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Our mess of a test bench 

 
We designed an FPGA implementation of Field Oriented Control (FOC) for brushless motors. 
An FPGA is perfect for controlling a brushless motors because it allows complex control loops 
with substantial amounts of digital processing to execute at high frequency and low latency. Our 
motor controller implemented field-oriented control---an advanced digital control strategy for 
driving various types of multiphase motors.  Our FPGA implementation of FOC required us to 
run a control loop at several kilohertz.  We had to resad 
 
Brushless motors are three phase synchronous permanent magnet motors that require electronic 
commutation.  The lack of mechanical contacts is advantageous for weight and longevity, but 
they require complex control electronics.  There are many different methods for controlling 
brushless motors, and one of the most useful methods is field oriented control, or FOC.  FOC is a 
control strategy that controls the phase and magnitude of the currents through the three phases of 
the motor.  Specifically, the three observed motor phase currents are mathematically transformed 
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into currents directly in phase with the motor’s electrical angle (D current) and in quadrature 
with the motor’s electrical angle (Q current).  In an ideal electric motor with no rotor reluctance, 
we only want Q current to be nonzero.  By changing D and Q voltages, we can do an inverse 
transform to get the target voltages for each motor phase.  These voltages are used to generate 
PWM signals on each motor phase, with these PWM signals optimized to avoid excessive 
switching. 
 
FOC is an extremely powerful motor control strategy.  One advantage of FOC is that the control 
loop for FOC can be run substantially slower than other similar control strategies because the Q 
and D currents are relatively slow to change, even with a rapidly spinning motor.  FOC can be 
easily adapted to induction motors, as well as motors with nonzero reluctance torque.  With 
knowledge of motor parameters, sensorless control of the motor can be integrated into FOC. 
FOC also gives accurate torque control of the motor, enabling a brushless motor to be used as a 
servomotor. 
 
Algorithm Overview & Architecture 
 
 
 
Hardware Details 

To have a physical platform to test on, we needed some hardware. We decided to use the 
inverter module out of a Gen2 Toyota Prius and an interior permanent magnet (IPM) motor from 
a Hyundai Sonata hybrid. Both of these parts greatly simplified the hardware work we would 
need to do, as both are quite simple to use, with minimal external components required on the 
custom PCB motherboard to interface with our FPGA. As for our FPGA, we opted to the CMOD 
A7-35T breadboardable Artix-7 breakout board. It wasn’t particularly expensive, had enough of 
the required pins, and importantly was small enough to mount on a pcb. 

 
The Prius Inverter has a simple pinout, with three 12v digital lines to control the fully 

isolated gate drivers, and two -12v to 12v analog lines representing two phase currents, along 
with a variety of other miscellaneous lines for things like enable, temperature feedback, etc. We 
used a 3.3v to 12v logic level shifter to drive the gate control lines from the FPGA. For 
converting the +-12v analog current sense signals to something the FPGA could read, we 
designed a differential amplifier circuit which scaled the +-12v to a +3.3v to 0.0v signal, for our 
3.3v high frequency SAR ADC’s to convert. Our ADC’s read out the converted signals onto a 
three wire SPI interface. To make the most out of our current sense ADC’s bandwidth, we gave 
each ADC their own SPI bus. The rest of the ADC’s (for converting temperature and bus voltage 
signals) shared a common SPI bus, as they were less critical than those used to control the motor.  

 



 
Left: Prius power electronics module 

Right: Inverter module with isolated gate drive and current sense 
 

The IPM motor had it’s three phase power connections which bolted directly to the 
inverter, and a 10 pin connector, six for the variable reluctance resolver for rotor position 
measurement, two for the motor winding thermistor, and two redundant connections for chassis 
grounding. We reterminated this connector into a DB9 connector, and layed out a smaller 
sub-board for a $20 IC for resolver-to-digital conversion. It worked by exciting a 20khz signal 
across one coil of the variable reluctance resolver, and then observing the resulting signals across 
the two other coils, who’s amplitudes would vary depending on the rotary position of the motor, 
due to the position dependant inductive coupling between the excitation coil and either of the 
observer coils. The IC handled all of these functions, producing either a position or velocity 
measurement over the SPI bus, depending on the state of a control line. Unfortunately this IC 
only operates using 5v logic, so this chip also required a logic level converter. We ended up 
using two level shifters, one for outgoing signals and another for incoming signals. 
 

 
Left : the backside of the motor, with the variable reluctance resolver shown 

Right: The Resolver to Digital converter board we designed 
 



To implement all the various circuits to run the device, we designed two separate boards, 
one for the resolver-to-digital IC and it’s peripheral circuitry, and one main board (motherboard) 
which supports the FPGA, and implements the power regulators and communication level 
converters required to operate the rest of the systems. We designed them in EAGLE PCB, on a 
two layer board. We then had them fabricated by 3PCB, a chinese boardhouse with extremely 
fast turnaround times. 
 

 
Left: Motherboard board render 

Right: Resolver to digital converter board render 
 
 

 
Current sense feedback scalers and SAR 

ADCs 

 
Voltage and temperature feedback scaling 
and sampling, 12 volt logic level shifting 



 
CMOD board broken out, and some logic 

level attenuating circuits for inverter signals 

 
Connector pinouts, power supply regulators, 
and logic level shifting for the R/D converter. 

EAGLE schematic for the motherboard 
 

Unfortunately, once I had the resolver to digital board built up and started testing it, we 
discovered that the IC didn’t seem to be operating. Probing the various signals like the excitation 
pins and the crystal oscillator revealed that the IC wasn’t doing anything. We did some sifting 
through the datasheet, but we weren’t able to determine what was wrong. On the edge connector 
pinout, the 5v and 12v supplies were right next to each other, and I suspect that I might have 
accidentally tapped the 12v against the 5v rail, which would likely have killed the IC.  
 

 
Resolver decoder board schematic 

 



To get our project running, we really needed positional feedback. In theory, it is possible 
to operate the motor without sensor feedback, but it is certainly not an easy thing to do with your 
very first motor controller, and is particularly difficult with the motor we are using. Lucky for us, 
Austin Brown, a friend who had done some previous work developing FOC based motor 
controls, offered to let us use one of his old motor + encoder rigs, which we promptly bent a 
piece of sheet metal for and mounted to the side of the motor, using duct-tape to couple the 
output shaft of our motor to the smaller motor on his testing rig.  

 
Austin’s radial flux magnetic encoder breakout board 

The encoder he was using was a radial flux magnetic encoder, which could detect the 
fields of a nearby magnet and deduce the direction of the magnetic field lines running in plane 
with the IC. The IC was in quadurature mode, meaning that it was spitting an A and a B signal, 
two square waves offset by 90 phase degrees. The frequency of this signal was proportional to 
the RPM, every falling or rising edge of either signal encoded a 1 unit move either forwards or 
backwards. This system has no way to represent absolute position, so the encoder included a 
third “i” signal, which would transition to a high state at a fixed position once per rotation. 
 
Software Details 
 
In order to implement the field oriented control algorithm, we needed to implement the Clarke 
and Park coordinate transforms in order to convert between three phase currents and voltages, 
and two phase voltages and currents in the stator and rotor reference frames.  The FOC control 
loops control Q and D current in the rotor reference frame, but Q and D currents and voltages are 
mathematical abstractions.  The Clarke (and inverse Clarke) transforms are implementable as 
matrix multiplication.  The structure of the Clarke transform matrix allows it to be optimized on 



an FPGA by substituting bit shift operations for multiplies, and the inverse Clarke transform was 
similarly optimized. 
 
The Park transform maps voltages from from from from from 
 
We also implemented a noise-resistant UART transmitter and receiver in order to give 
commands to the motor controller from the computer and read internal data from the motor 
controller on the computer.  The noise-resistant receiver averaged the received values over one 
bit time interval in order to avoid flipping bits.  This noise rejection was especially important due 
to the electrical noise from the inverter, which would frequently result in receiver errors.  With 
noise rejection, we were able to reliably command Q and D currents through the motor, which 
allowed us to effectively demonstrate field weakening in action. 
 
Field oriented control requires inputs to measure phase currents and rotor position.  The ADCs 
and resolver board communicated via a serial interface, which had to be implemented according 
to the datasheet timing specifications.  

● UART 
○ tx/rx 
○ hex encoder/decoder 

● clarke/park 
○ cordic 

● PI controllers 
● adc spi 
● encoder interface 

○ 4096 awfulness 
● SVPWM generation 

○ Fractional clock divider 
 

To actually apply a three phase voltage to the motor, we used a special type of PWM 
generator called SVPWM. The first important part of SVPWM is that it synchronizes the 
switching of all three phases so that they are always symmetric and as overlapped as possible. It 
achieves this by using the three voltage setpoints (one per phase) as individual thresholds 
superimposed onto a triangle wave, and switches a given phase whenever the triangle wave 
crosses the corresponding threshold level. The other important part of SVPWM is that it can 
adjust the dc component of the three phase output to increase the peak-to-peak voltage of the 
output sinusoids higher than the DC bus voltage. This only works because the number of phases 
is odd. Imagining three sinusoids, at no point in time are any two sinusoids at their peak, and the 
inverter only ever needs to produce a differential voltage of ¾ of whatever the peak-to-peak 
voltages of the sinusoids is. Therefore, the inverter is capable of producing a three phases which 



are 4/3rds the voltage of vbus. To be able to do this, it is important that the three phases are 
switched synchronously, as we established SVPWM is able to do earlier.  

 
Our implementation of SVPWM uses an up/down counter to generate the triangle waves, 

which is driven by a clock multiply/divider that we wrote. Because the rate at which the triangle 
counter needs to be incremented is not evenly divisible by the clock frequency, we needed to be 
able to generate a clock which is capable of producing something like 5 output pulses every 6 
input clock edges (a factor of 5/6), for example. This was achieved by using a counter which is 
incremented by the numerator on every input clock pulse, and produces an output clock edge 
every time the counter counts up to the denominator. Once the counter has passed the 
denominator, a bit of logic executes which rolls over the counter, while retaining however much 
it has overcounted by.  

 

 
The fractional clock divider configured for, 2/3rds dividing 

input clock on top, output clock on bottom 
 
This clocking method was a reasonably elegant solution (so long as your only concerned 

with average frequency), though the implementation isn’t perfectly idiotproof. We should have 
implemented this functionality directly into the triangle wave generator, instead of using 
implementing a clock divider module and incrementing the triangle wave counter every clock 
edge of the clock divider, as it would have allowed for higher resolution and higher counter 
frequency. If we forget how the triangle wave generation mechanism worked and tried to 
increase the switching frequency later, we think we may run into a bug or two, but it works as is 
for now.  

 
The SVPWM module itself was designed to take three signed voltage levels, and output 

three high/low states for each output phase. The module was implemented about as you’d expect, 
utilizing a counter with the same bit width as the inputs, with combinatorial logic which switches 
direction when it reaches the endpoints. I did have to implement a couple important protections, 
the first being that the input voltages are only sampled at the top and bottom of the switching 
cycle. This way we don’t run into issues with the output being intermittently on and off if it’s 
updated in the middle of a pwm cycle. Unfortunately, we decided not to implement the DC offset 



shifting for SVPWM, as it was additional complexity that wasn’t required for the controller to be 
operational, and which would make the output waveforms more difficult to interpret. 

 

 
Two cycles of an SVPWM output in testbench, displaying the  

triangle wave generation and output pin states. 
 

Yes 
 
Challenges and Setbacks 
 

● resolver breaking 
● hardware design took a while 
● reverse engineering the prius brick 
● UART noise, do a little averaging, add some chokes 

 
One major time sink was the actual PCB layout. While we have experience designing and 

laying out PCB’s for projects in a short period of time, this board posed a few unforeseen and 
underestimated challenges. Firstly, while we mostly knew the pinout and behavior of the various 
Prius inverter signals, there were still a few unknown signals that we had to design the circuit to 
be flexible around. For example, the analog Vbus feedback line exhibited this very strange 0.5 
volt to 2 volt linear relationship to a vbus of 0v to 250v. Similarly, we had to design a flexible 
circuit for translating the digital signals from the inverter, as we weren’t sure what digital output 
standard the inverter implemented. 
 

The second was just the sheer number of signals that had to be organized and individually 
considered, and many more decisions had to be made than expected. Trying to work on a board 
and move things forward can be difficult with a handful of difficult decisions haven’t been made. 
A related great annoyance was that all of the devices we needed the FPGA to interface with ran 
different logic standards than the FPGA, so every interface needed logic level shifting. 

 



The third issue was that the resolver decoder pcb wasn’t going to be as easy as taking a 
known good board sending out for a couple copies like we thought it would be. Unfortunately, 
the original version of the board had quite a few important signals not routed that we hoped 
would be. This meant some amount of editing had to be done, and given that we didn’t have any 
of the libraries for the original parts and how messy the original schematic was, we ended up just 
rebuilding the board from scratch. 
 
 
Future? 
 
We intend on continuing development of the motor controller into the future. As is, we left a lot 
of possible functionality out in the interest of like, passing our classes. Many modules are 
certainly a bit thrown together, and though the system works currently, I suspect if we don’t 
revise and test things more thoroughly we will likely start running into bugs down the road. 
 

● Expand comms interface, set up system by which operating parameters can be changed 
via serial. 

● Develop telemetry system  
● Fix the resolver board, and test to see if we can get data from it. 
● Implement more complex spi modules for receiving data from the various other analog 

channels. 
● High speed inverter to make use of the low latency we should be able to get out of this 

system 
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