
6.111 Final Project Report – Bahrudin Trbalic

ChessAi

Abstract

 The goal of this project is to create chess board that acts as an opponent who can

be played against with little to no human computer interaction. Physically it consists of a

chess board with 64 LED indicator lights, a set of standard chess pieces modified with

magnets on the bottom and wiring underneath the board to read off piece positions. On the

FPGA we implemented an FSM to check the validity of all moves and to relay moves

made by the human to a computer running a python script that determines the opponent’s

move. It also included a connection between the computer and the LEDs to provide useful

signaling and indications of the opponent's move.

INTRODUCTION

Many people love to play chess but nowadays it’s hard to find people to play with

– especially for the senior and more experienced population. A subgroup of those people

either don’t own or don’t know how to use a computer, so they cannot play chess online.

We decided to build a physical chess board that brings the joy of moving the figures with

your hands and the pleasure and flexibility of playing against a computer. The whole

system is composed of a figure state detection module (module 1), an FSM that checks the

validity of movements and tracks the progress of the game, communication modules with

an external computer and an LED system that displays movements the computer wants to

do.

MODULE 1 - The position of figures

 As we always need to know the

position of every figure, we will build a

module to help us do so. We will have 8

horizontal (blue) and 8 vertical (red)

wires running under the board with hall

sensors connected to the grid formed by

the wires. A hall sensor is a digital

device that signals the presence/absence

of strong magnetic fields in its

proximity. Whenever a figure (with a

magnet placed on the bottom) is placed

on a square, it will produce a signal that

is channeled to the FPGA. The

horizontal and vertical lines will be

connected to 2 multiplexers that will

select which lines to analyze. The setup

is shown in the figure below. MUX2 will

individually supply the lines a-h with a high signal. At the same time, MUX1 will run

through lines 1-8 and output a high signal if there is a figure on the corresponding square

and a low signal otherwise. Since each mux is connected to 8 wires, we need only 3 bits to

control each of them. Since only one hall sensor is powered at a time, only the signal from

that particular sensor is relevant to the FPGA. We have determined that disconnected hall

sensors (either from the positive or ground source) have a high impedance at their output so

that they don’t interfere with each other.

A counter implemented in software runs through 64 permutations activating and

deactivating vertical and horizontal wires. The corresponding high and low signal was used

by another module that generated a 64-bit long number that shows which squares of the

chess board have figures on them. The challenging part here was to synchronize the arrival

of the debounced signal received from the hall sensor with the update of the figure state. I

solved the problem by always updating the previous square with the readily available signal.

That solution worked fine for all of the squares except the starting one (at 0,0 position) since

it did not have a predecessor. To solve that problem, I had to make sure that the LED wire

system selection algorithm waits for the duration of the debounce for the initial state.

By testing various time constants, we have determined that an individual hall

sensor should be powered for at least 0.4ms (SQUARE_WAIT) to produce reliable

signals. Thus, the latency of this module is 64xSQUARE_WAIT ≈ 25ms (time spent

looking at every square) This module can have a large latency (<10ms) since faster state

updates are not crucial to the whole system, taking into consideration the speed of possible

figure movements.

Shown below is a detailed block diagram of the connection between the output

ports from the FPGA to the wire system powering the hall sensors. For further

implementations I would recommend designing a PCB instead of manually manufacturing

the wire system. It required around 700 soldering points and around 5m of wire to get the

system running. Mistakes in the manufacturing process were inevitable so that we had to

struggle with faulty hall sensors and weak connections, which slowed down our progress

and made it impossible to achieve the intended goal of having a fully functional board.

This module can only detect the presence/absence of figures on each square. In

order to track different figures, we need an FSM to keep a record of the state of the game.

Chess Game FSM

Includes: Keeps track of figures, detects changes, tests legality of moves,

communicates with other modules and looks out for the winner

While the essentials of chess basically only requires an FSM which keeps track of

when a piece disappears and where it reappears, there are many subtleties in both the rules

and how the moves are enacted which will need to be considered since we want as little of

the computation to be done on the off board computer as possible.

First the FSM needs to ensure that the move order is preserved. This means that if

a black piece is picked up after another black piece and before a timer runs out (in the case

of capturing or castling) a warning signal is flashed on the LED’s.

Next, once the piece has been placed, the FSM must ensure that the move was a

valid one. Naively, this should be an easy task, but again, chess is a complex game with

complex rules. Pawns can only move forward once...unless they’ve reached the other

side...or they can move twice if they’re on the second row...well except if an opponent

could capture them in the intermediate position (en peasant). There are a lot of these

oddities which will need to be accounted for in the FSM.

Once the movement has been verified by the FPGA, it will update the state of all

the pieces accordingly then send the most recent move to the computer (over UART?) and

wait for a response.

External Computer Attachment - Response of the opponent

Includes: communication with the computer + python script

Example: send:c2c4: returns: d2d4

Due to the complexity of chess gameplay and how much research and effort has

been put into making decent chess AI on standard PC architectures, we have decided to

leave the opponent move generation to a separate computer running some sort of standard

chess library in python. This python script will simply receive moves generated by our

system’s FSM and respond to them with optimal opponent moves over UART and an

improvised communication channel over a teensy. It is straightforward to implement the

communication over UART from the FPGA to the computer: we need to send 12bits

(6bits for the initial position, 6bits for the final position) over the already available UART

protocol. As the maximum number of bits UART can transmit at one time is 8 bits, we had

to divide the 12bit long signal into two 6bit signals, appended with bits to indicate the

order in which they were sent.

 The communication from the computer to the FPGA is more complicated. I have

used serial communication between the computer and a teensy to control its digital pins.

Those digital pins (7 of them) were connected to the jc digital inputs of the FPGA. The

first bit indicated weather we are sending the initial or final position of the intended

movement and the remaining six bits were used to transmit the coordinates of the

positions the chess figures should move.

MODULE 4 - Opponent’s movement signaling via LED’s

Since this game is meant to be played against a computer - but on hardware, the

simplest way for the computer to control the chess figures is to signal where the figures

should be moved (by the player) via means of lighting up LEDs embedded in the chess

board. Similar to the Module 1, we have an additional set of 8 horizontal and 8 vertical

wires running under the board. They are able to individually power each of the 64 LEDs.

Two LEDs turned on and off periodically signal the intended movement: the one from

where the figure is to be moved and the second one to where it should be moved. Again, a

pair of 8-bit mux-es will be used to turn on/off individual LEDs.

One input to this module is the show_pos signal to start displaying the needed

movement of the figures. The from_to signal is a 12-bit long signal. First 6 bits are

designated to signal the coordinate of the “from” LED while the last 6 bits are to signal the

“to” LED. The two LED’s will turn on and off alternatively until the player moves the

figure.

There are several special patterns displayed by the LED array when:

• An illegal move has been made LEDs will create an X sign

• The game has ended, the winner side of the board lights up

BLOCK DIAGRAM

`timescale 1ns / 1ps

module detectAndSignal(input clk_100mhz,

 input [15:0] sw,

 input [3:0] jb,

 input [6:0] jc,

 input [63:0] image,

 input btnc,

 input btnd,

 //output[63:0] positions,

 output logic [6:0] ja,

 output[15:0] led,

 output led16_b,led16_r,led17_g,led17_r,led17_b

);

 parameter TIMECONST = 10_000;

 parameter SCAN_DELAY = 256*TIMECONST;

 parameter SCAN_DELAY_MULT = 8;

 logic figure;

 logic reset=0;

 logic sig_ready;

 logic board_state_ready=0;

 debounce db1(.reset_in(reset),.clock_in(clk_100mhz),.noisy_in(~jb[0]),.clean_out(figure),.ready(sig_ready));

 logic wrong_move;

 //assign wrong_move = sw[15];

 logic [11:0] from_to = 12'b101_111_100_110;

 logic [11:0] computer_out = 12'b101_111_100_110;

 logic win_a;

 assign win_a = sw[14];

 logic win_b;

 assign win_b = sw[13];

 logic[63:0] positions = 64'b0;

 logic[63:0] final_positions = 64'b0;

 logic[31:0] counter = 0;//hold counter

 logic[31:0] count = 0;

 logic[4:0] counterx=0;

 logic[4:0] countery=0;

 logic scan_enable=0;

 logic zero_pos;

 logic[31:0] led_timer_big;

 always_ff@(posedge clk_100mhz) begin

 //this part scans the board and detects the figures

 if (counter<SCAN_DELAY*{sw[9:0],1'b1}*(1+sw[11:10]*SCAN_DELAY_MULT)) begin

 if (~scan_enable) counter <= counter+1;

 end

 else begin

 scan_enable<=1;

 counter <=0;

 end

 if (scan_enable&(count<TIMECONST*{sw[9:0],1'b1})) //

 begin

 count <= count+1; //

 end

 else //

 begin count <= 0;

 if (counterx==7) begin //

 counterx <=0; //

 countery <= countery+1;//

 end

 else

 counterx <= counterx+1;

 if (countery==8)

 begin

 final_positions<=positions;

 board_state_ready<=1;

 countery <= 0;

 end

 else

 board_state_ready<=0;

 if (countery==8)

 begin

 scan_enable <= 0; //

 end

 else begin

 ja[2:0] <= {counterx}[2:0]; //

 ja[5:3] <= {countery}[2:0]; //

 end

 end

 //this part builds the scan output

 if (~scan_enable &(counter<(SCAN_DELAY)*{sw[9:0],1'b1}

 *(1+sw[11:10]*SCAN_DELAY_MULT))

 &(counter>(99*SCAN_DELAY/100)*{sw[9:0],1'b1}

 *(1+sw[11:10]*SCAN_DELAY_MULT)))

 begin

 ja[2:0] <= {3'b000}[2:0];

 ja[5:3] <= {3'b000}[2:0];

 zero_pos <=1;

 end

 else if(zero_pos&~scan_enable)

 begin

 zero_pos <=0;

 positions[0]<=figure;

 end

 if (sig_ready&scan_enable&(counterx+countery*8>1))

 begin

 positions[counterx+countery*8-1]= countery < 2 ? 1 : figure;

 end

 //---

 //this part displays the input

 //it is blocked by the scan_enable signal

 //---

 led_timer_big <= (SCAN_DELAY/100)*{sw[9:0],1'b1}*(1+sw[11:10]*SCAN_DELAY_MULT);

 if (wrong_move) begin // draw an X if there is a wrong move

 if (~scan_enable &(counter<15*led_timer_big))

 begin ja[2:0] <= {3'b010}[2:0];

 ja[5:3] <= {3'b010}[2:0];end

 else if (~scan_enable &(counter<30*led_timer_big))

 begin ja[2:0] <= {3'b010}[2:0];

 ja[5:3] <= {3'b100}[2:0]; end

 else if (~scan_enable &(counter<45*led_timer_big))

 begin ja[2:0] <= {3'b100}[2:0];

 ja[5:3] <= {3'b010}[2:0]; end

 else if (~scan_enable &(counter<60*led_timer_big))

 begin ja[2:0] <= {3'b100}[2:0];

 ja[5:3] <= {3'b100}[2:0]; end

 else if (~scan_enable &(counter<79*led_timer_big))

 begin ja[2:0] <= {3'b011}[2:0];

 ja[5:3] <= {3'b011}[2:0]; end

 end

 else if(win_a) begin // if a wins then the first row

 if (~scan_enable &(counter<15*led_timer_big))

 begin ja[2:0] <= {3'b010}[2:0];

 ja[5:3] <= {3'b000}[2:0];end

 else if (~scan_enable &(counter<30*led_timer_big))

 begin ja[2:0] <= {3'b011}[2:0];

 ja[5:3] <= {3'b000}[2:0]; end

 else if (~scan_enable &(counter<45*led_timer_big))

 begin ja[2:0] <= {3'b100}[2:0];

 ja[5:3] <= {3'b000}[2:0]; end

 else if (~scan_enable &(counter<60*led_timer_big))

 begin ja[2:0] <= {3'b101}[2:0];

 ja[5:3] <= {3'b000}[2:0]; end

 else if (~scan_enable &(counter<79*led_timer_big))

 begin ja[2:0] <= {3'b110}[2:0];

 ja[5:3] <= {3'b000}[2:0]; end

 end

 else if(win_b) begin // if b wins

 if (~scan_enable &(counter<15*led_timer_big))

 begin ja[2:0] <= {3'b010}[2:0];

 ja[5:3] <= {3'b111}[2:0];end

 else if (~scan_enable &(counter<30*led_timer_big))

 begin ja[2:0] <= {3'b011}[2:0];

 ja[5:3] <= {3'b111}[2:0]; end

 else if (~scan_enable &(counter<45*led_timer_big))

 begin ja[2:0] <= {3'b100}[2:0];

 ja[5:3] <= {3'b111}[2:0]; end

 else if (~scan_enable &(counter<60*led_timer_big))

 begin ja[2:0] <= {3'b101}[2:0];

 ja[5:3] <= {3'b111}[2:0]; end

 else if (~scan_enable &(counter<79*led_timer_big))

 begin ja[2:0] <= {3'b110}[2:0];

 ja[5:3] <= {3'b111}[2:0]; end

 end

 //-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=

 else begin // Display required move

 if (~scan_enable &(counter<40*led_timer_big))

 begin

 ja[2:0] <= from_to[2:0];

 ja[5:3] <= from_to[5:3];

 end

 else if (~scan_enable &(counter<80*led_timer_big))

 begin

 ja[2:0] <= from_to[8:6];

 ja[5:3] <= from_to[11:9];

 end

 end

 end

 assign led16_b = ~jb[0];

 assign led17_r = wrong_move;

 assign led17_g = final_positions[7];

 assign led17_b = final_positions[0];

 assign led[15:0]=final_positions[63:48];

 //-=-=-=-=--=

 //SERIAL PART

 logic clean;

 logic old_clean;

 logic sig_readdy2;

 always_ff @(posedge clk_100mhz)begin

 old_clean <= clean; //for rising edge detection

 if (jc[0])

 from_to[2:0] <=jc[3:1];

 else if (~jc[0])

 from_to[5:3] <=jc[6:4];

 end

 debounce my_deb(.clock_in(clk_100mhz),

 .reset_in(btnd),

 .noisy_in(btnc),

 .clean_out(clean),

 .ready(sig_readdy2));

 serial_tx my_tx(.clk_in(clk_100mhz),

 .rst_in(btnd),

 .trigger_in(clean&~old_clean),

 .val_in(computer_out),//should be data to computer

 .data_out(ja[6]));

 // Communication with the fsm

 // input: final_positions

 // output:

 chess_fsm my_fsm(

 .clk_100mhz(clk_100mhz),

 .rst_in(btnd),

 .player_first(1),

 .board_state(final_positions),

 .board_state_ready(board_state_ready),

 .opponents_move(computer_out),

 .from_to(from_to),

 .invalid_state(wrong_move));

endmodule

module debounce (input reset_in, clock_in, noisy_in,

 output reg clean_out,reg ready);

 reg [19:0] count;

 reg new_input;

 always_ff @(posedge clock_in)

 if (reset_in) begin

 new_input <= noisy_in;

 clean_out <= noisy_in;

 count <= 0;

 ready <=0; end

 else if (noisy_in != new_input) begin new_input<=noisy_in; count <= 0;

 ready <=0;

 end

 else if (count == 1000) begin clean_out <= new_input;

 ready <=1;

 end

 else begin count <= count+1;

 ready <=0;

 end

endmodule

module serial_tx(input clk_in,

 input rst_in,

 input trigger_in,

 input [7:0] val_in,

 output logic data_out);

 parameter DIVISOR = 868; //treat this like a constant!!

 logic [9:0] shift_buffer; //10 bits...interesting

 logic [31:0] count;

 logic [8:0] count2 =0;

 logic started=0;

 always @(posedge clk_in)begin

 if (trigger_in) begin

 count<=0;

 started<=1;

 count2 <=0;

 shift_buffer<={1'b1,val_in,1'b0};

 data_out<=1;

 end

 if (rst_in) begin

 count<=0;

 shift_buffer<={1'b1,val_in,1'b0};

 started<=0;

 count2 <=0;

 end

 else if (started) begin

 if (count<DIVISOR)

 count<=count+1;

 else if(count2==11)

 started<=0;

 else begin

 count<=0;

 count2 <=count2+1;

 data_out<=shift_buffer[0];

 shift_buffer<={shift_buffer[0],shift_buffer[7:1]};

 end

 end

 end

endmodule

//FSM MODULE

module chess_fsm(

 input clk_100mhz,

 input rst_in,

 input player_first,

 input [63:0] board_state,

 input board_state_ready,

 output logic opponents_move,

 output logic [7:0] from_to,

 output logic invalid_state

);

 //ai_comms ai_uart(.from_to_player(),.sent_val());

 logic game_started = 1'b0;

 logic orientation = ~player_first;

 // Orientation 0:

 // Black (opponent)

 // White (player)

 // Orientation 1:

 // Black (player)

 // White (opponent)

 logic player_move;

 logic [63:0] prev_board_state;

 logic [3:0] chess_fsm [63:0];

 // 0XXX Player 1XXX Opponent

 // X000 Empty

 // X001 Pawn

 // X010 Rook

 // X011 Knight

 // X100 Bishop

 // X101 Queen

 // X110 King

 // X111 Pawn -> XXXX

 logic [2:0] game_state;

 // 0XX Player, 1XX Opponent

 // X00 X's Move

 // X01 Moving

 // X10 Attacking

 // X11 Castling

 logic invalid_state = 1'b0;

 logic [3:0] lifted1_type;

 logic [5:0] lifted1_loc;

 logic [3:0] lifted2_type;

 logic [5:0] lifted2_loc;

 logic [5:0] player_king_loc;

 logic [5:0] opponent_king_loc;

 function valid_move;

 input [63:0] prev_board_state; //Moving piece shouldn't exist

 input [2:0] piece_type;

 input [5:0] old_loc;

 input [5:0] new_loc;

 input attacking;

 begin

 reg [5:0] bigger_loc;

 reg [5:0] smaller_loc;

 reg [5:0] difference;

 reg moving_up;

 reg [2:0] old_loc_col;

 reg hits_right_in_1;

 reg hits_left_in_1;

 reg hits_right_in_2;

 reg hits_left_in_2;

 if (new_loc > old_loc) begin

 bigger_loc = new_loc;

 smaller_loc = old_loc;

 moving_up = 1'b1;

 end else begin

 bigger_loc = old_loc;

 smaller_loc = new_loc;

 moving_up = 1'b0;

 end

 difference = bigger_loc - smaller_loc;

 old_loc_col = old_loc % 8;

 hits_right_in_1 = old_loc_col == 0;

 hits_left_in_1 = old_loc_col == 7;

 hits_right_in_2 = old_loc_col == 1;

 hits_left_in_2 = old_loc_col == 6;

 case (piece_type)

 3'b000: begin //Empty moves (complete)

 valid_move = 1'b0;

 end

 3'b001: begin //Pawn moves (complete)

 //Pawn moves up if vvv else, pawn moves down

 if (orientation ^ player_move) begin //player on bottom moving up, or opponent on bottom moving up

 if (~moving_up) begin

 valid_move = 1'b0;

 end else begin

 if (attacking) begin //Pawn is attacking

 if ((difference == 7 && ~hits_right_in_1) || (difference == 9 && ~hits_left_in_1)) begin

 valid_move = 1'b1;

 end else begin

 valid_move = 1'b0;

 end

 end else begin //Pawn is not attacking

 if (new_loc == old_loc + 8 || (old_loc < 16 && new_loc == old_loc + 16)) begin //Pawn moved

correctly

 valid_move = 1'b1;

 end else begin //Pawn moved incorrectly

 valid_move = 1'b0;

 end

 end

 end

 end else begin //Pawn should be moving down -----

 if (moving_up) begin

 valid_move = 1'b0;

 end else begin

 if (attacking) begin //Pawn is attacking

 if ((difference == 7 && ~hits_left_in_1) || (difference == 9 && ~hits_right_in_1)) begin

 valid_move = 1'b1;

 end else begin

 valid_move = 1'b0;

 end

 end else begin //Pawn is not attacking

 if (new_loc == old_loc - 8 || (old_loc >= 48 && new_loc == old_loc - 16)) begin //Pawn moved

correctly

 valid_move = 1'b1;

 end else begin //Pawn moved incorrectly

 valid_move = 1'b0;

 end

 end

 end

 end

 end

 3'b010: begin //Rook moves (complete)

 if (difference % 8 == 0) begin

 valid_move = 1'b1;

 if (moving_up) begin //Piece collision detection

 for (int i = 0; i < 8; i++) begin

 if (prev_board_state[8*i + (new_loc % 8)] & 8*i + (new_loc % 8) > old_loc & 8*i + (new_loc % 8) <

new_loc) begin

 valid_move = 1'b0;

 end

 end

 end else begin

 for (int i = 0; i < 8; i++) begin

 if (prev_board_state[8*i + (new_loc % 8)] & 8*i + (new_loc % 8) > new_loc & 8*i + (new_loc % 8)

< old_loc) begin

 valid_move = 1'b0;

 end

 end

 end

 end else begin

 valid_move = 1'b1;

 if (new_loc > old_loc) begin

 for (int i = 0; i < 8; i++) begin //Piece collision detection

 if (prev_board_state[new_loc - (new_loc % 8) + i] & new_loc - (new_loc % 8) + i > old_loc &

new_loc - (new_loc % 8) + i < new_loc) begin

 valid_move = 1'b0;

 end

 end

 end else begin

 for (int i = 0; i < 8; i++) begin //Piece collision detection

 if (prev_board_state[new_loc - (new_loc % 8) + i] & new_loc - (new_loc % 8) + i < old_loc &

new_loc - (new_loc % 8) + i > new_loc) begin

 valid_move = 1'b0;

 end

 end

 end

 if (old_loc >= 8 & new_loc >= 8) begin

 if (old_loc < new_loc) begin

 old_loc = old_loc - (old_loc - (old_loc%8));

 new_loc = new_loc - (old_loc - (old_loc%8));

 end else begin

 old_loc = old_loc - (new_loc - (new_loc%8));

 new_loc = new_loc - (new_loc - (new_loc%8));

 end

 end

 if (old_loc < 8 & new_loc < 8 & valid_move != 1'b0) begin

 valid_move = 1'b1;

 end else begin

 valid_move = 1'b0;

 end

 end

 end

 3'b011: begin //Knight moves (complete)

 if (difference == 6 & ((moving_up & ~hits_right_in_2) | (~moving_up & ~hits_left_in_2)) |

 difference == 10 & ((moving_up & ~hits_left_in_2) | (~moving_up & ~hits_right_in_2)) |

 difference == 15 & ((moving_up & ~hits_right_in_1) | (~moving_up & ~hits_left_in_1)) |

 difference == 17 & ((moving_up & ~hits_left_in_1) | (~moving_up & ~hits_right_in_1))) begin

 valid_move = 1'b1;

 end else begin

 valid_move = 1'b0;

 end

 end

 3'b100: begin //Bishop moves (complete)

 valid_move = 1'b0; //Should be default value here

 for (int i = 1; i < 8 - old_loc_col; i++) begin //Check for validity on columns to left

 if ((new_loc == old_loc + 9*i) || (new_loc == old_loc - 7*i)) begin

 valid_move = 1'b1;

 end

 end

 for (int j = 1; j <= old_loc_col; j++) begin //Check for validity on columns to right

 if ((new_loc == old_loc - 9*j) || (new_loc == old_loc + 7*j)) begin

 valid_move = 1'b1;

 end

 end

 if (valid_move) begin //Piece collision detection

 if (moving_up) begin

 if (difference % 9 == 0) begin //Northwest

 for (int k = 1; k < 8 - old_loc_col; k++) begin //Check for validity on columns to left

 if (prev_board_state[old_loc + 9*k]) begin

 valid_move = 1'b0;

 end

 end

 end else begin //Northeast

 for (int k = 1; k <= old_loc_col; k++) begin //Check for validity on columns to right

 if (prev_board_state[old_loc + 7*k]) begin

 valid_move = 1'b0;

 end

 end

 end

 end else begin

 if (difference % 9 == 0) begin //Southeast

 for (int k = 1; k <= old_loc_col; k++) begin //Check for validity on columns to right

 if (prev_board_state[old_loc - 9*k]) begin

 valid_move = 1'b0;

 end

 end

 end else begin //Southwest

 for (int k = 1; k < 8 - old_loc_col; k++) begin //Check for validity on columns to left

 if (prev_board_state[old_loc - 7*k]) begin

 valid_move = 1'b0;

 end

 end

 end

 end

 end

 end

 3'b101: begin //Queen moves (combine bishop and rook code)

 valid_move = 1'b0; //Should be default value here

 //vvv Bishop check vvv

 for (int i = 1; i < 8 - old_loc_col; i++) begin //Check for validity on columns to left

 if ((new_loc == old_loc + 9*i) || (new_loc == old_loc - 7*i)) begin

 valid_move = 1'b1;

 end

 end

 for (int j = 1; j <= old_loc_col; j++) begin //Check for validity on columns to right

 if ((new_loc == old_loc - 9*j) || (new_loc == old_loc + 7*j)) begin

 valid_move = 1'b1;

 end

 end

 if (valid_move) begin //Piece collision detection

 if (moving_up) begin

 if (difference % 9 == 0) begin //Northwest

 for (int k = 1; k < 8 - old_loc_col; k++) begin //Check for validity on columns to left

 if (prev_board_state[old_loc + 9*k]) begin

 valid_move = 1'b0;

 end

 end

 end else begin //Northeast

 for (int k = 1; k <= old_loc_col; k++) begin //Check for validity on columns to right

 if (prev_board_state[old_loc + 7*k]) begin

 valid_move = 1'b0;

 end

 end

 end

 end else begin

 if (difference % 9 == 0) begin //Southeast

 for (int k = 1; k <= old_loc_col; k++) begin //Check for validity on columns to right

 if (prev_board_state[old_loc - 9*k]) begin

 valid_move = 1'b0;

 end

 end

 end else begin //Southwest

 for (int k = 1; k < 8 - old_loc_col; k++) begin //Check for validity on columns to left

 if (prev_board_state[old_loc - 7*k]) begin

 valid_move = 1'b0;

 end

 end

 end

 end

 end

 //vvv Rook check vvv

 if (~valid_move) begin //Failed to find valid bishop route

 if (difference % 8 == 0) begin

 valid_move = 1'b1;

 if (moving_up) begin //Piece collision detection

 for (int i = 0; i < 8; i++) begin

 if (prev_board_state[8*i + (new_loc % 8)] & 8*i + (new_loc % 8) > old_loc & 8*i + (new_loc % 8)

< new_loc) begin

 valid_move = 1'b0;

 end

 end

 end else begin

 for (int i = 0; i < 8; i++) begin

 if (prev_board_state[8*i + (new_loc % 8)] & 8*i + (new_loc % 8) > new_loc & 8*i + (new_loc %

8) < old_loc) begin

 valid_move = 1'b0;

 end

 end

 end

 end else begin

 valid_move = 1'b1;

 if (new_loc > old_loc) begin

 for (int i = 0; i < 8; i++) begin //Piece collision detection

 if (prev_board_state[new_loc - (new_loc % 8) + i] & new_loc - (new_loc % 8) + i > old_loc &

new_loc - (new_loc % 8) + i < new_loc) begin

 valid_move = 1'b0;

 end

 end

 end else begin

 for (int i = 0; i < 8; i++) begin //Piece collision detection

 if (prev_board_state[new_loc - (new_loc % 8) + i] & new_loc - (new_loc % 8) + i < old_loc &

new_loc - (new_loc % 8) + i > new_loc) begin

 valid_move = 1'b0;

 end

 end

 end

 if (old_loc >= 8 & new_loc >= 8) begin

 if (old_loc < new_loc) begin

 old_loc = old_loc - (old_loc - (old_loc%8));

 new_loc = new_loc - (old_loc - (old_loc%8));

 end else begin

 old_loc = old_loc - (new_loc - (new_loc%8));

 new_loc = new_loc - (new_loc - (new_loc%8));

 end

 end

 if (old_loc < 8 & new_loc < 8 & valid_move != 1'b0) begin

 valid_move = 1'b1;

 end else begin

 valid_move = 1'b0;

 end

 end

 end

 end

 3'b110: begin //King moves (complete)

 if (difference == 1 & ((moving_up & ~hits_left_in_1) | (~moving_up & ~hits_right_in_1)) | //Moved to

right (not hitting edge) or Moved to left (not hitting edge)

 difference == 7 & ((moving_up & ~hits_right_in_1) | (~moving_up & ~hits_left_in_1)) |

 difference == 8 |

 difference == 9 & ((moving_up & ~hits_left_in_1) | (~moving_up & ~hits_right_in_1))) begin

 valid_move = 1'b1;

 end else begin

 valid_move = 1'b0;

 end

 end

 3'b111: begin //Transitioning Pawn moves (Knight and Queen ability (will get upgraded by FSM after

first move))

 valid_move = 1'b0; //Should be default value here

 //vvv Bishop check vvv

 for (int i = 1; i < 8 - old_loc_col; i++) begin //Check for validity on columns to left

 if ((new_loc == old_loc + 9*i) || (new_loc == old_loc - 7*i)) begin

 valid_move = 1'b1;

 end

 end

 for (int j = 1; j <= old_loc_col; j++) begin //Check for validity on columns to right

 if ((new_loc == old_loc - 9*j) || (new_loc == old_loc + 7*j)) begin

 valid_move = 1'b1;

 end

 end

 if (valid_move) begin //Piece collision detection

 if (moving_up) begin

 if (difference % 9 == 0) begin //Northwest

 for (int k = 1; k < 8 - old_loc_col; k++) begin //Check for validity on columns to left

 if (prev_board_state[old_loc + 9*k]) begin

 valid_move = 1'b0;

 end

 end

 end else begin //Northeast

 for (int k = 1; k <= old_loc_col; k++) begin //Check for validity on columns to right

 if (prev_board_state[old_loc + 7*k]) begin

 valid_move = 1'b0;

 end

 end

 end

 end else begin

 if (difference % 9 == 0) begin //Southeast

 for (int k = 1; k <= old_loc_col; k++) begin //Check for validity on columns to right

 if (prev_board_state[old_loc - 9*k]) begin

 valid_move = 1'b0;

 end

 end

 end else begin //Southwest

 for (int k = 1; k < 8 - old_loc_col; k++) begin //Check for validity on columns to left

 if (prev_board_state[old_loc - 7*k]) begin

 valid_move = 1'b0;

 end

 end

 end

 end

 end

 //vvv Rook check vvv

 if (~valid_move) begin //Failed to find valid bishop route

 if (difference % 8 == 0) begin

 valid_move = 1'b1;

 if (moving_up) begin //Piece collision detection

 for (int i = 0; i < 8; i++) begin

 if (prev_board_state[8*i + (new_loc % 8)] & 8*i + (new_loc % 8) > old_loc & 8*i + (new_loc % 8)

< new_loc) begin

 valid_move = 1'b0;

 end

 end

 end else begin

 for (int i = 0; i < 8; i++) begin

 if (prev_board_state[8*i + (new_loc % 8)] & 8*i + (new_loc % 8) > new_loc & 8*i + (new_loc %

8) < old_loc) begin

 valid_move = 1'b0;

 end

 end

 end

 end else begin

 valid_move = 1'b1;

 if (new_loc > old_loc) begin

 for (int i = 0; i < 8; i++) begin //Piece collision detection

 if (prev_board_state[new_loc - (new_loc % 8) + i] & new_loc - (new_loc % 8) + i > old_loc &

new_loc - (new_loc % 8) + i < new_loc) begin

 valid_move = 1'b0;

 end

 end

 end else begin

 for (int i = 0; i < 8; i++) begin //Piece collision detection

 if (prev_board_state[new_loc - (new_loc % 8) + i] & new_loc - (new_loc % 8) + i < old_loc &

new_loc - (new_loc % 8) + i > new_loc) begin

 valid_move = 1'b0;

 end

 end

 end

 if (old_loc >= 8 & new_loc >= 8) begin

 if (old_loc < new_loc) begin

 old_loc = old_loc - (old_loc - (old_loc%8));

 new_loc = new_loc - (old_loc - (old_loc%8));

 end else begin

 old_loc = old_loc - (new_loc - (new_loc%8));

 new_loc = new_loc - (new_loc - (new_loc%8));

 end

 end

 if (old_loc < 8 & new_loc < 8 & valid_move != 1'b0) begin

 valid_move = 1'b1;

 end else begin

 valid_move = 1'b0;

 end

 end

 end

 //vvv Knight check vvv (only works because we don't use old_loc or new_loc anymore

 if (difference == 6 & ((moving_up & ~hits_right_in_2) | (~moving_up & ~hits_left_in_2)) |

 difference == 10 & ((moving_up & ~hits_left_in_2) | (~moving_up & ~hits_right_in_2)) |

 difference == 15 & ((moving_up & ~hits_right_in_1) | (~moving_up & ~hits_left_in_1)) |

 difference == 17 & ((moving_up & ~hits_left_in_1) | (~moving_up & ~hits_right_in_1))) begin

 valid_move = 1'b1;

 end

 end

 endcase

 end

 endfunction

 always_ff @(posedge clk_100mhz) begin

 if (rst_in) begin

 game_started <= 1'b0;

 end else begin

 if (board_state_ready) begin //Only run game logic on valid board_states

 if (game_started) begin //usual logic fsm

 if (board_state != prev_board_state) begin //Something has changed on the board, and the board was

valid prior

 if (~invalid_state) begin

 automatic reg [63:0] board_change = board_state ^ prev_board_state;

 automatic reg [5:0] loc_change; //Where the change was detected

 automatic reg update_state = 1'b1;

 for (int i = 63; i > 0; i--) begin

 if (board_change[i]) begin

 loc_change = i;

 end

 end

 case (game_state)

 3'b000: begin //Player Move

 if (board_state[loc_change]) begin //A piece was placed down (WE DON'T CURRENTLY

SUPPORT PIECE PLACE PRIOR TO PROMOTION)

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end else begin

 lifted1_type <= chess_fsm[loc_change]; //Which piece was lifted first

 lifted1_loc <= loc_change; //Where was it lifted from

 if (chess_fsm[loc_change][3]) begin //An opponent's piece was lifted

 game_state <= 3'b010; //Player is attacking

 end else begin //A player's piece was lifted

 game_state <= 3'b001; //Player is moving

 end

 end

 end

 3'b001: begin //Player is moving

 if (loc_change == lifted1_loc) begin //Piece was placed back down in same spot. Go back to

player's turn

 game_state <= 3'b000;

 lifted1_type <= 4'b0000;

 end else begin

 if (board_state[loc_change]) begin //A piece was placed down (Player has made their move)

 //Test for move validity and check/checkmate. Otherwise, make the change and tell uart

about it

 if (valid_move(prev_board_state,lifted1_type[2:0],lifted1_loc,loc_change,1'b0)) begin

 //Virtually make the move (send game_state to valid_move w/ updated king_loc if

necessary)

 //Make sure the king is safe

 // If he is, write to fsm + forward to uart

 // If not, enter invalid state

 for (int i = 0; i < 64; i++) begin

 if (chess_fsm[i][3]) begin //Opponent's piece

 //If their exists an opponent piece which is capable of attacking the player's king,

this move is invalid

 if (valid_move(board_state, chess_fsm[i][2:0], i, lifted1_type[2:0] == 3'b110 ?

loc_change : player_king_loc, 1'b1)) begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 end

 if (update_state) begin //Player is not in check, and their move was valid

 if (lifted1_type[2:0] == 3'b110) begin //Update the king position if needed

 player_king_loc <= loc_change;

 end

 chess_fsm[lifted1_loc] <= 4'b0000; //Clear out the original piece location

 chess_fsm[loc_change] <= lifted1_type; //Fill in the new piece location

 //Send stuff to UART

 game_state <= 3'b000; //Change back to 3'b100

 lifted1_type <= 4'b0000;

 player_move <= 1'b0;

 end

 end else begin //Player made an invalid move

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end else begin //Player is either attacking or castling (piece was lifted)

 if (chess_fsm[loc_change][3]) begin //They lifted an opponent piece, and are attacking

 //Go ahead and put black in buffer 1 + switch

 //With opponent in buffer 1, we can guarantee that buffer 2 will be empty if both pieces

aren't lifted

 lifted2_type <= lifted1_type;

 lifted2_loc <= lifted1_loc;

 lifted1_type <= chess_fsm[loc_change];

 lifted1_loc <= loc_change;

 game_state <= 4'b010;

 end else begin //They lifted another of their own pieces, must be castling

 automatic reg king_1_orig = (lifted1_type == 4'b0110) & ((lifted1_loc == 3 & orientation

== 0) | (lifted1_loc == 59 & orientation == 1));

 automatic reg king_2_orig = (chess_fsm[loc_change] == 4'b0110) & ((loc_change == 3 &

orientation == 0) | (loc_change == 59 & orientation == 1));

 automatic reg rook_1_orig = (lifted1_type == 4'b0010) & (((lifted1_loc == 0 | lifted1_loc

== 7) & orientation == 0) | ((lifted1_loc == 56 | lifted1_loc == 63) & orientation == 1));

 automatic reg rook_2_orig = (chess_fsm[loc_change] == 4'b0010) & (((loc_change == 0 |

loc_change == 7) & orientation == 0) | ((loc_change == 56 | loc_change == 63) & orientation == 1));

 if ((king_1_orig & rook_2_orig) | (king_2_orig & rook_1_orig)) begin

 lifted2_type <= chess_fsm[loc_change];

 lifted2_loc <= loc_change;

 game_state <= 3'b011;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 end

 end

 end

 3'b010: begin //Player is attacking (Assumed that buffers are (opponent at 1 and player at 2)

 if (lifted2_type == 4'b0000) begin //entered by lifting a black piece

 if (game_state[loc_change]) begin //A piece was placed down (better be same piece in same

spot)

 if (loc_change == lifted1_loc) begin

 lifted1_type <= 4'b0000;

 game_state <= 3'b000;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end else begin //Another piece was lifted (better be their own piece)

 if (chess_fsm[loc_change][3]) begin //Lifted another black piece

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end else begin //Lifted one of their own pieces

 lifted2_type <= chess_fsm[loc_change];

 lifted2_loc <= loc_change;

 end

 end

 end else begin //entered by lifting a white piece then a black piece (black still in spot 1)

 if (game_state[loc_change]) begin //A piece was placed down (better be in same spot as

black)

 if (loc_change == lifted1_loc) begin //Correct

 if (valid_move(prev_board_state,lifted2_type[2:0],lifted2_loc,loc_change,1'b1)) begin

//Prev is both lifted (no collision)

 //Virtually make the move (send game_state to valid_move w/ updated king_loc if

necessary)

 //Make sure the king is safe

 // If he is, write to fsm + forward to uart

 // If not, enter invalid state

 for (int i = 0; i < 64; i++) begin

 if (chess_fsm[i][3]) begin //Opponent's piece

 //If their exists an opponent piece which is capable of attacking the player's king,

this move is invalid

 if (valid_move(board_state, chess_fsm[i][2:0], i, lifted2_type[2:0] == 3'b110 ?

loc_change : player_king_loc, 1'b1)) begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 end

 if (update_state) begin //Player is not in check, and their move was valid

 if (lifted2_type[2:0] == 3'b110) begin //Update the king position if needed

 player_king_loc <= loc_change;

 end

 chess_fsm[lifted2_loc] <= 4'b0000; //Clear out the original piece location

 chess_fsm[loc_change] <= lifted2_type; //Fill in the new piece location

 //Send stuff to UART

 game_state <= 3'b000; //Change back to 3'b100

 lifted1_type <= 4'b0000;

 lifted2_type <= 4'b0000;

 player_move <= 1'b0;

 end

 end else begin //Piece was moved improperly

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end else begin //Invalid

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end else begin //Really...A third piece. invalidated!

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 end

 3'b011: begin //Player is castling (Lift both pieces in question, then place them in the correct

spots [atomic move])

 automatic reg castle_left = (orientation == 0 & (lifted1_loc == 7 | lifted2_loc == 7)) |

(orientation == 1 & (lifted1_loc == 63 | lifted2_loc == 63));

 if (lifted2_type == 4'b0000) begin //Player has already placed one piece down

 if (game_state[loc_change]) begin //Second piece is placed down

 if ((orientation == 0 & castle_left & loc_change == 5) |

 (orientation == 0 & ~castle_left & loc_change == 1) |

 (orientation == 1 & castle_left & loc_change == 61) |

 (orientation == 1 & ~castle_left & loc_change == 57)) begin //King was placed

 if (valid_move(prev_board_state,4'b0010,lifted1_loc,loc_change,1'b0)) begin //Pretend

king is rook for validity checking (can move more than 1)

 chess_fsm[lifted1_loc] <= 4'b0000;

 chess_fsm[loc_change] <= 4'b0110;

 player_move <= 1'b0;

 game_state <= 3'b000; //Change back to 3'b100

 lifted1_type <= 4'b0000;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end else begin

 if ((orientation == 0 & castle_left & loc_change == 4) |

 (orientation == 0 & ~castle_left & loc_change == 2) |

 (orientation == 1 & castle_left & loc_change == 60) |

 (orientation == 1 & ~castle_left & loc_change == 58)) begin //Rook was placed

 if (valid_move(prev_board_state,lifted1_type[2:0],lifted1_loc,loc_change,1'b0)) begin

 chess_fsm[lifted1_loc] <= 4'b0000;

 chess_fsm[loc_change] <= 4'b0010;

 player_move <= 1'b0;

 game_state <= 3'b000; //Change back to 3'b100

 lifted1_type <= 4'b0000;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end else begin //Placed them down in an invalid spot

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 end else begin //Atomic operation. Once castling has begun, no re-lifting

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end else begin //Player has lifted both pieces at this point

 if (game_state[loc_change]) begin //A piece was placed

 if (loc_change == lifted1_loc | loc_change == lifted2_loc) begin //Piece was put back where

it started

 if (loc_change == lifted1_loc) begin

 lifted1_loc <= lifted2_loc;

 lifted1_type <= lifted2_type;

 end

 lifted2_type <= 4'b0000;

 game_state <= 3'b001;

 end else begin //First piece was placed down

 if ((orientation == 0 & castle_left & loc_change == 5) |

 (orientation == 0 & ~castle_left & loc_change == 1) |

 (orientation == 1 & castle_left & loc_change == 61) |

 (orientation == 1 & ~castle_left & loc_change == 57)) begin //King was placed down

first (Pretend king is rook for validity)

 if (lifted1_type == 4'b0110) begin //King is in 1 slot

 if (valid_move(prev_board_state,4'b0010,lifted1_loc,loc_change,1'b0)) begin

 chess_fsm[lifted1_loc] <= 4'b0000;

 chess_fsm[loc_change] <= 4'b0010;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 lifted1_loc <= lifted2_loc;

 lifted1_type <= lifted2_type;

 end else begin //King is in 2 slot

 if (valid_move(prev_board_state,4'b0010,lifted2_loc,loc_change,1'b0)) begin

 chess_fsm[lifted2_loc] <= 4'b0000;

 chess_fsm[loc_change] <= 4'b0010;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 lifted2_type <= 4'b0000;

 end else begin

 if ((orientation == 0 & castle_left & loc_change == 4) |

 (orientation == 0 & ~castle_left & loc_change == 2) |

 (orientation == 1 & castle_left & loc_change == 60) |

 (orientation == 1 & ~castle_left & loc_change == 58)) begin //Rook was placed down

first

 if (lifted1_type == 4'b0010) begin //Rook is in 1 slot

 if (valid_move(prev_board_state,lifted1_type[2:0],lifted1_loc,loc_change,1'b0))

begin

 chess_fsm[lifted1_loc] <= 4'b0000;

 chess_fsm[loc_change] <= 4'b0010;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 lifted1_loc <= lifted2_loc;

 lifted1_type <= lifted2_type;

 end else begin //Rook is in 2 slot

 if (valid_move(prev_board_state,lifted2_type[2:0],lifted2_loc,loc_change,1'b0))

begin

 chess_fsm[lifted2_loc] <= 4'b0000;

 chess_fsm[loc_change] <= 4'b0010;

 end else begin

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 lifted2_type <= 4'b0000;

 end else begin //Placed them down in an invalid spot

 invalid_state <= 1'b1;

 end

 end

 update_state = 1'b0; //Makes checking for move validity much easier

 end

 end else begin //Picked up a third piece. XD

 invalid_state <= 1'b1;

 update_state = 1'b0;

 end

 end

 end

 3'b100: begin //Opponent's turn

 end

 3'b101: begin //Opponent is moving

 end

 3'b110: begin //Opponent is attacking

 end

 3'b111: begin //Opponent is castling

 end

 endcase

 if (update_state) begin

 prev_board_state <= board_state;

 end

 end

 end else begin //States do match

 if (invalid_state) begin //Since we don't update prev_state when we detect invalid state, this means

we have returned to the valid state

 invalid_state <= 1'b0;

 end

 end

 end else begin //Game has not started yet (reset has been pushed)

 automatic reg royal_rows_present = &board_state[63:56] & &board_state[7:0]; //The top/bottom rows

are fully occupied

 automatic reg pawn_rows_present = &board_state[55:48] & &board_state[15:8]; //The pawn rows are

fully occupied

 automatic reg other_rows_present = |board_state[47:16]; //There's something in the middle of the

board

 if (royal_rows_present & pawn_rows_present & ~other_rows_present) begin //Valid starting state

 game_started <= 1'b1;

 prev_board_state <= board_state;

 if (player_first) begin

 game_state <= 3'b000; //Player's Move

 chess_fsm <=

{{4'b1010},{4'b1011},{4'b1100},{4'b1101},{4'b1110},{4'b1100},{4'b1011},{4'b1010}, //Black opponent here

 {4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},

 {4'b0010},{4'b0011},{4'b0100},{4'b0101},{4'b0110},{4'b0100},{4'b0011},{4'b0010}};

//White player here

 player_king_loc <= 3;

 opponent_king_loc <= 59;

 player_move <= 1'b1;

 end else begin

 game_state <= 3'b100; //Opponent's Move

 chess_fsm <=

{{4'b0010},{4'b0011},{4'b0100},{4'b0101},{4'b0110},{4'b0100},{4'b0011},{4'b0010}, //Black player here

 {4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},{4'b0001},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},{4'b0000},

 {4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},{4'b1001},

 {4'b1010},{4'b1011},{4'b1100},{4'b1101},{4'b1110},{4'b1100},{4'b1011},{4'b1010}};

//White opponent here

 player_king_loc <= 59;

 opponent_king_loc <= 3;

 player_move <= 1'b0;

 end

 end

 end

 end

 end

 end

endmodule

module ai_uart(

 input [7:0] from_to_player,

 input send_val,

 output [7:0] from_to_ai,

 output rcv_val

);

endmodule

