and vcount represent the current position of the pixel on the screen that is being

forward 1

backwards 2

right 3

left 4

stop 0

Table 2: Command
mapping

Figure 14: VGA Overview Block Diagram

18

overwritten. This is done with a pixel clock of 65mhz. However, it is important to note that the
payload is being updated at the top level clock, 50 mhz. The first 34 bits contain the sensor
data, which will be used as the input for the number display logic. The remaining bits contain the
RAM addresses (17 bits), and rgb values (12 bits) for 150 pixels. We can only write one pixel
value to the RAM at a time, so we used a counter to be able to iterate over all of the 150 pixel
representations in the payload. From there, we simultaneously read and write to a RAM for our
video image one pixel at a time.

10 VGA Display - Numbers(Brandon)

In order to display the numbers on screen that represented the readings from the sensor,
we had to perform the following. First, we generated a single port BROM from the 48x48
provided COE file for integers 0-9. The BROM would be 4 bits wide and 23040 bits deep since
each of the COE entries was 4 bits, each number was 48*48 pixels, and there were 10 integers
total. From our estimations from experimenting with the sensor, the readings never appeared to
go over 400, so we decided that three digits would be sufficient for the representation.

We decided to place the hundreds digit at coordinates 700, 50. This would allow enough
room for the 640 pixel wide image for the video on the left. We then shifted the other digits by
50 as each was 48 pixels wide, so their final positions were ((700, 50), (750, 50), (800, 5)).

Figure 15: VGA number display block diagram

19

Each of the digit instantations required the following basic inputs. The row and column
position of the digit, the horizontal & vertical screen count, and the corresponding value for the
digit. The address of the current corresponding pixel could be found by the following calculation
(2304*digit_in) + (hcount_in-x_in) + ((vcount_in-y_in)*WIDTH). The data output by the
BROM at this address is a 4 bit value for a grayscale pixel.

Determining the values for each of these digits however is not as straightforward as
reading the value directly from the UDP packet. Instead, we have to utilize a counter to
determine the current value for the ones place, the tens place, and the hundreds place. Using
three separate registers for each of the digits, we increment the values of these registers in the
following manner. Every cycle we increment the ones place until it hits 9, then reset it to zero.
Whenever the one place value is 9, then the tens place value will increment by 1 unless its value
is 9, in which case it will be set to 0. Then, whenever the tens place value is 9, the hundreds
place will increment by 1 unless its value is 9, in which case it will be set to 0. All of these
registers will continue to increment in this fashion until the counter reaches the given sensor data
value or a predetermined refresh threshold (1000 in our case since the maximum sensor reading
is 400) is reached.

In order to test this module, we first used the switches in lieu of the data packets to
generate a value to be passed to the number display module. To start off, we used switches 0-2
for low value integers, but switches 0-9 could be used to test numbers in the hundreds range
since log2(1000)~10. In addition to this testing method, we used a counter that incremented
every second (using a divisor parameter of 25 million for a 50mhz clock). We found the latter to
be more effective in demonstrating a larger range of numbers for testing.

11 VGA Display - Camera(Brandon)

Figure 16: VGA Camera display block diagram

20

Instead of a single-port BROM that was used for the number display, we required a

dual-port BRAM for the camera display. The BRAM had a 12 bit width, and 76800 bit depth.
76800 comes from the 320*240 resolution of the input data. Then there is a 12 bit RGB value for
each pixel. The reason that we use a dual-port BRAM is so that we can both read and write
simultaneously. We write new values from the incoming UDP packet, which contains the
corresponding address to the BRAM, and then we read values from the appropriate address
according to hcount and vcount. It is important to note that these are performed at different clock
speeds. Since all of the data is being transmitted and received at 50mhz, for consistency we
decided to also write to the BRAM at 50mhz. However, since the VGA display is running at a
65mhz clock, we are reading the values from the BRAM at 65mhz. Also note to make sure that
write-enable is always high.

Also, when assigning the current pixel value, it is important to zero out all other pixels
outside of the 320x240 boundaries, otherwise the last pixel value at say for instance position
(320,1) will be carried over to position (321,1) and so on.

In addition to the 320x240 resolution, we decided to implement a 640x480 resolution
option. We determined that a nearest neighbor interpolation scheme would suffice for our
purposes. So, for each pixel in the 320x240 representation, 4 pixels would take on that original
pixel’s value for the 640x480 representation. I believe that this is most easily seen with the
following tables. The upper table is like a 2x2 image. Its values are then interpolated to a 4x4
image.

R G

B R

Table 3:
original 2x2
image

R R G G

R R G G

B B R R

B B R R

Table 4: Interpolated 4x4
image

21

This can be done by first assigning a switch to toggle between the two resolutions. Then
the image boundaries must be changed to 640x480. Then, rather than creating another 640x480
BRAM, we can just use the same values from the original 320x240 BRAM and use the following
algorithm to determine the appropriate pixel address.

1. If hcount is even, divide by 2 for a new hcount. If hcount is odd, subtract 1 and divide by
2 for a new hcount.

2. If vcount is even, divide by 2 for a new vcount. If vcount is odd subtract 1 and divide by
2 for a new vcount.

These “new” hcounts and vcounts will produce the same address as the 320x240 representation
for the same pixel value when performing the following calculation, addr = 320*(vcount_in) +
hcount_in. In the actual code, the altered address is calculated in one line instead of using “new”
hcount and vcount registers which would introduce a one-cycle delay.

A possible discrepancy that we should address is that the above calculation had to be
changed because of the position of the camera. It was easier to mount the camera on its side
rather than upright, so we swapped hcount and vcount in order to rotate the resulting image 90
degrees. So, the final line that appears in the code is addr = 320*(hcount_in) + vcount_in.

12 Development Process
Overall throughout the whole development process one of the most important things that

we used is Version Control with Git. This allowed us to experiment more and to also go back
whenever we made a mistake. Additionally it also allowed us to check each other's work if
something was wrong. One thing to note however is that merge conflicts may arise if each
partner pushes their implementation files. To avoid these, we had to frequently delete those files
and pull again.

Since both of us we were apart during the entire development process, communicating
chat messages and Facetime also allowed us to keep up to date with each other's work. Next
we’ll go through some of the development process for the Robot and the Controller.

12.1 Robot
The most difficult part of the Robot development process was developing the Ethernet

Transmission and Reception modules. Due to the fact that the documentation is unclear, I had to
do a lot of trial and error, multiple simulations, and also consult multiple sources. Some of the
most significant problems was to remember that even though you mostly receive and transmit in
big endian in byte and bits you must also swap the nibbles and the semi-nibbles(or dibits) before

22

you transmit or before you save the data. Additionally, the CRC is also received and transmitted
in little endian in bytes but big endian in bits(you must still also swap nibbles and semi-nibbles).

Aside from the ethernet development, the Motor Controller module was relatively
straightforward as it was basically controlled by digital inputs and could be represented by a
truth table. The distance sensor was a little bit more difficult because we had both a trigger and
an echo signal and you didn't want to send a trigger when the echo was arriving. This however
wasn’t too much of a problem because the documentation was comprehensive enough to
understand what was going on and to fix any bugs. Additionally, code had been written in
Arduino C++ to program the HC-SR04 module, so studying that wasn’t too difficult. The other
module was the camera sensor. Luckily, the microcontroller handled the configuration for the
OV7670 so we didn’t have to worry about developing a I2C module. However, we still had to
read from the camera sensor as well as save it onto a bram module, which took a little bit more
time. Next, was the integration of all of the modules and the creation of a state machine to handle
a connection to the PC and the server. This took a little bit of time because any bugs that might
have been hidden in any of the modules showed up. For example I had to make sure not to send a
UDP packet when the other packet was still being transmitted. This required that I create a
tx_busy signal. However, due to the timing specification of the UDP protocol this was more
difficult that I anticipated because I needed to make it combinational instead of sequential which
took a little bit more thought and debugging. Lastly, was the server and PC python files. This
part wasn’t too difficult because I could test it independently from the FPGA and it didn’t need
to be compiled. The most difficult part of this was to think about what happens if packets are
dropped, because this could lead to an infinite loop. The solution to this was to resend some
essential messages if needed.

12.2 Controller
The button input commands were easy enough to test on my side and was really only a

matter of integration with the overall top level module. We actually tested the robot commands
towards the end of the development process because of our confidence that it would work
smoothly. Looking back, I think we made the right choice by focusing on other modules when
we were working together on zoom calls.

Having completed lab 3 definitely helped with VGA development, but I did have to go
back through and refresh myself on the integration of the xvga module and how hsync, vsync,
hcount, vcount, vga_r, etc were all interconnected as I encountered bugs. From there the problem
became how do we correctly interpret the incoming binarized sensor data for a base 10 display
and calculate the appropriate ROM addresses. I found a viable solution involving counters and
was able to get the numbers module working fairly quickly.

The camera display module was probably the module that I had the most concerns about
as it was difficult to test unless we had the server running and the camera on the robot side was
on. I had no camera on my side, so the only times that I could evaluate the integrity of the

23

module was when we both had set apart time to do so. Luckily, we still managed to test and
debug in a timely manner.

13 Ideas/Conclusion
Given more time, we would have liked to do more with the video data. There were some

artifacts and even though the quality of the OV7670 is not great in the first place, there are
definitely some processing techniques that could have yielded a more impressive picture. We
talked about trying to implement a low pass filter, which would smooth some of the jaggedness.
Another smoothing technique we could have implemented is to convolve the pixel values with a
Gaussian kernel before displaying. One problem that was visible in the demo was a vertical
choppiness artifact. This would make if there seemed to be a lag in the horizontal bars as an
expected artifact of the rastering pattern. It turns out that the vertical bar artifact actually comes
from the horizontal bar artifact since we switched hcount and vcount to compensate for the
camera’s position. We discussed that one way to fix this problem all-together would be to create
two RAMs instead of one. One would continue to update the pixel values for the entire image at
the 50 mhz clock rate, but the other would serve as a buffer that would only refresh at a
designated framerate. This way, even though the framerate might drop, the video would seem
smoother.

For fun, it would be interesting to use a different controller interface like a PS/2 keyboard
or even the on-board accelerometer. The robot only takes one command at a time, so it would
also be a nice challenge to find a data format and motor scheme that would allow for more
flexible steering, making the robot go left and forward instead of just left for instance.

In the end, we were happy that we were not only able to establish a connection, but also
interact with the other partner’s hardware in such tangible ways despite being halfway across the
country. Though from the beginning we believed that we could control the robot one way or
another, we were not very confident that we could adequately stream video with our setup.
However, after hours of debugging and zoom calls we finally were able to see Babu’s face on the
monitor. This was a great lesson in many areas including ethernet communication, servers and
display logic.

24

14 Verilog Source Code
// camera_read.sv

module camera_read(

 input p_clock_in,

 input vsync_in,
 input href_in,

 input [7:0] p_data_in,

 output logic [15:0] pixel_data_out,
 output logic pixel_valid_out,

 output logic frame_done_out

);

 logic [1:0] FSM_state = 0;
 logic pixel_half = 0;

 localparam WAIT_FRAME_START = 0;
 localparam ROW_CAPTURE = 1;

 always_ff@(posedge p_clock_in)

 begin

 case(FSM_state)

 WAIT_FRAME_START: begin //wait for VSYNC

 FSM_state <= (!vsync_in) ? ROW_CAPTURE : WAIT_FRAME_START;
 frame_done_out <= 0;

 pixel_half <= 0;

 end

 ROW_CAPTURE: begin

 FSM_state <= vsync_in ? WAIT_FRAME_START : ROW_CAPTURE;
 frame_done_out <= vsync_in ? 1 : 0;

 pixel_valid_out <= (href_in && pixel_half) ? 1 : 0;
 if (href_in) begin

 pixel_half <= ~ pixel_half;

25

 if (pixel_half) pixel_data_out[7:0] <= p_data_in;
 else pixel_data_out[15:8] <= p_data_in;

 end

 end
 endcase

 end

endmodule

// display_8hex.sv
module display_8hex(
 input clk_in, // system clock

 input [31:0] data_in, // 8 hex numbers, msb first

 output logic [6:0] seg_out, // seven segment display output
 output logic [7:0] strobe_out // digit strobe

);

 localparam bits = 13;

 logic [bits:0] counter = 0; // clear on power up

 logic [6:0] segments[15:0]; // 16 7 bit memories

 assign segments[0] = 7'b100_0000; // inverted logic
 assign segments[1] = 7'b111_1001; // gfedcba

 assign segments[2] = 7'b010_0100;

 assign segments[3] = 7'b011_0000;
 assign segments[4] = 7'b001_1001;

 assign segments[5] = 7'b001_0010;

 assign segments[6] = 7'b000_0010;
 assign segments[7] = 7'b111_1000;

 assign segments[8] = 7'b000_0000;

 assign segments[9] = 7'b001_1000;
 assign segments[10] = 7'b000_1000;

 assign segments[11] = 7'b000_0011;

 assign segments[12] = 7'b010_0111;
 assign segments[13] = 7'b010_0001;

 assign segments[14] = 7'b000_0110;

 assign segments[15] = 7'b000_1110;

26

 always_ff @(posedge clk_in) begin
 // Here I am using a counter and select 3 bits which provides

 // a reasonable refresh rate starting the left most digit

 // and moving left.
 counter <= counter + 1;

 case (counter[bits:bits-2])

 3'b000: begin // use the MSB 4 bits
 seg_out <= segments[data_in[31:28]];

 strobe_out <= 8'b0111_1111 ;

 end

 3'b001: begin

 seg_out <= segments[data_in[27:24]];
 strobe_out <= 8'b1011_1111 ;

 end

 3'b010: begin

 seg_out <= segments[data_in[23:20]];
 strobe_out <= 8'b1101_1111 ;

 end

 3'b011: begin
 seg_out <= segments[data_in[19:16]];

 strobe_out <= 8'b1110_1111;

 end
 3'b100: begin

 seg_out <= segments[data_in[15:12]];

 strobe_out <= 8'b1111_0111;
 end

 3'b101: begin
 seg_out <= segments[data_in[11:8]];

 strobe_out <= 8'b1111_1011;

 end

 3'b110: begin

 seg_out <= segments[data_in[7:4]];
 strobe_out <= 8'b1111_1101;

 end

27

 3'b111: begin
 seg_out <= segments[data_in[3:0]];

 strobe_out <= 8'b1111_1110;

 end

 endcase

 end
endmodule

// distance_sensor.sv
// The default is in inches else it's in centimeters

module distance_sensor#(parameter INCHES = 1)(

 input clk_50mhz,
 input echo,

 input button_reset,

 output logic trigger,
 output logic [9:0] distance

);

 logic [31:0] us_counter;

 logic temp_trigger;

 logic [5:0] one_us_counter;

 logic [8:0] ten_us_counter;

 logic [20:0] fourty_ms_counter;

 assign trigger = temp_trigger;

 always_ff @(posedge clk_50mhz) begin

 if(button_reset)begin

 one_us_counter <= 0;
 ten_us_counter <= 0;

 fourty_ms_counter <= 0;

 temp_trigger <= 0;
 distance <= 0;

 end else begin

 one_us_counter <= ((one_us_counter == 0) ? 6'd50 : one_us_counter) - 1;

28

 ten_us_counter <= ((ten_us_counter == 0) ? 9'd500: ten_us_counter) - 1;
 fourty_ms_counter <= ((fourty_ms_counter == 0) ? 21'd2_000_000: fourty_ms_counter) - 1;

 if((ten_us_counter == 0) && temp_trigger) temp_trigger <= 0;

 if((one_us_counter == 0)) begin

 if(echo)begin
 us_counter <= us_counter + 1;

 end else if (us_counter) begin

 distance <= (us_counter / (INCHES ? 148 : 58));
 us_counter <= 0;

 end

 end

 if((fourty_ms_counter == 0)) begin

 temp_trigger <= 1;
 end

 end
 end

endmodule

// motor_control.sv
// Note forward, and backward is based on motor orientation and wiring

//IA IB | OA OB

//L L L L (OFF)

//H L H L (FORWARD)

//L H L H (BACKWARD)

//H H H H (OFF)

module motor_control(
 input logic [2:0] control,// input control

 output logic [3:0] motor// {AIA,AIB,BIA,BIB}

);

 // Control States in GrayCode

 localparam STOP = 3'b000;
 localparam FORWARD = 3'b001;

 localparam BACKWARD = 3'b010;

 localparam RIGHT = 3'b011;

29

 localparam LEFT = 3'b100;

 always_comb begin

 // Assume motor A is on the left and motor B is on the right
 case(control)

 STOP: motor = {1'b0,1'b0,1'b0,1'b0};

 FORWARD: motor = {1'b1,1'b0,1'b1,1'b0};
 BACKWARD: motor = {1'b0,1'b1,1'b0,1'b1};

 RIGHT: motor = {1'b0,1'b0,1'b1,1'b0};

 LEFT: motor = {1'b1,1'b0,1'b0,1'b0};
 default: motor = {1'b0,1'b0,1'b0,1'b0}; // Default signal is STOP

 endcase

 end
endmodule

// phy_init.sv
module phy_init(

 input clk,

 input logic button_reset,
 inout logic eth_crsdv,

 inout logic [1:0] eth_rxd,

 output logic eth_rxerr,
 output logic eth_intn,

 output logic eth_rstn,// Used to reset the PHY
 output logic phy_rst_done

);

 localparam RESET = 0;
 localparam DONE = 1;

 localparam RESET_BEFORE = 5_000_000;
 localparam RESET_AFTER = 400;

 logic state;
 // Reset

 assign eth_crsdv = (state == RESET) ? 1'b0 : 1'bz;

 assign eth_rxd = (state == RESET) ? 2'b11: 2'bzz;
 assign eth_rxerr = (state == RESET) ? 1'b0 : 1'bz;

 assign eth_intn = (state == RESET) ? 1'b1 : 1'bz;

30

 logic [22:0] counter;

 always_ff @(posedge clk) begin

 if(button_reset) begin
 state <= RESET;

 counter <= 0;

 eth_rstn <= 0;
 phy_rst_done <=0;

 end else begin

 case(state)
 RESET: begin

 if (counter == RESET_BEFORE - 1) eth_rstn <= 1;

 if (counter == (RESET_BEFORE + RESET_AFTER - 1)) begin
 state <= DONE;

 end

 end
 DONE: begin

 phy_rst_done <= 1;
 end

 default: state <= DONE;

 endcase

 if (state == RESET) counter <= counter + 1;

 end

 end

endmodule

// top_level_controller.sv
module top_level_controller(

 input clk_100mhz,
 // Ethernet Pins

 input logic eth_mdio,

 inout logic [1:0] eth_rxd,
 inout logic eth_crsdv,// valid receive

 output logic eth_mdc,
 output logic eth_rstn,

 output logic eth_txen,

 output logic [1:0] eth_txd,

31

 output logic eth_refclk,
 output logic eth_intn,

 output logic eth_rxerr,

 // LEDs

 output logic led16_b,

 output logic led16_r,
 output logic led17_b,

 output logic led17_r,

 output logic [15:0] led,

 // Buttons
 input btnc,btnr,btnd,btnl,btnu,

 //VGA display
 output logic[3:0] vga_r,

 output logic[3:0] vga_b,
 output logic[3:0] vga_g,

 output logic vga_hs,

 output logic vga_vs,

 // Hex display

 output logic ca,cb,cc,cd,ce,cf,cg,
 output logic [7:0] an,

 // switches
 input [15:0] sw,

 // HC-SR04 Pins
 output logic trigger, // ja[0]

 input logic echo // ja[1]

);

 // Clock variables

 logic clk_50mhz;

 // 50 and 65 (pixel) mhz clock instance

32

 clk_wiz_2 clk50_65divider(.clk_in1(clk_100mhz),.clk_out1(clk_50mhz), .clk_out2(clk_65mhz));

 // Seven segment display

 logic [6:0] segments;
 logic [31:0] display_data; // Input data for the display

 assign {cg, cf, ce, cd, cc, cb, ca} = segments[6:0];

 // Clock assignment

 assign eth_refclk = clk_50mhz;

 // HC-SR04 Distance sensor Logic

 logic [31:0] distance;

 // Codes

 localparam RX_INIT = "FPGA RX INIT";

 localparam RX_CONN = "PC to FPGA RX CONNECTED";
 localparam TX_INIT = "FPGA TX INIT";

 localparam TX_CONN = "PC to FPGA TX CONNECTED";

 localparam ROBOT_TO_CONTROL = "ROBOT -> CONTROL";

 localparam CONTROL_TO_ROBOT = "CONTROL -> ROBOT";

 // Ports
 localparam RX_FPGA_PORT = 5001;

 localparam TX_FPGA_PORT = 5001;

 localparam RX_PC_PORT = 5003;
 localparam TX_PC_PORT = 1024;

 // hex display instance

 display_8hex hex_display(.clk_in(clk_50mhz),.data_in(display_data), .seg_out(segments),

.strobe_out(an));

 // PHY ETHERNET LOGIC ------------------------

 localparam PAYLOAD_BYTES = 548;

 logic phy_rst_done;

33

 // Restart and initialize the PHY
 phy_init init(

 .clk(clk_50mhz),

 .button_reset(btnc),
 .eth_rxerr(eth_rxerr),

 .eth_intn(eth_intn),

 .eth_crsdv(eth_crsdv),
 .eth_rxd(eth_rxd),

 .eth_rstn(eth_rstn),

 .phy_rst_done(phy_rst_done)
);

 logic reset;

 logic left;
 logic right;

 logic forward;
 logic backward;

 //BUTTON LOGIC

 debounce deb_c(.reset_in(reset), .clock_in(clk_100mhz), .noisy_in(btnc),
 .clean_out(reset));

 debounce deb_l(.reset_in(reset), .clock_in(clk_100mhz), .noisy_in(btnl),
 .clean_out(left));

 debounce deb_r(.reset_in(reset), .clock_in(clk_100mhz), .noisy_in(btnr),

 .clean_out(right));
 debounce deb_u(.reset_in(reset), .clock_in(clk_100mhz), .noisy_in(btnu),

 .clean_out(forward));

 debounce deb_d(.reset_in(reset), .clock_in(clk_100mhz), .noisy_in(btnd),
 .clean_out(backward));

 logic [(PAYLOAD_BYTES << 3) - 1 : 0] payload_out;

 logic [(PAYLOAD_BYTES << 3) - 1 : 0] payload_buffer =0;

34

 //DRIVER CONTROLS

 //DIRECTION MAP
 // forward = 1

 // backward = 2

 // right = 3
 // left = 4

 // stop = 0

 always_ff @(posedge clk_50mhz) begin
 if (forward) begin

 payload_buffer[3:0] <= 4'd1;

 end

 else if (backward) begin

 payload_buffer[3:0] <= 4'd2;
 end

 else if (right) begin

 payload_buffer[3:0] <= 4'd3;

 end

 else if (left) begin

 payload_buffer[3:0] <= 4'd4;
 end

 else begin
 payload_buffer[3:0] <= 0; //0 means stop

 end

 end

 udp_pkt_receive#(.PAYLOAD_BYTES(PAYLOAD_BYTES),

 .FPGA_IP_1(169),
 .FPGA_IP_2(254),

 .FPGA_IP_3(255),

35

 .FPGA_IP_4(255),
 .FPGA_PORT(RX_FPGA_PORT),

 .PC_IP_1(169),
 .PC_IP_2(254),

 .PC_IP_3(63),

 .PC_IP_4(159),
 .PC_PORT(RX_PC_PORT)

) rec(

 .clk(clk_50mhz),

 .rxd(eth_rxd),

 .rx_valid(eth_crsdv),

 .payload_out(payload_out),
 .button_reset(btnc),

 .phy_rst_done(phy_rst_done));

 logic tx_busy;

 logic input_valid;
 logic [239:0] payload_in;

 logic [15:0] send_port;

 udp_pkt_send_test#(.PAYLOAD_BYTES(PAYLOAD_BYTES),
 .IFG_BYTES(250),

 .FPGA_IP_1(169),
 .FPGA_IP_2(254),

 .FPGA_IP_3(255),

 .FPGA_IP_4(255),
 .FPGA_PORT(TX_FPGA_PORT),

 .PC_IP_1(169),
 .PC_IP_2(254),

 .PC_IP_3(63),

 .PC_IP_4(159)

) send_test (

 .clk(clk_50mhz),
 .button_reset(btnc),

 .txen(eth_txen),

36

 .txd(eth_txd),
 .t_payload(payload_in),

 .input_valid(input_valid),

 .tx_busy(tx_busy),
 .send_port(send_port),

 .phy_rst_done(phy_rst_done)

);

 logic [26:0] counter;

 logic [31:0] timer;

 logic [3:0] state;

 localparam START_RX = 0;

 localparam START_TX = 1;

 // Send a message to the Receive and Transmit Ports

 localparam SEND_RX = 2;
 localparam SEND_TX = 3;

 // Receive a message to the Receive and Transmit Ports

 localparam RECEIVE_RX = 4;

 localparam RECEIVE_TX = 5;

 // Send and Recieve a message from the other FPGA

 localparam FPGA_TO_FPGA_CONN = 6;

 // Normal state for receiving and transmitting data

 localparam NORMAL = 7;

 localparam END = 8;

 localparam TIME_OUT = 5_000_000;// .5 sec timeout

 assign display_data = state;

// assign display_data = payload_out[31:0];

 // Server Initialization

 always_ff @(posedge clk_50mhz) begin

37

 if(btnc) begin
 counter <= 0;

 timer <= 0;

 payload_in <= 0;
 input_valid <= 0;

 state <= START_RX;

 send_port <= RX_PC_PORT;
 led16_b <= 0;

 led16_r <= 0;

 led17_b <= 0;
 led17_r <= 0;

 end else begin

 case (state)
 START_RX: begin

 if(~tx_busy) begin

 send_port <= RX_PC_PORT;
 state <= SEND_RX;

 payload_in <= RX_INIT;
 input_valid <= 1;

 end else begin

 input_valid <= 0;
 end

 end

 SEND_RX: begin
 input_valid <= 0;

 if(~tx_busy) begin

 state <= RECEIVE_RX;
 timer <= 0;

 end

 end
 RECEIVE_RX: begin

 if(payload_out[(23 << 3) - 1 : 0] == RX_CONN) begin

 led16_b <= 1;
 led16_r <= 0;

 state <= START_TX;

 end else if (timer == TIME_OUT - 1) begin
 timer <= 0;

 state <= START_RX;

38

 end else begin
 timer <= timer + 1;

 end

 end
 START_TX: begin

 if(~tx_busy) begin

 send_port <= TX_PC_PORT;
 state <= SEND_TX;

 payload_in <= TX_INIT;

 input_valid <= 1;

 end else begin

 input_valid <= 0;

 end
 end

 SEND_TX: begin

 input_valid <= 0;

 if(~tx_busy) begin

 state <= RECEIVE_TX;
 timer <= 0;

 end

 end
 RECEIVE_TX: begin

 if(payload_out[(23 << 3) - 1 : 0] == TX_CONN) begin

 led17_b <= 1;
 led17_r <= 0;

// state <= FPGA_TO_FPGA_CONN;

 state <= NORMAL;
 end else if (timer == TIME_OUT - 1) begin

 timer <= 0;

 state <= START_TX;
 end else begin

 timer <= timer + 1;

 end
 end

 NORMAL: begin

 if(payload_out[(4 << 3) - 1 : 0] == "STOP")begin
 led16_b <= 0;

 led16_r <= 1;

39

 led17_b <= 0;
 led17_r <= 1;

 state <= END;

 end
 if(~tx_busy) begin

 input_valid <= 1;

 // payload_in <= "yo";
 payload_in <= payload_buffer;

 end else begin

 input_valid <= 0;
 end

 end

 END: begin
 // Do Nothing

 end

 endcase
 end

 end

 //Beginning of VGA logic (546 bytes for pixel input data)

 logic [(PAYLOAD_BYTES << 3)-1-34:0] camera_packet; //first 34 bits reserved for sensor data

 assign camera_packet = payload_out[(PAYLOAD_BYTES)-1:34];

 logic [33:0] sensor_data;
 assign sensor_data = payload_out[33:0];

 //VGA Display

 vga_display vga_disp(
 .clk_50mhz(clk_50mhz),

 .clk_65mhz(clk_65mhz),

 .sw(sw),

 .vga_r(vga_r),

 .vga_b(vga_b),
 .vga_g(vga_g),

 .vga_hs(vga_hs),

40

 .vga_vs(vga_vs),

 .reset(reset),

 .camera_data_in(camera_packet),

 .data_in(sensor_data_vga),
 .led(led)

);

endmodule

// top_level_robot.sv
module top_level_robot(

 input clk_100mhz,
 // Ethernet Pins

 input logic eth_mdio,

 inout logic [1:0] eth_rxd,
 inout logic eth_crsdv,// valid receive

 output logic eth_mdc,
 output logic eth_rstn,

 output logic eth_txen,
 output logic [1:0] eth_txd,

 output logic eth_refclk,

 output logic eth_intn,
 output logic eth_rxerr,

 // LEDs
 output logic led16_b,

 output logic led16_r,

 output logic led17_b,
 output logic led17_r,

 output logic [15:0] led,

 // Buttons

 input btnc,

41

 // Hex display

 output logic ca,cb,cc,cd,ce,cf,cg,

 output logic [7:0] an,

 // switches

 input [15:0] sw,

 // HC-SR04 Pins

 output logic trigger, // jc[0]

 input logic echo, // jc[1]

 // Camera pins
 input [7:0] ja, //pixel data from camera

 input [2:0] jb, //other data from camera (including clock return)

 output jbclk, //clock FPGA drives the camera with

 // VGA display
 output logic[3:0] vga_r,

 output logic[3:0] vga_b,

 output logic[3:0] vga_g,
 output logic vga_hs,

 output logic vga_vs,

 // MOTOR A and MOTOR B Pins

 output logic AIA,

 output logic AIB,
 output logic BIA,

 output logic BIB,

 // Button Inputs

 input btnr,

 input btnd,
 input btnl,

 input btnu

);

 // Clock variables

42

 logic clk_50mhz;
 logic clk_65mhz;

 // 50 mhz and 65 mhz clock instance
 clk_wiz_3 clk50_65divider(.clk_in1(clk_100mhz),.clk_out1(clk_50mhz), .clk_out2(clk_65mhz));

 // Seven segment display
 logic [6:0] segments;

 logic [31:0] display_data; // Input data for the display

 assign {cg, cf, ce, cd, cc, cb, ca} = segments[6:0];

 // Clock assignment

 assign eth_refclk = clk_50mhz;

 // HC-SR04 Distance sensor Logic

 logic [9:0] distance;

 // Connection Codes
 localparam RX_INIT = "FPGA RX INIT";

 localparam RX_CONN = "PC to FPGA RX CONNECTED";

 localparam TX_INIT = "FPGA TX INIT";
 localparam TX_CONN = "PC to FPGA TX CONNECTED";

 localparam ROBOT_TO_CONTROL = "ROBOT -> CONTROL";

 localparam CONTROL_TO_ROBOT = "CONTROL -> ROBOT";
 // Ports

 localparam RX_FPGA_PORT = 5001;

 localparam TX_FPGA_PORT = 5001;
 localparam RX_PC_PORT = 5003;

 localparam TX_PC_PORT = 1024;

 // MOTOR CONTROLLER LOGIC

 // Commands
 // STOP = 3'b000;

 // FORWARD = 3'b001;

 // BACKWARD = 3'b010;
 // RIGHT = 3'b011;

 // LEFT = 3'b100;

43

 logic [2:0] motor_ctrl;

 logic [3:0] motor_pins;

 assign motor_pins = {AIA,AIB,BIA,BIB};

 motor_control motors(.control(motor_ctrl),

 .motor(motor_pins));

 // CAMERA SENSOR LOGIC -------------------------------

 logic xclk;
 logic xclk_count;

 assign xclk = (xclk_count == 2'b01);
 assign jbclk = xclk;

 logic [16:0] pixel_addr_in;
 logic [16:0] pixel_addr_out;

 logic pclk_buff, pclk_in;

 logic vsync_buff, vsync_in;

 logic href_buff, href_in;
 logic[7:0] pixel_buff, pixel_in;

 logic [11:0] frame_buff_out;
 logic [15:0] output_pixels;

 logic [15:0] old_output_pixels;

 logic [12:0] processed_pixels;
 logic valid_pixel;

 logic frame_done_out;

 localparam CAMX_BUFF_SIZE = 320;

 localparam CAMY_BUFF_SIZE = 240;

 localparam CAM_BUFF_SIZE = 76800; // 320 * 240

 camera_read my_camera(.p_clock_in(pclk_in),

 .vsync_in(vsync_in),
 .href_in(href_in),

 .p_data_in(pixel_in),

44

 .pixel_data_out(output_pixels),
 .pixel_valid_out(valid_pixel),

 .frame_done_out(frame_done_out));

 blk_mem_gen_0 bram(.addra(pixel_addr_in),

 .clka(pclk_in),

 .dina(processed_pixels),
 .wea(valid_pixel),

 .addrb(pixel_addr_out),

 .clkb(clk_50mhz),
 .doutb(frame_buff_out));

 always_ff @(posedge pclk_in)begin
 if (frame_done_out)begin

 pixel_addr_in <= 17'b0;

 end else if (valid_pixel)begin
 pixel_addr_in <= pixel_addr_in +1;

 end
 end

 always_ff @(posedge clk_50mhz) begin
 pclk_buff <= jb[0];

 vsync_buff <= jb[1];

 href_buff <= jb[2];
 pixel_buff <= ja;

 pclk_in <= pclk_buff;

 vsync_in <= vsync_buff;

 href_in <= href_buff;

 pixel_in <= pixel_buff;

 old_output_pixels <= output_pixels;

 xclk_count <= xclk_count + 2'b01;

 processed_pixels <= {output_pixels[15:12],output_pixels[10:7],output_pixels[4:1]};

 end

 // DISTANCE SENSOR LOGIC -----------------------------

 distance_sensor dist_sensor(.clk_50mhz(clk_50mhz),

 .button_reset(btnc),
 .echo(echo),

 .trigger(trigger),

45

 .distance(distance));

 // hex display instance

 display_8hex hex_display(.clk_in(clk_50mhz),.data_in(display_data), .seg_out(segments),
.strobe_out(an));

 // PHY ETHERNET LOGIC ------------------------
 localparam PAYLOAD_BYTES = 548;

 logic phy_rst_done;
 // Restart and initialize the PHY

 phy_init init(

 .clk(clk_50mhz),
 .button_reset(btnc),

 .eth_rxerr(eth_rxerr),

 .eth_intn(eth_intn),
 .eth_crsdv(eth_crsdv),

 .eth_rxd(eth_rxd),
 .eth_rstn(eth_rstn),

 .phy_rst_done(phy_rst_done)

);

 logic [(PAYLOAD_BYTES << 3) - 1 : 0] payload_out;

 udp_pkt_receive#(.PAYLOAD_BYTES(PAYLOAD_BYTES),
 .FPGA_IP_1(169),

 .FPGA_IP_2(254),

 .FPGA_IP_3(255),
 .FPGA_IP_4(255),

 .FPGA_PORT(RX_FPGA_PORT),

 .PC_IP_1(169),

 .PC_IP_2(254),

 .PC_IP_3(70),
 .PC_IP_4(191),

 .PC_PORT(RX_PC_PORT)

) rec(
 .clk(clk_50mhz),

 .rxd(eth_rxd),

46

 .rx_valid(eth_crsdv),
 .payload_out(payload_out),

 .button_reset(btnc),

 .phy_rst_done(phy_rst_done));

 logic tx_busy;

 logic input_valid;
 logic [(PAYLOAD_BYTES << 3) - 1 : 0] payload_in;

 logic [15:0] send_port;

 udp_pkt_send_test#(.PAYLOAD_BYTES(PAYLOAD_BYTES),
 .IFG_BYTES(250),

 .FPGA_IP_1(169),
 .FPGA_IP_2(254),

 .FPGA_IP_3(255),

 .FPGA_IP_4(255),
 .FPGA_PORT(TX_FPGA_PORT),

 .PC_IP_1(169),

 .PC_IP_2(254),

 .PC_IP_3(70),
 .PC_IP_4(191)

) send_test (
 .clk(clk_50mhz),

 .button_reset(btnc),

 .txen(eth_txen),
 .txd(eth_txd),

 .t_payload(payload_in),

 .input_valid(input_valid),
 .tx_busy(tx_busy),

 .send_port(send_port),

 .phy_rst_done(phy_rst_done)

);

 logic [16:0] counter;

 logic [7:0] count_pixel;

47

 logic [31:0] timer;
 logic [3:0] state;

 localparam START_RX = 0;
 localparam START_TX = 1;

 // Send a message to the Receive and Transmit Ports
 localparam SEND_RX = 2;

 localparam SEND_TX = 3;

 // Receive a message to the Receive and Transmit Ports

 localparam RECEIVE_RX = 4;

 localparam RECEIVE_TX = 5;

 // Send and Recieve a message from the other FPGA

 localparam FPGA_TO_FPGA_CONN = 6;

 // Normal state for receiving and transmitting data
 localparam NORMAL = 7;

 localparam END = 8;

 localparam TIME_OUT = 5_000_000;// .5 sec timeout

 localparam PIXELS_PER_PKT = 150;// (548 bytes * 8 - 34 bits)*8/(9 + 8 + 12)

 assign pixel_addr_out = counter;

 assign display_data = payload_out[3:0];

 // Server Initialization

 always_ff @(posedge clk_50mhz) begin

 if(btnc) begin

 counter <= 0;
 count_pixel <= 0;

 payload_in <= 0;

 input_valid <= 0;
 state <= START_RX;

 send_port <= RX_PC_PORT;

48

 led16_b <= 0;
 led16_r <= 0;

 led17_b <= 0;

 led17_r <= 0;
 timer <= 0;

 end else begin

 case (state)
 START_RX: begin

 if(~tx_busy) begin

 send_port <= RX_PC_PORT;
 state <= SEND_RX;

 payload_in <= RX_INIT;

 input_valid <= 1;

 end else begin

 input_valid <= 0;

 end
 end

 SEND_RX: begin
 input_valid <= 0;

 if(~tx_busy) begin

 state <= RECEIVE_RX;

 timer <= 0;

 end

 end
 RECEIVE_RX: begin

 if(payload_out[(23 << 3) - 1 : 0] == RX_CONN) begin

 led16_b <= 1;
 led16_r <= 0;

 state <= START_TX;

 end else if (timer == TIME_OUT - 1) begin
 timer <= 0;

 state <= START_RX;

 end else begin
 timer <= timer + 1;

 end

 end

 START_TX: begin

 if(~tx_busy) begin

49

 send_port <= TX_PC_PORT;
 state <= SEND_TX;

 payload_in <= TX_INIT;

 input_valid <= 1;

 end else begin

 input_valid <= 0;

 end
 end

 SEND_TX: begin

 input_valid <= 0;
 if(~tx_busy) begin

 state <= RECEIVE_TX;

 timer <= 0;
 end

 end

 RECEIVE_TX: begin
 if(payload_out[(23 << 3) - 1 : 0] == TX_CONN) begin

 led17_b <= 1;
 led17_r <= 0;

// state <= FPGA_TO_FPGA_CONN;

 state <= NORMAL;
 timer <= 0;

 end else if (timer == TIME_OUT - 1) begin

 timer <= 0;
 state <= START_TX;

 end else begin

 timer <= timer + 1;
 end

 end

 NORMAL: begin
 //Receiving

 if(payload_out[(4 << 3) - 1 : 0] == "STOP")begin

 led16_b <= 0;
 led16_r <= 1;

 led17_b <= 0;

 led17_r <= 1;
 state <= END;

 end else begin

50

 // Motor Control Information
 motor_ctrl <= payload_out[2:0];

 end

 // Sending

 if(~tx_busy && count_pixel == PIXELS_PER_PKT - 1) begin

 input_valid <= 1;
 if(sw[0]) begin

 payload_in <= "STOP";

 end

 end else begin

 input_valid <= 0;

 end
 if(count_pixel == 0 && ~sw[0]) begin

 // Distance sensor 34 bits(happens once per packet sent)

 payload_in[0+:34] <= distance;

 // counter is x_pos + y_pos*320 (17 bits)

 // Pixel data 12 bits

 payload_in[34+:17] <= counter;

 payload_in[51+:12] <= frame_buff_out;

 end else if(~sw[0]) begin
 payload_in[(63 + 5'd29 * (count_pixel - 1))+:17] <= counter;

 payload_in[(80 + 5'd29 * (count_pixel - 1))+:12] <= frame_buff_out;

 end

 counter <= (counter == CAM_BUFF_SIZE - 1) ? 0 : counter + 1;

 count_pixel <= (count_pixel == PIXELS_PER_PKT - 1) ? 0 : count_pixel + 1;
 end

 END: begin

 // Do Nothing
 end

 endcase

 end
 end

endmodule

// udp_pkt_receive.py

51

// Note nibbles is 4-bits. snibbles means semi-nibble(or di-bits)which is 2-bits

module udp_pkt_receive

#(

 // "FPGA IP" - put an unused IP
 parameter FPGA_IP_1 = 0,

 parameter FPGA_IP_2 = 0,

 parameter FPGA_IP_3 = 0,
 parameter FPGA_IP_4 = 0,

 // FPGA Port

 parameter FPGA_PORT = 5000,
 // PC IP address for incoming data

 parameter PC_IP_1 = 0,

 parameter PC_IP_2 = 0,
 parameter PC_IP_3 = 0,

 parameter PC_IP_4 = 0,

 // PC Port
 parameter PC_PORT = 5000,

 // Payload size parameter
 parameter PAYLOAD_BYTES = 30,

 // Power Up parameter

 parameter POWER_UP_CYCLES = 23'd8_000_000
)

(

 input clk,
 input logic button_reset,

 input logic [1:0] rxd,

 input logic rx_valid,
 input logic phy_rst_done,

 output logic [(PAYLOAD_BYTES << 3) - 1 : 0] payload_out,
 output logic valid_indicator,

 output logic error_indicator,

 output logic display_data
);

 // The number of bytes in parts of the Ethernet Frame

 localparam int unsigned PREAMBLE_SFD_BYTES = 8;
 localparam int unsigned MAC_HEADER_BYTES = 14;

 localparam int unsigned IP_HEADER_BYTES = 20;

52

 localparam int unsigned UDP_HEADER_BYTES = 8;
 localparam int unsigned CRC_BYTES = 4;

 localparam int unsigned IFG_BYTES = 12; // Ethernet Interframe Gap

 // The number of semi-nibbles in parts of the frame

 localparam int unsigned PREAMBLE_SFD_SNIBBLES = 4 * PREAMBLE_SFD_BYTES;

 localparam int unsigned MAC_HEADER_SNIBBLES = 4 * MAC_HEADER_BYTES;
 localparam int unsigned IP_HEADER_SNIBBLES = 4 * IP_HEADER_BYTES;

 localparam int unsigned UDP_HEADER_SNIBBLES = 4 * UDP_HEADER_BYTES;

 localparam int unsigned CRC_SNIBBLES = 4 * CRC_BYTES;// CRC
 localparam int unsigned IFG_SNIBBLES = 4 * IFG_BYTES;

 logic [31:0] ip_checksum;
 logic [17:0] payload_length_snibbles;

 logic [(PREAMBLE_SFD_BYTES << 3) - 1 : 0] preamble;
 logic [(MAC_HEADER_BYTES << 3) - 1 : 0] mac_header;

 logic [(IP_HEADER_BYTES << 3) - 1 : 0] ip_header;
 logic [(UDP_HEADER_BYTES << 3) - 1 : 0] udp_header;

 logic [(PAYLOAD_BYTES << 3) - 1 : 0] payload_data;

 // Received CRC

 logic [(CRC_BYTES << 3) - 1 : 0] crc32_rx;

 // Calculated CRC for verification
 logic [(CRC_BYTES << 3) - 1 : 0] crc32_cal;

 // Counters
 logic [31:0] global_counter;

 logic [1:0] snibble_counter;

 logic [22:0] power_up_counter;
 logic [5:0] ifg_counter;

 // States
 localparam POWER_UP = 0;

 localparam IDLE = 1;

 localparam PREAMBLE = 2;
 localparam MAC_HEADER = 3;// same as the ethernet header

 localparam IP_HEADER = 4;

53

 localparam UDP_HEADER = 5;
 localparam PAYLOAD = 6;

 localparam CRC = 7;

 localparam IFG = 8; // Ethernet Interframe Gap

 logic [3:0] state;

 logic [7:0] temp_reg;

 always_ff @(posedge clk)begin
 if(button_reset)begin

 // Indicators

 valid_indicator <= 0;
 error_indicator <= 0;

 display_data <= 0;

 // Counters
 global_counter <= 0;

 snibble_counter <= 0;
 power_up_counter <= 0;

 ifg_counter <= 0;

 // State
 state <= POWER_UP;

 // Incoming data

 preamble <=0;
 mac_header <= 0;

 ip_header <= 0;

 udp_header <= 0;
 payload_data <= 0;

 crc32_rx <= 0;

 crc32_cal <= 32'hFF_FF_FF_FF;
 temp_reg <= 0;

 // output

 payload_out <= 0;
 end

 else begin

 case(state)
 // Reception Power Up

 POWER_UP: begin

54

 if(power_up_counter == POWER_UP_CYCLES - 1)begin
 state <= IDLE;

 end

 end
 IDLE: begin

 if(rx_valid)begin

 if (rxd == 2'b01)begin
 state <= PREAMBLE;

 global_counter <= 1;// start the global counter

 snibble_counter <= 1;// start the snibble counter
 ifg_counter <= 0; // clear the ifg counter

 preamble <=0; // Clear the preamble
 crc32_cal <= 32'hFF_FF_FF_FF;// Reset the CRC

 end

 temp_reg <= (temp_reg << 2) | rxd;
 end

 end
 PREAMBLE: begin

 if(snibble_counter == 0)begin

 preamble <= (preamble << 8) | swap_nibbles(temp_reg);
 end

 temp_reg <= (temp_reg << 2) | rxd;

 // Verify the correct preamble
 if(((preamble << 8) | swap_nibbles(temp_reg)) == 64'h55_55_55_55_55_55_55_D5)

 state <= MAC_HEADER;

 global_counter <= PREAMBLE_SFD_SNIBBLES + 4 - 1;
 end

 MAC_HEADER: begin

 if(snibble_counter == 0)begin
 mac_header <= (mac_header << 8) | swap_nibbles(temp_reg);

 crc32_cal <= compute_crc(crc32_cal, swap_nibbles(temp_reg));

 end
 temp_reg <= (temp_reg << 2) | rxd;

 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES + 4 - 1) state <= IP_HEADER;

 end

 IP_HEADER: begin

55

 if(snibble_counter == 0)begin
 ip_header <= (ip_header << 8) | swap_nibbles(temp_reg);

 crc32_cal <= compute_crc(crc32_cal, swap_nibbles(temp_reg));

 end
 temp_reg <= (temp_reg << 2) | rxd;

 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES +
 IP_HEADER_SNIBBLES + 4 - 1) state <= UDP_HEADER;

 end

 UDP_HEADER: begin
 // Save the checksum

 ip_checksum <= (ip_header[144+:16] +

 ip_header[128+:16] +
 ip_header[112+:16] +

 ip_header[96+:16] +

 ip_header[80+:16] +
 ip_header[48+:16] +

 ip_header[32+:16] +
 ip_header[16+:16] +

 ip_header[0+:16]);

 payload_length_snibbles <= (ip_header[143:128] -
 IP_HEADER_BYTES -

 UDP_HEADER_BYTES) << 2;

 if(snibble_counter == 0)begin
 udp_header <= (udp_header << 8) | swap_nibbles(temp_reg);

 crc32_cal <= compute_crc(crc32_cal, swap_nibbles(temp_reg));

 end
 temp_reg <= (temp_reg << 2) | rxd;

 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES +
 IP_HEADER_SNIBBLES +

 UDP_HEADER_SNIBBLES + 4 - 1) state <= PAYLOAD;

 end
 PAYLOAD: begin

 // Skip the payload if the checksum is invalid

 if(ip_header[64+:16] != ~(ip_checksum[31:16] + ip_checksum[15:0]))begin
 state <= IFG;

 end

56

 if(snibble_counter == 0)begin
 payload_data <= (payload_data << 8) | swap_nibbles(temp_reg);

 crc32_cal <= compute_crc(crc32_cal, swap_nibbles(temp_reg));

 end
 temp_reg <= (temp_reg << 2) | rxd;

 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES +
 IP_HEADER_SNIBBLES +

 UDP_HEADER_SNIBBLES +

 payload_length_snibbles + 4 - 1) state <= CRC;

 end

 CRC: begin

 if(snibble_counter == 0)begin
 crc32_rx <= (crc32_rx << 8) | swap_nibbles(temp_reg);

 end

 temp_reg <= (temp_reg << 2) | rxd;

 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES +
 IP_HEADER_SNIBBLES +

 UDP_HEADER_SNIBBLES +

 payload_length_snibbles +

 CRC_SNIBBLES + 4 - 1) state <= IFG;

 end

 IFG: begin // Ethernet Interframe gap or END stage

 // Verification

 if(preamble == 64'h55_55_55_55_55_55_55_D5

 && mac_header[15:0] == 16'h08_00
 && ip_header[159:144] == 16'h45_00

 // CRC authentication.

 && reverse_and_invert(crc32_cal) ==
{crc32_rx[0+:8],crc32_rx[8+:8],crc32_rx[16+:8],crc32_rx[24+:8] }

 // IP checksum authentication

 && ip_header[64+:16] == ~(ip_checksum[31:16] + ip_checksum[15:0])
 // PC IP authentication

 && ip_header[56+:8] == PC_IP_1

 && ip_header[48+:8] == PC_IP_2
 && ip_header[40+:8] == PC_IP_3

 && ip_header[32+:8] == PC_IP_4

57

 //FPGA Port authentication
 && udp_header[32+:16] == FPGA_PORT

 //FPGA IP authentication

 && ip_header[24+:8] == FPGA_IP_1
 && ip_header[16+:8] == FPGA_IP_2

 && ip_header[8+:8] == FPGA_IP_3

 && ip_header[0+:8] == FPGA_IP_4
)

 begin

 // Valid data that can be outputted
 payload_out <= payload_data;

 end

 // End this one clock cycle before

 // you need to go to IDLE

 if(ifg_counter == IFG_SNIBBLES - 4) begin
 // Need to reset these

 state <= IDLE;

 preamble <=0;

 payload_data <= 0;

 crc32_cal <= 32'hFF_FF_FF_FF;

 // reset for good practice

 global_counter <= 1;
 snibble_counter <= 1;

 ifg_counter <=0;

 mac_header <= 0;

 ip_header <= 0;

 udp_header <= 0;
 crc32_rx <= 0;

 temp_reg <= 0;

 end else if (~rx_valid) begin
 ifg_counter <= ifg_counter + 1;

 end

 end
 default: state <= IDLE;

 endcase

58

 if (state != IDLE && state != IFG) begin

 snibble_counter <= snibble_counter + 1;

 end
 if (state != IDLE && state != PREAMBLE && state != IFG)begin

 global_counter <= global_counter + 1;

 end
 if(state == POWER_UP && phy_rst_done) begin

 power_up_counter <= power_up_counter + 1;

 end

 end

 end

 //Reverse nibbles in a byte and semi-nibbles(di-bits) in a nibble

 // ex. In: ab_cd_ef_gh ; Out: gh_ef_cd_ab

 function logic [7:0] swap_nibbles(input logic [7:0] data);
 swap_nibbles = {data[1:0],data[3:2],

 data[5:4],data[7:6]};
 endfunction

 // CRC-32 algorithm: Github Adam Christiansen MIT License
 // For computing crc32

 function [31:0] compute_crc(input logic [31:0] crc,

 input logic [7:0] data);
 localparam int unsigned POLYNOMIAL = 32'h04_C1_1D_B7;

 compute_crc = crc;

 for(int j = 0;j<8;j++)begin
 compute_crc = {compute_crc[30:0], 1'b0} ^

 (data[j] == compute_crc[31] ? 0 : POLYNOMIAL);

 end
 endfunction

 //Reverse and invert bits in a 32-bit word
 function [31:0] reverse_and_invert(input logic [31:0] data);

 for(int i =0; i< 32; i++)begin

 reverse_and_invert[i] = ~data[31-i];
 end

 endfunction

59

endmodule

//udp_pkt_send_test.sv
module udp_pkt_send_test

#(

 // "IP source" - put an unused IP

 parameter FPGA_IP_1 = 0,

 parameter FPGA_IP_2 = 0,
 parameter FPGA_IP_3 = 0,

 parameter FPGA_IP_4 = 0,

 // FPGA PORT
 parameter FPGA_PORT = 5000,

 // "IP destination" - put the IP of the PC/Server you want to send to

 parameter PC_IP_1 = 0,
 parameter PC_IP_2 = 0,

 parameter PC_IP_3 = 0,

 parameter PC_IP_4 = 0,
 // "Physical Address" - put the address of the PC/Server you want to send to - default broadcast

 parameter PC_ADDR_1 = 8'hff,

 parameter PC_ADDR_2 = 8'hff,
 parameter PC_ADDR_3 = 8'hff,

 parameter PC_ADDR_4 = 8'hff,

 parameter PC_ADDR_5 = 8'hff,
 parameter PC_ADDR_6 = 8'hff,

 //FPGA Physical address: Can be anything really

 parameter FPGA_ADDR_1 = 8'haa,
 parameter FPGA_ADDR_2 = 8'hde,

 parameter FPGA_ADDR_3 = 8'had,

 parameter FPGA_ADDR_4 = 8'hbe,
 parameter FPGA_ADDR_5 = 8'hef,

 parameter FPGA_ADDR_6 = 8'haa,
 // Ethernet Parameters

 parameter PAYLOAD_BYTES = 30, // Must be at least 18 for a total of at least 64 bytes

 parameter POWER_UP_CYCLES = 5_000_000 + 400,

 // Ethernet Interframe Gap for processing payload data

 parameter IFG_BYTES = 12,// Min is 12. Increase for more latency between packets

 //Image params for later.
 parameter IM_X = 640,

60

 parameter IM_Y = 480,
 parameter COLOR_MODE = 1

)

(

 input clk,

 input logic button_reset,

 input logic[(PAYLOAD_BYTES << 3) - 1:0] t_payload,
 input logic input_valid, // should be a pulse

 input logic phy_rst_done,

 input logic [15:0] send_port,

 output logic tx_busy,

 output logic txen,
 output logic [1:0] txd

);

 // The number of bytes in parts of the Ethernet Frame

 localparam int unsigned PREAMBLE_SFD_BYTES = 8;
 localparam int unsigned MAC_HEADER_BYTES = 14;

 localparam int unsigned IP_HEADER_BYTES = 20;

 localparam int unsigned UDP_HEADER_BYTES = 8;
 localparam int unsigned CRC_BYTES = 4;

 localparam int unsigned UDP_LENGTH = UDP_HEADER_BYTES + PAYLOAD_BYTES;// in bytes
 localparam int unsigned IP_LENGTH = IP_HEADER_BYTES + UDP_HEADER_BYTES + PAYLOAD_BYTES;// in bytes

 // The number of semi-nibbles in parts of the frame
 localparam int unsigned PREAMBLE_SFD_SNIBBLES = 4 * PREAMBLE_SFD_BYTES;

 localparam int unsigned MAC_HEADER_SNIBBLES = 4 * MAC_HEADER_BYTES;

 localparam int unsigned IP_HEADER_SNIBBLES = 4 * IP_HEADER_BYTES;
 localparam int unsigned UDP_HEADER_SNIBBLES = 4 * UDP_HEADER_BYTES;

 localparam int unsigned CRC_SNIBBLES = 4 * CRC_BYTES;// CRC

 localparam int unsigned IFG_SNIBBLES = 4 * IFG_BYTES;// interframe gap
 localparam int unsigned PAYLOAD_SNIBBLES = 4 * PAYLOAD_BYTES;// interframe gap

 // Payload SNIBBLE Length is (IP_LENGTH(read from the header) - IP_HEADER_BYTES -

UDP_HEADER_BYTES)*4

61

 // Payload SNIBBLE Length is also (UDP_LENGTH(read from the header) - UDP_HEADER_BYTES) * 4
 // The Ethernet type for the Ethernet header. This value indicates that

 // IPv4 is used.

 localparam int unsigned ETHER_TYPE = 16'h0800;

 // The IP version to use.

 localparam int unsigned IP_VERSION = 4;

 // The IP header length in 32-bit words.

 localparam int unsigned IP_HEADER_LENGTH = 5;

 // The IP type of service.

 localparam int unsigned IP_TOS = 8'h00;

 // The IP fragment identification.

 localparam int unsigned IP_ID = 16'h0000;

 // The IP flags.
 localparam int unsigned IP_FLAGS = 4'h0;

 // The IP fragmentation offset.
 localparam int unsigned IP_FRAGMENTATION_OFFSET = 12'h000;

 // The IP time to live.
 localparam int unsigned IP_TTL = 255;

 // The IP next level protocol to use. This is the User Datagram Protocol.
 localparam int unsigned IP_PROTOCOL = 8'h11;

 // verifies the validity of the ip header

 localparam int unsigned IP_CHECKSUM = {IP_VERSION[3:0],IP_HEADER_LENGTH[3:0], IP_TOS[7:0]} +

 IP_LENGTH[15:0]+

 IP_ID[15:0] +
 {IP_FLAGS[3:0],IP_FRAGMENTATION_OFFSET[11:0]} +

 {IP_TTL[7:0],IP_PROTOCOL[7:0]} +

 {FPGA_IP_1[7:0],FPGA_IP_2[7:0]} +
 {FPGA_IP_3[7:0], FPGA_IP_4[7:0]} +

 {PC_IP_1[7:0],PC_IP_2[7:0]} +

62

 {PC_IP_3[7:0],PC_IP_4[7:0]} ;

 localparam int unsigned UDP_CHECKSUM = 16'h0000;// Optional but it's normally zero

 logic [(CRC_BYTES << 3) - 1 : 0] crc32;

 logic [31:0] global_counter;// The size should actually be around 17 bits max

 logic [1:0] snibble_counter;

 logic [22:0] power_up_counter;
 logic [10:0] ifg_counter;

 localparam POWER_UP = 0;
 localparam IDLE = 1;

 localparam PREAMBLE = 2;

 localparam IP_HEADER = 4;
 localparam MAC_HEADER = 3;// same as the ethernet header

 localparam UDP_HEADER = 5;
 localparam PAYLOAD = 6;

 localparam CRC = 7;

 // Ethernet Interframe gap where you can chill for 12 bytes time or 48 snibbles
 // It is also the end stage so if you have corrupted data it'll just to this stage as well

 localparam IFG = 8;

 logic [3:0] state;

 // Temporary register to hold a 4-bit nibble

 logic [7:0] temp_reg;

 assign state_out = state;

 logic [7:0] pkt_data[0:PREAMBLE_SFD_BYTES +
 MAC_HEADER_BYTES +

 IP_HEADER_BYTES +

 UDP_HEADER_BYTES +
 PAYLOAD_BYTES +

 CRC_BYTES - 1];

 assign tx_busy = (state == IDLE && ~input_valid) ? 0 : 1;

63

 always_ff @(posedge clk)begin
 if(button_reset)begin

 //Counters

 global_counter <= 0;
 snibble_counter <= 0;

 power_up_counter <= 0;

 ifg_counter <=0;
 // State

 state <= POWER_UP;

 temp_reg <= 0;
 // TX init

 txen <= 0;

 txd <= 0;

 // crc

 crc32 <= 32'hFF_FF_FF_FF;

 end
 else begin

 case(state)
 // Rough power up time for the Ethernet PHY

 POWER_UP: begin

 if(power_up_counter == POWER_UP_CYCLES - 1)begin
 state <= IDLE;

 end

 end

 IDLE: begin

 // Preamble

 pkt_data[0] <= swap_nibbles(8'h55);
 pkt_data[1] <= swap_nibbles(8'h55);

 pkt_data[2] <= swap_nibbles(8'h55);

 pkt_data[3] <= swap_nibbles(8'h55);

 pkt_data[4] <= swap_nibbles(8'h55);

 pkt_data[5] <= swap_nibbles(8'h55);

 pkt_data[6] <= swap_nibbles(8'h55);
 pkt_data[7] <= swap_nibbles(8'hD5);

 // Ethernet MAC Header

 pkt_data[8] <= swap_nibbles(PC_ADDR_1);
 pkt_data[9] <= swap_nibbles(PC_ADDR_2);

 pkt_data[10] <= swap_nibbles(PC_ADDR_3);

64

 pkt_data[11] <= swap_nibbles(PC_ADDR_4);

 pkt_data[12] <= swap_nibbles(PC_ADDR_5);

 pkt_data[13] <= swap_nibbles(PC_ADDR_6);

 pkt_data[14] <= swap_nibbles(FPGA_ADDR_1);
 pkt_data[15] <= swap_nibbles(FPGA_ADDR_2);

 pkt_data[16] <= swap_nibbles(FPGA_ADDR_3);

 pkt_data[17] <= swap_nibbles(FPGA_ADDR_4);

 pkt_data[18] <= swap_nibbles(FPGA_ADDR_5);

 pkt_data[19] <= swap_nibbles(FPGA_ADDR_6);

 pkt_data[20] <= swap_nibbles(ETHER_TYPE[15:8]);
 pkt_data[21] <= swap_nibbles(ETHER_TYPE[7:0]);

 //IP header

 pkt_data[22] <= swap_nibbles({IP_VERSION[3:0],IP_HEADER_LENGTH[3:0]});
 pkt_data[23] <= swap_nibbles(IP_TOS[7:0]);

 pkt_data[24] <= swap_nibbles(IP_LENGTH[15:8]);

 pkt_data[25] <= swap_nibbles(IP_LENGTH[7:0]);
 pkt_data[26] <= swap_nibbles(IP_ID[15:8]);

 pkt_data[27] <= swap_nibbles(IP_ID[7:0]);
 pkt_data[28] <= swap_nibbles({IP_FLAGS[3:0],IP_FRAGMENTATION_OFFSET[11:8]});

 pkt_data[29] <= swap_nibbles(IP_FRAGMENTATION_OFFSET[7:0]);

 pkt_data[30] <= swap_nibbles(IP_TTL[7:0]);
 pkt_data[31] <= swap_nibbles(IP_PROTOCOL[7:0]);

 pkt_data[32] <= swap_nibbles((~(IP_CHECKSUM[31:16] + IP_CHECKSUM[15:0])) >> 8);

 pkt_data[33] <= swap_nibbles((~(IP_CHECKSUM[31:16] + IP_CHECKSUM[15:0])));
 pkt_data[34] <= swap_nibbles(FPGA_IP_1);

 pkt_data[35] <= swap_nibbles(FPGA_IP_2);

 pkt_data[36] <= swap_nibbles(FPGA_IP_3);
 pkt_data[37] <= swap_nibbles(FPGA_IP_4);

 pkt_data[38] <= swap_nibbles(PC_IP_1);

 pkt_data[39] <= swap_nibbles(PC_IP_2);
 pkt_data[40] <= swap_nibbles(PC_IP_3);

 pkt_data[41] <= swap_nibbles(PC_IP_4);

 //UDP Header

 pkt_data[42] <= swap_nibbles(FPGA_PORT[15:8]);

 pkt_data[43] <= swap_nibbles(FPGA_PORT[7:0]);

 pkt_data[44] <= swap_nibbles(send_port[15:8]);
 pkt_data[45] <= swap_nibbles(send_port[7:0]);

 pkt_data[46] <= swap_nibbles(UDP_LENGTH[15:8]);

65

 pkt_data[47] <= swap_nibbles(UDP_LENGTH[7:0]);
 pkt_data[48] <= swap_nibbles(UDP_CHECKSUM[15:8]);

 pkt_data[49] <= swap_nibbles(UDP_CHECKSUM[7:0]);

 // PAYLOAD INFO
 for(int i = 0;i < PAYLOAD_BYTES;i++)begin

 pkt_data[i + 50] <= swap_nibbles(t_payload[((PAYLOAD_BYTES - 1 - i) <<

3)+:8]);
 end

 // CRC32 calculate later (4 bytes)

 pkt_data[PAYLOAD_BYTES + 50 + 0] <= 8'h00;
 pkt_data[PAYLOAD_BYTES + 50 + 1] <= 8'h00;

 pkt_data[PAYLOAD_BYTES + 50 + 2] <= 8'h00;

 pkt_data[PAYLOAD_BYTES + 50 + 3] <= 8'h00;

 if(input_valid) begin

 state <= PREAMBLE;
 temp_reg <= pkt_data[global_counter >> 2];

 global_counter <= 1;// start the global counter at 1

 snibble_counter <= 1;// start the snibble counter at 1

 ifg_counter <=0;

 end

 end

 PREAMBLE: begin
 txen <= 1;

 if (snibble_counter==0) begin

 //next byte
 temp_reg <= pkt_data[global_counter >> 2];

 end else begin

 temp_reg <= (temp_reg << 2);
 end

 txd <= temp_reg[7:6];

 if(global_counter == PREAMBLE_SFD_SNIBBLES - 1) state<=MAC_HEADER;
 end

 MAC_HEADER: begin

 if (snibble_counter==0) begin
 //next byte

 temp_reg <= pkt_data[global_counter >> 2];

66

 // return the pkt data to normal for the crc calculation
 crc32 <= compute_crc(crc32, swap_nibbles(pkt_data[global_counter >> 2]));

 end else begin

 temp_reg <= (temp_reg << 2);
 end

 txd <= temp_reg[7:6];

 if(global_counter == PREAMBLE_SFD_SNIBBLES +
 MAC_HEADER_SNIBBLES - 1) state<=IP_HEADER;

 end

 IP_HEADER: begin
 if (snibble_counter==0) begin

 //next byte

 temp_reg <= pkt_data[global_counter >> 2];
 crc32 <= compute_crc(crc32, swap_nibbles(pkt_data[global_counter >> 2]));

 end else begin

 temp_reg <= (temp_reg << 2);
 end

 txd <= temp_reg[7:6];
 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES +

 IP_HEADER_SNIBBLES - 1) state<=UDP_HEADER;
 end

 UDP_HEADER: begin

 if (snibble_counter==0) begin
 //next byte

 temp_reg <= pkt_data[global_counter >> 2];

 crc32 <= compute_crc(crc32, swap_nibbles(pkt_data[global_counter >> 2]));
 end else begin

 temp_reg <= (temp_reg << 2);

 end
 txd <= temp_reg[7:6];

 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES +
 IP_HEADER_SNIBBLES +

 UDP_HEADER_SNIBBLES - 1) state <= PAYLOAD;

 end
 PAYLOAD: begin

 if (snibble_counter==0) begin

67

 temp_reg <= pkt_data[global_counter >> 2];
 crc32 <= compute_crc(crc32, swap_nibbles(pkt_data[global_counter >> 2]));

 end else begin

 temp_reg <= (temp_reg << 2);
 end

 txd <= temp_reg[7:6];

 if(global_counter == PREAMBLE_SFD_SNIBBLES +
 MAC_HEADER_SNIBBLES +

 IP_HEADER_SNIBBLES +

 UDP_HEADER_SNIBBLES +
 PAYLOAD_SNIBBLES - 1) begin

 state <= CRC;

 // CRC is in little-endian by bytes
 pkt_data[PAYLOAD_BYTES + 50 + 0] <= swap_nibbles(reverse_and_invert(crc32));

 pkt_data[PAYLOAD_BYTES + 50 + 1] <= swap_nibbles(reverse_and_invert(crc32) >>

8);
 pkt_data[PAYLOAD_BYTES + 50 + 2] <= swap_nibbles(reverse_and_invert(crc32) >>

16);
 pkt_data[PAYLOAD_BYTES + 50 + 3] <= swap_nibbles(reverse_and_invert(crc32) >>

24);

 end

 end

 CRC: begin

 if (snibble_counter==0) begin
 //next byte

 temp_reg <= pkt_data[global_counter >> 2];

 end else begin
 temp_reg <= (temp_reg << 2);

 end

 txd <= temp_reg[7:6];
 if(global_counter == PREAMBLE_SFD_SNIBBLES +

 MAC_HEADER_SNIBBLES +

 IP_HEADER_SNIBBLES +
 UDP_HEADER_SNIBBLES +

 PAYLOAD_SNIBBLES +

 CRC_SNIBBLES - 1) state <= IFG;

 end

 IFG: begin // Ethernet Interframe gap or END stage

68

 txd <= (ifg_counter == 0) ? temp_reg[7:6] : 0 ;
 txen <= (ifg_counter == 0) ? 1 : 0 ;

 if(ifg_counter == IFG_SNIBBLES - 1) begin

 // Need to reset these
 state <= IDLE;

 crc32 <= 32'hFF_FF_FF_FF;

 // These ones are cleared for good practice

 temp_reg <= 0;

 snibble_counter <= 0;

 global_counter <= 0;

 power_up_counter <= 0;

 ifg_counter <=0;

 end else begin
 ifg_counter <= ifg_counter + 1;

 end

 end

 default: state <= IDLE;

 endcase

 if (state != IDLE && state != IFG) begin

 snibble_counter <= snibble_counter + 1;
 global_counter <= global_counter + 1;

 end

 if(state == POWER_UP && phy_rst_done) begin

 power_up_counter <= power_up_counter + 1;

 end
 end

 end

 // CRC-32 algorithm: Github Adam Christiansen MIT License

 // For computing the checksum

 function [31:0] compute_crc(input logic [31:0] crc,
 input logic [7:0] data);

 localparam int unsigned POLYNOMIAL = 32'h04_C1_1D_B7;

 compute_crc = crc;

 for(int j = 0;j<8;j++)begin

 compute_crc = {compute_crc[30:0], 1'b0} ^

69

 (data[j] == compute_crc[31] ? 0 : POLYNOMIAL);
 end

 endfunction

 //Reverse nibbles in a byte and semi-nibbles(di-bits) in a nibble

 // ex. In: ab_cd_ef_gh ; Out: gh_ef_cd_ab

 function [7:0] swap_nibbles(input logic [7:0] data);
 swap_nibbles = {data[1:0],data[3:2],

 data[5:4],data[7:6]};

 endfunction
 //Reverse and invert bits in a byte

 function [31:0] reverse_and_invert(input logic [31:0] data);

 for(int i =0; i< 32; i++)begin
 reverse_and_invert[i] = ~data[31-i];

 end

 endfunction
endmodule

// vga_display.sv
localparam CAMERA_BITS = 548*8-34; //number of bits for packet of camera data

module vga_display(
 input clk_50mhz,

 input clk_65mhz,
 input[15:0] sw,

 input reset,

// input btnc, btnu, btnl, btnr, btnd,

 input [9:0] data_in, //sensor data to be displayed

 input [CAMERA_BITS-1:0] camera_data_in, //to be displayed (addr, raw data)

 //VGA interface logics

 output logic[3:0] vga_r,
 output logic[3:0] vga_b,

 output logic[3:0] vga_g,

 output logic vga_hs,

70

 output logic vga_vs,
// leds for switches

 output logic [15:0] led

);

 assign led = sw; // turn leds on

//general VGA registers

 logic [10:0] hcount; // pixel on current line
 logic [9:0] vcount; // line number

 logic hsync, vsync;

 logic [11:0] rgb; //rgb value of current pixel

//rgb value of the current pixel of the numbers being displayed

 logic [11:0] number_pixel;

 ///CAMERA PIXEL REGISTERS

 logic [11:0] camera_pixel;

 logic [11:0] double_camera_pixel; //for 2x resolution

 logic [11:0] raw_cam_data; //from the packet of camera data

 logic [16:0] cam_addr; //the address of the current pixel to be used to read and write from the
RAM

 logic [12:0] counter = 0; //counter for iterating through all of the pixel data values in a

packet

 always_ff @(posedge clk_50mhz) begin

 cam_addr <= camera_data_in[counter+:17]; //address requires 17 bits

71

 raw_cam_data<=camera_data_in[(counter+17)+:12]; //pixel data requires 12 bits

 if (counter>=149*29) begin //restart after the 150th (or last) pixel in the data packet

 counter<=0;

 end

 else begin
 counter <= counter+29; //increase index by 29 (12 bits for pixel value, 17 for address

value)

 end

 end

 xvga xvga1(.vclock_in(clk_65mhz),.reset_in(reset), .hcount_out(hcount),.vcount_out(vcount),
 .hsync_out(hsync),.vsync_out(vsync),.blank_out(blank));

 logic phsync,pvsync,pblank; //number sync

 logic chsync, cvsync, cblank; //camera sync

 number_image number(

 .vclock_in(clk_65mhz),

 .reset_in(reset),

 .data_in(data_in),

 .hcount_in(hcount),.vcount_in(vcount),
 .hsync_in(hsync),.vsync_in(vsync),.blank_in(blank),

 .phsync_out(phsync),.pvsync_out(pvsync),.pblank_out(pblank),.pixel_out(number_pixel));

72

 camera_to_picture camera_1(
 .clk_50mhz(clk_50mhz),

 .pixel_clk_in(clk_65mhz),

 .hcount_in(hcount),
 .vcount_in(vcount),

 .addr_in(cam_addr),
 .raw_data_in(raw_cam_data),

 .double_on(sw[2]), //turn on switch 2 for 640x320 image

 .hsync_in(hsync),.vsync_in(vsync),.blank_in(blank),

 .chsync_out(chsync),.cvsync_out(cvsync),.cblank_out(cblank),

 .pixel_out(camera_pixel),

 .double_pixel_out(double_camera_pixel)

);

 logic b,hs,vs;

 always_ff @(posedge clk_65mhz) begin

 if (sw[1:0] == 2'b01) begin // just number setting

 hs <= phsync;

 vs <= pvsync;

 b <= pblank;

 rgb<= number_pixel;

 end else if (sw[1:0] == 2'b10) begin // just camera setting

 hs <= phsync;

 vs <= pvsync;

 b <= pblank;

73

 rgb<= camera_pixel;

 end else if (sw[1:0] == 2'b11) begin //camera and number setting
 hs <= phsync;

 vs <= pvsync;

 b <= pblank;

 rgb<= number_pixel | camera_pixel;

 end else if (sw[1:0] == 2'b0) begin //camera off

 hs <= phsync;

 vs <= pvsync;

 b <= pblank;

 rgb<=0;
 end else begin

 // default: camera and sensor data displaying

 hs <= phsync;

 vs <= pvsync;

 b <= pblank;

 rgb<= number_pixel | camera_pixel;

 end

 end

 //From lab 3
 // the following lines are required for the Nexys4 VGA circuit - do not change

 assign vga_r = ~b ? rgb[11:8]: 0;

 assign vga_g = ~b ? rgb[7:4] : 0;
 assign vga_b = ~b ? rgb[3:0] : 0;

 assign vga_hs = ~hs;
 assign vga_vs = ~vs;

74

endmodule

module number_image (
 input vclock_in, // 65MHz clock

 input reset_in, // 1 to initialize module

 //from lab 3

 input [10:0] hcount_in, // horizontal index of current pixel (0..1023)

 input [9:0] vcount_in, // vertical index of current pixel (0..767)
 input hsync_in, // XVGA horizontal sync signal (active low)

 input vsync_in, // XVGA vertical sync signal (active low)

 input blank_in, // XVGA blanking (1 means output black pixel)

 output logic phsync_out, // horizontal sync

 output logic pvsync_out, // vertical sync
 output logic pblank_out, // blanking

 output logic [11:0] pixel_out, // pixel value // r=11:8, g=7:4, b=3:0

 input [9:0] data_in

);

 assign phsync_out = hsync_in;

 assign pvsync_out = vsync_in;
 assign pblank_out = blank_in;

 //x and y positions of numbers

 logic [10:0] num_x = 11'd700; //start numbers in center-right of screen (coords 700, 50)
 logic [9:0] num_y = 10'd50;

 logic [11:0] num_pixel_ones; //for the ones digit
 logic [11:0] num_pixel_tens; //for the tens digit

 logic [11:0] num_pixel_hundreds; //for the hundreds digit

75

 logic done;

 logic [13:0] counter;

 logic [3:0] ones;
 logic [3:0] tens;

 logic [3:0] hundreds;

 logic [3:0] thousands;

 logic [9:0] refresh_counter = 0;

 //MUST COUNT IN ORDER TO DISPLAY

 always @(posedge vclock_in) begin
 if(refresh_counter>=1000) begin //refresh every thousand cycles

 counter <= 0;

 refresh_counter<=0;
 ones<=0;

 tens<=0;
 hundreds<=0;

 thousands<=0;

 end
 else if(counter == data_in)

 done <= 1;

 else begin
 counter <= counter + 1;

 refresh_counter<=refresh_counter+1;

 ones <= ones == 9 ? 0 : ones + 1;
 if(ones == 9) begin

 tens <= tens == 9 ? 0 : tens + 1;

 if(tens == 9) begin
 hundreds <= hundreds == 9 ? 0 : hundreds + 1;

 if(hundreds == 9) begin

 thousands <= thousands + 1;
 end

 end

 end
 end

 end

76

 picture_number number_ones(

 .pixel_clk_in(vclock_in),

 .digit_in(hundreds),
 .x_in(num_x),.hcount_in(hcount_in),

 .y_in(num_y),.vcount_in(vcount_in),

 .pixel_out(num_pixel_ones));

 picture_number number_tens(
 .pixel_clk_in(vclock_in),

 .digit_in(tens),

 .x_in(num_x + 50),.hcount_in(hcount_in),
 .y_in(num_y),.vcount_in(vcount_in),

 .pixel_out(num_pixel_tens));

 picture_number number_hundreds(
 .pixel_clk_in(vclock_in),

 .digit_in(ones),

 .x_in(num_x + 100),.hcount_in(hcount_in),
 .y_in(num_y),.vcount_in(vcount_in),

 .pixel_out(num_pixel_hundreds));

 always_comb begin

 pixel_out = num_pixel_ones | num_pixel_tens | num_pixel_hundreds;

 end

endmodule

 ///

//

77

// Pushbutton Debounce Module (video version - 24 bits)

//

///

module debounce (input reset_in, clock_in, noisy_in,

 output logic clean_out);

 logic [19:0] count;

 logic new_input;

 always_ff @(posedge clock_in)

 if (reset_in) begin

 new_input <= noisy_in;

 clean_out <= noisy_in;

 count <= 0; end

 else if (noisy_in != new_input) begin new_input<=noisy_in; count <= 0; end
 else if (count == 1000000) clean_out <= new_input;

 else count <= count+1;

endmodule

 //from lab 3

module xvga(input vclock_in,
 input reset_in,

 output logic [10:0] hcount_out, // pixel number on current line

 output logic [9:0] vcount_out, // line number
 output logic vsync_out, hsync_out,

 output logic blank_out);

 parameter DISPLAY_WIDTH = 1024; // display width

 parameter DISPLAY_HEIGHT = 768; // number of lines

 parameter H_FP = 24; // horizontal front porch

 parameter H_SYNC_PULSE = 136; // horizontal sync

 parameter H_BP = 160; // horizontal back porch

 parameter V_FP = 3; // vertical front porch

78

 parameter V_SYNC_PULSE = 6; // vertical sync
 parameter V_BP = 29; // vertical back porch

 // horizontal: 1344 pixels total
 // display 1024 pixels per line

 logic hblank,vblank;

 logic hsyncon,hsyncoff,hreset,hblankon;
 assign hblankon = (hcount_out == (DISPLAY_WIDTH -1));

 assign hsyncon = (hcount_out == (DISPLAY_WIDTH + H_FP - 1)); //1047

 assign hsyncoff = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE - 1)); // 1183
 assign hreset = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE + H_BP - 1)|reset_in); //1343

 // vertical: 806 lines total
 // display 768 lines

 logic vsyncon,vsyncoff,vreset,vblankon;

 assign vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT - 1)); // 767
 assign vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP - 1)); // 771

 assign vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE - 1)); // 777
 assign vreset = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE + V_BP -

1)|reset_in); // 805

 // sync and blanking

 logic next_hblank,next_vblank;

 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

 always_ff @(posedge vclock_in) begin

 hcount_out <= hreset ? 0 : hcount_out + 1;
 hblank <= next_hblank;

 hsync_out <= hsyncon ? 0 : hsyncoff ? 1 : hsync_out; // active low

 vcount_out <= hreset ? (vreset ? 0 : vcount_out + 1) : vcount_out;

 vblank <= next_vblank;

 vsync_out <= vsyncon ? 0 : vsyncoff ? 1 : vsync_out; // active low

 blank_out <= next_vblank | (next_hblank & ~hreset);

 end
endmodule

79

module camera_to_picture(

 input pixel_clk_in,

 input clk_50mhz,

 input [14:0] hcount_in,

 input [14:0] vcount_in,

 input [16:0] addr_in,
 input [11:0] raw_data_in,

 input double_on, //boolean of whether to double size or not

 input hsync_in, // XVGA horizontal sync signal (active low)

 input vsync_in, // XVGA vertical sync signal (active low)
 input blank_in, // XVGA blanking (1 means output black pixel)

 output logic chsync_out, // camera horizontal sync

 output logic cvsync_out, // camera vertical sync

 output logic cblank_out, // camera blanking

 output logic [11:0] pixel_out,
 output logic [11:0] double_pixel_out

);

 assign chsync_out = hsync_in;

 assign cvsync_out = vsync_in;
 assign cblank_out = blank_in;

 logic [11:0] video_pixel;

80

 logic [16:0] addr_out;

 always_comb begin

 //for 2x resolution

 if (double_on) begin //double size interpolation
 if (vcount_in[0] == 1'b0 && hcount_in[0] ==1'b0) begin //even case

 addr_out = 320*(240-(hcount_in>>1)) + (vcount_in>>1);

 end

 else if (vcount_in[0] == 1'b1 && hcount_in[0]==1'b0) begin

 addr_out = 320*((hcount_in>>1)) + ((vcount_in-1)>>1);
 end

 else if (vcount_in[0]==1'b0 && hcount_in[0]==1'b1) begin
 addr_out = 320*(((hcount_in-1)>>1)) + (vcount_in>>1);

 end

 else if (vcount_in[0]==1'b1 && hcount_in[0]==1'b1) begin

 addr_out = 320*(((hcount_in-1)>>1)) + ((vcount_in-1)>>1);
 end

 end

 else begin //not double size

 addr_out = 320*(hcount_in) + vcount_in;

 end
 end

 //simultaneously write new data, and read current pixel according to vcount and hcount

 camera_dual_ram cam_1(.clka(clk_50mhz), .wea(1), .addra(addr_in), .dina(raw_data_in),

 .clkb(pixel_clk_in), .addrb(addr_out), .doutb(video_pixel));

 always_ff @(posedge pixel_clk_in) begin

 if (~double_on) begin //normal

81

 if ((hcount_in<320) && (vcount_in<240)) begin //only allow one 320x240 image
 pixel_out<= video_pixel;

 end

 else begin // outside of border
 pixel_out<=0;

 end

 end

 //if double size

 else begin
 if ((hcount_in<640) && (vcount_in<480)) begin //only allow one 640x320 image

 pixel_out<= video_pixel;

 end

 else begin

 pixel_out<=0;
 end

 end
 end

endmodule

module picture_number

 #(parameter WIDTH = 48, // default picture width

 HEIGHT = 48) // default picture height
 (input pixel_clk_in,

 input [10:0] x_in,hcount_in,

 input [9:0] y_in,vcount_in,
 input [3:0] digit_in,

 output logic [11:0] pixel_out);

82

 logic [14:0] image_addr; // num of bits for 256*240 ROM
 logic [7:0] image_bits, red_mapped, green_mapped, blue_mapped;

 logic [3:0] greyscale_bits;

 //each number is 48*48 = 2304

 assign image_addr = (2304*digit_in) + (hcount_in-x_in) + ((vcount_in-y_in)*WIDTH);

 blk_mem_gen_1 rom2(.clka(pixel_clk_in), .addra(image_addr), .douta(greyscale_bits));

 always_ff @ (posedge pixel_clk_in) begin
 if ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&

 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 pixel_out <= {greyscale_bits, greyscale_bits, greyscale_bits};

 else pixel_out <= 0;
 end

endmodule

14 Verilog Simulation Code
// udp_pkt_receive_tb.sv

module udp_pkt_receive_tb;

83

 //make logics for inputs and outputs!

 logic clk;

 logic rst;
 logic txen;

 logic [1:0] txd;

 logic tx_busy;
 logic [239:0] payload_in;

 logic [239:0] payload_out;

 logic [31:0] counter;
 logic input_valid;

 logic phy_rst_done;

 udp_pkt_send_test#(.POWER_UP_CYCLES(2), .PAYLOAD_BYTES(30)) send_test (
 .clk(clk),

 .button_reset(rst),

 .txen(txen),
 .txd(txd),

 .t_payload(payload_in),
 .input_valid(input_valid),

 .tx_busy(tx_busy),

 .send_port(16'd5001),
 .phy_rst_done(phy_rst_done)

);

 udp_pkt_receive#(.POWER_UP_CYCLES(2), .PAYLOAD_BYTES(30)) rec(.clk(clk),

 .rxd(txd),
 .rx_valid(txen),

 .payload_out(payload_out),

 .button_reset(rst),
 .phy_rst_done(phy_rst_done));

 //An always block in simulation **always** runs in the background
 //this is your standard way of making a clock below:

 //it says: every 5 ns, make clk be !clk

 //still need to initialize clk in an initial block
 always begin

 #5; //every 5 ns switch...so period of clock is 10 ns...100 MHz clock

84

 clk = !clk;

 end

 always @(posedge clk) begin

 if(~tx_busy) begin

 payload_in <= counter;

 input_valid <= 1;

 counter <= counter + 1;

 end else begin

 input_valid <= 0;
 end

 end

 //initial block...this is our test simulation

 initial begin

 $display("Starting Sim"); //print nice message
 clk = 0; //initialize clk (super important)

 rst = 0; //initialize rst (super important)
 counter = 0;

 payload_in = 0;

 input_valid = 0;
 phy_rst_done = 0;

 #20 //wait a little bit of time at beginning

 rst = 1; //reset system
 payload_in = 0;

 counter = 0;

 input_valid = 0;
 phy_rst_done = 0;

 #20; //hold high for a few clock cycles

 rst=0; //pull low
 counter = 0;

 phy_rst_done = 1;

 input_valid = 0;
 #200000000; //wait a little bit

 $finish;

 end

85

endmodule

// udp_pkt_send_test_tb.sv

module udp_pkt_send_test_tb;

 //make logics for inputs and outputs!
 logic clk;

 logic rst;

 logic txen;
 logic [1:0] txd;

 logic tx_busy;

 logic [239:0] payload_in;
 logic [31:0] counter;

 logic input_valid;

 logic phy_rst_done;
 udp_pkt_send_test#(.POWER_UP_CYCLES(2)) send_test (

 .clk(clk),

 .button_reset(rst),
 .txen(txen),

 .txd(txd),

 .t_payload(payload_in),
 .input_valid(input_valid),

 .tx_busy(tx_busy),

 .send_port(16'd5001),
 .phy_rst_done(phy_rst_done)

);

 //An always block in simulation **always** runs in the background

 //this is your standard way of making a clock below:

 //it says: every 5 ns, make clk be !clk
 //still need to initialize clk in an initial block

 always begin

 #5; //every 5 ns switch...so period of clock is 10 ns...100 MHz clock
 clk = !clk;

 end
 always @(posedge clk) begin

86

 if(~tx_busy) begin
 payload_in <= counter;

 input_valid <= 1;

 counter <= counter + 1;

 end else begin

 input_valid <= 0;

 end
 end

 //initial block...this is our test simulation
 initial begin

 $display("Starting Sim"); //print nice message

 clk = 0; //initialize clk (super important)
 rst = 0; //initialize rst (super important)

 counter = 0;

 payload_in = 0;
 input_valid = 0;

 phy_rst_done = 0;
 #20 //wait a little bit of time at beginning

 rst = 1; //reset system

 payload_in = 0;
 counter = 0;

 input_valid = 0;

 phy_rst_done = 0;
 #20; //hold high for a few clock cycles

 rst=0; //pull low

 counter = 0;
 phy_rst_done = 1;

 input_valid = 0;

 #200000000; //wait a little bit
 $finish;

 end

endmodule

15 Python Server Code
// RobotRX_ControlTX.py
import socket

87

import time
"""

Establishes a connection from the two PCs

Using the Server as a middle man

1. Get a message from RX and TX in any order

2. Send message to TX

3. Send message to RX

5. Go in to a loop where TX -> SERVER -> RX

6. End the connection if you get a STOP message

"""

DATA_SIZE = 548

RESEND = 1
Server address and port

SERVER_IP = "45.79.176.240"

SERVER_PORT = 5004

TX IP address and port.

TX_IP = None

TX_PORT = 0

RX IP address and port.

RX_IP = None

RX_PORT = 0

Socket Setup

sock = socket.socket(socket.AF_INET, # Internet
 socket.SOCK_DGRAM) # UDP

sock.bind((SERVER_IP,SERVER_PORT))

sock.setblocking(True)

STOP_MESSAGE = int.from_bytes(bytes("STOP","ascii"), "big")

STEP 1: Get message from RX and TX and in effect their addresses

print("Starting Server 1")

while (TX_IP is None) or (RX_IP is None):
 data, addr = sock.recvfrom(2)

 if data == bytes("TX","ascii"):

88

 (TX_IP,TX_PORT) = addr

 # STEP 2: Send message to TX

 for i in range(RESEND + 1):

 sock.sendto(bytes("Server to PC","ascii"), (TX_IP,TX_PORT))

 elif data == bytes("RX","ascii"):

 (RX_IP,RX_PORT) = addr

 # STEP 3: Send message to RX
 for i in range(RESEND + 1):

 sock.sendto(bytes("Server to PC","ascii"), (RX_IP,RX_PORT))

print("CONTROL -> ROBOT init")

STEP 4 & STEP 5: Go into an infinite loop and stop is you get the stop message

while True:

 data = sock.recv(DATA_SIZE)

 sock.sendto(data, (RX_IP,RX_PORT))

 if(int.from_bytes(data,"big") & 0xFFFFFFFF == STOP_MESSAGE):

 break
 elif data == bytes("TX","ascii"):

 (TX_IP,TX_PORT) = addr

 for j in range(RESEND + 1):
 sock.sendto(bytes("Server to PC","ascii"), (TX_IP,TX_PORT))

 elif data == bytes("RX","ascii"):

 (RX_IP,RX_PORT) = addr

 for j in range(RESEND + 1):

 sock.sendto(bytes("Server to PC","ascii"), (RX_IP,RX_PORT))

print("Server 1 Closed")
sock.close()

// RobotTX_ControlRX.py
import socket
import time

"""

Establishes a connection from the two PCs

Using the Server as a middle man

1. Get a message from RX and TX in any order

2. Send message to TX

3. Send message to RX

89

5. Go in to a loop where TX -> SERVER -> RX

6. End the connection if you get a STOP message

"""

RESEND = 1
DATA_SIZE = 548

Server address and port

SERVER_IP = "45.79.176.240"

SERVER_PORT = 5010

TX IP address and port.

TX_IP = None

TX_PORT = 0

RX IP address and port.

RX_IP = None
RX_PORT = 0

Socket Setup

sock = socket.socket(socket.AF_INET, # Internet

 socket.SOCK_DGRAM) # UDP
sock.bind((SERVER_IP,SERVER_PORT))

sock.setblocking(True)

STOP_MESSAGE = int.from_bytes(bytes("STOP","ascii"), "big")

STEP 1: Get message from RX and TX and in effect their addresses

print("Starting Server 2")

while (TX_IP is None) or (RX_IP is None):

 data, addr = sock.recvfrom(2)
 if data == bytes("TX","ascii"):

 (TX_IP,TX_PORT) = addr

 # STEP 2: Send message to TX
 for i in range(RESEND + 1):

 sock.sendto(bytes("Server to PC","ascii"), (TX_IP,TX_PORT))

 elif data == bytes("RX","ascii"):
 (RX_IP,RX_PORT) = addr

 # STEP 3: Send message to RX

90

 for i in range(RESEND + 1):
 sock.sendto(bytes("Server to PC","ascii"), (RX_IP,RX_PORT))

print("ROBOT -> CONTROL init")

STEP 4 & STEP 5: Go into an infinite loop and stop is you get the stop message

while True:
 data = sock.recv(DATA_SIZE)

 sock.sendto(data, (RX_IP,RX_PORT))

 if(int.from_bytes(data,"big") & 0xFFFFFFFF == STOP_MESSAGE):
 break

 elif data == bytes("TX","ascii"):

 (TX_IP,TX_PORT) = addr

 for j in range(RESEND + 1):

 sock.sendto(bytes("Server to PC","ascii"), (TX_IP,TX_PORT))

 elif data == bytes("RX","ascii"):
 (RX_IP,RX_PORT) = addr

 for j in range(RESEND + 1):
 sock.sendto(bytes("Server to PC","ascii"), (RX_IP,RX_PORT))

print("Server 2 Closed")

sock.close()

16 Python Application Code

16.1 Robot
// reception.py
import socket

import time

"""

Uses WIFI on Mac OSX 11.0.1

Establishes a connection from the FPGA to the Server

Using the PC as a middle man

1. Get a message from the FPGA

2. Send message to the Server

91

3. Get message from Server

4. Send a message to the FPGA

5. Go in to a loop where Server -> PC -> FPGA

6. End the connection if you get a STOP message

Note: Current Uncommented configuration is using a WIFI for the FPGA and

connecting an Ethernet to the MacBook

"""

RESEND = 1

DATA_SIZE = 548

PC IP address and port

RX_PC_IP = ""

RX_PC_PORT = 5003

FPGA IP address and port.

FPGA_IP = "224.0.0.246" # WIFI

FPGA_IP = '169.254.255.255' #Ethernet
FPGA_PORT = 5001

Server IP address and port

RX_SERVER_IP = "45.79.176.240"

RX_SERVER_PORT = 5004

Setup Socket

sock = socket.socket(socket.AF_INET, # Internet
 socket.SOCK_DGRAM) # UDP

sock.bind((RX_PC_IP,RX_PC_PORT))

sock.setblocking(True)

Verification Codes

FPGA_TO_PC = int.from_bytes(bytes("FPGA RX INIT","ascii"), "big")
PC_TO_FPGA = bytes("PC to FPGA RX CONNECTED","ascii")

RX = bytes("RX","ascii")

SERVER_TO_PC = int.from_bytes(bytes("Server to PC","ascii"), "big")
STOP_MESSAGE = int.from_bytes(bytes("STOP","ascii"), "big")

print("Starting RX")
Step 1: Get message from the FPGA

print("Waiting for FPGA...")

92

while True:
 data, addr = sock.recvfrom(DATA_SIZE)

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):

 break

Step 2: Send message to Server

print("Sending to Server...")

for i in range(RESEND + 1):

 sock.sendto(RX, (RX_SERVER_IP,RX_SERVER_PORT))

Step 3: Get message from Server

print("Waiting for Server...")

while True:
 data, addr = sock.recvfrom(DATA_SIZE)

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == SERVER_TO_PC):

 break

Step 4: Send message to FPGA

print("Sending to FPGA...")

for i in range(RESEND + 1):

 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

Step 5 & Step 6:

Connection is now established so go into an infinite loop

stop if you get the STOP message

print("RX connected")

while True:
 data = sock.recv(DATA_SIZE)

 sock.sendto(data, (FPGA_IP,FPGA_PORT))

 if(int.from_bytes(data,"big") & 0xFFFFFFFF == STOP_MESSAGE):
 for j in range(RESEND + 1):

 sock.sendto(data, (FPGA_IP,FPGA_PORT))

 break
 elif (int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):

 for j in range(RESEND + 1):

 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

print("RX Closed")

sock.close()

93

// transmission.py
import socket

import time

"""

Uses WIFI on Mac OSX Big Sur 11.0.1

Establishes a connection from the FPGA to the Server

Using the PC as a middle man

1. Get a message from the FPGA

2. Send message to the Server

3. Get message from Server

4. Send a message to the FPGA

5. Go in to a loop where FPGA -> PC -> SERVER

6. End the connection if you get a STOP message

Note: Current Uncommented configuration is using a WIFI for the FPGA and

connecting an Ethernet to the MacBook

"""

RESEND = 2
DATA_SIZE = 548

PC IP address and port

TX_PC_IP = ""

TX_PC_PORT = 1024

FPGA IP address and port.

FPGA_IP = "224.0.0.246" # WIFI

FPGA_IP = '169.254.255.255' #Ethernet

FPGA_PORT = 5001

Server IP address and port

TX_SERVER_IP = "45.79.176.240"

TX_SERVER_PORT = 5010
TX_SERVER_PORT = 5004 # Communicate with self

Verification Codes

FPGA_TO_PC = int.from_bytes(bytes("FPGA TX INIT","ascii"), "big")

PC_TO_FPGA = bytes("PC to FPGA TX CONNECTED","ascii")

TX = bytes("TX","ascii")

94

STOP_MESSAGE = bytes("STOP","ascii")
SERVER_TO_PC = int.from_bytes(bytes("Server to PC","ascii"), "big")

STOP_MESSAGE = int.from_bytes(bytes("STOP","ascii"), "big")

Setup Socket

sock = socket.socket(socket.AF_INET, # Internet

 socket.SOCK_DGRAM) # UDP
sock.bind((TX_PC_IP,TX_PC_PORT))

sock.setblocking(True)

print("Starting TX")

Step 1: Get message from the FPGA

print("Waiting for FPGA...")

while True:

 data, addr = sock.recvfrom(DATA_SIZE)

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):
 break

Step 2: Send message to Server

print("Sending to Server...")

for i in range(RESEND + 1):
 sock.sendto(TX, (TX_SERVER_IP,TX_SERVER_PORT))

Step 3: Get message from Server

print("Waiting from Server...")

while True:

 data, addr = sock.recvfrom(DATA_SIZE)

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == SERVER_TO_PC):

 break

Step 4: Send message to FPGA

print("Sending to FPGA...")

for i in range(RESEND + 1):
 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

Step 5 & Step 6:

Connection is now established so go into an infinite loop

stop if you get the STOP message

95

print("TX connected")
while True:

 data = sock.recv(DATA_SIZE)

 sock.sendto(data, (TX_SERVER_IP,TX_SERVER_PORT))

 if(int.from_bytes(data,"big") & 0xFFFFFFFF == STOP_MESSAGE):

 for j in range(RESEND + 1):

 sock.sendto(data, (TX_SERVER_IP,TX_SERVER_PORT))

 break

 elif (int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):

 for j in range(RESEND + 1):
 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

print("TX Closed")

sock.close()

16.2 Controller
// reception.py
import socket

import time

"""

Uses WIFI on Mac OSX Catalina Version 10.15.7

Establishes a connection from the FPGA to the Server

Using the PC as a middle man

1. Get a message from the FPGA

2. Send message to the Server

3. Get message from Server

4. Send a message to the FPGA

5. Go in to a loop where Server -> PC -> FPGA

6. End the connection if you get a STOP message

"""

RESEND = 1

DATA_SIZE = 548

PC IP address and port

RX_PC_IP = ""

RX_PC_PORT = 5003

FPGA IP address and port.

96

FPGA_IP = '169.254.255.255' #Ethernet
FPGA_PORT = 5001

Server IP address and port

RX_SERVER_IP = "45.79.176.240"

RX_SERVER_PORT = 5010

Setup Socket

sock = socket.socket(socket.AF_INET, # Internet

 socket.SOCK_DGRAM) # UDP
sock.bind((RX_PC_IP,RX_PC_PORT))

sock.setblocking(True)

Verification Codes

FPGA_TO_PC = int.from_bytes(bytes("FPGA RX INIT","ascii"), "big")

PC_TO_FPGA = bytes("PC to FPGA RX CONNECTED","ascii")
RX = bytes("RX","ascii")

SERVER_TO_PC = int.from_bytes(bytes("Server to PC","ascii"), "big")
STOP_MESSAGE = int.from_bytes(bytes("STOP","ascii"), "big")

print("Starting RX")
Step 1: Get message from the FPGA

print("Waiting for FPGA...")

while True:
 data, addr = sock.recvfrom(DATA_SIZE)

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):

 print(addr)
 break

Step 2: Send message to Server

print("Sending to Server...")

for i in range(RESEND + 1):

 sock.sendto(RX, (RX_SERVER_IP,RX_SERVER_PORT))

Step 3: Get message from Server

print("Waiting from Server...")
while True:

 data, addr = sock.recvfrom(DATA_SIZE)

97

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == SERVER_TO_PC):
 print(addr)

 break

Step 4: Send message to FPGA

print("Sending to FPGA...")

for i in range(RESEND + 1):
 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

Step 5 & Step 6:

Connection is now established so go into an infinite loop

stop if you get the STOP message

while True:
 data = sock.recv(DATA_SIZE)

 sock.sendto(data, (FPGA_IP,FPGA_PORT))

 if(int.from_bytes(data,"big") & 0xFFFFFFFF == STOP_MESSAGE):
 break

 elif (int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):
 print("Sending to FPGA...")

 for j in range(RESEND + 1):

 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

print("RX Closed")

sock.close()

// transmission.py

import socket

import time

"""

Uses WIFI on Mac OSX Catalina Version 10.15.7

Establishes a connection from the FPGA to the Server

Using the PC as a middle man

1. Get a message from the FPGA

2. Send message to the Server

3. Get message from Server

4. Send a message to the FPGA

5. Go in to a loop where FPGA -> PC -> SERVER

98

6. End the connection if you get a STOP message

"""

RESEND = 1

DATA_SIZE = 548

PC IP address and port

TX_PC_IP = ""
TX_PC_PORT = 1024

FPGA IP address and port.

FPGA_IP = '169.254.255.255' #Ethernet

FPGA_PORT = 5001

Server IP address and port

TX_SERVER_IP = "45.79.176.240"

TX_SERVER_PORT = 5004
TX_SERVER_PORT = 5010 # Communicate with self

Verification Codes

FPGA_TO_PC = int.from_bytes(bytes("FPGA TX INIT","ascii"), "big")

PC_TO_FPGA = bytes("PC to FPGA TX CONNECTED","ascii")
TX = bytes("TX","ascii")

STOP_MESSAGE = bytes("STOP","ascii")

SERVER_TO_PC = int.from_bytes(bytes("Server to PC","ascii"), "big")
STOP_MESSAGE = int.from_bytes(bytes("STOP","ascii"), "big")

Setup Socket

sock = socket.socket(socket.AF_INET, # Internet

 socket.SOCK_DGRAM) # UDP

sock.bind((TX_PC_IP,TX_PC_PORT))

sock.setblocking(True)

print("Starting TX")
Step 1: Get message from the FPGA

print("Waiting for FPGA...")

while True:
 data, addr = sock.recvfrom(DATA_SIZE)

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):

99

 print(addr)
 break

Step 2: Send message to Server

print("Sending to Server...")

for i in range(RESEND + 1):

 sock.sendto(TX, (TX_SERVER_IP,TX_SERVER_PORT))

Step 3: Get message from Server

print("Waiting from Server...")
while True:

 data, addr = sock.recvfrom(DATA_SIZE)

 if(int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == SERVER_TO_PC):
 print(addr)

 break

Step 4: Send message to FPGA

print("Sending to FPGA...")
for i in range(RESEND + 1):

 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

Step 5 & Step 6:

Connection is now established so go into an infinite loop

stop if you get the STOP message

while True:

 data = sock.recv(DATA_SIZE)

 sock.sendto(data, (TX_SERVER_IP,TX_SERVER_PORT))

 if(int.from_bytes(data,"big") & 0xFFFFFFFF == STOP_MESSAGE):

 break

 elif (int.from_bytes(data, "big") & 0xFFFFFFFFFFFFFFFFFFFFFFFF == FPGA_TO_PC):
 print("Sending to FPGA...")

 for j in range(RESEND + 1):

 sock.sendto(PC_TO_FPGA, (FPGA_IP,FPGA_PORT))

print("TX Closed")

sock.close()

100

