Final Project Report: digitEyez

6.111 Fall 2019

Table of Contents

Table of Contents

Overview

Additional Hardware

Modules
Coordinates and interfacing with the IMU (Kendall)
Processing IMU Data
Converting IMU Data to Coordinates
Images, SD, Screens, and Hardware (Claire)
SD card
Images

Screens
Hardware and Focusing
Timing (Kendall)

Challenges and Takeaways

Appendix
Top level: main.sv

Coordinates and interfacing with the IMU
bitbang_teensy_serial_mod.imo

filter.sv
position_manager.sv

uart_reciever.sv

Images, SD, and Screens

screen_interfacer.sv

sd_controller.v

spi_send.sv

test_image_feeder.sv
Utility

coe_to_hex.py

clock_divider.sv

debounce.sv
display_8hex.sv

synchronize.sv

Overview

Inspired by the View Master, our team decided to build a VR-like headset with
two OLED screens. We would use a gyroscope mounted on the headset to determine
where the user was facing, and then draw an image on the screen. We used two
different types of images: mono and stereo. For mono images, we would just display
the same image, giving a relatively flat experience. For stereo images, we would display
two slightly different images on the left and right screens, which would give a 3D
illusion. We pulled images online from Google street view and Google’'s Daydream
developer resources, in addition to images from NASA and even one of our own
panoramic images.

Additional Hardware

e 3 Adafruit ST7789 LCD Displays: Our final product contained two 240x320
pixel LCD screens for displaying images

e 1 MPU-9250 IMU: We used the IMU to capture raw accelerometer and
gyroscope data.

e 1 Teensy: The teensey was used to convert raw data from the IMU and send it
to the FPGA via the UART protocol.

e 1 “VR” Glass Frame: we used a VR headset designed to hold a smartphone to
mount our screens

Data, control signals as output.
Ready signal as input

Left SPI Right SPI
Controller | | Controller

0
5 s || s
Ell&s||z38 2 g 5 SD Card
o O = > 0 c [/7] a
IMU - 28llE< =] » []
S oall22 n > %
= S o Q g A
Raw Accelerometer, » oojlwn |'E 7] g %
Gyroscope data § = E
Teensy
E Accelerometer, l
. Gyroscope data :
5 Y via UART :
E UAF_'T Data to store |
: Receiver inmemory |
] Read enabled, :
: Y acceleration, Address .
1 Z rotation H
! \ 4 vertical \ 4 \ 4 H
Y acceleratio: angle :
; - > BRAM :
: Low Pass Position horizontal write enabled, ;
' " Image feeder :
; Filter Z gyroscope) Manager angle ; data, address 3 (write port) :
i Latitude, longitude, mono vs stereo A -
: Done signals Ready :
: ¢ _ﬂﬁ signals :
' left pixel address left pixel >
! ; BRAM :
' Coordinate) :
: - ight pi Screen interfacers :
' conversion right pixel address »| (read port) right pixel > :

Data over SPI l l

Right
Screen

|Left screen

Figure 1: An overview of our system. The section enclosed by the dotted box
corresponds to logic performed within the FPGA, whereas components outside the box
represent input (buttons, switches, SD card) and output devices (screen)

https://www.draw.io/?page-id=M18-JT4RkvxevEZbTRMb&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

Modules

Coordinates and interfacing with the IMU (Kendall)

Processing IMU Data

nagmete da y-secellis:ol vert_filtered[15:0]
magnetic dala‘ ;
IMU » TEENSY z_gyro[15:0] Low- pass vert_angle(7:0]
[] = . .
Filter horlz_flltered[15.01 x5
filter[3:0] ——>| >» 9 8
= o
btnl, btnr—=p] 8 g
vert_padding[3:0]—>] 0O = horz_ange[8:0]

—
horz_padding[3:0]——»|

Figure 2: Processing IMU data

We used the MPU-9250 IMU chip to take in accelerometer and gyroscope data.
To make reading the data simpler on the chip, we pass in the readings from the IMU to
the teensy. The teensy samples y acceleration and z gyroscope every 10 ms (seen
here), and then sends the 16 bit signed z gyroscope data, 16 bit signed y acceleration,
and 16 zeros. This data is then read by the uart receiver module on the FPGA running
at 65 mhz, which accepts and stores the data. To prevent sudden jumps and reduce
noise, both inputs are passed through low pass filters. The decay factor is based off of
switches 3-6 (zero-indexed), where all the switches in the “off” state corresponds to no

decay, and all the switches on the “on” state corresponds to a decay of % .

Once we have filtered the acceleration and gyroscope data, we convert the data
to coordinates: a 9-bit horizontal angle (0-359) representing the head tilting left and
right, and an 8-bit vertical angle (30-150), representing how far the head is from being
entirely vertical.

Because determining the angle off vertical relies only on knowing the current
position of the IMU, there is minimal state associated with this calculation. We start by
truncating the 8 lower bits, and only operate on bits [15:8]. Because the max range of
the IMU is £2G this gives us a range from 8b’1100_0000 (-64) to 8b0100_0000 (64)
in two’s complement. To allow for vertical viewing windows of 60°, we cap the possible
range from -60° to 60° and add it to 90°, giving us a total possible range of [30°, 150°].

https://www.draw.io/?page-id=01Ar8F7XU6GPZ_-AZrZs&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

To prevent the position from shifting between two small values (+ 2 degrees), we use
part of the switches (sw([13:10]), and only update the coordinates if the change iny
position is larger than the threshold.

For calculating the horizontal angle, we had two methods: buttons on the fpga,
and gyroscopic data. Because calculating the next horizontal angle requires knowing
the previous angle, we introduced a register to hold the state.

When in button mode, the user can press the left or right (pressing both does
nothing) button on the FPGA, which would move the horizontal position to the left or
right based off of the respective input. To prevent the coordinate from changing
extremely rapidly at the FPGA’s 100MHz clock, we added a clock divider for the
horizontal movement which calculated updates thirty times a second. This meant that a
user could move up to 30 degrees in one direction every second, which we felt was a
reasonable pace.

In gyroscope mode, the user can move their head left and right, which will shift
the position relative to the movement. To calculate whether to move, we used some of
the switches (sw[7:9]) to calibrate the sensitivity, and if the gyroscope reading is
greater than the horizontal sensitivity, the horizontal coordinate will change by 2. Like
the buttons, this position only changes at a period of 30 instances per second, meaning
at most 60 degrees. To handle initial drift, we also allow for calibrating the base
direction.

Converting IMU Data to Coordinates

width_scaling

vert_angle[7:0] g — % left_pixel[7:0] 5 §
_ang :0] —p _ o . . g _|£
horz_ange[8:0] = § 0 | height_scaling 2
ﬁ -
o a
mono_stereo —— '~ %_
& = |right_pi |7:o| . c
pano_control[2:0] ——3» £ > £ |"g _pixel[)] £§
= E 58
sd_control ——p ")

Figure 3: From coordinates to pixels

Once we have calculated the current position using spherical coordinates
(horizontal, vertical angle) we need to convert it to rectangular coordinates (x, y) to
index into our images stored in RAM and retrieve the current pixel in the image feeder

https://www.draw.io/?page-id=YOmb91Jp9U5_AhuiQsfr&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

module. When taking in the vertical and horizontal coordinates, we treat the vertical
angle as the center of the image vertically, and treat the horizontal angle as the leftmost
part of the image. To convert these coordinates, we the general formula:

x =RMA—A,)cos(P)
y =R - ¢ 1)
L =longitude, A, =the central meridian, ¢ =latitude,
¢ | = standard parallels, R = radius of the globe

Because the images we chose to use were stored using equirectangular projection, the
central meridian and standard parallels are all zero, our coordinate conversions just
scales the latitude and longitude to the width and height of the image. Unfortunately
this does have the potential of distorting the image when departing from the equator;
however, this does simplify calculations as we only need a single multiplier.

While the scaling math is easy in software, getting sufficient precision in
hardware is more difficult. Both the vertical and horizontal angles are positive integers;
however, simply using integer multiplication would lack precision. To calculate the
width and height scaling factors, we added a divider module which calculates the
latitude-to-height and longitude-to-height scaling factors as decimals with eight-bit
fractional components. For example, to represent 2.5 using eight-bit values, we would
store it as the following:

10.10000000

The values left to the decimal represent the decimal values, while every bit to the right
of the decimal represents 2 ", where n represents the distance away from the decimal.
Once we have scaled the coordinates, we drop the fractional bits. Then, we find every
pixel in the 240 x 320 screen, mapping both the width and height to a 60 degree view.
For the horizontal axis, we use an 8-bit counter, dropping the lower order bits, and for
the vertical axis we use the 6 higher bits of an 10-bit signed counter from [-480, 480),
which increments by 3 for every iteration of the loop.

Images, SD, Screens, and Hardware (Claire)

SD card
‘i, read write_en
pano_control[2:0]==—=3»{ © > e >
= sectors[16:0]] data =
E > S » =
o address[31:0] 7)) address[7:0]
a > >

Figure 4: From SD to Memory

The SD card was interfaced with via the sd_controller module provided in the
class resources. We used a 2gb microSD that was inserted directly to the Nexys’s SD
slot, that we pre-loaded with image data using HxD. Interestingly, we found that the
entire card had a Ox1FEOOQ offset from the addresses written to using HxD. We
discovered this through an intensive debugging process that involved writing
identifiable sequences to the greater part of the card and attempting to read them back.
During this process, we developed a light-weight test module whose sole purpose was
to read from the card and display its results on the 7 segment displays. After multiple
days, we never fully resolved this issue, but instead worked around it.

We kept careful track of the starting locations of our images, and wrote their raw
data into the card using HxD. The starting addresses of the images were then
hardcoded into the System Verilog. In the future, a more streamlined approach would
be to better standardize the image between mono and stereo and have the FPGA
determine the start address based off of the image number.

Images

https://www.draw.io/?page-id=QrIIqBSRKfeoWwNWpwiB&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

Figure 5: Sample Mono image (the MIT Great Dome) formatted and ready for
display. Because the image is mapped to an equirectangular projection, the edges
appear distorted. However, because we take this into account when displaying the

image on the screens, in the headset everything patches together smoothly.

To save space and increase the size of the panoramas we could display, we
decided to only display grayscale images. Because Google provides some sample
images that are 830x415, and these images fit easily within the available RAM, we
used this as a starting size for our mono images. We later found that we had to reduce
the size of the stereo images so we could essentially fit two images, and chose
600x300 pixels per image, for a total of 360,000 bytes per image. We used GIMP to
convert the images to grayscale, and then the provided imageRGB_write_file.m Matlab
script. We then wrote our own Python script to reformat our data so it could be moved
directly into the SD.

We stored stereo images (which are essentially two seperate images) as a
single, continuous chunk of data in the SD card. Because all stereo images were the
same size, the image feeder could knew where to split up its reads.

We used 8 bits of color depth to make reading and writing from the SD easier,
but our display only supports up to 6 bits. If we were concerned about image quality,
we could support slightly larger images by storing only the 6 bits that are used, but in
this version we both store and send all eight bits. This requires the display to be in color
mode “06h” (set by the COL_MODE command), so it expects one 6 bit transmission of
color data at a time in slots D2-D7 from the SPI. This means two bits are discarded,
and future iterations of our project could speed writes by truncating on the FPGA and
then sending in mode O5h. However, because the rate at which changes in RAM reach
the screen is still fairly slow, it’s unclear if this effect would be visible.

To Test Image
Feeder

clk_100mhz —

st em—

image_done s clk_100mhz

[7:0] pixel_in s

rst

[3:0] spi_out e isdata
5:0] state_out e o
[] 1 screen_interfacer. [T:l]] to_send
pixel_ready e spi_send
image_ready
send_now

ready_to_send

[3:0] spi_out

Figure 6: A diagram of how the screen controlling module, screen_interfacer.sv,
interacts with spi_send.sv, the module that controls the base level of communication
between the FPGA and the screen.

Screens

We used the two ST7788 displays from Adafruit. We structured our display
controller off of the “Adafruit ST7735 and ST7789 Library” and the Sitronix datasheet.
The display controller, screen_interfacer.sv, used the spi module to send a series of
commands that started the display. After that, we paused the spi clock until we were
ready to send a RAM write command (to write to the screen’s onboard RAM, which is
directly displayed) and begin sending an image. Because our images were all intended
to be displayed in grayscale, we simply sent each pixel three times. We set the
displays to both expect RAM writes from left to write, top to bottom, and display from
RAM left to right, top to bottom. An improvement we made over the Adafruit libraries
was to continuously stream data after the RAMWR command, instead of interrupting
spurts of data with RAM writes to different addresses.

10

https://www.rhydolabz.com/documents/33/ST7789.pdf

43x32E B
817789 . -

jc[3:0]

Figure 7: Wiring diagram for the displays. The data ports are connected to jc in
the order they are on the display PCB, with SCK connected to jc[3] and D/C connected
to jc[0]

Hardware and Focusing

We ordered a cheap “VR headset” intended for use with phones from Amazon,
specifically the AOOK SongMI 3D Virtural Reality Glasses. We selected these glasses
for their biconvex lenses that allow for focusing at short distances, as well as their
useful focus adjust dials. Unfortunately, we learned that the glasses were designed for
larger phones, and so our smaller screen would not provide an immersive experience.
To compensate, we moved the screens close to the viewer’s nose so they would appear
to blend into one. We then uniformly blocked out the rest of the viewing window to
intensify the illusion. We faced challenges with wire length, especially with the female
wires slipping off of the pins while the headset was in use. To rectify this, we taped the
wires at multiple points in an “S” configuration coming off of the headset and placed
the Teensy immediately in front of the viewer’s nose.

11

https://www.amazon.com/AOOK-Virtual-Reality-Headset-Immersive/dp/B01LEYCLX4

Timing (Kendall)

Image Feeder Screen interfacer

Cycle 1 / image_ready = 1
Cycle 2 Start fetching / image_ready =0

(0, 0) pixels

Cycle 6 Fetched (0, 0)
pixels

\ start sending
(0, 0) to screen,

Cycle 7 save current pixel

/ read_ready = 1

Cycle 8 Startfetching (1, 1) read_ready =0

Cycle 13 Fetched (1, 1) \ do not update

pixel

\ start sending
Cycle 103

(1, 1) to screen,
save current pixel

read_ready =1

Read

(239, 319) image_done =1 \
Processed \ state = DATA_ANNOUNCE
(239, 319) (start accepting new image)

Figure 8: Image sending timing diagram

Once we had working modules for sending content to the screen and getting a

position from the gyroscope, a significant challenge we faced was synchronizing timing
to allow sending pixels from outside the screen interfacer module. At first, we just send
a single color, and then let the interfacer read from a rom. However to accept a pixel as

an input to the interfacer, we needed additional timing constraints.

When the image feeder module receives a new coordinate or calculates a new
position in the image, it first takes three cycles for the correct left and right screen

addresses to be computed: two for calculating the current row and column, and one for

12

https://www.draw.io/?page-id=fLOmOVd7ZAaYo9I7HMuS&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

calculating the actual address. Then, accessing a location in memory would take an
additional two cycles, resulting in an overall delay of five cycles.

While this calculation is usually fast enough to complete before the screen
interfacer has sent the pixel to the screen, we had to be careful about sending the first
pixel. If the image feeder started the calculation too early, then the image would be off
by one, and we could see weird red pixels rather than the actual image. Consequently,
we would have to delay accepting the first pixel by 6 cycles after the image_ready
signal is set.

After sending the first pixel, we had to synchronize sending successive pixels. To
ensure that the image feeder would not start finding the next pixel until the screen was
ready, we added the read_ready pulse, which would signal to the feeder that it should
start calculating the next pixel. However, we ran into another issue where occasionally
we would miss a pixel and see strange blue squares. This happened because the image
feeder had calculated the next pixel, but the current pixel was not done. Because it
takes roughly 96 cycles to send a single pixel (24 bits at a 25MHz clock), sometimes
the current pixel was corrupted. To alleviate this, we would save the current pixel in the
screen interfacer. Finally, to signal that the image was done and that the screen
interfacer should start accepting new data, the image feeder sends the image_done
flag.

Challenges and Takeaways

Debugging the screen interfacer was among the primary challenges of this
project. Because the functionality of the screen is fairly binary, it was difficult for us to
pinpoint problems, and took over a week to get the screen to a basic “on” state, let
alone display coherent images. The datasheet was long and involved, but reading
through the timing expectations and command alternatives was helpful for solving hard
to crack problems. Something that was helpful here was writing our code on an
Arduino to start, because we were able to determine the order of commands to send
without worrying about SPI timing. This intermediary step, proved vital, and was a tool
we utilized_again with the SD card. In retrospect, if we had a working sd and screen
controller coming into the project, we would have probably been able to at least make a
good dent in our stretch goals.

Another particularly embarrassing bug that took me (Kendall) many hours to
debug was the fact that the size of data that | was sending from the Teensy did not
match the size of data | expected on the FPGA. | had thought that | removed two bytes

13

(we only needed Y accel and Z gyro), but in fact | was still sending an array of 6 ints,
only the last values were all zero. Consequently, all the gyro and accel data would
skewed.

A third challenge that we faced throughout the project was the fact that our
builds took a relatively significant time (15-20 minutes, versus < 5 for some other
groups). We initially ascribed this to having relatively large RAM/ROM modules, but the
more significant culprit was our reset signal. We had a number of modules with
counters (clock dividers, debouncers, filters), as well as modules whose states we
would want to reset (position, image), but we had a single wire passed to all the
modules. Due to the high fanout, we saw a number of failed routes, and a place and
route stage that would take between 10 and 15 minutes. When we started adding
reset buffers to each of the modules (registers that stored the input signal), we reduced
the route stage to around five minutes, and reduced the number of failed paths by 4-5x.

As mentioned earlier, timing was an especially difficult component. Even
reviewing the code now, | can see a few possible timing errors (such as starting at
column 1 as opposed to 0). Currently, our screen interfacer expects data to always be
sent, even if the image does not change. While the screen does have a buffer and only
updates if the buffer changes, a better future design would be to have a “sending
signal” that would signal a new update, rather than constant polling. Similarly, it might
be better to have a “data ready” input signal which would notify the screen that it can
store the current pixel, rather than just assume the value is calculated.

Kendall: A personal takeaway | came away with from this project is the power of
enums. Originally in our screen interfacer, every state was given a number, and while
there were helpful comments describing each of the states, it was possible to
misnumber or have the same number twice. However, when | switched it to enums, |
found the code slightly cleaner, and also more difficult to have meaningless transitions.

Claire: This project really drove home the importance of time management. If we
hadn’t started the screen so early, we wouldn’t have been able to get as far as we did. |
had a lot of fun reading the screen datasheet, and really appreciate whoever designed
the display.

Links

e Github: https://github.com/kgarner7/digiteyez
e Projections: https://en.wikipedia.org/wiki/Equirectangular_projection
e Sitronix Datasheet: https://www.rhydolabz.com/documents/33/ST7789.pdf

14

https://github.com/kgarner7/digiteyez
https://en.wikipedia.org/wiki/Equirectangular_projection
https://www.rhydolabz.com/documents/33/ST7789.pdf

Appendix

Top level: main.sv

“timescale 1ns

/ 1ps

“default_nettype none

L1117 177 1777777777077 771771777
// controls everything

IITTITTTTITT 7777777077777 77777 777777 77777777777777777777177777777777777717777177

module main(
//sd stuff
input wire
input wire

//
//

sd_reset,
sd_dat_#o,

//other stuff

sd reset signal
sd data signal

input wire clk_1@@0mhz, // clock signal
input wire btnu, // gyroscope calibration
input wire btnc, // to be the reset button
input wire btnl, btnr, // control horizontal scrolling
input wire jb, // uart input
input wire gyro_enabled,// switch determining whether to use gyro or buttons
input wire [3:0] filt, // controls low pass filter values
input wire mono_stereo, // controls whether to use mono/stereo for images
input wire [3:0] vert_padding, // vertical padding sensitivity (in degrees)
input wire [2:0] horz_padding, // horizontal gyro sensitivity (degrees)
input wire [2:0] pano_control, // selects one of the possible images to
display
output logic ca, cb, cc, cd, ce, cf, cg, dp, // segments a-g, dp
output logic [3:0] jd, // sck, mosi,cs, d/c in that order
output logic [3:0] jc, // sck, mosi,cs, d/c in that order
output logic [7:0] an, // Display location ©-7
output logic sd_cmd, // sd command dbit
output logic sd_sck, // sd sck bit
output logic sd _dat_1, // first sd data bit
output logic sd_dat_2, // second sd data bit
output logic sd_dat_3 // third sd data bit
)

// generate 65mhz clock for uart, 25mhz for sd

wire clk_65mhz, clk_25mhz;

clk wiz_© clkdivider(
.clk_inl(clk_100mhz),
.clk_out1l(clk_65mhz),

15

.clk_25mhz(clk_25mhz)
)

// debounce reset, generate buffer

wire reset;

debounce reset_debouncer(
.reset(1'b@), .clock(clk_100mhz),
.bounce(btnc), .clean(reset)

)
reg reset_buffer [2:0];

always_ff @(posedge clk_100mhz) begin
foreach (reset_buffer[i]) begin
reset_buffer[i] <= reset;
end
end

// more debouncing

wire calibrate;

debounce calibrate_deouncer(
.reset(reset_buffer[0]), .clock(clk _100mhz),
.bounce(btnu), .clean(calibrate)

)5

wire gyro;

debounce gyro_debouncer(
.reset(reset_buffer[0]), .clock(clk_100mhz),
.bounce(gyro_enabled), .clean(gyro)

)5

wire mono_stereo_clean;

debounce mono_stereo_debounce(
.reset(reset_buffer[0]), .clock(clk _1@@mhz),
.bounce(mono_stereo), .clean(mono_stereo_clean)

)5

wire [2:0] pano_clean;

debounce #(.SIZE(3)) pano_debounce(
.reset(reset_buffer[0]), .clock(clk_100mhz),
.bounce(pano_control), .clean(pano_clean)

)5

// calculate vertical and horizontal angles
logic [7:0] vert_angle;
logic [8:0] horz_angle;

16

position_manager manager (

.clock(clk_65mhz), .reset(reset_buffer[1]),
.vert_padding(vert_padding), .horz_padding(horz_padding),

.calibrate(calibrate),
.left_button(btnl), .right_button(btnr),
.uart_in(jb),
.filter(filt), .gyro_enabled(gyro),
.vert_angle(vert_angle), .horz_angle(horz_angle)

)5

// use coordinates to send an image

test_image_feeder feeder (
//sd stuff
.clk_25mhz(clk_25mhz),
.sd_cmd(sd_cmd), .sd sck(sd_sck), .sd reset(sd_reset),
.sd_dat_@(sd_dat_@0), .sd dat_1(sd_dat_1), .sd dat 2(sd_dat_2),

.sd_dat_3(sd_dat_3),

//other stuff
.clk_1e0mhz(clk_100mhz), .rst(reset_buffer[2]),
.horiz_angle(horz_angle), .vert_angle(vert_angle),
.mono_stereo(mono_stereo_clean), .pano_control(pano_clean),
.spi_out_0(jd), .spi_out 1(jc)

)

// display debug information on seven segment display
wire [31:0] data; // instantiate 7-segment display; display (8) 4-bit hex
wire [6:0] segments;

assign dp = 1'bl; // turn off the period

assign data = { filt, vert_padding, 1'b@, horz_padding, 3'b@, horz_angle,
vert_angle };

assign {cg, cf, ce, cd, cc, cb, ca} = segments[6:0];

display_8hex display(
.clk_in(clk_65mhz), .data_in(data),
.seg_out(segments),
.strobe_out(an)

)5

endmodule

Coordinates and interfacing with the IMU
bitbang_teensy_serial_mod.imo

#include "mpu9255.h"
#include<math.h>

17

const int LOOP_SPEED = 10; //milliseconds

int primary_timer = 0;

float x, y, z; //variables for grabbing x,y,and z values (accel)
float xg, yg, zg; //variables for grabbing x,y, and z values (gyro)
MPU9255 imu; //imu object called, appropriately, imu

elapsedMicros comm;

uint8_t comm_pin = 1;

int period = 104; ///period at 9600
//int period = 10; ///period at 9600

uint8_t thresholds[] = {128, 64, 32, 16, 8, 4, 2, 1},

void setup() {

Serial.begin(115200); //for debugging if needed.

//Seriall.begin(9600); //for working on Nano will need to convert this to a
software serial (bit-banged UART)

//or you can also use the fact that the hardware UART used for programming is
broken out onto two pins. If that

//is the case, change Seriall.write below to just Serial.write...otherwise,
change it based on the name of your Software serial object

delay(50); //pause to make sure comms get set up

Wire.begin();

delay(50); //pause to make sure comms get set up

setup_imu();

pinMode(comm_pin, OUTPUT);

digitalWrite(comm_pin, 1); //start high like a good serial line should.

primary_timer = millis();

void loop() {
//read 6 bytes from IMU and store in internal register of imu object
imu.readAccelData(imu.accelCount);
X = imu.accelCount[@] * imu.aRes;
y = imu.accelCount[1] * imu.aRes;
z = imu.accelCount[2] * imu.aRes;

imu.readGyroData(imu.gyroCount);//grab gyro stuff and send up after accel stuff.

Xg = imu.gyroCount[@] * imu.gRes;
yg = imu.gyroCount[1] * imu.gRes;
zg = imu.gyroCount[2] * imu.gRes;

uint8_t hey[6] = {}; // the mistake that cost many hours: hey[6]
hey[9] (uint8_t)imu.gyroCount[2];
hey[1] (uint8_t) (imu.gyroCount[2] >> 8);

18

(uint8_t)imu.accelCount[1];
(uint8_t)(imu.accelCount[1]>>8);

hey[2]
hey[3]

joe_write2(hey, 6); //was 6 before. still is in fact

//Serial.write(hey,6);

//Seriall.write(hey,6);

//Seriall.write(imu.accelCount[0],2);

//Seriall.print(imu.accelCount[0@]);

//Seriall.write(hey[1]);

//Serial.println(String(hey[@]+20)+","+String(imu.accelCount[0©]/256));

while (millis() - primary_timer < LOOP_SPEED); //wait for primary timer to
increment

primary_timer = millis();

}

void setup_imu() {
if (imu.readByte(MPU9255 ADDRESS, WHO AM_I_MPU9255) == 0x73) {
imu.initMPU9255();
} else {
while (1) Serial.println("NOT FOUND"); // Loop forever if communication doesn't
happen
}

imu.getAres(); //call this so the IMU internally knows its range/resolution

}

//MSB first version
void joe_write(uint8_t* invals, int length) {

for (uintl6_t i = @; i < length; i++) {
//start bit
comm = 0;
digitalWrite(comm_pin, 0);
while (comm < period);

comm = 0;
uint8_t val = (uint8_t)(invals[i]);
for (uintl6e_t j = 0; j < 8; j++) {
if (val >= thresholds[j]) {
digitalWrite(comm_pin, 1);
val -= thresholds[j];
} else {
digitalWrite(comm_pin, ©);
}
while (comm < period);
comm = O;

19

digitalWrite(comm_pin, 1);
while (comm < period);
}
}

//LSB first version:
void joe write2(uint8_t* invals, int length) {
for (uintle_t i = @; i < length; i++) {

//start bit
comm = 0;
digitalWrite(comm_pin, 0);
//Serial.print(invals[i]);
while (comm < period); //start bit

comm = 0;
uintl6_t val = (uint8_t)(invals[i]);
//val/=16;
for (uintle_t j = 0; j < 8; j++) {
if (val % 2) {
digitalWrite(comm_pin, 1);
} else {
digitalWrite(comm_pin, ©);

}
val /= 2;
while (comm < period);
comm = 9,
}

digitalWrite(comm_pin, 1);
while (comm < period);

}

//Serial.println("");

}

filter.sv

“timescale 1ns / 1ps

module filter#(
parameter FILTER_PERIOD = 1_000_00, // how long to wait before done

FILTER_SIZE = 16 // size of data to filter
) (
input wire clock, reset, // control signal
input wire [3:0] filter, // filter control

input wire [FILTER_SIZE - 1:0] data, // x and y acceleration, calibrated

20

output logic [FILTER_SIZE - 1:0] filtered_data

)
reg [FILTER_SIZE - 1:0] previous_data = @; // previous states
reg [2 * FILTER_SIZE - 1:0] calculated_data; // calculated values
reg [$clog2(FILTER_PERIOD) - 1: @] counter; // period counter

logic [25:0] data_signed, data_signed_previous; // stores signed values

always_comb begin // sign extend current and previous accelerations
data_signed = {{FILTER_SIZE {data[FILTER_SIZE - 1]}}, data};

data_signed_previous = {{FILTER_SIZE {previous_data[FILTER_SIZE - 1]}},
previous_data};

end

always_ff @(posedge clock) begin

if (reset) begin // reset signal
counter <= 0;
previous_data <= 0;

filtered_data <= 0;
end else begin
if (counter == FILTER_PERIOD - 4) begin // calculate filter
calculated_data <= ((16 - filter) * data_signed + filter *
data_signed_previous) >> 4;
counter <= FILTER_PERIOD - 3;
end else if (counter == FILTER_PERIOD - 2) begin // update history and
relative accelerations
filtered data <= calculated_data[FILTER_SIZE - 1:90];
previous _data <= calculated data[FILTER_SIZE - 1:0];
counter <= 0;
end else begin
counter <= counter + 1;
end
end
end
endmodule

position_manager.sv

“timescale 1ns / 1ps
“default_nettype none

module position_manager#(parameter
FREQUENCY = 65_000 000, // the frequency this module runs at

21

)(

GYRO_BITS = 3,
GYRO_FREQUENCY = 30

input
input
input
input

scroll

)5

input
input
input

wire
wire
wire
wire

wire
wire
wire

clock, reset, calibrate,
[3:0] vert_padding,

[2:0] horz_padding,
left_button, right_button,

uart_in,
gyro_enabled,
[3:0] filter,

output logic [7:0] vert_angle,
output logic [8:0] horz_angle

// synchronize input
logic uart_sync;
logic [47:0] uart_data;

synchronize synchronizer(
.clock(clock),
.in(uart_in),
.out(uart_sync)

)5

reg reset_buffer [5:0];

always_ff @(posedge clock) begin
foreach (reset_buffer[i]) begin
reset_buffer[i] <= reset;

e
end

nd

!/
//
//
//

//
//
//
!/
//

// how many bits of gyroscope data to use
// how often to update gyroscope data

control signals

vertical sensitivity

horizontal sensitivity

left and right buttons for manual

uart data from teensy

whether gyro is enabled

low pass filter

output vertical angle [30, 150]
output horizontal angle [0, 359]

// process uart data and pass to low pass filters

uart_reciever #(.DATA SIZE(48)) receiver(
.clock(clock),
.reset(reset_buffer[0]),
.data(uart_sync),
.output_data(uart_data)

)5

logic [15:0] x_accel filtered;
filter x_filter(

.clock(clock), .reset(reset_buffer[1]),

.filter(filter), .data(uart_data[15:90]),
.filtered_data(x_accel filtered)

)5

22

logic [15:0] y_accel filtered;
filter y_filter(

.clock(clock), .reset(reset_buffer[2]),
.filter(filter), .data(uart_data[31:16]),
.filtered_data(y_accel filtered)

)3
logic left_clean, right_clean;

debounce left_button_debounce(

.clock(clock), .reset(reset_buffer[3]),
.bounce(left_button), .clean(left_clean)

)5

debounce right_button_debounce(

.clock(clock), .reset(reset_buffer[3]),
.bounce(right_button), .clean(right_clean)

)5

logic button_enabled;
reg [8:0] current_horz = 180;
logic [8:0] next_horz;

reg [15:0] x_calibrated = 9;
logic [15:0] x_accel rel;

logic [GYRO_BITS:0] x_gyro_top;
logic [8:0] x_accel_signed;

// calculate the next horizontal angle positions

always_comb begin
if (gyro_enabled) begin

// we look for if the gyroscope reading has exceeded a threshold value
// controleld by a switch, then move by fixed amount
x_accel rel = x_accel _filtered[15:0] - x_calibrated;
x_gyro_top = x_accel rel[15:15 - GYRO_BITS - 1];

if (x_gyro_top[GYRO_BITS]) begin

if (-x_gyro_top[GYRO_BITS - 1: @] >= horz_padding) begin

next_horz = current_horz == 359 ? 0 :

end else begin

x_accel _signed = 0;
next_horz = current_horz;

end

end else if (x_gyro_top >= horz_padding) begin

current_horz + 2;

23

next_horz = current_horz == @ ? 359 : current_horz - 2;
end else begin
x_accel _signed = 0;
next_horz = current_horz;
end
end else begin
// gyro disabled; use buttons
if (left_clean » right_clean) begin
if (left_clean) begin

next_horz = current_horz == @ ? 359 : current_horz - 1;
end else begin

next_horz = current_horz == 360 ? @ : current_horz + 1;
end

end else begin
next_horz = current_horz;
end
end
end

logic [15:0] y_shifted, y_unsigned, next_vert;

// calculate y value. Luckily this can just be truncating the data
always_comb begin
y_unsigned = y_accel_filtered[15] ? ~y_accel_filtered + 1 :
y_accel _filtered;
y_shifted = y _unsigned[15:8];

if (y_shifted >= 60) begin
y_shifted = 60;
end

if (y_accel filtered[15]) begin
next_vert = 90 + y_shifted;
end else begin
next_vert = 90 - y shifted;
end
end

clock_divider #(.FREQUENCY(FREQUENCY), .TARGET_ FREQUENCY(GYRO_FREQUENCY))
button_divider(
.clock(clock), .reset(reset_buffer[4]),
.divided_clock(button_enabled)

)
always_ff @(posedge clock) begin

if (reset_buffer[5]) begin
current_horz <= 180;

24

x_calibrated <= 0;
end else begin
if (calibrate) begin
x_calibrated <= uart_data[15:0];
end

// only update horizontal every now and then; prevent drift
if (button_enabled) begin

horz_angle <= next_horz;

current_horz <= next_horz;
end

if (next_vert > vert_angle) begin

if (next_vert - vert_angle >= vert_padding) begin
vert_angle <= next_vert[7:0];

end

end else if (vert_angle - next_vert >= vert_padding) begin
vert_angle <= next_vert[7:0];

end

end
end
endmodule

uart_reciever.sv

“timescale 1ns / 1ps
“default_nettype none

// uart receiver module
module uart_reciever#(
parameter CLOCK_FREQUENCY = 65_000_000, // the clock frequency in hz
TARGET_FREQUENCY = 153 600, // our target frequency in hertz
WAIT_PERIOD = 428, // how long to wait at target
frequency for valid data
DATA_SIZE = 32 // the mistake that cost me many hours

)(

input wire clock, reset, // control signals

input wire data, // input data

output logic [DATA_SIZE - 1:0] output_data // output data [47:0] { z, y, X
}
)s

logic data_clock; // the data enable signal

clock_divider #(
. FREQUENCY (CLOCK_FREQUENCY),

25

.TARGET_FREQUENCY (TARGET_FREQUENCY)
) divider (

.clock(clock), .reset(reset),

.divided_clock(data_clock)

//
/7
//

used for initial wait

counts 16x sample

coutns which byte we are on

)
reg [$clog2(WAIT_PERIOD):0] initial_wait =
reg [3:0] time_counter = 0;
reg [2:0] byte_counter = 0;
reg [2:0] bit_counter = 0;
data
reg [47:0] stored_data = 0;
when done

// counts number of bits per

// stored data; update only

enum reg [2:0] { WAITING, IDLE, STARTING, READING, STOPPING } state = WAITING;

always_ff @(posedge clock) begin

if (reset) begin // reset?
bit_counter <= 0;
byte_counter <= 0;
initial_wait <= 0;
output_data <= 0;
stored_data <= 0;
state <= WAITING;
time_counter <= 0;

end else if (data_clock) begin
if (state == WAITING) begin

output_data <= 0;
if (data) begin // waiting for stable high
if (initial_wait == WAIT_PERIOD - 1) begin
initial_wait <= 0;
state <= IDLE;

end else begin
initial wait
end
end else begin
initial _wait <= 0;
end
end else if (state == IDLE) begin

if (!data) begin // start bit detected

bit_counter <= 0;
state <= STARTING;
time_counter <= 1;

end
end else if (state == STARTING) begin

<= initial wait + 1;

26

time_counter <= time_counter + 1;

if (time_counter == 15) begin // 16 samples later, start reading
state <= READING;

end

end else if (state == READING) begin

if (time_counter == 7) begin // sample in the middle (roughly)
stored_data <= { data, stored_data[DATA_SIZE - 1:1] };

end else if (time_counter == 15) begin // 16 cycles later
bit_counter <= bit_counter + 1;

if (bit_counter == 7) begin
state <= STOPPING;
end
end

time_counter <= time_counter + 1;
end else begin // handle the stop signal, go back to idle
if (time_counter == 15) begin
state <= IDLE;

if (byte_counter == DATA SIZE / 8 - 1) begin // if we have
read 6 bytes, done

byte_counter <= 0;
output_data <= stored_data;
end else begin
byte_counter <= byte_counter + 1;
end
end

time_counter <= time_counter + 1;
end
end
end
endmodule

Images, SD, and Screens
screen_interfacer.sv

“timescale 1ns / 1ps

“default_nettype none

LITTIT777 7777 77
// Written to control the Adafruit 2" color ips TFT display/ST7789,

// requires the spi_send module

/7

27

//takes standard spi inputs, returns status of the module, more details below
LITTIT707 7777 77
module screen_interfacertt(parameter

msl0 = 26'd1000000, //10 cycle delay for testing without gaps, 1000000 for
real life when we want ms, 200 for testing with gaps

screen_width = 240, //replace with the screen width of your hardware

screen_height = 320, //replace with the screen height of your hardware

INITIAL_IMAGE_WAIT = 5 //nifty for debugging when you suspect you may be going
too fast, not used in the "non debug" version here
) (

input wire clk_100mhz, //system clock

input wire rst, //wired into the system wide reset

input wire image_done, //high when the image is done and ready to be shipped
off

input wire [7:0] pixel_in, //byte-wide value to be sent, expects one value per
pixel (so the image will be displayed in grayscale)

output logic [3:0] spi_out, //four bits wide, connected to jd,

output logic [5:0] state_out, //for debugging

output logic pixel ready, // whether should start read for next chunk

output logic image_ready, //when we're ready to move on to the next image

output wire led //largely for debugging, but a nifty indicator in general
)

logic [30:0] timer; //has to count to 100,000,000 for the second long invert
delay
enum reg[5:0] {
RESET, WAKE_FROM_SLEEP,
SET_COLOR_MODE, SEND_COL_MODE_DATA,
MEMORY_ACCESS_CONTROL, WRITE_MEMORY_ACCESS_CONTROL,
CASET_COMMAND, CASET_ZEROS_1, CASET_ZEROS_2, CASET_DATA 1, CASET_DATA 2,
RASET_COMMAND, RASET_ZEROS_1, RASET ZEROS_ 2, RASET DATA_1, RASET _DATA 2,
INVERT_ON,
NORMAL_DISPLAY_ON, DISPLAY_ON,
DATA_ANNOUNCE, COLOR_SEND, IMAGE_SEND,
INVERT_LOOP_OFF, INVERT_LOOP_ON
} state = RESET; //all the states needed for waking the screen

//registers that help track the general state of the screen
logic read_ready;

logic [7:0] to_send_out;

logic isdata_out;

logic send_now;

logic ready_to_send;

logic cs; //chip select

logic led_ind;

logic [1:0] gray_count;

logic [7:0] pixel_buffer;

28

assign led = led_ind; //for debugging and indication on the finished product

assign pixel _ready = read_ready && state == IMAGE_SEND && !ready_to_send &&
limage _done; //the combination of events that indicate that we are out of things to
send

spi_send my_spi(//controls the spi module, which does the actual sending here
.cs(cs), .clk 100mhz(clk_1@0mhz), .rst(rst),
.isdata(isdata_out), .to_send(to_send_out), .send_now(send_now),
.ready_to_send(ready_to_send),.spi_out(spi_out)

)5

assign state_out = state; //in case modules above need to be made aware,
largely unnecessary
//logic [7:0] mosi; //data to be transmitted

always_ff @(posedge clk _100mhz) begin
if(rst) begin
state <= RESET; //reset the state
send_now <= 1'b@; //don't send stuff yet
isdata_out <=1'b@; //is a command by default
timer <= 1'b0;
cs <= 1'b1;
led_ind <= 0;
gray_count <= 0;
image_ready <= 0;
end else begin
case (state)
RESET: begin //reset to factory settings
if(ready_to_send) begin
cs <= 1'bo;
isdata_out <= 1'b@; //is a command
to_send_out <= 8'h01l;
send_now <= 1'bl;
state <= WAKE_FROM_SLEEP;
end else begin
send_now <= 1'b@;
end
end
WAKE_FROM_SLEEP: begin //wake up from sleep mode, requires
significant delay before moving on
//add a delay 10 ms
if(ready_to_send) begin
cs <= 1'bl;
end

29

end

SET_COLOR_MODE: begin //set a color mode, this is

if(ready_to_send && (timer > ms10)) begin

end

end

isdata_out <= 1'b0@; //is a command
to_send _out <= 8'h11;

cs <= 1'bo;

send_now <= 1'bl;

timer <= 0;

state <= SET_COLOR_MODE;

else begin
send_now <= 1'b0;
timer <= timer + 1;

that announces more daya is coming

end

SEND_COL_MODE_DATA: begin //send the data that declares which

//delay 150ms before proceeding to allow time for the reset
if(ready_to_send && (timer > (ms10*15))) begin

end

end

colmode we'll be using
if(ready_to_send && timer > 5) begin //some delay to allow the
screen time to receive data, prevented errors in testing

direction)

end

MEMORY_ACCESS_CONTROL: begin //memory access control (set a

end

end

isdata_out <= 1'b@; //is a command
to_send_out <= 8'h3A;

send_now <= 1'bl;

state <= SEND_COL_MODE_DATA;

timer <= 0;

else begin
send_now <= 1'b0;
timer <= timer + 1;

isdata_out <= 1'bl; //is data
to_send_out <= 8'ho6;

send_now <= 1'b1l;

state <= MEMORY_ACCESS_CONTROL;
timer <= 0;

else begin
send_now <= 1'b0;
timer <= timer + 1;

if(ready_to_send && (timer > ms10)) begin

isdata_out <= 1'b@; //is a command
to_send_out <= 8'h36;

send_now <= 1'bl;

state <= WRITE_MEMORY_ACCESS_CONTROL;

just the command

30

timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
WRITE_MEMORY_ACCESS_CONTROL: begin //declares that we'll be going
from the top left of the screen to the bottom right
if(ready_to_send && timer > 5) begin
isdata_out <= 1'b@; //is data
to_send_out <= 8'hes;
send_now <= 1'b1l;
state <= CASET_COMMAND;
timer <= 0;
end else begin
send_now <= 1'be;
timer <= timer + 1;
end
end
CASET_COMMAND: begin //set the column address (CA)
if(ready_to_send && timer > 2) begin
isdata_out <= 1'b0@; //is a command
to_send_out <= 8'h2A;
send_now <= 1'b1l;
state <= CASET_ZEROS_1;
timer <= 0;
end else begin
send_now <= 1'be;
timer <= timer + 1;
end
end
CASET_ZEROS_1: begin //We'll be starting at @, so we send @
if(ready_to_send && timer > 2) begin
isdata_out <= 1'bl; //is data
to_send_out <= 8'hoo;
send_now <= 1'b1l;
state <= CASET_ZEROS_2;
timer <= 0;
end else begin
send_now <= 1'be;
timer <= timer + 1;
end
end
CASET_ZEROS_2: begin // becuase the CA is 16 bits, we split it into
two parts
if(ready_to_send && timer > 2) begin
isdata_out <= 1'bl; //is data

31

to_send_out <= 8'h0o;
send_now <= 1'bl;
state <= CASET_DATA 1;
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
CASET_DATA_1: begin //here we set the max CA, start with @ because
the total address needs to be 16 bits
if(ready_to_send && timer > 2) begin
isdata_out <= 1'bl; //is data
to_send_out <= 8'hoo;
send_now <= 1'bl;
state <= CASET_DATA_2;
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
CASET_DATA_2: begin //sets the max CA
if(ready_to_send && timer > 3) begin
isdata_out <= 1'bl; //is data
to_send_out <= 8'd240;
send_now <= 1'bl;
state <= RASET_COMMAND;
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
RASET_COMMAND: begin //Announce that we will be setting the row
address (RA)
if(ready_to_send && (timer > 3)) begin
isdata_out <= 1'b@; //is command
to_send_out <= 8'h2B;
send_now <= 1'b1l;
state <= RASET_ZEROS_1;
timer <= 0;
end else begin
send_now <= 1'be;
timer <= timer + 1;
end
end

32

RASET_ZEROS_1: begin //start with 0, as with CA
if(ready_to_send && (timer > 5)) begin
isdata_out <= 1'bl; //is data
to_send_out <= 8'd0o;
send_now <= 1'bl;
state <= RASET_ZEROS_2;
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
RASET_ZEROS_2: begin
if(ready_to_send && (timer > 5)) begin
isdata_out <= 1'bl; //is data
to_send_out <= 8'do;
send_now <= 1'b1l;
state <= RASET_DATA 1;
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
RASET_DATA_1: begin //set the first 8 bits of the max row
if(ready_to_send && (timer > 5)) begin
isdata_out <= 1'bl; //is data
to_send_out <= 8'b0000000O1;
send_now <= 1'b1l;
state <= RASET_DATA 2;
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
RASET_DATA_2: begin //set the second eight bits
if(ready_to_send && timer > 2) begin
isdata_out <= 1'bl; //is data
to_send_out <= 8'b01000000;
send_now <= 1'b1l;
state <= INVERT_ON; //
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end

33

end

// 6'd63: begin

// if(ready_to_send && timer > 2) begin
// isdata_out <= 1'bl; //is data
// to_send_out <= 8'b01000000;
// send_now <= 1'bil;

// state <= 6'd16; //

// timer <= 0;

// end else begin

// send_now <= 1'b0;

// timer <= timer +1;

// end

// end

INVERT_ON: begin //invert the colors, because this screen's scheme
is strange
if(ready_to_send && timer > 5) begin
isdata_out <= 1'b@; //is command
to_send_out <= 8'h21;
send_now <= 1'bl;
state <= NORMAL_DISPLAY ON; //
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
NORMAL_DISPLAY_ON: begin //Turn the display on
if(ready_to_send&& timer > ms1@) begin
isdata_out <= 1'b@; //is command
to_send_out <= 8'h13;
send_now <= 1'bl;
state <= DISPLAY_ON; //
timer <= 0;
end else begin
send_now <= 1'b0;
timer <= timer + 1;
end
end
DISPLAY_ON: begin //display on, part 2
if(ready_to_send && timer > ms10) begin

isdata_out <= 1'b0; //is command
to_send_out <= 8'h29;
send_now <= 1'bl;
state <= DATA_ANNOUNCE; //
timer <= 0;

end else begin
send_now <= 1'b0;

34

timer <= timer + 1;
end
end
DATA_ANNOUNCE: begin //announce that we're going to be sending
vals, RAMWR
if(ready_to_send && timer > 5) begin
isdata_out <= 1'b0@; //is command
to_send_out <= 8'h2C;
send_now <= 1'bl;
state <= IMAGE_SEND;
timer <= 0;
image_ready <= 1;
read_ready <= 1;
end else begin

send_now <= 1'b0;
timer <= timer + 1;
end
end

// COLOR_SEND: begin //send a bunch of the same vals
// if ((i <230400) && (ready_to_send) && (timer > 2)) begin
// isdata_out <= 1'bil;
// timer <= 0;
// i<=1+ 1;
// to_send_out <= 8'h55; //some color
// send_now <= 1'bl;
// read_ready <= 1;
// end else if(i < 230400) begin
// timer <= timer + 1;
// end else begin
// state <= DATA_ANNOUNCE;
// end
// end

IMAGE_SEND: begin //continuously read an image from memory and
incrementally send it. When we're done, return to the data anounce state to begin
another frame

image_ready <= 0;

if (ready_to_send && timer > 5) begin
isdata_out <= 1'bl;

if (gray_count == 0) begin
pixel buffer <= pixel_in;

end
read_ready <= gray_count == 0;
gray_count <= gray_count == 2 ? © : gray_count + 1;

35

end

end

end

end

to_send_out <= gray_count == 0 ? pixel_in :

send_now <= 1'bl;
else if (!image_done) begin
read_ready <= 0;
send_now <= 0;

if (timer <= 5) begin
timer <= timer + 1;

end

else begin

send_now <= 0;

read_ready <= 0;

state <= DATA_ANNOUNCE;

pixel buffer;

INVERT_LOOP_OFF: begin //invoff, loop back and forth, good for
screen tests, used with invon

end

INVERT_LOOP_ON: begin //invon, loop back and forth
led_
if(ready_to_send && (timer > (ms10*100))) begin

end

led_
if(ready_to_send && (timer >(ms10*100))) begin

end

end

end

ind <= 1;

timer <= 0;

isdata_out <= 1'b@; //is command

to_send_out <= 8'h20;
send_now <= 1'bl;
state <= INVERT_LOOP_ON; //

else begin

timer <= timer + 1;
send_now <= 1'b@;

ind <= 0;

timer <= 0;

isdata_out <= 1'b0@; //is command

to_send_out <= 8'h21;
send_now <= 1'b1l;
state <= INVERT_LOOP_OFF; //

else begin
send_now <= 1'b@;

timer <= timer +1;

end

default: begin
send_now <= 1'b@;

36

end
endcase
end
end

endmodule

sd_

controller.v

/* SD Card controller module. Allows reading from and writing to a microSD card
through SPI mode. */

“timescale 1ns / 1ps

module sd_controller(

)5

output reg cs, // Connect to SD_DAT[3].

output mosi, // Connect to SD_CMD.

input miso, // Connect to SD_DAT[@O].

output sclk, // Connect to SD_SCK.
// For SPI mode, SD_DAT[2] and SD_DAT[1] should be held HIGH.
// SD_RESET should be held LOW.

input rd, // Read-enable. When [ready] is HIGH, asseting [rd] will
// begin a 512-byte READ operation at [address].
// [byte_available] will transition HIGH as a new byte has been
// read from the SD card. The byte is presented on [dout].
output reg [7:0] dout, // Data output for READ operation.
output reg byte_ available, // A new byte has been presented on [dout].

input wr, // Write-enable. When [ready] is HIGH, asserting [wr] will
// begin a 512-byte WRITE operation at [address].
// [ready_for_next_byte] will transition HIGH to request that
// the next byte to be written should be presentaed on [din].
input [7:0] din, // Data input for WRITE operation.
output reg ready_for_next_byte, // A new byte should be presented on [din].

input reset, // Resets controller on assertion.

output ready, // HIGH if the SD card is ready for a read or write operation.

input [31:0] address, // Memory address for read/write operation. This MUST
// be a multiple of 512 bytes, due to SD sectoring.

input clk, // 25 MHz clock.

output [4:0] status // For debug purposes: Current state of controller.

parameter RST = 0;
parameter INIT = 1;
parameter CMDO = 2

.
)

37

parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter
reg [4:0]

CMD55 = 3;

CMD41 = 4;

POLL_CMD = 5;

IDLE = 6;

READ_BLOCK = 7;
READ_BLOCK_WAIT = 8;
READ_BLOCK_DATA = 9;
READ_BLOCK_CRC = 10;
SEND_CMD = 11;
RECEIVE_BYTE_WAIT = 12;
RECEIVE_BYTE = 13;
WRITE_BLOCK_CMD = 14;
WRITE_BLOCK_INIT = 15;
WRITE_BLOCK _DATA = 16;
WRITE_BLOCK_BYTE = 17;
WRITE_BLOCK_WAIT = 18;
WRITE_DATA_SIZE = 515;
BOOT_COUNTER_WAIT = 27'd100_000_000;
state = RST;

assign status = stat
reg [4:0] return_state;
reg sclk_sig = 0;

reg [55:0] cmd_out;

reg [7:0]

recv_data;

reg cmd_mode = 1;
reg [7:0] data_sig = 8'hFF;

€;

reg [9:0] byte_counter;
reg [9:0] bit_counter;

reg [26:0] boot_counter = BOOT_COUNTER_WAIT;
always @(posedge clk) begin
if(reset == 1) begin
state <= RST;
sclk_sig <= 0;

boot_counter <= BOOT_COUNTER_WAIT; //change back

end

else begin
case(state)

RST: beg
if(b

in

oot_counter == @) begin
sclk_sig <= 0;

cmd_out <= {56{1'b1}};
byte_counter <= 0;
byte_available <= 0;

38

ready_for_next_byte <= 0;
cmd_mode <= 1;
bit_counter <= 160;
cs <= 1;
state <= INIT;
end
else begin
boot_counter <= boot_counter - 1;

end
end
INIT: begin
if(bit_counter == @) begin
Cs <= 0;
state <= CMDO;
end
else begin
bit_counter <= bit_counter - 1;
sclk_sig <= ~sclk_sig;
end
end
CMDO: begin
cmd_out <= 56'hFF_40 00 00 00 00 95;
bit_counter <= 55;
return_state <= CMD55;
state <= SEND_CMD;
end

CMD55: begin
cmd_out <= 56'hFF_77_00_00_00_00_01;
bit_counter <= 55;
return_state <= CMD41;
state <= SEND_CMD;
end
CMD41: begin
cmd_out <= 56'hFF_69_00_00_00 00 01;
bit_counter <= 55;
return_state <= POLL_CMD;
state <= SEND_CMD;

end
POLL_CMD: begin
if(recv_data[@] == @) begin
state <= IDLE;
end
else begin
state <= CMD55;
end
end
IDLE: begin

39

end

if(rd == 1) begin
state <= READ_BLOCK;
end
else if(wr == 1) begin
state <= WRITE_BLOCK_CMD;
end
else begin
state <= IDLE;
end

READ_BLOCK: begin

end

cmd_out <= {16'hFF_51, address, 8'hFF};
bit_counter <= 55;

return_state <= READ_BLOCK_WAIT,

state <= SEND_CMD;

READ_BLOCK_WAIT: begin

end

if(sclk_sig == 1 & & miso == @) begin
byte_counter <= 511;
bit_counter <= 7;
return_state <= READ_BLOCK_DATA;
state <= RECEIVE_BYTE;

end

sclk_sig <= ~sclk_sig;

READ_BLOCK_DATA: begin

end

dout <= recv_data;

byte_available <= 1;

if (byte_counter == @) begin
bit_counter <= 7;
return_state <= READ_BLOCK_CRC;
state <= RECEIVE_BYTE;

end

else begin
byte_counter <= byte_counter - 1;
return_state <= READ_BLOCK_DATA;
bit_counter <= 7;
state <= RECEIVE_BYTE;

end

READ_BLOCK_CRC: begin

end

bit_counter <= 7;
return_state <= IDLE;
state <= RECEIVE_BYTE;

SEND_CMD: begin

if (sclk_sig == 1) begin

40

end

if (bit_counter == 0) begin
state <= RECEIVE_BYTE_WAIT;
end
else begin
bit_counter <= bit_counter - 1;
cmd_out <= {cmd_out[54:0], 1'bl};
end

end

sclk_sig <= ~sclk_sig;

RECEIVE_BYTE_WAIT: begin

end

if (sclk_sig == 1) begin

if (miso == @) begin
recv_data <= 9;
bit_counter <= 6;
state <= RECEIVE_BYTE;
end

end

sclk_sig <= ~sclk_sig;

RECEIVE_BYTE: begin

end

byte_available <= 0;
if (sclk_sig == 1) begin
recv_data <= {recv_data[6:0], miso};
if (bit_counter == 0) begin
state <= return_state;
end
else begin
bit_counter <= bit_counter - 1;
end
end
sclk_sig <= ~sclk_sig;

WRITE_BLOCK_CMD: begin

cmd_out <= {16'hFF_58, address, 8'hFF};
bit_counter <= 55;

return_state <= WRITE_BLOCK_INIT;

state <= SEND_CMD;

ready_for_next_byte <= 1;

end

WRITE_BLOCK_INIT: begin

end

cmd_mode <= 0;

byte_counter <= WRITE_DATA_ SIZE;
state <= WRITE_BLOCK_DATA;
ready_for_next_byte <= 0;

WRITE_BLOCK_DATA: begin

41

if (byte_counter == @) begin
state <= RECEIVE_BYTE_WAIT;
return_state <= WRITE_BLOCK_WAIT;
end
else begin
if ((byte_counter == 2) || (byte_counter == 1))
data_sig <= 8'hFF;
end
else if (byte_counter == WRITE_DATA_SIZE) begin
data_sig <= 8'hFE;
end
else begin
data_sig <= din;
ready_for_next_byte <= 1;
end
bit_counter <= 7;
state <= WRITE_BLOCK_BYTE;
byte_counter <= byte_counter - 1;
end
end
WRITE_BLOCK_BYTE: begin
if (sclk_sig == 1) begin
if (bit_counter == @) begin
state <= WRITE_BLOCK_DATA;
ready_for_next_byte <= 0;
end
else begin
data_sig <= {data_sig[6:0], 1'bl};
bit_counter <= bit_counter - 1;
end;
end;
sclk_sig <= ~sclk_sig;
end
WRITE_BLOCK WAIT: begin
if (sclk_sig == 1) begin
if (miso == 1) begin
state <= IDLE;
cmd_mode <= 1;
end
end
sclk_sig = ~sclk_sig;
end
endcase
end
end

assign sclk = sclk_sig;

begin

42

assign mosi = cmd_mode ? cmd_out[55] : data_sig[7];
assign ready = (state == IDLE);
endmodule

spi_send.sv

/*

Written by ctraweek in 2019 for 6.111 to control the Adafruit TFT display breakout
for the ST7789

*/

“default_nettype none
“timescale 1ns / 1ps

module spi_send#(

parameter SPI_CLOCK WAIT = 1) // This introduces further delays into the SPI
clock. In theory it would be possible to push the SPI clock too fast, and have
communication break down, but with our current clock setup this is not as much of a
problem so this number is quite low
(

input wire clk_100mhz, //the system clock input

input wire rst, //a reset signal

input wire isdata, //A binary value that signifies data or command mode

input wire [7:0] to_send, //The eight bit value that will be sent over SPI. The
expectation is that this value is held constant until the SPI signals that it's
done

input wire cs, //control for the chip select pin of the spi. Low means the chip
is selected. Because this module only really controls one piece of hardware at a
time, this is generally low, however, if you wanted to daisy chain devices you
would need multiple pins to selec the device

input wire send_now, //sends the data on to_send when high

output logic ready_to_send, //high when the module is finished sending the
current val and is ready to accept another val

output logic [3:0] spi_out, // should go directly to the output pins on the
FPGA: sck, MOSI, cs, d/c

output logic [7:0] currently sending //This is mostly here for legacy reasons
and is a nifty debug tool, signifies the val that is currently being sent

)5

logic mosi;

logic [3:0] bitcount;

logic [10:0] clk_count;

logic spi_clk_out;

logic ready_to_send_out;

logic sending; //high if a send is in process

43

assign spi_out = {spi_clk_out, mosi,cs,isdata};
assign ready_to_send = ready_to_send_out;

always_ff @(posedge clk_100mhz) begin
if(rst) begin
//set to the default vals
spi_clk _out <= 0;
mosi <= 1'b0;
bitcount <= 4'de;
clk_count <= 1'b@;
ready_to_send_out <= 1'bil;
sending <= 1'b@;
end else begin //normal operation
if(ready_to_send_out && send_now)begin //kick off the send
currently_sending <= to_send;
//reset the bit count
bitcount <=3'de;
//reset the clock--most devices read data on the rising edge
spi_clk_out <= 1'b@; //spi clock starts low
ready_to_send_out <= 1'b@; //prevents this block from running
multiple times per byte
clk_count = @;//give a full spi low to figure things out
sending <= 1'b1l; //announce that we're oging to send
mosi <= to_send[7]; //get MOSI (data out) set up with the first
value. The hardware we worked with expected things backwards, so that is what this
is written for
//mosi <= to_send[7]; //load the first value
end

//only runs whenever the spi is supposed to be changing
if ((clk_count == SPI_CLOCK_WAIT) && sending) begin //the logic here
allows you to slow the spi clock in the event that you're going "too fast" for your
device
spi_clk_out <= !lspi_clk_out;
if(spi_clk_out == 1) begin //means this is the falling edge, and
we're clear to change states so the correct state will be read on the rising edge
if(bitcount != 3'd7) begin //iterate through the bits you are
suppoesd to send
mosi <= to_send[6-bitcount];
bitcount <= bitcount + 1;
end else begin
//we've finished are are awaiting more data
mosi <= to_send[9];
ready_to_send_out <= 1'bl;
sending <= 1'b@;
end

44

end

clk_count <= 0;

end else begin

clk_count <= clk_count +1;

end
end

end

endmodule

test_image_feeder.sv

“default_nettype none
“timescale 1ns / 1ps

module test_image_ feedertt(parameter

)(

)5

MONO_WIDTH = 830,
MONO_HEIGHT = 415,
STEREO_WIDTH = 600,
STEREO_HEIGHT = 300,
screen_width = 240,
screen_height = 320,
msle = 26'd1000000
//sd params

//sd stuff

input wire sd_reset,
input wire sd_dat_o,
//other stuff

input wire clk_100mhz,
input wire rst,

//
/7
//
//
//
/7
//

//
//

//
//

input wire mono_stereo, //
input wire [2:0] pano_control, // select one of eight images
input wire [7:0] vert_angle, // current vertical angle
input wire [8:0] horiz_angle, // current horizontal angle

input wire clk_25mhz,

max width of a mon image

max height of a mono image
max width of a stereo image
max height of a stereo image
the width of the screen

the height of the screen

how many cycles is 1@ms

sd reset signal
sd data signal

clock

reset
toggle mono vs stereo

// sd clock

output logic [3:0] spi_out_©, spi_out_1, //four bits wide, connected to jd,

output logic sd_cmd,
output logic sd_sck,
output logic sd_dat_1,
output logic sd_dat_2,
output logic sd_dat_3

// calcualte max width, height, and size for address indexing

localparam MAX_WIDTH = MONO_WIDTH > STEREO_WIDTH ? MONO_WIDTH : STEREO_WIDTH;
localparam MAX_HEIGHT = MONO_HEIGHT > STEREO_HEIGHT ? MONO_HEIGHT :
STEREO_HEIGHT;
localparam MAX_SIZE = MONO_WIDTH * MONO_HEIGHT > 2 * STEREO_WIDTH *
STEREO_HEIGHT ?
MONO_WIDTH * MONO_HEIGHT : 2 * STEREO_WIDTH * STEREO_HEIGHT;

reg reset_buffer [3:0];

always_ff @(posedge clk _100mhz) begin
foreach (reset_buffer[i]) begin
reset_buffer[i] <= rst;
end
end

logic [15:0] sw_debounce;

logic check_sw;

logic sd_initialization_state; //true if the sd card is setting itself up,
basically a hacky way to divert into the sd state machine before the screen does
anything

enum reg[4:0]{

RESET, WAIT_FOR_READY, SEND, WAIT_FOR_SENT, UPDATE_ADDRESS, PLAYBACK

} state = RESET;

logic byte_available_debounce;

logic ready; //ready to write, signal from sd card

logic [31:0] address; //memory address for the read operation

logic rd; //read enable

logic [7:0] dout; //data output

logic byte_available; //a new byte is here

logic wr;

logic [10:0] inner_sector_counter; //keeps track of our place in the secotor

logic [10:0] sector_count; //keeps track of the number of sectors we've run
through, so we know when we're done reading an image overall

//sd constants

assign sd_dat_2 = 1;
assign sd_dat_1 = 1;
assign sd_reset = 0;

assign wr = 0;

//the sd controller iteslf
sd_controller sd(.reset(reset_buffer[3]),
.clk(clk_25mhz),
.cs(sd_dat_3),
.mosi(sd_cmd),
.miso(sd_dat_9),

.sclk(sd_sck),

.ready(ready),
.address(address),

.rd(rd),

wr(wr),

.dout(dout),
.byte_available(byte_available)

logic [7:0] data_in;
logic [7:0] data_out_left;
logic [7:0] data_out_right;
logic write_enable_a;
logic [18:0] im_pos_counter; //counts the position of the image
assign data_in = dout; //data in is always whatevers coming off the sd
//block mem itself
image_map_coe memgen(
.clka(clk_100mhz), .clkb(clk_100mhz),
.addra(addr_left), .addrb(addr_right),
.dina(data_in), .dinb(8'b0),
.douta(pixel_left), .doutb(pixel right),
.wea(write_enable a), .web(1'bo)

)s
//----- other vars----- //
enum reg [1:0] {

MONO = @,

STEREO = 1,

NONE = 2

} current_state = NONE;

// determine current width of image
logic [$clog2(MAX WIDTH):0] current_width;
assign current_width = current_state == STEREO ? STEREO_WIDTH : MONO_WIDTH;

reg valid_data = 1;

logic [10:0] dividend;
logic [8:0] divisor;
logic [17:0] divider_out;

logic [17:0] height_scaling, width_scaling;

// divide image width by 360, get 8-bit fraction

div_gen 0 divider(
.s_axis_dividend_tdata(dividend),
.s_axis_dividend tvalid(valid_data),

47

.s_axis_divisor_tdata(divisor),
.s_axis_divisor_tvalid(valid_data),
.m_axis_dout_ tdata(divider_out),
.aclk(clk_1e@mhz)

)

// when triggered, calculate height and width as values with 8-bit fraction
reg [4:0] divider_counter = 27;

always_ff @(posedge clk _100mhz) begin
if (reset_buffer[2]) begin
current_state <= NONE;
end else begin
if (current_state != mono_stereo) begin
current_state <= mono_stereo ? STEREO : MONO;
divider_counter <= 0;
end
end

if (current_state != NONE) begin
case (divider_counter)
0: begin
dividend <= current_state == MONO ? MONO_WIDTH :
STEREO_WIDTH;

divisor <= 360;
divider_counter <= 1;
end
2: begin
dividend <= current_state == MONO ? MONO_HEIGHT :
STEREO_HEIGHT;
divisor <= 180;
divider_counter <= 3;
end
22: begin

width_scaling <= divider_out;
divider_counter <= 23;

end

25: begin
height_scaling <= divider_out;
divider_counter <= 26;
valid_data <= 0;

end

27: begin end
default: divider_counter <= divider_counter + 1;
endcase
end
end

48

logic [17:0] horiz_count, vert_count, vert_index;
logic [$clog2(MAX_WIDTH):0] col_count;
logic [$clog2(MAX_HEIGHT):0] row_count;

logic [17:0] next_horiz_angle, scaled _horiz_angle;
logic [19:0] multiplied_horz_pos;

// scale horizontal angle to image
always_ff @(posedge clk _100mhz) begin
scaled_horiz_angle = { 2'b@, horiz_count } + { horiz_angle, 2'b0 };

if (scaled_horiz_angle[17:2] >= 360) begin
next_horiz_angle = scaled_horiz_angle - (360 * 4);
end else begin
next_horiz_angle = scaled_horiz_angle;
end

multiplied_horz_pos <= next_horiz_angle * { 2'b@, width_scaling };

if (multiplied_horz_pos[19:10] >= current_width) begin
col count <= multiplied_horz_pos[19:10] - current_width;
end else begin
col _count <= multiplied_horz_pos[19:10];
end
end

// scale vertical angle to image
logic [17:0] scaled_vert_angle;
logic [21:0] multiplied vert_pos;

always_ff @(posedge clk_100mhz) begin

scaled_vert_angle = {{4{vert_index[17]}}, vert_index } + { vert_angle,
4'b0 };
multiplied_vert_pos <= scaled_vert_angle * { 4'b@, height_scaling };
row_count <= multiplied_vert_pos[21:12];
end

// interface with screens
logic [7:0] pixel_left, pixel_right;
logic [$clog2(MAX_SIZE):0] addr_left, addr_right;

reg image _done = 0;
logic read_ready_left, read_ready_right;

logic image_ready_left, image_ready_right;

screen_interfacer#(

.ms10(ms10),
.screen_width(screen_width),
.screen_height(screen_height)
) left(
.clk_1eemhz(clk_1@0mhz), .rst(reset_buffer[0]),
.pixel _in(pixel_left), .image_done(image_done),
.image_ready(image_ready_left), .pixel ready(read_ready_left),
.spi_out(spi_out_0)
)

screen_interfacert(
.ms10(ms10),
.screen_width(screen_width),
.screen_height(screen_height)
) right (
.clk_100mhz(clk_1@0mhz), .rst(reset_buffer[1]),
.pixel _in(pixel_right), .image_done(image_done),
.image_ready(image_ready_right), .pixel ready(read_ready right),
.spi_out(spi_out_1)
)3

// image control signals

logic image_ready, read_ready;

assign read_ready = read_ready_left && read_ready_right;
assign image_ready = image_ready_left && image_ready_right;

logic [32:0] large_pano_start;//= 32'h77800,//32'h57800,//9 //32"'h400
logic [16:0] large_pano_number_of_sectors;//= 10'd673 //10'd672

logic [2:0] pano_control buffer;

// store static offsets for images in sd
reg [0:7][31:0] pano_start = '{

32'h77800,

32'hCBA©O,

32'h11FCo0,

32'h177C00,

32'h1CBE®©9,

32'h223E00,

32'h27BE0O,

32'h2D3EG0
}s
reg [0:7][16:0] pano_sectors = '{
10'd673,
10'd673,
10'd704,

50

10'd673,

10'd704,
10'd704,
10'd704,
10'd673
}s
always_ff @(posedge clk_100mhz) begin
if (rst || (pano_control buffer != pano_control)) begin
addr_left <= 0;
addr_right <= 0;
horiz_count <= 0;
image_done <= 0;
vert_count <= 0,
vert_index <= -480;

end

end

//added for sd: load image into bram

sd_initialization_state <= 1;

state <= RESET;

pano_control_buffer <= pano_control;

check_sw <= 1;

large_pano_start <= pano_start[9];

large_pano_number_of_sectors <= pano_sectors[0];

else if (check_sw) begin

//check for switch changes. If this is the case we'll want to jump back

into sd initialization (after we've made the proper changes)

check_sw <= 0;
large_pano_start <= pano_start[pano_control_buffer];
large_pano_number_of_sectors <= pano_sectors[pano_control_buffer];
state <= RESET; //go through the whole write to screen process again
else if (sd_initialization_state == 1) begin
//diversion into sd state machine
case (state)
RESET: begin

im_pos_counter <= 0; //starts at the first pixel in the image

address <= large_pano_start;

state <= WAIT_FOR_READY;

rd <= 0;

inner_sector_counter <= 0;
addr_left <= 0;
addr_right <= 0;
sector_count <= 0;
byte_available_debounce<=0;
end
WAIT_FOR_READY: begin
if (ready) begin //ready to read a byte

51

rd <= 1; //send the thing
state <= WAIT_FOR_SENT;
end
end
WAIT_FOR_SENT: begin
write_enable_a <= byte_available;
if (inner_sector_counter == 10'd512) begin
state <= UPDATE_ADDRESS;
inner_sector_counter <= 0;
end
else if (byte_available)begin
if (!byte_available_debounce) begin
//save things to ram
im_pos_counter <= im_pos_counter + 1;
inner_sector_counter <= inner_sector_counter + 1;
byte_available_debounce <= 1;
end
end else if (!byte_available && byte_available_debounce) begin
//must happen every time
addr_left <= addr_left + 1;
byte_available_debounce <= 9;
end
end
UPDATE_ADDRESS: begin
write_enable_a <= 0; //make sure we're not writing anymore
rd <= 0@; //reset rd so we're ready for next time
if (sector_count < large pano_number_of_sectors-1) begin //flip
to next address
address <= address + 32'd512;
sector_count <= sector_count + 1;
state <= WAIT_FOR_READY;

end else begin //otherwise its time to move on
state <= PLAYBACK;
addr_left <= 0;
addr_right <= 0;
end
end
PLAYBACK: begin
//no longer go through the state machine, leave the bram be
sd_initialization_state <= 0;
write_enable_a <= 0;
end
endcase
end else if (image_ready) begin
// image is ready, fetch next bit
addr_left <= 0;

52

addr_right <= 0;
horiz_count <= 1; // should probably be zero
vert_count <= 0;
vert_index <= -480;
image_done <= 0;
end else if (read_ready && vert_count < screen_height) begin
addr_left <= (row_count * current_width) + col count;

// calculate the right screen address
if (current_state == STEREO) begin
addr_right <= (row_count * current_width) + col_count +
STEREO_WIDTH * STEREO_HEIGHT;
end else begin
addr_right <= (row_count * current_width) + col count;
end

if (horiz_count == (screen_width-1)) begin //begin a new row
horiz_count <= 0;
vert_count <= vert_count + 1;
vert_index <= vert_index + 3;
end else begin
horiz_count <= horiz_count + 1;

end
end else if (vert_count == screen_height) begin
image_done <= 1;
end
end
endmodule
Utility

coe_to_hex.py

def converter():

print("beginning")

readingline = 3

res = ""

F = open("usable coes/hoverla.coe", "r"

new_file = open("usable_hex/hoverla hex.txt", "w")

for line in F:

if("0" in line or "1" in line):

res+=(str(hex((int(line[0:4],2))))[-1])
res+=(str(hex((int(line[4:8],2))))[-11)

53

new_file.write(res)

clock_divider.sv

“timescale 1ns / 1ps
“default_nettype none

module clock_divider#(
parameter FREQUENCY = 65_000_000,
TARGET_FREQUENCY = 153600

) (
input wire clock, reset, // control signals
output logic divided_clock // short pulse only on after target frequency
cycles
)
localparam COUNTER = FREQUENCY / TARGET_FREQUENCY;
reg [$clog2(COUNTER): @] counter = 0;
always_ff @(posedge clock) begin
if (reset) begin
counter <= 0;
end else begin
if (counter == COUNTER - 1) begin
divided_clock <= 1;
counter <= 0;
end else begin
divided_clock <= 0;
counter <= counter + 1;
end
end
end
endmodule

debounce.sv
“default_nettype none

/**
* parameterized debouncer module
* Takes in a bouncy input and only returns the output once deemed
* stable for 0.01 seconds.
*/
module debounce#(
parameter COUNT = 1 000 000, // how long to debounce

SIZE = 1 // the size of the value to debounce

)(
input wire clock, //clock in
reset, //reset in
input wire [SIZE - 1: 9] bounce, //raw input to the system
output logic [SIZE - 1: @] clean //debounced output
)
logic [$clog2(COUNT) - 1:0] count; // is 2@ bits enough? yes, but barely
logic [SIZE - 1: @] old; // parameterized old value
always_ff @(posedge clock) begin
// reset?
if (reset) begin
count <= 16'b0;
clean <= 1'bo;
end else begin
if (old != bounce) begin
count <= 16'bo;
end else begin
//
if (count >= COUNT - 1) begin
clean <= old;
end else begin
count <= count + 1;
end
end
old <= bounce;
end
end
endmodule

display_8hex.sv

“timescale 1ns / 1ps

LITT1TTT1T7 7777777777777 77 77777777 777777771777777777717777777777717717717777177

// Engineer: g.p.hom

//
// Create Date: 18:18:59 04/21/2013
// Module Name: display_8hex

// Description: Display 8 hex numbers on 7 segment display

//

[ITTT1TTT77 0777770777077 7177777777777 7777777777 777777777777777777777777777777

55

module display_ 8hex(
input wire clk_in,
input wire [31:0] data_in, // 8 hex numbers, msb first
output reg [6:9] seg_out, // seven segment display output
output reg [7:0] strobe_out // digit strobe

// system clock

)s
localparam bits = 13;
reg [bits:@] counter = @; // clear on power up
wire [6:0] segments[lS @0]; // 16 7 bit memorys
assign segments[@] = 7'b10@_0000; // inverted logic

assign segments[1] = 7'bl111_1001; // gfedcba
assign segments[2] = 7'b010_0100;

assign segments[3] = 7'bo1ll_0000;
assign segments[4] = 7'b001_1001;
assign segments[5] = 7'bool_0010;
assign segments[6] = 7'bo00_0010;
assign segments[7] = 7'bl11_1000;
assign segments[8] = 7'bo00_0000;
assign segments[9] = 7'b001_1000;
assign segments[10] = 7'b000_1000;
assign segments[11] = 7'b00o_0011;
assign segments[12] = 7'b@le_0111;
assign segments[13] = 7'b010_0001;
assign segments[14] = 7'b000o_0110;
assign segments[15] = 7'bo0o_1110;

always_ff @(posedge clk_in) begin
// Here I am using a counter and select 3 bits which provides
// a reasonable refresh rate starting the left most digit
// and moving left.
counter <= counter + 1;
case (counter[bits:bits-2])
3'bo00: begin // use the MSB 4 bits
seg out <= segments[data_in[31:28]];
strobe_out <= 8'b0111_1111 ;
end
3'b001: begin
seg out <= segments[data_in[27:24]];
strobe_out <= 8'b1011_1111 ;
end

3'b010: begin

seg_out <= segments[data_in[23:20]];
strobe_out <= 8'b1101_1111 ;
end
3'b011: begin
seg_out <= segments[data_in[19:16]];
strobe_out <= 8'b1110_1111;
end
3'b100: begin
seg_out <= segments[data_in[15:12]];
strobe_out <= 8'b1111_0111;
end
3'b101: begin
seg_out <= segments[data_in[11:8]];
strobe_out <= 8'b1111_1011;
end

3'b110: begin
seg_out <= segments[data_in[7:4]];
strobe_out <= 8'b1111 1101;
end
3'b111: begin
seg out <= segments[data_in[3:0]];
strobe_out <= 8'b1111 1110;
end

endcase
end
endmodule

synchronize.sv

“timescale 1ns / 1ps
“default_nettype none

module synchronize #(parameter NSYNC = 3) // number of sync flops.
(input wire clock, in,
output reg out);

reg [NSYNC-2:0] sync;

always_ff @ (posedge clock)
begin
{out,sync} <= {sync[NSYNC-2:0],in};
end
endmodule

must be

57

