
“Hey, wouldn’t it be cool if we
hooked a laser up to the
internet and made it draw
stuff on the wall?”
~ us, struggling to come up with a project about two weeks ago

6.111 Fall 2020 Project Proposal Presentation
jaytlang, fischerm

Desired Result

 Courtesy OpenLase Project, marcanCourtesy C4r0, Greek University of Technology

http://www.youtube.com/watch?v=1038A3zKyOw&t=50

● Design and fabricate a projector capable of moving a laser on

a wall fast enough to create a resolvable, decent-looking

image

● Design and implement a parallel-stack TCP Offload Engine

capable of 100 Mbps full duplex communication of laser

trajectory information over the open internet

Project Overview

The Broad, Full-System Block Diagram

Data flows in the direction of the arrow

Image Processing

Source Image Post-Canny Filtering Recolorized Image

*trajectory is also being exported as a .csv file

https://docs.google.com/file/d/1PB-VgjKjKLQOS4zdljz7k0WEnYxpL6GZ/preview

The Internet Part

The Internet in a Nutshell: OSDI Model

How do you send trajectory
information over the air?

Networking Objective

Implement de-encapsulation and encapsulation for each of these different

layers, so that we’re able to *offload* normally software-defined transit

layers into hardware.

OSDI Networking Layers

● Level 1: Ethernet Physical Layer (PHY)
● Level 2: Media Access Controller (MAC Module)

○ Communication with the PHY + addressing
● Level 3: Internet Protocol Version 4 (IPv4)

■ IPv4 Address Resolution Protocol (ARP)
■ Internet Control Message Protocol (ICMPv4)

○ Software defined networks
● Level 4: Transmission Control Protocol (TCP)

○ Reliable transmission of data streams

Getting it into hardware: TCP Offload Engine
The fine print / key points:

- BRAM buffering is utilized to perform operations on

packets in place, such as determining packet length and
transitioning to/from network byte order as necessary.

- Both L3 offload engines (RX and TX) utilize a
single-packet buffer to help do this

- L3 offload engine mashes together L3 networking
protocols to fast track processing/checksumming
this buffer

- An ARP cache (MAC <-> IP mapping store) is stored in
BRAM along with a primitive IPv4 routing table

- Should ARP or ICMP need to send a packet, they may
overwrite the current outgoing TCP packet via the L3
transmit controller

- Note: these lines between modules usually represent AXI
lines, where lines in and out of BRAM buffers represent
reads and writes.

Display Hardware

Display Hardware

Timeline

Date Network (Jay) Hardware (Fischer)

26 October Prototype PHY Layer Operational Galvonometers Operational

2 November Network Stack Design Finished Dual-Channel SPI Output Functional

9 November Packet Processing Buffer Done DRAM Framebuffer Logic Complete

16 November OSDI L3 + Open-Internet ICMP EHS Approval Complete

23 November TCP State Machine Implemented RGB Laser Output Functional

30 November Optional TCP Features In Place Final Integration

7 December Report Writing Report Writing

Q&A!
We’ve got two minutes.

TCP Offload Engine: More Fine Print

Display Hardware: More Fine Print

