
1

Nintendo Entertainment System Hardware Emulation

Daniel Klahn, Sidne Gregory, Israel Bonilla

6.111 Fall 2019

2

Table of Contents

1. Abstract 5

2. Motivation 5

3. Overall System Architecture 6

4. CPU (Israel) 7
System Overview 7
OpCode Decoding 7
Arithmetic and Logic Unit 8
Registers and Memory 9
Cycle State Machine 10
Support Modules 11
Testing and Simulation 12

5. PPU - Pixel Processing Unit (Daniel and Sidne) 14
Overview (Sidne and Daniel) 14
State Calculator (Daniel) 15

Visible Scanlines 15
Postrender and Vblank Scanlines 16
Prerender Scanline 16

VRAM (Video RAM) (Sidne and Daniel) 17
VRAM Module (Sidne) 17

Object Attribute Memory (Daniel) 18
Secondary OAM (Daniel) 18
Memory Fetcher (Daniel) 19
Background Renderer (Sidne) 19
Sprite Renderer (Sidne) 20
Pixel Mux (Sidne) 21
Palette RAM (Daniel) 21
Frame Buffer (Daniel) 22
Color Mapper (Daniel) 23
VGA (Daniel) 23
Testing and Simulation (Sidne) 23

6. Summary 24
Insights 24
Improvements/Next Steps 25

3

Appendices 26
Block Diagrams 26

Diagram 1 - Overall PPU 26
Diagram 2 - PPU Memory 27
Diagram 3 - PPU Pixel Rendering 28
Diagram 4 - PPU Video Output 29
Diagram 5 - main_6502 30

Figures 31
Figure 1 - PPU Pattern Tables 31
Figure 2 - Attribute Bytes 32
Figure 3 - PPU VRAM 33

Verilog 34
CPU Modules 34

cpu_constants.sv 34
alu_6502.sv 35
clock_gen6502.sv 38
control_decode.sv 39
cpu_demo.sv 40
implied_handler.sv 41
mem_write.sv 42
memory_controller.sv 42
reg_sel.sv 42
main_6502.sv 43
alu_tb.sv 49
clk_gen_tb.sv 51
main_6502_tb.sv 51

PPU Modules 52
Top.sv 52
PPU.sv 56
PPUCounter.sv 60
PPUStateCalculator.sv 61
OAM.sv 64
SecondaryOAM.sv 68
VRAM.sv 70
VRAMSpoofer.sv 72
Background.sv 82
Sprite_pixels.sv 85
Pixel_mux.sv 91

4

PaletteRAM.sv 92
FrameBuffer.sv 93
PPUColorMapper.sv 95
VGA.sv 97
PPUTypes.sv 99

Sources 102

5

1. Abstract

In a multitude of industries, companies often use legacy hardware. Legacy hardware is any

hardware that has been deprecated by its manufacturer but continues in widespread use. While new

hardware inevitably presents more capability, it will likely remain unproven until the end of the device’s

product cycle. Therefore, it is often in the best interest of the end-user to continue using legacy hardware.

When legacy systems eventually fail, replacements can be difficult to source, either as a result of rarity,

price, or both. Fortunately, the synthesis of deprecated hardware is feasible with the use of an FPGA. The

Nintendo Entertainment System (NES) Hardware Emulation project presents an opportunity to employ

that functionality.

The NES, manufactured by Nintendo from the mid-1980s to mid-1990s, helped repopularize

video games in North America. 20 years later, the hardware is inevitably becoming more scarce, and will

only become more scarce with time. Emulators do already exist, but they often fail to capture the true

behavior of an NES, as they are adaptations of modern hardware to the older software. With the FPGA,

we worked to reproduce the NES hardware as faithfully as possible as an exercise in legacy hardware

emulation

2. Motivation

The motivations behind this project were to take on something that sounded crazy, but seemed

doable given the time we had and the skills that we had learned in class. Implementing one of the most

iconic game systems of all time in just a few weeks was definitely challenging, but it was a project that

we were all really excited about. In addition to having a really interesting end product, we felt the project

offered a really good learning opportunity by allowing us to implement a very basic processor and very

basic graphics unit to gain insight into how modern systems work and also into the history of how

hardware has developed and how the constraints of the time (primarily memory) dictated the design

decisions that were made when creating the NES.

6

3. Overall System Architecture

Building an NES emulator requires two main components: the 2A03 (a modified MOS 6502)

CPU and the 2C02 PPU (this device is best thought of as a primitive video card). Conjoining the two are

two buses. The address bus provides a means for the CPU to interface with all I\O devices and the PPU

via memory mapping, and the data bus facilitates the actual data transfer between them. For this project,

our implementation was able to construct the PPU and 6502 in separate states, with the PPU rendering

frames and the CPU ready to compute the majority of its instruction set.

7

4. CPU (Israel)

System Overview

At the core of the Nintendo Entertainment System (NES) is the Ricoh 2A03, a modified MOS

Systems 6502 processor. From a modern perspective, this processor is rather primitive, with a 2 MHz

clock in NTSC markets and no pipelining. However, the 6502 would redefine home computing through

the extensive use of a state machine. The 6502 is an 8-bit, little-endian processor with 3 main registers,

namely the accumulator, x-index register, and y-index register. Aside from those three, the 6502 has a few

support registers for internal use, which are the program counter. the status flag, and the stack pointer. All

registers are 8 bit except for the program counter, which holds 16 bits. In normal operation, the 6502

would receive instructions through its 8 data bus pins (in/out) resulting from a request via its 16 address

pins (out only). The value from the address pins is either the value in the program counter or an address

from an instruction. The 6502 instruction set consists of roughly 150 instructions, with 13 different

addressing modes and 56 different possible operations. The addressing modes will be discussed in further

detail in sections (b) and (e).

In order to emulate this system, several control signals needed to be generated, resulting in three

main modules and six supporting modules for auxiliary control signals. Similar to the actual 6502, one of

the most important modules is dedicated to decoding the received instructions from a raw opcode.

Obeying von Neumann architecture, the 6502 also had an Arithmetic\Logic Unit (ALU) for computations

like add with carry and bitwise or. Lastly, the the main 6502 verilog module encodes a Mealy state

machine consisting of 7 states based on clock cycle. Integrating these modules together, the result is a

largely cycle-accurate 6502, missing only the indirect addressing mode (which largely went unused by the

NES), relative addressing mode, and decimal mode (which was not present in the 2A03 variant used by

the NES).

OpCode Decoding

In order to achieve accurate results and timings, the opcodes needed to be decoded into an

addressing mode for the controller and an operation for the ALU. This module takes advantage of the

encoding scheme employed by most of the 6502 instruction set. Decomposing the byte-sized instruction

8

into individual bits and labeling them as “aaabbbcc,” there are three main divisions of the instruction set

based on the value of “cc.” Within each subset, “aaa” specifies the operation, and “bbb” specifies the

addressing mode. For example, the opcode 10101001 ($A9) specifies “LDA immediate,” 6502 Assembly.

In this case, cc = 01, which asserts that aaa = 101 calls for a load accumulator operation and bbb = 010

calls for the “immediate” addressing mode (meaning the next byte that the processor receives over its data

bus pins is the value to be operated upon by the ALU). Referring to any 6502 instruction set chart, we can

confirm that 10101001 in fact refers to LDA in the immediate addressing mode.

In order to implement a decoder, we built a LUT on case statements regarding the bit contents of

each opcode. The exceptions to the above encoding scheme are hard-coded in, since there are relatively

few. In order to encode the results, the operations are sorted alphabetically by their name in 6502

assembly language and assigned decimal numbers accordingly. The addressing modes are treated the

same way. Refer to cpu_constants.sv for the addressing mode and operation values.

Arithmetic and Logic Unit

The 6502 ALU is relatively simple, with the most complicated instructions to implement being

the rotate commands and the arithmetic operations. The vast majority of commands simply pass results

through our implementation, since they involve transferring information from one register to another, or

storing a value in a register. For this purpose, the convention was adopted that the first operand used by

the ALU (called operand A) would be sourced strictly from a register, and the second would be sourced

specifically by memory input. This design choice did result in a challenge from the bit shifting

commands, which have the ability to write directly to memory. By writing to memory, the 6502

contradicts its usual routine of writing results to the accumulator register. We overcame this obstacle by

creating a register to store memory data for use by the ALU.

Add with carry and subtract with carry are made more complicated by the carry and overflow

flags. The formula for add with carry is as follows: A + M + C → A, meaning that the accumulator is

added to the memory data, and the carry flag’s value is then added to that, storing the result in memory.

The carry allows the processor to work with larger numbers (albeit slowly) than 8 bit ones. The carry flag

is easily set by evaluating the intermediate result in a register and then setting the new carry to be the

same value as the last digit of this register. Setting the overflow flag is much more complicated, obeying

the following logic: V = (!A[7] & !B[7] & C) | (A[7] & B[7] & !C), where the C flag had already been set

by the addition. . Subtract with carry behaves as one would expect: A - M - C → A. The carry is set

according to the following logic: C = (A > B), and the overflow flag obeys the same rule as addition.

9

Registers and Memory

As above, the 6502 has 3 primary registers. The accumulator register is generally where the result

of an operation is stored after its completion (the exception being bit shifts and bit rotations, which can

directly write to memory depending on addressing mode). The add with carry, subtract with carry,

exclusive or, and, and inclusive or always use the accumulator as one operand, the other operand coming

from memory or an input value in the case of the immediate addressing mode. The other two main

registers are the indexing registers X and Y. Indexing registers are used to refer to a memory location with

an offset from the requested location in memory. For instance, in the absolute addressing mode, after the

first cycle, which establishes which operation and addressing mode will be used in this instruction cycle,

the next two cycles are used to receive a specific address in memory to either read or write data. The

absolute,x-index or absolute,y-index addressing modes behave in exactly the same way, except the

contents of the X or Y registers are added to the requested address. This addition is implemented with

carry, which will add an extra cycle to the instruction time. As an example, if the X register holds the

value $FF, and the requested address is $0001, the instruction will take an extra cycle to execute (and the

real world 6502 will spend a cycle accessing the wrong address since the carry is added in an extra cycle)

and will access location $0100. These three registers are the ones that are most directly controlled by the

user.

There are three other registers of note documented within the device. The first of these is a unique

16-bit register. This register is called the program counter. The function of the program counter is to

sequentially access points in memory in order to receive the next instruction. For each clock cycle, the

program counter increments by one. A few inputs can alter the contents of this register, namely jumps and

interrupts. Jump instructions merely assign a new value to the program counter, while interrupts come

from specific input pins that necessitate storing the old program counter value, processor status, and

accumulator values.

The processor status bits are another important register which are largely controlled by the ALU,

although set and clear instructions exist for all of the bits contained. These bits signal specific information

about results from ALU computation. These bits are symbolized by NV-BDIZC. The dash is unused. N

refers to when the signed two’s complement interpretation of the result is negative. V is the infamous

overflow bit, which simply states when the result is out of the range of -128 to 127, which is the range an

8-bit two’s complement number can occupy. B is the break flag, which is tripped by the BRK instruction.

10

D is the decimal flag, which is unused by the NES and therefore this project. I is the interrupt flag, which

is set on non-maskable interrupt (NMI) or interrupt request (IRQ). Z is zero, which occurs when the result

is zero. C is the carry flag. Each of these flags are used to control various branching instructions.

 The last of these registers is the stack pointer. The 6502 devotes its page of memory to a LIFO

stack, meaning all memory locations from $0100 from $01FF represent the 6502 stack. The stack pointer

selects where in the stack to write, initializing with the value $FF. It decrements when objects are stored

in the stack, and increments when items are retrieved from the stack.

Another special memory location is known as the zeropage. The NES considers the high byte of a

memory address to be the page of memory being accessed. Therefore, location $00AB is zeropage, and

$0NAB would be Nth page. The zeropage can serve as extra registers for use by the processor, since

accessing and writing to the zeropage is a full cycle faster than accessing and writing in the absolute

mode, since the processor can assume the high byte is $00 on the zeropage.

In our implementation, there exists a few other registers used to aid in the control of the

processor. The first of these is the M register, which was used to hold memory inputs for operation by the

ALU in the case of bit shifts targeted at memory. The other two are the ADDR_L and ADDR_H register,

which hold on to the address bytes from input data. These are later used to access the desired location for

read\write.

Cycle State Machine

In the SystemVerilog implementation of the 6502, we opted to create a 7-state state machine with

relatively simple transition logic. The most obvious way to enforce cycle accuracy was to count specific

cycles and transition at exactly the right time. Controlling how many cycles should occur until the next

instruction receipt ended up being a major hurdle, resulting in lengthy logic statements in each state.

Generally, different addressing modes for an operation require a different number of cycles. This is not

particularly complicated, since we can simply case on what addressing mode has been specified by the

instruction thanks to the decoder module. When doing this, however, we must account for what operation

has been specified as well. Bit shifts to memory in the absolute addressing mode take 6 cycles, while most

other operations take only 3 in this addressing mode. Indexed addressing modes on the same operation

can take a different number of cycles based on if the address calculation requires a carry. In summation,

these things together require somewhat convoluted code to capture the function of. This will be elaborated

on further in the ​Insights​ section.

11

Support Modules

In order to create a functioning 6502 replica, it was deemed necessary to add a few extra control

signals. The first of these extra signals is the PC flag. When reading from a specific memory address, the

6502 needs to send that address out on the address pins. When it finishes this instruction, it needs to

return to sending the value in the Program Counter for the next instruction. This was accomplished with

the 1-bit PC flag. Another module created to aid in the control of the processor was a controller for the

implied addressing mode. The implied addressing mode has a variety of possible outcomes, encapsulating

all instructions for which the operand to be used is specified by the operation name. For example, TAX,

“transfer A to X,” implies that the A register must be the input to this operation. This module cased on

several instructions for which the result would take longer than two cycles, taking the requested operation

as input and providing three signals as output. These three signals were used in transition logic to decide

whether to continue increasing the cycle counter or to go back to cycle zero.

Since the design convention of our ALU module specifies that its first operand is to come from a

register (except in those cases where the input must come from memory), a module was needed to select

which register would be pulled from. This module cased on operations that specified use of registers other

than the A register, since using the A register is most common, thereby reducing the amount of code.

In order to mimic the NES’ system clock architecture, a simple module was drawn up to divide an

input clock signal by 12. This was accomplished with a simple counter. When the counter reaches the

specified divisor, the outgoing signal is inverted and the counter is reset.

The instructions for bit shifts (ASL, LSR, ROL, and ROR), when writing to memory, are

particularly slow. The module mem_write was used to hold the cpu from going to cycle 0 until cycle 6,

which is when those instructions should terminate.

Lastly, the NES memory map incorporates several mirrored addresses. A module was devised to

“demirror” addresses aimed at internal RAM. This was accomplished by recognizing that in each of the 4

mirrored quadrants, the low byte of the address would be the same. Since the 6502 only had 2kB of

internal RAM, we could keep within the first quadrant, replacing the first 5 bits of the address high byte

with 0s when the raw address was below location $2000. It was further necessary to do this demirroring

on the program counter in case the program counter attempted to access internal memory.

12

Testing and Simulation

In order to prove out our SystemVerilog code, several testbenches were written to verify the

behavior of each individual module. Most importantly are the testbenches for the main 6502 module, as

verifying behavior of smaller combinational modules like the ALU and opcode decoder were simple and

easy to fix in the event of failure. The main module was much more complex, with timing constraints to

obey and a lot more signals heading in and out of the module. In order to validate the 6502 behavior, we

used the online Easy6502 emulator, which is cycle accurate and reads out the values of each of the

registers and several memory locations. Then, in the testbench, machine code was fed in at intervals

mimicking possible NES behavior. An instruction would be sent in, along with values specifying either an

operand or memory location. Then, if a memory location was called, we checked the requested address to

see if the processor was requesting the right location. Lastly, we checked to see if the result each time

matched our expectation in the number of cycles required by that instruction. The below waveform

presents a nice example of a few addressing modes in action:

First, reset (rst) is deasserted and the clock initializes (note the program counter was initialized at $FF00

to avoid reading from internal memory) . The data_in reads $A9 on the next positive edge, meaning the

processor should load the accumulator with an immediate value. The data_in value switches to $67,

signifying the value that ought to be stored in the accumulator. Notice that on the negative edge of the

same clock cycle, the value $67 propagates to the accumulator. The program counter reads $FF02 at the

end of this instruction, matching the cycle timing of the LDA IMMEDIATE instruction. The next input is

$85, which refers to STA zeropage (store value of A in the zeropage). The next data point tells us to store

at location $0001 since it is a zeropage address. This value is held since the processor needs a cycle to

receive this location, and then another cycle to actually write to the location. We see the rw flag go low

(write is considered an active low on the 6502). The next instruction is $A6, which is LDX ZEROPAGE.

13

The data_in line reports $01, telling the processor to access the data from location $0001. Since this

location is within the range $2000 to $0000, this is found in internal memory, which we generated as a

BRAM with a write width of 8 bits and a depth of 2048. We know the execution of this instruction was

successful because the X register then receives the value $67, exactly what was stored at that location

from a different register. Other “programs” can be written in this manner. Based on this testbench (and

many other iterations of similar programs), successful integration of this module with a working PPU

would have favorable results.

14

5. PPU - Pixel Processing Unit (Daniel and Sidne)

Overview (Sidne and Daniel)

The Pixel Processing Unit (PPU) is the NES equivalent of a graphics card and is responsible for

generating the 256x240 video output signal. A full block diagram of our implementation of the PPU can

be found in ​Diagram 1​.

Communications between the PPU and CPU mainly occur during the PPU’s VBlank period.

During this time the CPU can write to the PPU’s memory in order to change the background or sprites for

the next frame. To change the background there are a few specific things that the CPU can change in

memory.

The background that gets sent to the display from the PPU is actually made up of multiple

separate components in memory that the PPU must quickly fetch and stitch together in order to output a

coherent display. The first component of the background are nametables. These are 32x30 matrices of tile

indexes that tell the PPU which pattern table tiles, which will be discussed later, correspond to which

location on the screen. The NES has enough memory to internally store up to two nametables which can

be overlapped to create interesting background affects or laid out next to each other in different

orientations to allow for scrolling.

 Once the name table data has been retrieved and a tile index determined that tiles pattern table is

retrieved from the memory. While sprites do not have nametables, each sprite does have a tile index

stored with it in the OAM which determines which pattern table the sprite tile uses. The pattern tables are

two 8x8 bit sections of memory per tile that when overlayed on top of each other for a bit depth of 2 give

a piece of the color information for each pixel in the corresponding tile. The function of the pattern tables

is explained visually in ​Figure 1​ of the appendices.

The other portion of the pixel color information is determined by its attribute byte. A single

attribute byte is shared by an area of 4x4 tiles which is then split into four sections of 2x2 tiles. Each pair

of bits in the attribute byte are assigned to one of the 2x2 sections. These two bits determine which

4-color palette the section uses, so each area of 2x2 tiles displayed on the screen has to use the same color

palette. This will be explained further in the Color Palette section.

15

All of these bits and pieces of information must be fetched from memory by the PPU and

correctly combined together into display data for every pixel of every tile on every visible scanline in

each frame with our frame rate of 60 frames/second.

State Calculator (Daniel)

The PPU outputs 256x240 video at 60 frames per second. In order to do this, it runs a sequence of

memory accesses in sync with the video generation. The PPUStateCalculator module serves to keep track

of where the PPU is in this progression and to help determine what it should be doing on every cycle.

In this implementation, for every frame that is generated, the PPU runs through 262 vertical

scanlines each of which has a duration of 341 PPU clock cycles. In this implementation, scanlines 0

though 239 (inclusive) are visible scanlines in which on screen pixels are generated. During these

scanlines, one pixel is generated every clock cycle. Scanline 240 is a postrender scanline in which the

PPU idles and does not access memory. After the postrender scanline, the PPU enters the vblank period

for 20 scanlines (scanlines 241 through 260, inclusive). During this phase, the PPU asserts its vblank

output which would interrupt the CPU in a full implementation. Lastly, the PPU performs one prerender

scanline in which no video is generated, but data for the next scanline is prefetched. For more detail on

the specific cycle progression of the visual and prerender scanlines, see Figure 5.1 below.

Visible Scanlines

During the visual scanline, the PPU is constantly fetching background tiles just in time for them

to be drawn. Each memory access takes two clock cycles, so every eight cycles, the PPU fetches four

bytes from VRAM:

- 1 nametable byte (pattern table tile index)

- 1 attribute byte (color data)

- 2 pattern table bytes (from the tile given by the nametable byte)

These four bytes contain the data for the PPU to draw eight pixels on the screen. Therefore, every

eight cycles, the PPU obtains enough information to draw eight pixels and can keep up with drawing one

pixel every clock cycle. Each visible scanline contains 256 visible pixels which translates to 32 tiles. This

16

means that during the visible scanline, the PPU repeats this eight-cycle background tile fetch pattern 32

times which takes 256 cycles in total.

On cycle 256, once the PPU is no longer rendering visible pixels and is in its horizontal blanking

period, it starts prefetching the image data for the sprites that appear on the next scanline. Although 64

sprites can be held in the PPU’s internal Object Attribute Memory (OAM), the NES can only display

eight sprites on any given scanline. This is due to the fact that the PPU only has time to prefetch data for

eight sprites before it must once again start fetching background data. It is also interesting to note that

although sprite tile fetches take the same number of cycles (eight) as background tile fetches, no

nametable or attribute table data is fetched because the sprite tile index and color information is held

within OAM. Because of this, in this implementation, the PPU does not access VRAM during the first

four cycles of each sprite prefetch and only fetches two pattern table bytes.

Once all of the tile data for the sprites on the next scanline has been fetched from VRAM, the

PPU prefetches the first two tiles for the next scanline. The reason the PPU fetches these tiles is so that it

can support background scrolling. Background scrolling is not implemented in this version of the PPU,

but this prefetching was included to maintain the original memory access progression found in the

original NES. The background tile prefetches start at cycle 320 and follow the same progression as the

previously discussed background tile fetches

Postrender and Vblank Scanlines

During the postrender and vblank scanlines, the PPU idles and does not access VRAM or draw

pixels to the screen. The original NES used the vblank period as an opportunity to load new data into the

OAM. In order to be able to update all 256 bytes of OAM memory, the CPU had a special mode called

Direct Memory Access (DMA) that took some shortcuts when addressing into the PPU so that the entire

OAM could be filled within the vblank period. However, because the CPU and PPU are not interfaced,

this is not a feature of this implementation.

Prerender Scanline

During the prerender scanline, no pixels are drawn to the screen, so no real-time background tile

fetching is necessary. However, pixels will be rendered on the next scanline, so the sprite prefetch and

background tile prefetch phases still happen (see Figure 5.1 below).

17

Figure 5.1: Cycle progression of the prerender and visual scanlines

VRAM (Video RAM) (Sidne and Daniel)

VRAM Module (Sidne)

Although unused in our current implementation the VRAM module is an important part of the

overall NES system. This module instantiates a BRAM that can be written to from the control signals sent

to the PPU from the CPU and then is read by the memory fetcher to give all of the pixel information for

our display. Another NES functionality that this module emulates is memory mirroring. The NES uses

this because it has a much higher volume of addresses it can write to than actual memory cells. The actual

layout of the VRAM and where it mirrors its memory can be seen in ​Figure 3​ in the appendices. This

module deals with the top overall VRAM mirror by truncating the original address sent to the module

down from 16 bits to 14 bits. It then looks to see if the new address is in a range that is a mirror instead of

the actual address of the memory cell. If it is a mirror then it adjusts the address to be the address of the

memory cell it should mirror to. While the module itself is fairly simple, when fully implemented it plays

a big role in allowing the PPU to get the correct data from memory and in allowing the CPU to write that

data to the correct memory cell for the PPU to read. A detailed block diagram of this part of the PPU can

be found in ​Diagram 2​.

18

Object Attribute Memory (Daniel)

The Object Attribute Memory (OAM) is a set of registers internal to the PPU that stores up to 64

sprites that may be drawn in the current frame. Each sprite in OAM contains 4 bytes of data:

Byte 1​ - the sprite’s y position

Byte 2​ - a tile index in the pattern table

Byte 3​ - the sprite’s attribute byte

Bits 1, 0:​ color data

Bits 2, 3, 4:​ unused

Bit 5:​ background priority

Bit 6:​ flip horizontally

Bit 7:​ flip vertically

Byte 2​ - the sprite’s x position

One of the jobs of the OAM module is to determine which of the eight sprites will be drawn on

the scanline. Due to the timing constraints on the sprite prefetching, only the first eight sprites in OAM

that are on the next scanline will actually be drawn. In this implementation, the OAM does this range

evaluation during cycles [0, 63]. Each cycle, the OAM evaluates one sprite and determines if it appears on

the next scanline. If it does, it stores it in the secondary OAM if the secondary OAM is not full (see the

next section). A detailed block diagram of this part of the PPU can be found in ​Diagram 2​.

Secondary OAM (Daniel)

The secondary OAM stores up to eight sprites chosen by the OAM to be drawn on the next

scanline. Our implementation of the secondary OAM is a size eight queue of sprites. The OAM pushes

sprites in and the memory fetch unit (next) section pops them out.

We encountered several difficult bugs with the secondary OAM. The first was that originally,

when the queue was empty, it still presented the last sprite on its output. This resulted in sprites being

rendered on every scanline after they were loaded until the secondary OAM was loaded with something

else. A detailed block diagram of this part of the PPU can be found in ​Diagram 2​.

19

Memory Fetcher (Daniel)

The memory fetch unit interfaces with the VRAM and requests data according to the current

cycle state of the PPU (see ​State Calculator​ for more details). The memory fetcher requests background

tile data for the current scanline, prefetches the sprites based on the contents of the secondary OAM, and

prefetches the background tiles for the next scanline.

Once the memory fetcher acquires this data, it presents it to the background and sprite rendering

modules. For the background renderer, the memory fetcher also sends a signal that new data is available

to make it easier to synchronize the two modules. The sprite renderer does not have this feature and

simply assumes that sprite data will be present at the beginning of the scanline.

The memory fetcher is one of the more complicated modules and we encountered quite a few

off-by-one bugs during testing as well as errors in the way the memory fetcher was calculating nametable,

attribute, and pattern table addresses. This was especially true of the tile prefetches as they commonly

requested data for the previous scanline instead of for the next one. However, we were able to find and fix

all of these bugs. A detailed block diagram of this part of the PPU can be found in ​Diagram 2​.

Background Renderer (Sidne)

The Background Renderer module is used to generate the background pixel for any given location

on the screen. It communicates with the Memory Fetcher module to receive the data needed to determine

the pixel that will be displayed and then passes that singular pixel information as well as the h count and v

count of that pixel, to be used as coordinates, to the pixel mux module.

The Background Renderer contains four shift registers, 2 16-bit and 2 8-bit as well as two single

bit latches. The data this module receives from the Memory Fetcher comes in the form of two pattern

table bytes, two bits of attribute data and a new_data wire that pulses when the Memory Fetcher has new

background data for this module to load in. When the new_data wire is triggered this module loads the

new pattern table bytes into the last 8 positions in their own shift register and separately latches each of

the attribute bits. Then each clock cycle the first bit in each shift register is taken and appended together,

with an extra 0 to signify that it is a background pixel, to form the 5-bit data sent out by this module to the

Pixel Mux. The pattern table shift registers are then loaded with a 0 while the attribute shift registers are

fed from the attribute latches. This is because each tile uses the same two attribute bits for the entire tile.

These bits are used to signify which palette the tile is using and this is while each tile is limited to one

20

four-color palette. The h count and v count in are also transferred to h count and v count out each clock

cycle to make sure the correct location stays with the correct pixel. A detailed block diagram of this part

of the PPU can be found in ​Diagram 3​.

Sprite Renderer (Sidne)

The function of the Sprite Renderer module is to take in information fed to it by the Memory

Fetcher once each scanline and output pixel data in each sprite’s correct locations to the Pixel Mux. It

does this by first obtaining the scanlines sprite data from the Memory Fetcher. To do this it waits until a

few clock cycles after the end of the sprite_prefetch phase of the Memory Fetcher and then loads in the

sprite data to its shift registers which consist of 16 8-bit shift registers, two for each of the 8 sprites

allowed on each scanline, 8 2-bit latches for each sprite’s attribute data, and 8 8-bit latches to hold the x

location of each sprite on the scanline. It also takes in the current h count and v count. The module then

checks each clock cycle if and if it ishe current x location of the sprite ≤ h count ＜ the x location 8 t +

then it starts shifting the register for that sprite each clock cycle in a similar way as the Background

module but instead of outputting that data it loads it into a latch to then be checked for sprite priority.

The Sprite Renderer module is more complex than the Background Renderer because it must also

calculate the pixel from the correct sprite to output if two sprites happen to overlap. In this module, this is

done combinatorially. When h count is in the x position range for a sprite, the data for that specific pixel

at h count on that scan line is loaded into a latch for whichever of the 8 sprites it is. If there is more than

one sprite in that location then more than one latch will be filled. These latches are then fed into the

combinational block to decide which sprites pixel to output. The way the NES determines which sprite

will be output is based on the order they were fed into the secondary OAM. So if sprite 0 is on top of

sprite 3 then the pixel for sprite 0 will be output because earlier sprites have priority. However, if the

current pixel for sprite 0 is transparent then the pixel for sprite 3 will be output. The combinational

portion of this module starts with the latch of sprite 0 and if it is not currently outputting any pixel data or

is transparent it will move on to the next sprite.

If no sprites are at the current h count then the module will output a 6-bit 0 otherwise, it will send

out the pixel data for the top priority sprite to the Pixel Mux. The reason this module outputs 6 bits of data

to the pixel mux while Background only outputs 5 is that the sprites have an extra bit of data to determine

the priority over the background which is used by the Pixel Mux. It takes two clock cycles to determine

and output the correct pixel data so this module outputs transfers the v count and then adds one to the

transferred h count. A detailed block diagram of this part of the PPU can be found in ​Diagram 3​.

21

Pixel Mux (Sidne)

We now have the chance of two pixels being output for any given location depending on whether

or not a sprite is at that location. The job of this module is to take the outputs of the Background Renderer

and the Sprite Renderer and decide which set of pixel data should be displayed. This is done by first

syncing up the locations of the sprite and background pixel. The background pixel for a certain location

will be sent to the Pixel Mux one clock cycle before the sprite pixel. To account for this the Pixel Mux

has a latch to hold the incoming background pixel data for one clock cycle until the corresponding sprite

pixel is ready to be compared with it. Once the Pixel Mux has both the background and sprite pixel data

for a certain location it compares the two of them to see which pixel should be displayed there. If there is

no sprite pixel data available then it will output the background pixel, it will also be output if there is a

sprite that has a background priority bit of 0 or if the sprite pixel is mapped to one of the transparent

palette colors. The sprite pixel will be output if a sprite with background priority of 1 that has a

non-transparent color is present or if the background pixel is mapped to a transparent color and a

non-transparent sprite pixel with background priority of 0 is present. If both pixels are transparent or only

a transparent background is given to the pixel mux it will send out data for the pixel to be the transparent

color. A detailed block diagram of this part of the PPU can be found in ​Diagram 3​.

Palette RAM (Daniel)

The original NES was only capable of outputting 55 distinct colors in the onboard color palette.

These were mapped to 6-bit color indices shown in Figure 5.2 below. However, even though the NES

could select any of the 55 system colors, due to the two-bit color depth used in the pattern tables, any

given tile could only use four colors at any given time. The palette RAM stores these sets of colors that

are used in the current frame and can be reprogrammed by the CPU.

The palette RAM contains four background palettes and four sprite palettes each containing three,

six-bit color IDs and the current transparent color ID. All palettes share the same transparent color ID.

The pixel data comes in to the palette RAM as a five-bit number:

Bit 4​ - selects the background (1) or sprite palettes (0)

Bits 3, 2​ - select which one of the four palettes

22

Bits 1, 0​ - selects one of the four palette colors

The transparent color is mirrored to all palette RAM addresses of the form 5’bXXX00. This module takes

in this 5-bit address and maps it to a six-bit PPU color ID stored within the palette RAM. A detailed block

diagram of this part of the PPU can be found in ​Diagram 3​.

Figure 5.2

Frame Buffer (Daniel)

The frame buffer is an integral piece of glue logic between the PPU and the VGA module that is

used to output video to the monitor. The original NES system was designed to output composite video at

a resolution of 256x240 and is not directly compatible with the standard VGA resolutions. Additionally,

the PPU and VGA systems work in different clock domains (5.175 MHz and 65 MHz respectively) and

synchronizing them would be complicated. To overcome this, two frame buffers are used. While the PPU

writes pixel data to one frame buffer, the VGA unit reads pixel data from the other. When the VGA hits

its vblank period, the buffers are swapped and the VGA unit reads the fresh frame data while the PPU

overwrites the old frame data. To ensure that the two systems map memory addresses to the same screen

coordinates, both systems map the pixel at (x, y) to the address 256 * y + x. 256 is the horizontal pixel

width of the NES’s video output.

However, this system is not perfect. Although the PPU and VGA both work with 60 FPS video,

they are not perfectly synchronized. This is evidenced by occasional screen tearing that happens when the

PPU has not finished writing the entire frame when the buffers swap. However, due to the fact that game

screens don’t change very much between adjacent frames and the modules run at close to the same frame

rate, this effect is not very noticeable and doesn’t affect the user’s experience.

In order to reduce the BRAM usage of the system, the frame buffers store the six-bit PPU color

IDs rather than the 12-bit VGA colors to which they correspond. This allows the system to use only 128

23

kB of BRAM to buffer the two frames. A detailed block diagram of this part of the PPU can be found in

Diagram 4​.

Color Mapper (Daniel)

The color mapper proves the translation from the six-bit PPU color IDs used internally by the

NES to 12-bit RGB VGA color values. This combinational block is essentially a look up table that

translates the color IDs in real time as they come out of the frame buffer. A detailed block diagram of this

part of the PPU can be found in ​Diagram 4​.

VGA (Daniel)

The VGA module used is the same as was used in lab 3. The original intention was to use this

module to generate 640x480 video and to scale our NES video output by two times in order to completely

fill the screen. However, there were complications with getting the lower resolution video to work and we

opted to use the higher resolution mode (1024x768) with scaling to fill a smaller, but still usable, portion

of the screen. A detailed block diagram of this part of the PPU can be found in ​Diagram 4​.

Testing and Simulation (Sidne)

While testing and simulating each separate module was fairly straightforward, when we

integrated all of the modules and began testing there were many small bugs as well as some bigger ones

that we ran into. The first big problem we ran into while trying to test our PPU was a problem with the

VGA module and Frame Buffer. This was an immediate problem because without any working display

we were unable to test if our other functionalities were working. We ended up having to use 1024x768

resolution instead of the 640x480 that we wanted so we started with a much smaller screen than we

wanted. So we would have a larger screen to debug on we ended up scaling our video out, which was one

of our stretch goals, before many of our other goals were reached. We also had an issue with our screen

scrolling when we wanted a static screen which we ended up fixing by running the Frame Buffer BRAM

on a much faster clock than the rest of the PPU to make up for its 2 clock cycle read latency.

Other smaller problems we ran into were that the two prefetched tiles at the beginning of each

scanline were shifted up down by one pixel and some small bug in our sprite fetching methods that were

causing our sprites to have the lines of their tile drawn on the wrong scanline so they were shifted

weirdly, this posed an even bigger problem when we added the ability to move the sprite and it would

24

look like it was just keeping the same line of tile on the same scanline until it was out of range of the

sprite. We were able to fix these two bugs by making small changes in the information used to fetch that

data in the Memory Fetcher.

In the end we were able to draw a multi-tiled background and have a correctly drawn sprite that

stayed drawn correctly when you moved it around the screen and had the correct priority over the

background tiles.

6. Summary

Insights
The biggest challenge in designing the 6502 emulator was in understanding the full extent of its

operation. In essence, this project was halfway a research project. Faithful recreation of deprecated

hardware requires thorough understanding of its intentional and unintentional function. We made the

(right) decision to avoid implementing unofficial opcodes, as no official NES title ever used them. Upon

understanding the function and behavior of the 6502, the project becomes much simpler, requiring some

ingenuity to be cycle accurate as well as some tedious work to ensure all opcodes are implemented

correctly. The other major lesson learned was in implementing the main_6502 module. Simply put, it

really ought to be broken up into more modules. The implied addressing mode was controllable via its

own module. It likely was worth the effort to build similar modules for the other modules in order to

create a cleaner top level module. In hindsight, we ought to have considered a combinational state

machine instead, which is closer to what the 6502 actually had. The current implementation does manage

cycle accuracy, but there exists potential for contaminating other address locations, since the switching

with the PC flag is clocked on both the positive and negative edge of the clock. Ultimately, a second pass

at this would be greatly beneficial to the project.

In the same fashion as the CPU one of the biggest challenges of faithfully recreating the NES

PPU was fully understanding the way it functioned. We struggled with having enough time for this

project because we had to use our first week to read through pages and pages of NES documentation to

try and get a firm grasp on how the PPU works. Even when we had created an overall design for the PPU

and begun creating our modules we still had to constantly refer back to documentation and change past

modules based on specific requirements for the modules we were currently working on. We nearly have a

25

fully functional PPU, given a week or so more time or having a fuller understanding of how the NES parts

specifically worked we could have probably hit full functionality.

Improvements/Next Steps

Moving forward with the CPU, a second pass at the state machine needs to be made, finding a

better way to assert results when those results are ready without risking contaminating the memory. The

chief worry with the current iteration is the possibility that the rw flag is asserted for too long, resulting in

a write to a memory location that should have been read from. The processor is still missing a few parts as

well, and, after improving the implementation of the state machine, will need the addition of the relative

addressing mode to make branching possible. Once these pieces are assembled properly, then the system

will be ready for cycle accurate NES emulation, given a working PPU and data bus connection.

I think that for the PPU we could continue where we left off and have a fully working PPU

module fairly quickly. The next step would be going back through the sprite modules (OAM, secondary

OAM, Memory Fetcher, and Sprite Renderer) to find where our current bugs with the sprites are located

and fix them.

For the project of recreating the NES as a whole, there are many things that we could add on or

improve. The biggest step would be finishing the CPU and the PPU, and then connecting them together.

Next we would like to focus on implementing our stretch goals and being able to play games from ROMs

with the system. Some stretch goals that would be imperative to traditional NES gameplay on this system

would be building an interface for the original NES controller, cartridges and also designing and

implementing an APU or audio processing unit.

26

Appendices

Block Diagrams

Diagram 1 - Overall PPU

27

Diagram 2 - PPU Memory

28

Diagram 3 - PPU Pixel Rendering

29

Diagram 4 - PPU Video Output

30

Diagram 5 - main_6502

31

Figures

Figures taken from “Nintendo Entertainment System Documentation”

Figure 1 - PPU Pattern Tables

32

Figure 2 - Attribute Bytes

Each name table has an associated attribute table. Attribute tables hold the upper two bits of the colours for the tiles.

Each byte in the attribute table represents a 4x4 group of tiles, so an attribute table is an 8x8 table of these groups.

Each 4x4 group is further divided into four 2x2 squares as shown in Figure 2. The 8x8 tiles are numbered $0-$F.

The layout of the byte 20 is 33221100 where every two bits specifies the most significant two colour bits for the

specified square.

33

Figure 3 - PPU VRAM

34

Verilog

CPU Modules

cpu_constants.sv

`timescale 1ns / 1ps

package cpu_constants;

 // operation encoding

 parameter ADC = 1;

 parameter AND1 = 2;

 parameter ASL = 3;

 parameter BCC = 4;

 parameter BCS = 5;

 parameter BEQ = 6;

 parameter BIT1 = 7;

 parameter BMI = 8;

 parameter BNE = 9;

 parameter BPL = 10;

 parameter BRK = 11;

 parameter BVC = 12;

 parameter BVS = 13;

 parameter CLC = 14;

 parameter CLD = 15;

 parameter CLI = 16;

 parameter CLV = 17;

 parameter CMP = 18;

 parameter CPX = 19;

 parameter CPY = 20;

 parameter DEC = 21;

 parameter DEX = 22;

 parameter DEY = 23;

 parameter EOR = 24;

 parameter INC = 25;

 parameter INX = 26;

 parameter INY = 27;

 parameter JMP = 28;

 parameter JSR = 29;

 parameter LDA = 30;

 parameter LDX = 31;

 parameter LDY = 32;

 parameter LSR = 33;

 parameter NOP = 34;

 parameter ORA = 35;

 parameter PHA = 36;

 parameter PHP = 37;

 parameter PLA = 38;

 parameter PLP = 39;

 parameter ROL = 40;

 parameter ROR = 41;

 parameter RTI = 42;

 parameter RTS = 43;

 parameter SBC = 44;

 parameter SEC = 45;

 parameter SED = 46;

 parameter SEI = 47;

 parameter STA = 48;

 parameter STX = 49;

35
 parameter STY = 50;

 parameter TAX = 51;

 parameter TAY = 52;

 parameter TSX = 53;

 parameter TXA = 54;

 parameter TXS = 55;

 parameter TYA = 56;

 // addressing modes

 parameter ACCUMULATOR = 1;

 parameter ABSOLUTE = 2;

 parameter ABSOLUTE_XINDEX = 3;

 parameter ABSOLUTE_YINDEX = 4;

 parameter IMMEDIATE = 5;

 parameter IMPLIED = 6;

 parameter INDIRECT = 7;

 parameter INDIRECT_XINDEX = 8;

 parameter INDERECT_YINDEX = 9;

 parameter RELATIVE = 10;

 parameter ZEROPAGE = 11;

 parameter ZEROPAGE_XINDEX = 12;

 parameter ZEROPAGE_YINDEX = 13;

 endpackage

alu_6502.sv

`timescale 1ns / 1ps

import cpu_constants::*;

module alu_6502(

 input[5:0] op,

 input[7:0] a,

 input[7:0] b,

 input[7:0] curr_status_flag,

 output logic[7:0] result,

 output logic[7:0] status_flag_out

);

 logic N;

 logic V;

 logic dash;

 logic B;

 logic D;

 logic I;

 logic Z;

 logic C;

 logic[8:0] int_result;

 logic Nn; // generic new flag bits

 logic Vn;

 logic Dn;

 logic In;

 logic Zn;

 logic Cn;

 logic Nv; // for exceptions

 assign Nn = (result[7]); // number always negative when 7th bit high

 assign Zn = (result == 0); // new status flag bit for Z, always true when result is 0

 // FLAG BITS FOLLOW NV-DIZC PATTERN

 always_comb begin

 N = curr_status_flag[7];

36
 V = curr_status_flag[6];

 dash = curr_status_flag[5];

 B = curr_status_flag[4];

 D = curr_status_flag[3];

 I = curr_status_flag[2];

 Z = curr_status_flag[1];

 C = curr_status_flag[0];

 // inputs follow convention of a is always from a register, b is always memory or

immediate operand

 case(op)

 ADC: begin

 int_result = a + b + C; // add carry flag

 result = int_result[7:0]; // 8 bit output

 Cn = int_result[8]; // new carry flag

 Vn = (!a[7]&!b[7]&Cn) | (a[7]&b[7]&!Cn); // high if out of signed range

 status_flag_out = {Nn,Vn,dash,B,D,I,Zn,Cn};

 end

 AND1: begin

 result = a & b; // bitwise

 status_flag_out = {Nn,V,dash,B,D,I,Zn,C}; // evaluate result for status flag

 end

 ASL: begin

 Cn = a[7];

 result = a << 1;

 status_flag_out = {Nn, V, dash,B,D,I,Zn,Cn};

 end

 BIT1: begin

 Nv = b[7];

 Vn = b[6];

 result = a & b;

 status_flag_out = {Nv, Vn, dash,B,D,I,Zn,C};

 end

 BRK: begin

 In = 1;

 result = a;

 status_flag_out = {N,V,dash,B,D,In,Z,C};

 end

 CLC: begin

 Cn = 0;

 result = a;

 status_flag_out = {N,V,dash,B,D,I,Z,Cn};

 end

 CLD: begin

 Dn = 0;

 result = a;

 status_flag_out = {N,V,dash,B,Dn,I,Z,C};

 end

 CLI: begin

 In = 0;

 result = a;

 status_flag_out = {N,V,dash,B,D,In,Z,C};

 end

 CLV: begin

 Vn = 0;

 result = a;

 status_flag_out = {N,Vn,dash,B,D,I,Z,C};

 end

 CMP: begin

 Cn = (a > b);

 result = a - b;

 status_flag_out = {Nn,Vn,dash,B,D,I,Zn,Cn};

 end

 CMP: begin

 Cn = (a > b);

 result = a - b;

 status_flag_out = {Nn,Vn,dash,B,D,I,Zn,Cn};

37
 end

 CPX: begin

 Cn = (a > b);

 result = a - b;

 status_flag_out = {Nn,Vn,dash,B,D,I,Zn,Cn};

 end

 CPY: begin

 Cn = (a > b);

 result = a - b;

 status_flag_out = {Nn,Vn,dash,B,D,I,Zn,Cn};

 end

 DEC: begin

 result = b - 1;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,C};

 end

 DEX: begin

 result = a - 1;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,C};

 end

 DEY: begin

 result = a - 1;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,C};

 end

 EOR: begin

 result = a ^ b;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,C};

 end

 INC: begin

 result = b + 1;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,C};

 end

 INX: begin

 result = a + 1;

 status_flag_out = {Nn, V, dash,B,D,I,Zn,C};

 end

 INY: begin

 result = a + 1;

 status_flag_out = {Nn, V, dash,B,D,I,Zn,C};

 end

 LDA: begin

 result = b;

 status_flag_out = {Nn, V, dash,B,D,I,Zn,C};

 end

 LDX: begin

 result = b;

 status_flag_out = {Nn, V, dash,B,D,I,Zn,C};

 end

 LDY: begin

 result = b;

 status_flag_out = {Nn, V, dash,B,D,I,Zn,C};

 end

 LSR: begin

 Cn = a[0];

 result = a >> 1;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,Cn};

 end

 ORA: begin

 result = a | b;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,Cn};

 end

 PLA: begin

 result = a;

 status_flag_out = {Nn,V,dash,B,D,I,Zn,Cn};

 end

 PLP: begin

 result = a;

38
 status_flag_out = result;

 end

 ROL: begin

 result = {a[6:0],C};

 Cn = a[7];

 status_flag_out = {Nn,V,dash,B,D,I,Zn,Cn};

 end

 ROR: begin

 result = {C, a[7:1]};

 Cn = a[0];

 status_flag_out = {Nn,V,dash,B,D,I,Zn,Cn};

 end

 SBC: begin

 result = a - b - !C; // intentionally unsigned

 Cn = (a > b);

 Vn = (!a[7]&!b[7]&Cn) | (a[7]&b[7]&!Cn); // same rule as ADC

 status_flag_out = {Nn,Vn,dash,B,D,I,Zn,Cn};

 end

 SEC: begin

 result = a;

 status_flag_out = {N,V,dash,B,D,I,Z,1'b1};

 end

 SED: begin

 result = a;

 status_flag_out = {N,V,dash,B,1'b1,Z,C};

 end

 SEI: begin

 result = a;

 status_flag_out = {N,V,dash,B,1'b1,Z,C};

 end

 default: begin result = a; status_flag_out = {Nn,Vn,dash,B,I,Zn,C}; end

 endcase

 end

endmodule

clock_gen6502.sv
`timescale 1ns / 1ps

module clock_gen6502(

 input clock,

 input rst,

 output logic phi_1,

 output logic phi_2

);

 parameter DIVISOR = 11; // NES divides clock signal by 12

 logic[3:0] clk_ct; // ct holder

 assign phi_2 = !phi_1; // phi_2 exactly out of phase with phi_1 always

 always_ff@(posedge clock) begin

 if(rst) begin

 clk_ct <= 4'b0; // initialize values

 phi_1 <= 1;

 end else begin

 phi_1 <= (clk_ct == DIVISOR) ? !phi_1 : phi_1;

 clk_ct <= (clk_ct == DIVISOR) ? 0 : clk_ct + 1;

 end

 end

endmodule

39

control_decode.sv
`timescale 1ns / 1ps

import cpu_constants::*;

module control_decode(

 input[7:0] opcode,

 output logic[3:0] addr_mode,

 output logic[5:0] op

);

 always_comb begin

 // some opcodes must be called out by name, they break pattern

 if(opcode == 8'b0) begin op = BRK; addr_mode = IMPLIED; end

 else if(opcode == 8'h20) begin op = JSR; addr_mode = ABSOLUTE; end

 else if(opcode == 8'h40) begin op = RTI; addr_mode = IMPLIED; end

 else if(opcode == 8'h60) begin op = RTS; addr_mode = IMPLIED; end

 else if(opcode == 8'h08) begin op = PHP; addr_mode = IMPLIED; end

 else if(opcode == 8'h28) begin op = PLP; addr_mode = IMPLIED; end

 else if(opcode == 8'h48) begin op = PHA; addr_mode = IMPLIED; end

 else if(opcode == 8'h68) begin op = PLA; addr_mode = IMPLIED; end

 else if(opcode == 8'h88) begin op = DEY; addr_mode = IMPLIED; end

 else if(opcode == 8'hA8) begin op = TAY; addr_mode = IMPLIED; end

 else if(opcode == 8'hC8) begin op = INY; addr_mode = IMPLIED; end

 else if(opcode == 8'hE8) begin op = INX; addr_mode = IMPLIED; end

 else if(opcode == 8'h18) begin op = CLC; addr_mode = IMPLIED; end

 else if(opcode == 8'h38) begin op = SEC; addr_mode = IMPLIED; end

 else if(opcode == 8'h58) begin op = CLI; addr_mode = IMPLIED; end

 else if(opcode == 8'h78) begin op = SEI; addr_mode = IMPLIED; end

 else if(opcode == 8'h98) begin op = TYA; addr_mode = IMPLIED; end

 else if(opcode == 8'hB8) begin op = CLV; addr_mode = IMPLIED; end

 else if(opcode == 8'hD8) begin op = CLD; addr_mode = IMPLIED; end

 else if(opcode == 8'hF8) begin op = SED; addr_mode = IMPLIED; end

 else if(opcode == 8'h8A) begin op = TXA; addr_mode = IMPLIED; end

 else if(opcode == 8'h9A) begin op = TXS; addr_mode = IMPLIED; end

 else if(opcode == 8'hAA) begin op = TAX; addr_mode = IMPLIED; end

 else if(opcode == 8'hBA) begin op = TSX; addr_mode = IMPLIED; end

 else if(opcode == 8'hCA) begin op = DEX; addr_mode = IMPLIED; end

 else if(opcode == 8'hEA) begin op = NOP; addr_mode = IMPLIED; end

 else if(opcode == 8'h6C) begin op = JMP; addr_mode = INDIRECT; end // special

exception to pattern

 // following opcodes obey xxy10000 pattern, xx specifying branch flag

 // y specifies what the flag is compared to

 else if(opcode[4:0] == 5'b10000) begin

 case(opcode[7:6])

 2'b00: op = opcode[5] ? BMI : BPL; // check against negative flag

 2'b01: op = opcode[5] ? BVS : BVC; // check against overflow flag

 2'b10: op = opcode[5] ? BCS : BCC; // check against carry flag

 2'b11: op = opcode[5] ? BEQ : BNE; // check against zero flag

 default: op = NOP;

 endcase

 addr_mode = RELATIVE; // all branch instructions are relative mode addressed

 end

 // following opcodes obey the aaabbbcc pattern, aaa specifying operation,

 // bbb specifying addressing mode, cc selecting different maps

 else if(opcode[1:0] == 2'b01) begin // cc = 01 opcodes

 case(opcode[7:5])

 3'b000: op = ORA;

 3'b001: op = AND1;

 3'b010: op = EOR;

 3'b011: op = ADC;

 3'b100: op = STA;

40
 3'b101: op = LDA;

 3'b110: op = CMP;

 3'b111: op = SBC;

 default: op = NOP;

 endcase

 case(opcode[4:2])

 3'b000: addr_mode = ZEROPAGE_XINDEX;

 3'b001: addr_mode = ZEROPAGE;

 3'b010: addr_mode = IMMEDIATE;

 3'b011: addr_mode = ABSOLUTE;

 3'b100: addr_mode = ZEROPAGE_YINDEX;

 3'b101: addr_mode = ZEROPAGE_XINDEX;

 3'b110: addr_mode = ABSOLUTE_YINDEX;

 3'b111: addr_mode = ABSOLUTE_XINDEX;

 default: addr_mode = IMPLIED;

 endcase

 end

 else if(opcode[1:0] == 2'b10) begin // cc = 10 opcodes

 case(opcode[7:5])

 3'b000: op = ASL;

 3'b001: op = ROL;

 3'b010: op = LSR;

 3'b011: op = ROR;

 3'b100: op = STX;

 3'b101: op = LDX;

 3'b110: op = DEC;

 3'b111: op = INC;

 default: op = NOP;

 endcase

 case(opcode[4:2])

 3'b000: addr_mode = IMMEDIATE;

 3'b001: addr_mode = ZEROPAGE;

 3'b010: addr_mode = ACCUMULATOR;

 3'b011: addr_mode = ABSOLUTE;

 3'b101: addr_mode = (op == STX || op == LDX) ? ZEROPAGE_YINDEX :

ZEROPAGE_XINDEX;

 3'b111: addr_mode = (op == LDX) ? ABSOLUTE_YINDEX: ABSOLUTE_XINDEX;

 default: addr_mode = IMPLIED;

 endcase

 end else if(opcode[1:0] == 2'b00) begin // cc = 00 opcodes

 case(opcode[7:5])

 3'b001: op = BIT1;

 3'b010: op = JMP;

 3'b100: op = STY;

 3'b101: op = LDY;

 3'b110: op = CPY;

 3'b111: op = CPX;

 default: op = NOP;

 endcase

 case(opcode[4:2])

 3'b000: addr_mode = IMMEDIATE;

 3'b001: addr_mode = ZEROPAGE;

 3'b011: addr_mode = ABSOLUTE;

 3'b101: addr_mode = ZEROPAGE_XINDEX;

 3'b111: addr_mode = ABSOLUTE_XINDEX;

 default: addr_mode = IMPLIED;

 endcase

 end

 end

endmodule

41

cpu_demo.sv

module cpu_demo(

 input[15:0] sw,

 input btnc,

 input btnr,

 input clk_100mhz,

 output logic [15:0] led,

 output ca, cb ,cc ,cd, ce, cf, cg,

 output[7:0] an

);

 logic[7:0] A;

 logic[7:0] M;

 logic[7:0] X;

 logic[7:0] Y;

 logic[7:0] PCL;

 logic[7:0] PCH;

 logic[15:0] address;

 logic[7:0] data_out;

 logic phi_2;

 logic clean_btnr;

 logic[6:0] segments;

 assign {cg, cf, ce, cd, cc, cb, ca} = segments[6:0];

 logic[32:0] data_in;

 debounce

btnr_cleaner(.clk_in(clk_100mhz),.rst_in(btnc),.bouncey_in(btnr),.clean_out(clean_btnr));

 display_7seg(.clk_in(clk_100mhz),.data_in(data_in),.seg_out(segments),.strobe_out(an));

 main_6502

demo_6502(.rst(btnc),.clock(clean_btnr),.data_in(sw[7:0]),.data_out(data_out),.address(address

),

.rw(led[0]),.phi_2(phi_2),.A(A),.M(M),.X(X),.Y(Y),.PCL(PCL),.PCH(PCH));

 always_comb begin

 case(sw[15:14])

 2'b00: data_in = {Y,X,M,A}; // display register values

 2'b01: data_in = {address, PCH, PCL}; // display program counter and output

 2'b10: data_in = {24'b0, data_out}; // display 6502 output

 default: data_in = {Y,X,M,A};

 endcase

 end

endmodule

implied_handler.sv
`timescale 1ns / 1ps

// use this module to control implied addressing mode

module implied_handler(

 input[5:0] op,

 output logic brk,

 output logic pushing,

 output logic pulling

);

 always_comb begin

 case(op)

 BRK: begin brk = 1; pushing = 0; pulling = 0; end // detect brk command

 PHA: begin brk = 0; pushing = 1; pulling = 0; end // detect push to stack

42
 PHP: begin brk = 0; pushing = 1; pulling = 0; end

 PLA: begin brk = 0; pushing = 0; pulling = 1; end

 PLP: begin brk = 0; pushing = 0; pulling = 1; end

 default: begin brk = 0; pushing = 0; pulling = 0; end // all other are 2 byte

instructions handled by ALU

 endcase

 end

endmodule

mem_write.sv
`timescale 1ns / 1ps

module mem_write(

 input[5:0] op,

 input[3:0] addr_mode,

 output logic long_wea

);

 always_comb begin

 case(op)

 ASL: long_wea = !(addr_mode == ACCUMULATOR);

 DEC: long_wea = 1;

 INC: long_wea = 1;

 LSR: long_wea = !(addr_mode == ACCUMULATOR);

 ROL: long_wea = !(addr_mode == ACCUMULATOR);

 ROR: long_wea = !(addr_mode == ACCUMULATOR);

 default: long_wea = 0; // writing memory is specific to a few operations

 endcase

 end

endmodule

memory_controller.sv
`timescale 1ns / 1ps

module memory_controller(

 input[7:0] outer_data,

 input[7:0] inner_data,

 input[7:0] ADDR_H_RAW,

 input[7:0] ADDR_L,

 input[7:0] PCL,

 input[7:0] PCH_RAW,

 input pc_flag,

 output logic[7:0] mem_dat_out,

 output logic[15:0] address

);

 logic[7:0] ADDR_H; // need to demirror both PC and ADDR accesses

 logic[7:0] PCH_OUT;

 // only need to mirror for addresses below $2000 and above $7FF

 always_comb begin

 ADDR_H = (ADDR_H_RAW < 8'h20) ? {5'b0, ADDR_H_RAW[2:0]} : ADDR_H_RAW;

 PCH_OUT = (PCH_RAW < 8'h20) ? {5'b0, PCH_RAW[2:0]} : PCH_RAW;

 address = pc_flag ? {PCH_OUT,PCL} : {ADDR_H,ADDR_L};

 mem_dat_out = (address[15:8] < 8'h20) ? inner_data : outer_data;

 end

endmodule

43

reg_sel.sv
`timescale 1ns / 1ps

import cpu_constants::*;

module reg_sel(

 input[5:0] op,

 input[3:0] addr_mode,

 input[7:0] x,

 input[7:0] y,

 input[7:0] a,

 input[7:0] m,

 input[7:0] s,

 output logic[7:0] reg_out

);

 // if not one of the cases listed, the register to use is a if at all

 // special cases ASL, LSR, ROL, ROR can use memory as input "register"

 always_comb begin

 case(op)

 ASL: reg_out = (addr_mode == ACCUMULATOR) ? a : m;

 CPX: reg_out = x;

 CPY: reg_out = y;

 DEX: reg_out = x;

 DEY: reg_out = y;

 INX: reg_out = x;

 INY: reg_out = y;

 JSR: reg_out = m;

 LSR: reg_out = (addr_mode == ACCUMULATOR) ? a : m;

 ROL: reg_out = (addr_mode == ACCUMULATOR) ? a : m;

 ROR: reg_out = (addr_mode == ACCUMULATOR) ? a : m;

 STX: reg_out = x;

 STY: reg_out = y;

 TSX: reg_out = s;

 TXA: reg_out = x;

 TXS: reg_out = x;

 TYA: reg_out = y;

 default: reg_out = a;

 endcase

 end

endmodule

main_6502.sv
`timescale 1ns / 1ps

import cpu_constants::*;

module main_6502(

 input rdy,

 input irq_low,

 input nmi_low,

 input rst,

 input so_low,

 input clock,

 input[7:0] data_in,

 output logic[7:0] data_out,

 output logic[15:0] address,

 output logic sync,

 output logic rw,

 output logic phi_2,

 output logic[7:0] A,

 output logic[7:0] M,

44
 output logic[7:0] X,

 output logic[7:0] Y,

 output logic[7:0] PCL,

 output logic[7:0] PCH // for demo purposes, added registers and program counter as outputs

);

 // logic[7:0] A; // accumulator register

 // logic[7:0] M; // memory read placeholder

 // logic[7:0] X; // index pointer

 // logic[7:0] Y; // index pointer

 logic[7:0] P; // status flag bits N V - B D I Z C *note D unused here

 logic[7:0] S; // stack pointer

 //logic[7:0] PCL; // program counter bytes

 //logic[7:0] PCH;

 logic[7:0] ADDR_H_RAW;// raw addresses to be demirrored

 logic[7:0] ADDR_L; // address line bytes

 logic[7:0] ADDR_H;

 logic[8:0] addr_calc; // allow for carry

 logic[7:0] PCL_HOLD; // pc holder for jsr instruction to push

 logic[7:0] PCH_HOLD; // pc holder for jsr instruction

 logic[7:0] PCL_JUMP; // pc holder for jsr instruction to jump to

 logic[7:0] PCH_JUMP;

 logic pc_flag; // high when address bus should recieve value in program counter, low when

should recieve from addr_bus

 logic phi_1;

 logic[3:0] addr_mode;

 logic[5:0] op;

 logic[5:0] working_op;

 logic[3:0] working_addr;

 logic[2:0] cycle;

 logic[7:0] result; // ALU output

 logic[7:0] flag_out;

 logic[7:0] operand_a; // ALU operands, selected by reg_sel instance input_sel

 logic[7:0] operand_b;

 logic internal_wea; // internal write enable

 logic internal_ena; // internal ram enable, decide when to use BRAM

 logic ready_flag; // assert when ALU result is ready

 logic[10:0] internal_addr; // internal address space

 logic[7:0] internal_out; // internal memory out

 logic[7:0] mem_data; // either input from data line or from internal RAM on MEMORY READ

ONLY

 logic long_wea; // flag for enabling cpu to write to memory based on recieved instruction

 logic shifting; // flag for when shifts take place, only important when memory is the

target

 logic STORE; // flag for STA, STX, and STY

 logic brk; // variables for control signals of implied addressing mode

 logic pulling;

 logic pushing;

 assign STORE = ((working_op == STA) | (working_op == STX) | (working_op == STY)); //

control signal for when memory will be written to from registers

 assign shifting = ((working_op == ASL) | (working_op == LSR) | (working_op == ROL) |

(working_op == ROR));

 assign internal_addr = address[10:0];

 assign internal_wea = (!rw & internal_ena);

 // instantiate helper modules

 clock_gen6502 clock_gen_inst(.clock(clock),.rst(rst),.phi_1(phi_1),.phi_2(phi_2));

 control_decode instr(.opcode(data_in),.addr_mode(addr_mode),.op(op));

45
 alu_6502

alu_inst(.op(working_op),.a(operand_a),.b(operand_b),.curr_status_flag(P),.result(result),.sta

tus_flag_out(flag_out));

 reg_sel

input_sel(.op(working_op),.addr_mode(working_addr),.x(X),.y(Y),.a(A),.m(M),.s(S),.reg_out(oper

and_a));

 mem_write cpu_inst(.op(working_op),.addr_mode(working_addr),.long_wea(long_wea));

 memory_controller

controller_inst(.outer_data(data_in),.inner_data(internal_out),.ADDR_H_RAW(ADDR_H_RAW),.ADDR_L

(ADDR_L),.PCL(PCL),.PCH_RAW(PCH),.pc_flag(pc_flag),.mem_dat_out(mem_data),.address(address));

 internal_6502 ram_6502(.clka(clock), .ena(1),

.wea(internal_wea),.addra(internal_addr),.dina(result),.douta(internal_out));

 implied_handler

implied_mode(.op(working_op),.brk(brk),.pushing(pushing),.pulling(pulling));

 always_ff@(posedge phi_1) begin

 if(rst) begin

 // initialize all registers

 //sync <= 0;

 data_out <= 0;

 X <= 8'b0;

 Y <= 8'b0;

 S <= 8'hFF;

 PCH <= 8'hFF;

 PCL <= 8'h00;

 ADDR_H_RAW <= 8'b0;

 ADDR_H <= 8'b0;

 ADDR_L <= 8'b0;

 rw <= 1'b1;

 cycle <= 0;

 A <= 8'b0;

 P <= 8'b00110000; // dash and B start as high for status flag bits

 M <= 8'b0;

 pc_flag <= 1'b1; // high if using the pc counter as the address access

 ready_flag <= 1'b0;

 internal_wea <= 1'b0;

 end else begin

 case(cycle)

 3'd0: begin

 ready_flag <= 1'b0;

 rw <= 1'b1; // write active low / read first cycle

 working_op <= op; // use registers to hold op and addr_mode steady steady

when data_in changes

 working_addr <= addr_mode;

 cycle <= cycle + 1; // increment cycle count

 end

 3'd1: begin

 // next step depends on addressing mode

 case(working_addr)

 ACCUMULATOR: begin ready_flag <= 1; cycle <= 0; end // two byte

instructions terminate on this cycle

 ABSOLUTE: begin ADDR_L <= mem_data; cycle <= cycle + 1; end // receive

first byte of memory read/write location

 ABSOLUTE_XINDEX: begin ADDR_L <= mem_data + X; addr_calc <= mem_data +

X; cycle <= cycle + 1; end

 ABSOLUTE_YINDEX: begin ADDR_L <= mem_data + Y; addr_calc <= mem_data +

Y; cycle <= cycle + 1; end

 IMMEDIATE: begin operand_b <= data_in; ready_flag <= 1; cycle <= 0;

end // receive byte for operation, result ready on negedge

 IMPLIED: begin

 if(brk) begin

 cycle <= cycle + 1;

 end else if(pushing | pulling) begin

 ADDR_H_RAW <= 8'h01;

46
 ADDR_L <= S;

 end else begin

 cycle <= 0; // ALU will handle if not pushing, pulling, or brk

 ready_flag <= 1;

 end

 end

 ZEROPAGE: begin ADDR_H_RAW <= 0; ADDR_L <= mem_data; pc_flag <= 0;

cycle <= cycle + 1; end

 ZEROPAGE_XINDEX: begin ADDR_H_RAW <= 0; ADDR_L <= mem_data; pc_flag <=

0; cycle <= cycle + 1; end // don't increment address yet for sake of cycle accuracy

 endcase

 end

 3'd2: begin

 case(working_addr)

 ABSOLUTE: begin

 ADDR_H_RAW <= mem_data;

 if(working_op == JMP) begin

 PCL <= ADDR_L;

 PCH <= ADDR_H_RAW;

 cycle <= 0;

 end else if(working_op == JSR) begin

 PCL_JUMP <= ADDR_L;

 PCH_JUMP <= mem_data;

 PCL_HOLD <= PCL;

 PCH_HOLD <= PCH;

 cycle <= cycle + 1;

 end else begin

 cycle <= cycle + 1;

 pc_flag <= 1'b0;

 end

 end // assign high byte

 ABSOLUTE_XINDEX: begin

 ADDR_H_RAW <= mem_data;

 pc_flag <= addr_calc[8]; // can use this address if there's no

carry

 cycle <= cycle + 1;

 end

 ABSOLUTE_YINDEX: begin

 ADDR_H_RAW <= mem_data;

 pc_flag <= addr_calc[8]; // can use this address if there's no

carry

 cycle <= cycle + 1;

 end

 ZEROPAGE: begin

 if(shifting) begin // need to feed data_in to the M register so

ALU performs operation on right data

 M <= mem_data;

 end else begin

 operand_b <= mem_data; // otherwise feed data_in as operand b

 end

 if(long_wea) begin // if shifting or decrementing memory continue

 cycle <= cycle + 1;

 end else begin

 rw <= !STORE; // rw on STA, STX, STY

 ready_flag <= 1;

 cycle <= 0; // if reading, data is ready

 end

 end

 ZEROPAGE_XINDEX: begin ADDR_L <= ADDR_L + X; cycle <= cycle + 1; end

//increment

 endcase

 end

 3'd3: begin

47
 case(working_addr)

 ABSOLUTE: begin

 if(shifting) begin // need to feed data from memory to the M

register so ALU performs operation on right data

 M <= mem_data;

 end else begin

 operand_b <= mem_data; // otherwise feed data from memory as

operand b

 end

 if(long_wea) begin // if writing operation, continue

 cycle <= cycle + 1;

 end else if(working_op != JSR) begin // jsr special exception

 rw <= !STORE;

 ready_flag <= 1;

 cycle <= 0; // if reading, data is ready

 end else begin

 ADDR_H_RAW <= 8'h01;

 ADDR_L <= S;

 M <= PCL_HOLD;

 rw <= 0;

 pc_flag <= 0;

 ready_flag <= 1;

 cycle <= cycle + 1;

 S <= S - 1;

 end

 end

 ABSOLUTE_XINDEX: begin

 ADDR_H_RAW <= ADDR_H_RAW + addr_calc[8]; // add carry if there,

more accurate to 6502 this way

 if(!long_wea) begin

 operand_b <= mem_data;

 rw <= (!STORE & !addr_calc[8]);

 ready_flag <= !pc_flag; // if pc_flag low ready to calculate

 cycle <= (pc_flag) ? cycle + 1 : 0; // continue if pc_flag

high

 pc_flag <= 0;

 end else begin

 cycle <= cycle + 1;

 end

 end

 ABSOLUTE_YINDEX: begin

 ADDR_H_RAW <= ADDR_H_RAW + addr_calc[8]; // add carry if there,

more accurate to 6502 this way

 if(!long_wea) begin

 operand_b <= mem_data;

 rw <= (!STORE & !addr_calc[8]);

 ready_flag <= !pc_flag; // if pc_flag low ready to calculate

 cycle <= (pc_flag) ? cycle + 1 : 0; // continue if pc_flag

high

 pc_flag <= 0;

 end else begin

 cycle <= cycle + 1;

 end

 end

 ZEROPAGE: cycle <= cycle + 1;

 ZEROPAGE_XINDEX: begin

 if(shifting) begin

 M <= mem_data;

 end else begin

 operand_b <= mem_data;

 end

 if(long_wea) begin

 cycle <= cycle + 1;

 end else begin

 rw <= !STORE;

 ready_flag <= 1;

48
 cycle <= 0;

 end

 end

 endcase

 end

 3'd4: begin

 case(working_addr)

 ABSOLUTE: begin

 cycle <= cycle + 1;

 if(working_op == JSR) begin

 M <= PCH_HOLD;

 ADDR_H_RAW <= 8'h01;

 ADDR_L <= S;

 rw <= 0;

 ready_flag <= 1;

 pc_flag = 0;

 cycle <= cycle + 1;

 S <= S - 1;

 end

 end

 ABSOLUTE_XINDEX: begin // if at this point, ready to calc just like

absolute mode

 if(!long_wea) begin

 rw <= !STORE;

 operand_b <= mem_data;

 ready_flag <= 1;

 cycle <= 0;

 end else begin

 cycle <= cycle + 1; // if writing, this addressing mode takes

7 cycles to complete

 end

 end

 ABSOLUTE_YINDEX: begin // if at this point, ready to calc just like

absolute mode

 if(!long_wea) begin

 rw <= !STORE;

 operand_b <= mem_data;

 ready_flag <= 1;

 cycle <= 0;

 end else begin

 cycle <= cycle + 1; // if writing, this addressing mode takes

7 cycles to complete

 end

 end

 ZEROPAGE: begin ready_flag <= 1; rw <= 0; cycle <= 0; end

 ZEROPAGE_XINDEX: cycle <= cycle + 1; // preserving cycle accuracy

 endcase

 end

 3'd5: begin

 case(working_addr)

 ABSOLUTE: begin

 if(working_op != JSR) begin

 ready_flag <= 1; rw <= 0; cycle <= 0;

 end else begin

 PCH <= PCH_JUMP;

 PCL <= PCL_JUMP;

 cycle <= 0;

 end

 end

 ABSOLUTE_XINDEX: cycle <= cycle + 1;

 ABSOLUTE_YINDEX: cycle <= cycle + 1;

 ZEROPAGE_XINDEX: begin ready_flag <= 1; rw <= 0; cycle <= 0; end

 endcase

 end

49
 3'd6: begin

 case(working_addr)

 ABSOLUTE_XINDEX: begin M <= mem_data; ready_flag <= 1; rw <= 0; cycle

<=0 ;end

 ABSOLUTE_YINDEX: begin M <= mem_data; ready_flag <= 1; rw <= 0; cycle

<=0 ;end

 endcase

 end

 default: begin cycle <= 3'd0; PCH <= 8'b0; PCL <= 8'b0; end

 endcase

 PCH <= (PCL == 8'hFF) ? PCH + 1 : PCH; // increment program counter with carry

 PCL <= PCL + 1; // always increment program counter

 end

 end

 always_ff@(negedge phi_1) begin

 if(ready_flag) begin

 if(!long_wea) begin

 case(working_op)

 LDX: X <= result;

 LDY: Y <= result;

 JSR: A <= A;

 default: A <= result;

 endcase

 end

 P <= (working_op == JSR) ? P : flag_out;

 ready_flag <= 1'b0;

 pc_flag <= 1'b1;

 rw <= 1;

 end

 end

 always_comb begin

 if(rst) begin

 data_out = 0;

 internal_out = 0;

 end

 if(ready_flag & (long_wea | STORE)) begin

 data_out = result;

 internal_out = result;

 end

 end

endmodule

alu_tb.sv
`timescale 1ns / 1ps

Import cpu_constants::*;

module alu_tb;

 // inputs

 logic[6:0] op;

 logic[7:0] a;

 logic[7:0] b;

 logic[7:0] curr_status_flag;

 //outputs

 logic[7:0] result;

 logic[7:0] status_flag_out;

50
 alu_6502

uut(.op(op),.a(a),.b(b),.curr_status_flag(curr_status_flag),.result(result),.status_flag_out(s

tatus_flag_out));

 initial begin

 #10;

 a = 8'hFF;

 b = 8'h01;

 op = ADC;

 curr_status_flag = 8'b00110000;

 #10;

 $display("ADC $FF + $01 with carry flag not set: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 #10;

 op = SBC;

 a = 8'h01;

 b = 8'h01;

 curr_status_flag = 8'b00110000;

 #10;

 $display("SBC $01 - $01 with carry flag not set: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 #10;

 op = AND1;

 a = 8'h81;

 b = 8'h83;

 #10;

 $display("AND 81 & 83: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 op = ASL;

 a = 8'h83;

 b = 8'h83;

 #10;

 $display("ASL: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 op = ORA;

 a = 8'h83;

 b = 8'h84;

 #10;

 $display("ORA: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 op = ROL;

 a = 8'h83;

 curr_status_flag = 8'b00110000;

 #10;

 $display("ROL, CARRY CLEAR: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 op = ROL;

 a = 8'h83;

 curr_status_flag = 8'b00110001;

 #10;

 $display("ROL, CARRY SET: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 op = ROR;

 a = 8'h83;

 curr_status_flag = 8'b00110000;

 #10;

 $display("ROR, CARRY CLEAR: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

51
 op = ROR;

 a = 8'h83;

 curr_status_flag = 8'b00110001;

 #10;

 $display("ROR, CARRY SET: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 op = BIT1;

 a = 8'h24;

 b = 8'h83;

 curr_status_flag = 8'b00110000;

 #10;

 $display("BIT: %2h",result);

 $display("Status Flag: %8b",status_flag_out);

 end

endmodule

clk_gen_tb.sv
`timescale 1ns / 1ps

module clk_gen_tb;

 // inputs

 logic clock;

 logic rst;

 //outputs

 logic phi_1;

 logic phi_2;

 clock_gen6502 uut(.clock(clock),.rst(rst),.phi_1(phi_1),.phi_2(phi_2));

 always begin

 #2;

 clock = !clock;

 end

 initial begin

 clock = 0;

 rst = 0;

 #10;

 rst = 1;

 #10;

 rst = 0;

 #100;

 end

endmodule

main_6502_tb.sv
`timescale 1ns / 1ps

import cpu_constants::*;

module main_6502_tb;

 // inputs

 logic irq_low;

 logic nmi_low;

 logic rst;

 logic so_low;

52
 logic clock;

 logic[7:0] data_in;

 // outputs

 logic[7:0] data_out;

 logic[15:0] address;

 logic sync;

 logic rw;

 logic phi_2;

 parameter ROLA = 8'h2A;

 main_6502

uut(.irq_low(irq_low),.nmi_low(nmi_low),.rst(rst),.so_low(so_low),.clock(clock),.data_in(data_

in),

 .data_out(data_out),.address(address),.sync(sync),.rw(rw),.phi_2(phi2));

 always begin

 #1;

 clock = !clock;

 end

 initial begin

 clock = 0;

 irq_low = 0;

 nmi_low = 0;

 rst = 1;

 so_low = 0;

 data_in = 8'hEA;

 #12;

 rst = 0;

 #24;

 data_in = 8'hA9;

 #48;

 data_in = 8'h67;

 #48;

 data_in = 8'h85;

 #48;

 data_in = 8'h01;

 #48;

 data_in = 8'h01;

 #48;

 data_in = 8'hA6;

 #48;

 data_in = 8'h01;

 #200;

 end

endmodule

PPU Modules

Top.sv

import PPU_Types::*;

53

module top(

 input clk_100mhz,

 input[15:0] sw,

 input btnc, btnu, btnl, btnr, btnd,

 output[3:0] vga_r,

 output[3:0] vga_b,

 output[3:0] vga_g,

 output vga_hs,

 output vga_vs,

 output[15:0] led

);

 parameter NUM_PIXELS_HORIZONTAL = 256;

 parameter NUM_PIXELS_VERTICAL = 240;

 parameter SCALE_FACTOR = 2;

 parameter SCALED_HORIZONTAL_BOUND = NUM_PIXELS_HORIZONTAL * SCALE_FACTOR;

 parameter SCALED_VERTICAL_BOUND = NUM_PIXELS_VERTICAL * SCALE_FACTOR;

 logic reset;

 assign reset = btnc;

 logic up, down, left, right;

 assign up = btnu;

 assign down = btnd;

 assign left = btnl;

 assign right = btnr;

 logic vga_clock_wire;

 logic ppu_clock_wire;

 top_clock(

 .clk_in(clk_100mhz),

 .reset(reset),

 .vga_clock_65mhz(vga_clock_wire),

 .ppu_clock_5mhz(ppu_clock_wire)

);

 /*

 VGA module

 */

 logic[9:0] vga_h_count;

 logic[9:0] vga_v_count;

 logic vga_vsync_out, vga_hsync_out;

 logic vga_blank_out;

 vga_1024 vga_module(

 .vclock_in(vga_clock_wire),

 .hcount_out(vga_h_count),

 .vcount_out(vga_v_count),

 .vsync_out(vga_vsync_out),

 .hsync_out(vga_hsync_out),

 .blank_out(vga_blank_out)

);

 /*

 PPU module

 */

// logic[8:0] ppu_v_count;

// logic[8:0] ppu_h_count;

// PPUCounter ppu_counter(

// .clock_in(ppu_clock_wire),

// .reset_in(reset),

54

// .ppu_v_count_out(ppu_v_count),

// .ppu_h_count_out(ppu_h_count)

//);

 logic [8:0] pixel_h_count;

 logic [8:0] pixel_v_count;

 PPUColor pco;

 PPU ppu(

 .clock_in(ppu_clock_wire),

 .reset_in(reset),

 // Interface with buttons for sprite control

 .up(up),

 .down(down),

 .left(left),

 .right(right),

 // Interface with FrameBuffer

 .pixel_color_out(pco),

 .pixel_h_count_out(pixel_h_count),

 .pixel_v_count_out(pixel_v_count)

);

 logic[8:0] pixel_h_count_fix;

 assign pixel_h_count_fix = pixel_h_count < NUM_PIXELS_HORIZONTAL ? pixel_h_count: 0;

 logic[8:0] pixel_v_count_fix;

 assign pixel_v_count_fix = pixel_v_count < NUM_PIXELS_VERTICAL ? pixel_v_count: 0;

 /*

 Frame Buffer

 */

 logic frame_number;

 PPUColor frame_buffer_out;

 FrameBuffer frames(

 .reset_in(reset),

 .frame_num_in(frame_number),

 // Output pixel interface

 .vga_clock_in(vga_clock_wire),

 .vga_v_count_in(vga_v_count[9:1]), // Cut off the last bit so that it scales the image

by 2x

 .vga_h_count_in(vga_h_count[9:1]),

 .pixel_color_out(frame_buffer_out),

 // Input pixel interface

 .ppu_clock_in(ppu_clock_wire),

 .ppu_v_count_in(pixel_v_count_fix),

 .ppu_h_count_in(pixel_h_count_fix),

 .pixel_color_in(pco)

);

 /*

 PPU Color Mapper Module

 */

 VGAColor vco;

 PPUColorMapper color_mapper(

 .ppu_color_in(frame_buffer_out),

 .vga_color_out(vco)

55
);

 //This may need to be changed

 always_ff @(negedge vga_vsync_out) begin

 if(reset) begin

 frame_number <= 0;

 end else begin

 frame_number <= ~frame_number;

 end

 end

 assign led = sw;

 logic [3:0] vga_out_r;

 logic [3:0] vga_out_g;

 logic [3:0] vga_out_b;

 logic[3:0] vga_r_temp;

 logic[3:0] vga_g_temp;

 logic[3:0] vga_b_temp;

 logic vga_display;

 assign vga_display = (vga_h_count <= SCALED_HORIZONTAL_BOUND && vga_v_count <=

SCALED_VERTICAL_BOUND);

 assign vga_out_r = vco.r;

 assign vga_out_g = vco.g;

 assign vga_out_b = vco.b;

 assign vga_r_temp = vga_display ? vga_out_r: 0;

 assign vga_g_temp = vga_display ? vga_out_g: 0;

 assign vga_b_temp = vga_display ? vga_out_b: 0;

 assign vga_hs = ~vga_hsync_out;

 assign vga_vs = ~vga_vsync_out;

 assign vga_r = ~vga_blank_out ? vga_r_temp: 0;

 assign vga_g = ~vga_blank_out ? vga_g_temp: 0;

 assign vga_b = ~vga_blank_out ? vga_b_temp: 0;

endmodule

56

PPU.sv

import PPU_Types::*;

module PPU(

 input logic clock_in,

 input logic reset_in,

 input logic up,down,right,left,

 // Interface with FrameBuffer

 output PPUColor pixel_color_out,

 output logic[8:0] pixel_h_count_out,

 output logic[8:0] pixel_v_count_out

);

 // Interface with PPUCounter

 logic[8:0] ppu_v_count_in;

 logic[8:0] ppu_h_count_in;

 // Interface with PPUStateCalculator

 PPUCycleInfo cycle_info_in;

 // Interface with VRAM

 logic[15:0] vram_address_out;

 logic[7:0] vram_data_in;

 // Interface with the OAMSprite queue

 OAMSprite sprite_in;

 logic secondary_oam_empty_in;

 logic secondary_oam_pop_out;

 // Interface with renderer module

 logic new_background_data_available_out;

 BackgroundDataToRender background_data_to_render_out;

 SpriteDataToRender[7:0] sprites_to_render_out;

 //SecondaryOAM I/O

 logic secondary_oam_push_in;

 OAMSprite secondary_oam_sprite_in;

 logic secondary_oam_full_out;

 //Interface with background

 logic [4:0] background_pixel_data;

 logic background_drawing;

 //Interface with sprite_pixels

 logic [5:0] sprite_pixel_data;

 logic [8:0] sprite_hcount;

 logic [8:0] sprite_vcount;

 logic sprite_drawing;

 //Interface with pixel_mux

 logic [4:0] palette_info;

 logic [8:0] pixel_mux_h_count_out;

 logic [8:0] pixel_mux_v_count_out;

 // Palette RAM interface variables

 PPUColor palette_ram_pixel_color_out;

 logic[8:0] palette_ram_pixel_h_count_out;

 logic[8:0] palette_ram_pixel_v_count_out;

57
 PPUCounter ppu_counter(

 .clock_in(clock_in),

 .reset_in(reset_in),

 .ppu_v_count_out(ppu_v_count_in),

 .ppu_h_count_out(ppu_h_count_in)

);

 PPUStateCalculator ppu_state_calculator(

 .ppu_v_count_in(ppu_v_count_in),

 .ppu_h_count_in(ppu_h_count_in),

 .cycle_info_out(cycle_info_in)

);

 OAM oam(

 .clock_in(clock_in),

 .reset_in(reset_in),

 //Interface with buttons for sprite control

 .up(up),

 .down(down),

 .left(left),

 .right(right),

 // Interface with PPU Cycle Counter

 .cycle_info_in(cycle_info_in),

 .ppu_v_count_in(ppu_v_count_in),

 .ppu_h_count_in(ppu_h_count_in),

 // Interface with Secondary OAM

 .queue_full_in(secondary_oam_full_out),

 .queue_write_out(secondary_oam_push_in),

 .queue_sprite_out(secondary_oam_sprite_in)

);

 SecondaryOAM secondary_oam(

 .clock_in(clock_in),

 .reset_in(reset_in),

 // Interface with OAM

 .push_in(secondary_oam_push_in),

 .sprite_in(secondary_oam_sprite_in),

 .full_out(secondary_oam_full_out),

 //Interface with PPUMemoryFetcher

 .pop_in(secondary_oam_pop_out),

 .sprite_out(sprite_in),

 .empty_out(secondary_oam_empty_in)

);

 VRAMSpoofer vram_spoofer(

 .clock_in(clock_in),

 .reset_in(reset_in),

 .addr_in(vram_address_out),

 .data_out(vram_data_in)

);

 PPUMemoryFetcher memory_fetcher(

58
 .clock_in(clock_in),

 .reset_in(reset_in),

 // Interface with PPUCounter

 .ppu_v_count_in(ppu_v_count_in),

 .ppu_h_count_in(ppu_h_count_in),

 // Interface with PPUStateCalculator

 .cycle_info_in(cycle_info_in),

 // Interface with VRAM

 .vram_address_out(vram_address_out),

 .vram_data_in(vram_data_in),

 // Interface with the SecondaryOAM

 .sprite_in(sprite_in),

 .secondary_oam_empty_in(secondary_oam_empty_in),

 .secondary_oam_pop_out(secondary_oam_pop_out),

 // Interface with renderer module

 .new_background_data_available_out(new_background_data_available_out),

 .background_data_to_render_out(background_data_to_render_out),

 .sprites_to_render_out(sprites_to_render_out)

);

 logic [8:0] background_h_count;

 logic [8:0] background_v_count;

 background background(

 .clock(clock_in),

 .reset(reset_in),

 .background_data_to_render_in(background_data_to_render_out),

 .new_data(new_background_data_available_out),

 .hcount_in(ppu_h_count_in),

 .vcount_in(ppu_v_count_in),

 .ppu_cycle_info_in(cycle_info_in),

 //Interface with pixel_mux module

 .background_pixel_data(background_pixel_data),

 .hcount_out(background_h_count),

 .vcount_out(background_v_count),

 .drawing(background_drawing)

);

 sprite_pixels sprites(

 .clock(clock_in),

 .reset(reset_in),

 .hcount_in(ppu_h_count_in),

 .vcount_in(ppu_v_count_in),

 .sprites_data_in(sprites_to_render_out),

 .cycle_info_in(cycle_info_in),

 //interface with pixel_mux module

 .sprite_pixel_data(sprite_pixel_data),

 .hcount_out(sprite_hcount),

 .vcount_out(sprite_vcount),

 .drawing(sprite_drawing)

);

 pixel_mux pixel_renderer(

 .clock(clock_in),

 .reset(reset_in),

 .sprite_hcount(sprite_hcount),

 .sprite_vcount(sprite_vcount),

 .background_pixel_data(background_pixel_data),

 .sprite_pixel_data(sprite_pixel_data),

 .background_drawing(background_drawing),

59
 .sprite_drawing(sprite_drawing),

 //interface with color mapper

 .pixel_to_render(palette_info),

 //interface with palette ram

 .hcount_out(pixel_mux_h_count_out),

 .vcount_out(pixel_mux_v_count_out),

 .drawing()

);

 PaletteRAM palette_ram(

 .clock_in(clock_in),

 .reset_in(reset_in),

 // Interface with the pixel_mux module

 .palette_bank_select_in(palette_info[4]),

 .palette_select_in(palette_info[3:2]),

 .color_select_in(palette_info[1:0]),

// .palette_bank_select_in(background_pixel_data[4]),

// .palette_select_in(background_pixel_data[3:2]),

// .color_select_in(background_pixel_data[1:0]),

 // The position on the display of the pixel being input

 .pixel_h_count_in(pixel_mux_h_count_out),

 .pixel_v_count_in(pixel_mux_v_count_out),

// .pixel_v_count_in(background_v_count),

// .pixel_h_count_in(background_h_count),

 // Actual module outputs here

 .pixel_color_out(pixel_color_out),

 .pixel_h_count_out(pixel_h_count_out),

 .pixel_v_count_out(pixel_v_count_out)

);

endmodule

60

PPUCounter.sv

import PPU_Types::*;

/*

 Module Notes:

 This module is combinational and doesn't need a clock or reset

 Inputs:

 clock_in - the 5.369 MHz PPU clock

 reset_in - when high, resets the module to vcount = 0, hcount = 0 on the rising edge

 of the next clock cycle

 Outputs:

 vcount_out - the current scanline being drawn (ranges from 0 to 261, inclusive)

 hcount_out - the current horizontal cycle number (ranges from 0 to 340, inclusive)

*/

module PPUCounter(

 input logic clock_in,

 input logic reset_in,

 output logic[8:0] ppu_v_count_out,

 output logic[8:0] ppu_h_count_out

);

 always_ff @(posedge clock_in) begin

 if(reset_in) begin

 ppu_v_count_out <= 0;

 ppu_h_count_out <= 0;

 end else begin

 if(ppu_h_count_out == NUM_CYCLES_PER_SCANLINE - 1) begin

 ppu_h_count_out <= 0; // Reset to zero

 if(ppu_v_count_out == NUM_SCANLINES - 1) begin // When vcount overflows, reset

to zero

 ppu_v_count_out <= 0;

 end else begin

 ppu_v_count_out <= ppu_v_count_out + 1;

 end

 end else begin // Increment hcount_out

 ppu_h_count_out <= ppu_h_count_out + 1;

 end

 end

 end

endmodule

61

PPUStateCalculator.sv

import PPU_Types::*;

/*

 Module Notes:

 This module is combinational and doesn't need a clock or reset

 Inputs:

 ppu_v_count_in - this is the number (from 0 to 261, inclusive) of the scanline that

the PPU is currently drawing:

 Scanlines [0,239] = visible/drawn

 Scanline 240 = postrender

 Scanlines [241,260] = vblank

 Scanline 261 = prerender

 ppu_h_count_in - this is the scanline cycle number (from 0 to 340, inclusive) of the

pixel that the PPU is currently drawing.

 Outputs:

 vstate_out - the current vertical state of the PPU

 hstate_out - the current horizontal state of the PPU

 tileFetchstate_out - the current tile fetch state of the PPU

 memoryFetchstate_out - the current memoryFetchstate_out of the PPU

*/

module PPUStateCalculator(

 input logic[8:0] ppu_v_count_in,

 input logic[8:0] ppu_h_count_in,

 output PPUCycleInfo cycle_info_out

);

 VerticalState vstate;

 HorizontalState hstate;

 TileFetchState tile_fetch_state;

 MemoryFetchState memory_fetch_state;

 assign cycle_info_out = {

 vstate: vstate,

 hstate: hstate,

 tile_fetch_state: tile_fetch_state,

 memory_fetch_state: memory_fetch_state

 };

 // the tile state can be determined from the 2nd and 3rd lowest bits of (ppu_h_count_in)

 logic[1:0] tile_id;

 assign tile_id = (ppu_h_count_in) >> 1;

 // The possible tile_id values and their meanings

 parameter NAMETABLE_FETCH_ID = 0;

 parameter ATTRIBUTE_FETCH_ID = 1;

 parameter PATTERN_FETCH_1_ID = 2;

 parameter PATTERN_FETCH_2_ID = 3;

 always_comb begin

 if (ppu_v_count_in <= LAST_VISIBLE_SCANLINE) begin // In visual phase

 vstate = VISIBLE;

62

 if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_BACKGROUND_PREFETCH_CYCLE) begin

 // The sprite and background prefetchs go through the same tile data fetch

progression, so they're combined here

 // Determine hstate_out

 if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_BACKGROUND_DRAW_CYCLE) begin

 hstate = BACKGROUND_DRAW;

 end else if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_SPRITE_PREFETCH_CYCLE)

begin

 hstate = SPRITE_PREFETCH;

 end else if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_BACKGROUND_PREFETCH_CYCLE)

begin

 hstate = BACKGROUND_PREFETCH;

 end else begin

 hstate = HORIZONTAL_IDLE;

 end

 // Determine tile_fetch_state_out

 case(tile_id)

 NAMETABLE_FETCH_ID: tile_fetch_state = NAMETABLE_FETCH;

 ATTRIBUTE_FETCH_ID: tile_fetch_state = ATTRIBUTE_FETCH;

 PATTERN_FETCH_1_ID: tile_fetch_state = PATTERN_FETCH_1;

 PATTERN_FETCH_2_ID: tile_fetch_state = PATTERN_FETCH_2;

 endcase

 memory_fetch_state = ppu_h_count_in[0] == 1 ? VRAM_RECIEVE: VRAM_REQUEST;

 end else if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_IDLE_CYCLE) begin

 hstate = HORIZONTAL_IDLE;

 tile_fetch_state = TILE_FETCH_IDLE;

 memory_fetch_state = MEMORY_FETCH_IDLE;

 end

 end else if (ppu_v_count_in <= LAST_POSTRENDER_SCANLINE) begin // In postrender phase

 vstate = POSTRENDER;

 hstate = HORIZONTAL_IDLE;

 tile_fetch_state = TILE_FETCH_IDLE;

 memory_fetch_state = MEMORY_FETCH_IDLE;

 end else if (ppu_v_count_in <= LAST_VBLANK_SCANLINE) begin // In vblank stage

 vstate = VBLANK;

 hstate = HORIZONTAL_IDLE;

 tile_fetch_state = TILE_FETCH_IDLE;

 memory_fetch_state = MEMORY_FETCH_IDLE;

 end else if(ppu_v_count_in <= LAST_PRERENDER_SCANLINE) begin // In prerender phase

 vstate = PRERENDER;

 if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_BACKGROUND_DRAW_CYCLE) begin

 hstate = HORIZONTAL_IDLE;

 tile_fetch_state = TILE_FETCH_IDLE;

 memory_fetch_state = MEMORY_FETCH_IDLE;

 end else if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_BACKGROUND_PREFETCH_CYCLE)

begin

 // The sprite and background prefetchs go through the same tile data fetch

progression, so they're combined here

 // Determine hstate_out

 if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_SPRITE_PREFETCH_CYCLE) begin

63
 hstate = SPRITE_PREFETCH;

 end else if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_BACKGROUND_PREFETCH_CYCLE)

begin

 hstate = BACKGROUND_PREFETCH;

 end

 // Determine tile_fetch_state_out

 case(tile_id)

 NAMETABLE_FETCH_ID: tile_fetch_state = NAMETABLE_FETCH;

 ATTRIBUTE_FETCH_ID: tile_fetch_state = ATTRIBUTE_FETCH;

 PATTERN_FETCH_1_ID: tile_fetch_state = PATTERN_FETCH_1;

 PATTERN_FETCH_2_ID: tile_fetch_state = PATTERN_FETCH_2;

 endcase

 memory_fetch_state = ppu_h_count_in[0] == 1 ? VRAM_RECIEVE: VRAM_REQUEST;

 end else if(ppu_h_count_in <= VISIBLE_SCANLINE_LAST_IDLE_CYCLE) begin

 hstate = HORIZONTAL_IDLE;

 tile_fetch_state = TILE_FETCH_IDLE;

 memory_fetch_state = MEMORY_FETCH_IDLE;

 end

 end

 end

endmodule

64

OAM.sv

import PPU_Types::*;

module OAM(

 input logic clock_in,

 input logic reset_in,

 // Interface with buttons/sprite controller

 input logic up,down,left,right,

 // Interface with PPU Cycle Counter

 input PPUCycleInfo cycle_info_in,

 input logic[8:0] ppu_v_count_in,

 input logic[8:0] ppu_h_count_in,

 // Interface with Secondary OAM

 input logic queue_full_in,

 output logic queue_write_out,

 output OAMSprite queue_sprite_out

);

 // Internal state

 OAMSprite[63:0] all_sprites;

 logic[5:0] sprite_to_evaluate;

 // Determine if the evaluation should run this cycle

 logic[8:0] NEXT_SCANLINE;

 assign NEXT_SCANLINE = (ppu_v_count_in == 261) ? 0: ppu_v_count_in + 1;

 logic V_COUNT_IN_RANGE;

 assign V_COUNT_IN_RANGE = NEXT_SCANLINE < LAST_VISIBLE_SCANLINE;

 logic H_COUNT_IN_RANGE;

 assign H_COUNT_IN_RANGE = (0 <= ppu_h_count_in) && (ppu_h_count_in < 64);

 logic DO_EVALUATION;

 assign DO_EVALUATION = V_COUNT_IN_RANGE && H_COUNT_IN_RANGE;

 // Determine if the sprite will be drawn on the next scanline

 OAMSprite evaluated_sprite;

 assign evaluated_sprite = all_sprites[sprite_to_evaluate];

 logic sprite_is_on_next_scanline;

 assign sprite_is_on_next_scanline = (evaluated_sprite.y_position <= NEXT_SCANLINE) &&

(NEXT_SCANLINE < evaluated_sprite.y_position + 8);

 always_ff @(posedge clock_in) begin

 if(reset_in) begin

 // Reset internal state

 all_sprites[0] <= {

 x_position: 8'd1,

 y_position: 8'd230,

 tile_index: 8'd0,

 // Attribute byte

 color_data: 2'd1,

 background_priority: 1'd0,

65
 horizontal_flip: 1'd0,

 vertical_flip: 1'd0

 };

 all_sprites[1] <= {

 x_position: 8'd1,

 y_position: 8'd222,

 tile_index: 8'd0,

 // Attribute byte

 color_data: 2'd1,

 background_priority: 1'd0,

 horizontal_flip: 1'd0,

 vertical_flip: 1'd0

 };

 all_sprites[2] <= {

 x_position: 8'd16,

 y_position: 8'd230,

 tile_index: 8'd1,

 // Attribute byte

 color_data: 2'd1,

 background_priority: 1'd1,

 horizontal_flip: 1'd0,

 vertical_flip: 1'd0

 };

 all_sprites[3] <= {

 x_position: 8'd24,

 y_position: 8'd222,

 tile_index: 8'd1,

 // Attribute byte

 color_data: 2'd1,

 background_priority: 1'd1,

 horizontal_flip: 1'd0,

 vertical_flip: 1'd0

 };

 all_sprites[4] <= {

 x_position: 8'd16,

 y_position: 8'd222,

 tile_index: 8'd1,

 // Attribute byte

 color_data: 2'd1,

 background_priority: 1'd1,

 horizontal_flip: 1'd0,

 vertical_flip: 1'd0

 };

 all_sprites[5] <= {

 x_position: 8'd24,

 y_position: 8'd230,

 tile_index: 8'd1,

 // Attribute byte

 color_data: 2'd1,

 background_priority: 1'd1,

 horizontal_flip: 1'd0,

 vertical_flip: 1'd0

 };

 all_sprites[6] <= {

66
 x_position: 8'd254,

 y_position: 8'd230,

 tile_index: 8'd0,

 // Attribute byte

 color_data: 2'd0,

 background_priority: 1'd0,

 horizontal_flip: 1'd0,

 vertical_flip: 1'd0

 };

 all_sprites[63:7] <= 0;

 sprite_to_evaluate <= 0;

 //Reset outputs

 queue_write_out <= 0;

 queue_sprite_out <= 0;

 end else begin

 //moving the sprites at a rate of one pixel per frame

 if(ppu_v_count_in == 247 && ppu_h_count_in == 260) begin

 if (up && all_sprites[1].y_position > 8) begin

 all_sprites[5].y_position <= all_sprites[5].y_position - 1;

 all_sprites[6].y_position <= all_sprites[6].y_position - 1;

 all_sprites[2].y_position <= all_sprites[2].y_position - 1;

 all_sprites[3].y_position <= all_sprites[3].y_position - 1;

 all_sprites[4].y_position <= all_sprites[4].y_position - 1;

 all_sprites[0].y_position <= all_sprites[0].y_position - 1;

 all_sprites[1].y_position <= all_sprites[1].y_position - 1;

 end else if (down && all_sprites[4].y_position <= 232) begin

 all_sprites[2].y_position <= all_sprites[2].y_position + 1;

 all_sprites[3].y_position <= all_sprites[3].y_position + 1;

 all_sprites[4].y_position <= all_sprites[4].y_position + 1;

 all_sprites[5].y_position <= all_sprites[5].y_position + 1;

 all_sprites[6].y_position <= all_sprites[6].y_position + 1;

 all_sprites[0].y_position <= all_sprites[0].y_position + 1;

 all_sprites[1].y_position <= all_sprites[1].y_position + 1;

 end

 if (left) begin

 all_sprites[4].x_position <= all_sprites[4].x_position - 1;

 all_sprites[5].x_position <= all_sprites[5].x_position - 1;

 all_sprites[2].x_position <= all_sprites[2].x_position - 1;

 all_sprites[3].x_position <= all_sprites[3].x_position - 1;

 end else if (right) begin

 all_sprites[5].x_position <= all_sprites[5].x_position + 1;

 all_sprites[4].x_position <= all_sprites[4].x_position + 1;

 all_sprites[2].x_position <= all_sprites[2].x_position + 1;

 all_sprites[3].x_position <= all_sprites[3].x_position + 1;

 end

 end

 if(DO_EVALUATION) begin

 queue_sprite_out <= evaluated_sprite;

 queue_write_out <= sprite_is_on_next_scanline && !queue_full_in;

 sprite_to_evaluate <= sprite_to_evaluate + 1;

 end else begin

 sprite_to_evaluate <= 0; // Reset this pointer so that the next evaluation

starts correctly

 queue_write_out <= 0;

67
 end

 end

 end

endmodule

68

SecondaryOAM.sv

import PPU_Types::*;

module SecondaryOAM(

 input logic clock_in,

 input logic reset_in,

 // Interface with OAM

 input logic push_in,

 input OAMSprite sprite_in,

 output logic full_out,

 //Interface with PPUMemoryFetcher

 input logic pop_in,

 input logic clear_in,

 output OAMSprite sprite_out,

 output logic empty_out

);

 /*

 The size of this queue is 8 because it can store 8 elements before it is full

 The queue is empty when write_pointer == read_pointer

 The queue is full when (write_pointer + 1) % (size + 1) == read_pointer

 Data cannot be inserted into a full queue until the cycle after data is popped.

 Data cannot be removed from an empty queue until the cycle after data is pushed

 Pushing and popping cannot be done at the same time. Pushing takes precedence.

 */

 parameter SIZE = 8;

 logic[3:0] write_pointer; // Array index where the next sprite will be written

 logic[3:0] read_pointer; // Array index of the sprite being currently presented on

sprite_out

 OAMSprite[8:0] sprite_queue; // This array has SIZE + 1 elements so that the queue can

differentiate between being full and empty

 always_ff @(posedge clock_in) begin

 if(reset_in || clear_in) begin

 // Reset internal state

 write_pointer <= 0;

 read_pointer <= 0;

 sprite_queue <= 0;

 // Reset outputs

 full_out <= 0;

 sprite_out <= 0;

 empty_out <= 1; // The queue is empty when it is reset

 end else begin

 if(!full_out && push_in) begin // If queue is not full, we can push new data

 logic[3:0] is_full_check_pointer;

 is_full_check_pointer = (write_pointer + 2) % (SIZE + 1);

 full_out <= is_full_check_pointer == read_pointer;

 empty_out <= 0; // When data is pushed, the queue can no longer be empty

69
 sprite_queue[write_pointer] <= sprite_in;

 write_pointer <= (write_pointer + 1) % (SIZE + 1); // Increment write pointer

and overflow if it goes past SIZE

 end else if(!empty_out && pop_in) begin // If queue is not empty, we can pop data

 logic[3:0] next_read_pointer;

 next_read_pointer = (read_pointer + 1) % (SIZE + 1);

 empty_out <= next_read_pointer == write_pointer;

 full_out <= 0; // Whenever data is popped, the queue can no longer be full

 sprite_out <= sprite_queue[read_pointer];

 sprite_queue[read_pointer] <= 0;

 read_pointer <= next_read_pointer; // Increment read pointer and overflow if

it goes past SIZE

 end

 end

 end

endmodule

70

VRAM.sv

`timescale 1ns / 1ps

module VRAM(input clock,

 input BRAM_clock,

 input reset,

 input write,

 input [15:0] int_address,

 input [7:0] data_in,

 output logic [7:0] data_out

);

 logic [13:0] address14;

 logic [7:0] bram_datain;

 logic[7:0] bram_dataout;

 logic [13:0] new_address;

 logic bram_write;

 ppuBRAM BRAM(.clka(BRAM_clock), .ena(1), .wea(bram_write), .addra(new_address),

.dina(bram_datain), .douta(data_out));

 always_ff @(posedge clock) begin

 bram_write <= write;

 bram_datain <= data_in;

 // For transparent tile color mirroring in palettes

 if (int_address[13:0] == 14'h3F10 ||int_address[13:0] == 14'h3F30 || int_address[13:0]

==14'h3F50 || int_address[13:0] ==14'h3F70 || int_address[13:0] ==14'h3F90 ||

int_address[13:0] ==14'h3FB0 || int_address[13:0] ==14'h3FD0 || int_address[13:0] ==14'h3FF0)

begin

 new_address <= 14'h3F00;

 end else if (int_address[13:0] == 14'h3F14 ||int_address[13:0] == 14'h3F34 ||

int_address[13:0] ==14'h3F54 || int_address[13:0] ==14'h3F74 || int_address[13:0] ==14'h3F94

|| int_address[13:0] ==14'h3FB4 || int_address[13:0] ==14'h3FD4 || int_address[13:0]

==14'h3FF4) begin

 new_address <= 14'h3F04;

 end else if (int_address[13:0] == 14'h3F18 ||int_address[13:0] == 14'h3F38 ||

int_address[13:0] ==14'h3F58 || int_address[13:0] ==14'h3F78 || int_address[13:0] ==14'h3F98

|| int_address[13:0] ==14'h3FB8 || int_address[13:0] ==14'h3FD8 || int_address[13:0]

==14'h3FF8) begin

 new_address <= 14'h3F08;

 end else if (int_address[13:0] == 14'h3F1C ||int_address[13:0] == 14'h3F3C ||

int_address[13:0] ==14'h3F5C || int_address[13:0] ==14'h3F7C || int_address[13:0] ==14'h3F9C

|| int_address[13:0] ==14'h3FBC || int_address[13:0] ==14'h3FDC || int_address[13:0]

==14'h3FFC) begin

 new_address <= 14'h3F0C;

 end

 //for nametable mirrors

 else if (int_address[13:0]>=14'h3000 && int_address[13:0]<14'h3F00) begin

 new_address <= int_address[13:0] - 14'h1000;

 end

 //for palette mirrors

 else if (int_address[13:0]>=14'h3F20 && int_address[13:0]<14'h3F40) begin

 new_address <= int_address[13:0] - 14'h0020;

 end

 else if (int_address[13:0]>=14'h3F40 && int_address[13:0]<14'h3F60)begin

 new_address <= int_address[13:0] - 14'h0040;

 end

 else if (int_address[13:0]>=14'h3F60 && int_address[13:0]<14'h3F80)begin

 new_address <= int_address[13:0] - 14'h0060;

 end

 else if (int_address[13:0]>=14'h3F80 && int_address[13:0]<14'h3FA0)begin

 new_address <= int_address[13:0] - 14'h0080;

71
 end

 else if (int_address[13:0]>=14'h3FA0 && int_address[13:0]<14'h3FC0)begin

 new_address <= int_address[13:0] - 14'h00A0;

 end

 else if (int_address[13:0]>=14'h3FC0 && int_address[13:0]<14'h3FE0)begin

 new_address <= int_address[13:0] - 14'h00C0;

 end

 else if (int_address[13:0]>=14'h3FE0 && int_address[13:0]<=14'h3FFF) begin

 new_address <= int_address[13:0] - 14'h00E0;

 end else begin

 new_address <= int_address[13:0];

 end

 end

endmodule

72

VRAMSpoofer.sv

/*

 Module notes:

 This module pretends to be VRAM and returns tile data, nametable data, and attribute

table data

 as if it were VRAM. However, regardless of the tile address, it will always return the

same pattern

 table bytes.

 Addresses of the form 15'b000X_XXXX_XXXX_0abc will map to pattern_table_1[abc]

 Addresses of the form 15'b000X_XXXX_XXXX_1abc will map to pattern_table_2[abc]

 Note: the nes has 2 pattern tables, but this mirrors them into one

 Regardless of the attribute table address, it will always return the attribute byte

 Addresses in the range [0x23C0, 02400) will return the attribute byte

 All other addresses will return 0xFF

*/

module VRAMSpoofer(

 input logic clock_in,

 input logic reset_in,

 input logic[15:0] addr_in,

 output logic[7:0] data_out

);

 parameter NAMETABLE_BYTE_1 = 8'h00;

 parameter NAMETABLE_BYTE_2 = 8'h05;

 parameter NAMETABLE_BYTE_3 = 8'h06;

 parameter NAMETABLE_LOWER_BOUND = 16'h2000;

 parameter NAMETABLE_CHANGE = 16'h2200;

 parameter NAMETABLE_UPPER_BOUND = 16'h23C0;

 parameter ATTRIBUTE_BYTE = 8'b00_00_00_00;

 parameter ATTRIBUTE_LOWER_BOUND = 16'h23C0;

 parameter ATTRIBUTE_UPPER_BOUND = 16'h2400;

 parameter DEFAULT_BYTE = 8'hFF;

 typedef struct packed {

 logic[7:0][7:0] pattern_bytes_1;

 logic[7:0][7:0] pattern_bytes_2;

 } Tile;

 parameter NUM_TILES_LOADED = 7;

 parameter MAX_VALID_PATTERN_TABLE_ADDRESS = NUM_TILES_LOADED * 16 - 1;

 //This need to change if you are adding or removing tiles

 Tile[7:0] pattern_table;

 assign pattern_table[0] = {

 pattern_bytes_1: {

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000

 },

 pattern_bytes_2: {

 8'b00000000,

73
 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000,

 8'b00000000

 }

 };

 assign pattern_table[1] = {

 pattern_bytes_1: {

 8'b00000011,

 8'b00000000,

 8'b00011110,

 8'b00000100,

 8'b00000010,

 8'b00000000,

 8'b00001111,

 8'b00000001

 },

 pattern_bytes_2: {

 8'b00000000,

 8'b00001111,

 8'b00000001,

 8'b00111011,

 8'b00011101,

 8'b00000011,

 8'b00001111,

 8'b00000001

 }

 };

 assign pattern_table[2] = {

 pattern_bytes_1: {

 8'b11110000,

 8'b00000000,

 8'b00011100,

 8'b11001000,

 8'b01001000,

 8'b11110000,

 8'b11110000,

 8'b11100000

 },

 pattern_bytes_2: {

 8'b00000000,

 8'b11100000,

 8'b11100000,

 8'b00110000,

 8'b10110000,

 8'b00000000,

 8'b11110000,

 8'b11100000

 }

 };

 assign pattern_table[3] = {

 pattern_bytes_1: {

 8'b00000111,

 8'b00000110,

 8'b00001111,

 8'b00001111,

74
 8'b00001111,

 8'b00000111,

 8'b00000111,

 8'b00001111

 },

 pattern_bytes_2: {

 8'b00000001,

 8'b00000111,

 8'b00001111,

 8'b00001111,

 8'b00001111,

 8'b00000111,

 8'b00000000,

 8'b00000000

 }

 };

 assign pattern_table[4] = {

 pattern_bytes_1: {

 8'b01111000,

 8'b00111000,

 8'b01111000,

 8'b10011000,

 8'b00011000,

 8'b11110000,

 8'b11110000,

 8'b11110000

 },

 pattern_bytes_2: {

 8'b00000000,

 8'b00000000,

 8'b01111000,

 8'b11111000,

 8'b11101000,

 8'b10000000,

 8'b11000000,

 8'b10000000

 }

 };

 assign pattern_table[5] = {

 pattern_bytes_1: {

 8'b1111_1111,

 8'b1000_0001,

 8'b1011_1101,

 8'b1010_0101,

 8'b1010_0101,

 8'b1011_1101,

 8'b1000_0001,

 8'b1111_1111

 },

 pattern_bytes_2: {

 8'b0000_0000,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0000_0000

 }

 };

75
 assign pattern_table[6] = {

 pattern_bytes_1: {

 8'b1111_1111,

 8'b1111_1111,

 8'b1111_1111,

 8'b1111_1111,

 8'b1111_1111,

 8'b1111_1111,

 8'b1111_1111,

 8'b1111_1111

 },

 pattern_bytes_2: {

 8'b0000_0000,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0111_1110,

 8'b0000_0000

 }

 };

 always_ff @(negedge clock_in) begin

 if(reset_in) begin

 data_out <= 0;

 end else begin

 if(addr_in < NAMETABLE_LOWER_BOUND) begin

 if(addr_in <= MAX_VALID_PATTERN_TABLE_ADDRESS) begin

 data_out <= addr_in[3] ?

pattern_table[addr_in[11:4]].pattern_bytes_2[addr_in[2:0]] :

pattern_table[addr_in[11:4]].pattern_bytes_1[addr_in[2:0]];

 end else begin

 data_out <= 0;

 end

 end else if(NAMETABLE_LOWER_BOUND <= addr_in && addr_in < NAMETABLE_CHANGE) begin

 data_out <= NAMETABLE_BYTE_1;

 end else if (NAMETABLE_CHANGE<= addr_in && addr_in < NAMETABLE_UPPER_BOUND &&

addr_in%2) begin

 data_out <= NAMETABLE_BYTE_2;

 end else if (NAMETABLE_CHANGE<= addr_in && addr_in < NAMETABLE_UPPER_BOUND &&

~addr_in%2) begin

 data_out <= NAMETABLE_BYTE_3;

 end else if(ATTRIBUTE_LOWER_BOUND <= addr_in && addr_in < ATTRIBUTE_UPPER_BOUND)

begin

 data_out <= ATTRIBUTE_BYTE;

 end else begin

 data_out <= DEFAULT_BYTE;

 end

 end

 end

endmodule

76

PPUMemoryFetcher.sv
import PPU_Types::*;

module PPUMemoryFetcher(

 input logic clock_in,

 input logic reset_in,

 // Interface with PPUCounter

 input logic[8:0] ppu_v_count_in,

 input logic[8:0] ppu_h_count_in,

 // Interface with PPUStateCalculator

 input PPUCycleInfo cycle_info_in,

 // Interface with VRAM

 output logic[15:0] vram_address_out, // The address being requested from VRAM

 input logic[7:0] vram_data_in, // The data returned from VRAM. Is latched at the end

of each VRAM_RECIEVE cycle

 // Interface with the SecondaryOAM

 input OAMSprite sprite_in, // This is the sprite that will be fetched at the next

8-cycle sprite fetch phase

 input logic secondary_oam_empty_in, // This is set when the OAMSprite queue is empty

and not presenting a valid sprite

 output logic secondary_oam_pop_out, // This is asserted for one clock cycle once

sprite_in has been latched within this module. Signals that is is safe to present the next

sprite to fetch from memory on sprite_in

 output logic secondary_oam_clear_out,

 // Interface with renderer module

 output logic new_background_data_available_out, //This line is asserted for one cycle

when new backgound data is available on background_data_to_render_out

 output BackgroundDataToRender background_data_to_render_out,

 output SpriteDataToRender[7:0] sprites_to_render_out

);

 // Internal state

 OAMSprite current_sprite_to_fetch; // Internal copy of the current sprite to fetch

 logic[2:0] sprite_write_pointer; // Contains the index into spritePixelsToRender in which

the next loaded sprite will be stored

 logic[7:0] background_tile_index; // This value is the tile index that is loaded from the

nametable

 logic[7:0] background_attribute_byte;

 logic[1:0] background_attribute_bits; // These are the bits selected from the attribute

byte that will be sent to the background module

 logic[7:0] tile_byte_1; // Byte 1 from the pattern table for the tile being fetched

 logic[7:0] tile_byte_2; // Byte 2 from the pattern table for the tile being fetched

 // Parse the cycle horizontal state

 logic fetching_background;

 assign fetching_background = (cycle_info_in.hstate == BACKGROUND_PREFETCH) ||

(cycle_info_in.hstate == BACKGROUND_DRAW);

 //v_count has to be incremented by one if we are prefetching for the next line

 logic [8:0] prefetch_v_count;

 //the condition was added in to try and fix top scanline of prefetched tiles, may need to

change condition to greater than

 assign prefetch_v_count = ppu_v_count_in + 1 > 240 ? 0 : ppu_v_count_in + 1;

 logic[15:0] nametable_addr;

 // Translate vcount and hcount into a nametable address.

 // Note: only supporting one nametable from addresses 0x2000-0x23BF

77
 assign nametable_addr[15:10] = 6'b001000;

 assign nametable_addr[9:5] = cycle_info_in.hstate == BACKGROUND_PREFETCH ?

prefetch_v_count[7:3] : ppu_v_count_in[7:3];

 assign nametable_addr[4:0] = cycle_info_in.hstate == BACKGROUND_PREFETCH ? {3'b0,

ppu_h_count_in[3]}: (ppu_h_count_in[7:3] + 2);

 // Hardcode attribute address to be in the right memory range

 logic [15:0] attribute_addr;

 assign attribute_addr = 16'h23C0;

 always_ff @(posedge clock_in) begin

 if(reset_in) begin

 // Reset all outputs

 vram_address_out <= 0;

 secondary_oam_pop_out <= 0;

 background_data_to_render_out <= 0;

 sprites_to_render_out <= 0;

 new_background_data_available_out <= 0;

 secondary_oam_clear_out <= 0;

 // Reset internal state

 current_sprite_to_fetch <= 0;

 sprite_write_pointer <= 0;

 background_tile_index <= 0;

 background_attribute_byte <= 0;

 background_attribute_bits <= 0;

 tile_byte_1 <= 0;

 tile_byte_2 <= 0;

 end else begin

 // If fetching background tiles

 if(fetching_background) begin

 // Determine the address to present on vram_address_out

 case(cycle_info_in.tile_fetch_state)

 NAMETABLE_FETCH: begin

 vram_address_out <= nametable_addr;

 // Store response from VRAM in the background tile index register

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 background_tile_index <= vram_data_in;

 end

 end

 ATTRIBUTE_FETCH: begin

 vram_address_out <= attribute_addr; // TODO: calculate actual address

here

 // Store response from VRAM in the background attribute byte register

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 background_attribute_byte <= vram_data_in;

 end

 end

 PATTERN_FETCH_1: begin

 /*

 The address of tile byte 1 takes the form of:

 MSB

 4'b0000 - indicating pattern table 1

 8 bits - the tile index

 1'b0 - indicating that it is the first of two bytes defining

the tile row

78
 ppu_v_count_in[2:0] - the last three bits of ppu_v_count_in

tell which row of the tile to read

 LSB

 */

 logic[15:0] tile_byte_1_addr;

 tile_byte_1_addr[15:12] = 0;

 tile_byte_1_addr[11:4] = background_tile_index;

 tile_byte_1_addr[3] = 0;

 tile_byte_1_addr[2:0] = cycle_info_in.hstate == BACKGROUND_PREFETCH ?

prefetch_v_count[2:0]:ppu_v_count_in[2:0];

 vram_address_out <= tile_byte_1_addr;

 // Store response from VRAM in the background tile byte 1 register

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 tile_byte_1 <= vram_data_in;

 end

 // Determine attribute bits

 if(cycle_info_in.hstate == BACKGROUND_PREFETCH) begin

 // Depending on the scanline, we'll either use the square 0 or

square 2 attribute bits

 background_attribute_bits <= prefetch_v_count[4] ?

background_attribute_byte[5:4] : background_attribute_byte[1:0];

 end else begin

 if(ppu_h_count_in[4] && ppu_v_count_in[4]) begin // Square 2

 background_attribute_bits <= background_attribute_byte[5:4];

 end else if(ppu_h_count_in[4] && ~ppu_v_count_in[4]) begin //

Square 0

 background_attribute_bits <= background_attribute_byte[1:0];

 end else if(~ppu_h_count_in[4] && ppu_v_count_in[4]) begin //

Square 3

 background_attribute_bits <= background_attribute_byte[7:6];

 end else begin // Square 1

 background_attribute_bits <= background_attribute_byte[3:2];

 end

 end

 end

 PATTERN_FETCH_2: begin

 /*

 The address of tile byte 2 takes the form of:

 MSB

 4'b0000 - indicating pattern table 1

 8 bits - the tile index

 1'b1 - indicating that it is the second of two bytes defining

the tile row

 ppu_v_count_in[2:0] - the last three bits of ppu_v_count_in

tell which row of the tile to read

 LSB

 */

 logic[15:0] tile_byte_2_addr;

 tile_byte_2_addr[15:12] = 0;

 tile_byte_2_addr[11:4] = background_tile_index;

 tile_byte_2_addr[3] = 1;

 tile_byte_2_addr[2:0] = cycle_info_in.hstate == BACKGROUND_PREFETCH ?

prefetch_v_count[2:0]:ppu_v_count_in[2:0];

 vram_address_out <= tile_byte_2_addr;

79
 // Store response from VRAM in the background tile byte 2 register

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 tile_byte_2 <= vram_data_in; // TODO don't really need this here,

but useful for debugging

 // Write new background data to output

 background_data_to_render_out <= {

 tile_byte_1: tile_byte_1,

 tile_byte_2: vram_data_in,

 attributes: background_attribute_bits

 };

 new_background_data_available_out <= 1; // Indicate that new

background data is available

 end

 end

 TILE_FETCH_IDLE: begin

 // Should never be in this state

 end

 endcase

 end else if(cycle_info_in.hstate == SPRITE_PREFETCH) begin

 case(cycle_info_in.tile_fetch_state)

 NAMETABLE_FETCH: begin

 vram_address_out <= 0; // Nothing is fetched during this cycle for

sprites

 current_sprite_to_fetch <= sprite_in; // Latch the current sprite to

fetch

 end

 ATTRIBUTE_FETCH: begin

 vram_address_out <= 0; // Nothing is fetched during this cycle for

sprites

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 secondary_oam_pop_out <= 1; // Ask the sprite queue to present the

next sprite

 end

 end

 PATTERN_FETCH_1: begin

 /*

 The address of tile byte 1 takes the form of:

 MSB

 4'b0000 - indicating pattern table 1

 8 bits - the tile index

 1'b0 - indicating that it is the first of two bytes defining

the tile row

 ppu_v_count_in[2:0] - the last three bits of ppu_v_count_in

tell which row of the tile to read

 LSB

 */

 logic[15:0] tile_byte_1_addr;

 tile_byte_1_addr[15:12] = 0;

 tile_byte_1_addr[11:4] = sprite_in.tile_index;

 tile_byte_1_addr[3] = 0;

 tile_byte_1_addr[2:0] = prefetch_v_count[2:0]-sprite_in.y_position;

 vram_address_out <= tile_byte_1_addr;

80
 // Store response from VRAM in the background tile byte 1 register

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 tile_byte_1 <= vram_data_in;

 end

 end

 PATTERN_FETCH_2: begin

 /*

 The address of tile byte 2 takes the form of:

 MSB

 4'b0000 - indicating pattern table 1

 8 bits - the tile index

 1'b1 - indicating that it is the second of two bytes defining

the tile row

 ppu_v_count_in[2:0] - the last three bits of ppu_v_count_in

tell which row of the tile to read

 LSB

 */

 logic[15:0] tile_byte_2_addr;

 tile_byte_2_addr = {4'b0, sprite_in.tile_index, 1'b1,

ppu_v_count_in[2:0]};

 tile_byte_2_addr[15:12] = 0;

 tile_byte_2_addr[11:4] = sprite_in.tile_index;

 tile_byte_2_addr[3] = 1;

 tile_byte_2_addr[2:0] = prefetch_v_count-sprite_in.y_position;

 vram_address_out <= tile_byte_2_addr;

 // Store response from VRAM in the background tile byte 2 register

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 tile_byte_2 <= vram_data_in; // TODO don't really need this here,

but useful for debugging

 if(current_sprite_to_fetch == 0) begin

 sprites_to_render_out[sprite_write_pointer] <= 0;

 end else begin

 // Write new sprite data to output

 sprites_to_render_out[sprite_write_pointer] <= {

 // 2 pattern table bytes

 tile_byte_1: tile_byte_1,

 tile_byte_2: tile_byte_2,

 // Relevant parts of the attribute byte

 color_data: sprite_in.color_data,

 background_priority: sprite_in.background_priority,

 x_position: sprite_in.x_position

 };

 end

 end

 if(cycle_info_in.memory_fetch_state == VRAM_RECIEVE) begin

 sprite_write_pointer <= sprite_write_pointer + 1; // Increment

sprite_write_pointer regardless of queue state so that it overflows correctly every 8 sprite

prefetches

 end

 end

 TILE_FETCH_IDLE: begin

 // Should never be in this state

 end

 endcase

81
 end

 // Clear the secondary oam on one of the background prefetch cycles to reset it

for the next scanline

 secondary_oam_clear_out <= ppu_h_count_in ==

VISIBLE_SCANLINE_LAST_BACKGROUND_PREFETCH_CYCLE;

 // Ensure this is only asserted for one cycle

 if(new_background_data_available_out == 1) begin

 new_background_data_available_out <= 0;

 end

 // Ensure this is only asserted for one cycle

 if(secondary_oam_pop_out == 1) begin

 secondary_oam_pop_out <= 0;

 end

 end

 end

endmodule

82

Background.sv

import PPU_Types::*;

module background(input clock,

 input reset,

 input BackgroundDataToRender background_data_to_render_in,

 input new_data,

 //input[2:0] fineX,

 input [8:0] hcount_in,

 input [8:0] vcount_in,

 input PPUCycleInfo ppu_cycle_info_in,

 output logic [4:0] background_pixel_data,

 output logic [8:0] hcount_out,

 output logic [8:0] vcount_out,

 output logic drawing

);

 logic [15:0] PatternReg1;

 logic [15:0] PatternReg2;

 logic [7:0] attribute1;

 logic [7:0] attribute2;

 logic new_attribute1;

 logic new_attribute2;

 always_ff @(posedge clock) begin

 if (reset) begin

 background_pixel_data <= 0;

 hcount_out <= 0;

 vcount_out <= 0;

 drawing <= 0;

 end else begin

 case(ppu_cycle_info_in.vstate)

 PRERENDER: begin

 case(ppu_cycle_info_in.hstate)

 HORIZONTAL_IDLE: begin

 drawing <= 1'b0;

 if (new_data) begin

 //When new data is ready load it into the correct latches

and registers

 new_attribute1 <=

background_data_to_render_in.attributes[0];

 new_attribute2 <=

background_data_to_render_in.attributes[1];

 PatternReg1 <=

{PatternReg1[15:7],background_data_to_render_in.tile_byte_1};

 PatternReg2 <=

{PatternReg2[15:7],background_data_to_render_in.tile_byte_2};

 end

 end

 BACKGROUND_DRAW: begin

 drawing <= 1'b0;

 if (new_data) begin

 //When new data is ready load it into the correct latches

and registers

 new_attribute1 <=

background_data_to_render_in.attributes[0];

 new_attribute2 <=

background_data_to_render_in.attributes[1];

 PatternReg1 <=

{PatternReg1[14:0],background_data_to_render_in.attributes[0]};

 PatternReg2 <=

{PatternReg2[14:0],background_data_to_render_in.attributes[1]};

83
 PatternReg1 <=

{PatternReg1[14:8],background_data_to_render_in.tile_byte_1,1'b0};

 PatternReg2 <=

{PatternReg2[14:8],background_data_to_render_in.tile_byte_2,1'b0};

 end else begin

 //Shifting all of the registers one bit

 PatternReg1 <= {PatternReg1[14:0],1'b0};

 PatternReg2 <= {PatternReg2[14:0],1'b0};

 attribute1 <= {attribute1[6:0],new_attribute1};

 attribute2 <= {attribute2[6:0],new_attribute2};

 end

 end

 SPRITE_PREFETCH: drawing <= 1'b0;

 BACKGROUND_PREFETCH:begin

 drawing <= 1'b0;

 if (new_data) begin

 //When new data is ready load it into the correct latches

and registers

 new_attribute1 <=

background_data_to_render_in.attributes[0];

 new_attribute2 <=

background_data_to_render_in.attributes[1];

 PatternReg1 <=

{PatternReg1[14:0],background_data_to_render_in.attributes[0]};

 PatternReg2 <=

{PatternReg2[14:0],background_data_to_render_in.attributes[1]};

 PatternReg1 <=

{PatternReg1[14:8],background_data_to_render_in.tile_byte_1,1'b0};

 PatternReg2 <=

{PatternReg2[14:8],background_data_to_render_in.tile_byte_2,1'b0};

 end else begin

 //Shifting all of the registers one bit each clock cycle

 PatternReg1 <= {PatternReg1[14:0],1'b0};

 PatternReg2 <= {PatternReg2[14:0],1'b0};

 attribute1 <= {attribute1[6:0],new_attribute1};

 attribute2 <= {attribute2[6:0],new_attribute2};

 end

 end

 endcase

 end

 VISIBLE: begin

 case(ppu_cycle_info_in.hstate)

 HORIZONTAL_IDLE: begin

 drawing <= 1'b0;

 if (new_data) begin

 //When new data is ready load it into the correct latches

and registers

 new_attribute1 <=

background_data_to_render_in.attributes[0];

 new_attribute2 <=

background_data_to_render_in.attributes[1];

 PatternReg1 <=

{PatternReg1[15:1],background_data_to_render_in.attributes[0]};

 PatternReg2 <=

{PatternReg2[15:1],background_data_to_render_in.attributes[1]};

 PatternReg1 <=

{PatternReg1[15:8],background_data_to_render_in.tile_byte_1};

 PatternReg2 <=

{PatternReg2[15:8],background_data_to_render_in.tile_byte_2};

 end

 end

 BACKGROUND_DRAW: begin

 drawing <= 1'b1;

 if (new_data) begin

 //When new data is ready load it into the correct latches

and registers

84
 new_attribute1 <=

background_data_to_render_in.attributes[0];

 new_attribute2 <=

background_data_to_render_in.attributes[1];

 PatternReg1 <=

{PatternReg1[14:0],background_data_to_render_in.attributes[0]};

 PatternReg2 <=

{PatternReg2[14:0],background_data_to_render_in.attributes[1]};

 PatternReg1 <=

{PatternReg1[14:8],background_data_to_render_in.tile_byte_1,1'b0};

 PatternReg2 <=

{PatternReg2[14:8],background_data_to_render_in.tile_byte_2,1'b0};

 end else begin

 //Shifting all of the registers one bit

 PatternReg1 <= {PatternReg1[14:0],1'b0};

 PatternReg2 <= {PatternReg2[14:0],1'b0};

 attribute1 <= {attribute1[6:0],new_attribute1};

 attribute2 <= {attribute2[6:0],new_attribute2};

 end

 //Creating the pixel output, the zero signifies that is should

be addressing to background palettes

 background_pixel_data <= {1'b0, attribute2[7], attribute1[7],

PatternReg2[15], PatternReg1[15]};

 //outputting current hcount and vcount with pixel to give

pixel location

 hcount_out <= hcount_in;

 vcount_out <= vcount_in;

 end

 SPRITE_PREFETCH: drawing <= 1'b0;

 BACKGROUND_PREFETCH:begin

 drawing <= 1'b0;

 if (new_data) begin

 //When new data is ready load it into the correct latches

and registers

 new_attribute1 <=

background_data_to_render_in.attributes[0];

 new_attribute2 <=

background_data_to_render_in.attributes[1];

 PatternReg1 <=

{PatternReg1[14:0],background_data_to_render_in.attributes[0]};

 PatternReg2 <=

{PatternReg2[14:0],background_data_to_render_in.attributes[1]};

 PatternReg1 <=

{PatternReg1[14:8],background_data_to_render_in.tile_byte_1,1'b0};

 PatternReg2 <=

{PatternReg2[14:8],background_data_to_render_in.tile_byte_2,1'b0};

 end else begin

 //Shifting all of the registers one bit each clock cycle

 PatternReg1 <= {PatternReg1[14:0],1'b0};

 PatternReg2 <= {PatternReg2[14:0],1'b0};

 attribute1 <= {attribute1[6:0],new_attribute1};

 attribute2 <= {attribute2[6:0],new_attribute2};

 end

 end

 endcase

 end

 POSTRENDER: drawing <= 1'b0;

 VBLANK: drawing <= 1'b0;

 endcase

 end

 end

endmodule

85

Sprite_pixels.sv

`timescale 1ns / 1ps

import PPU_Types::*;

module sprite_pixels(

 input clock,

 input reset,

 input [8:0] hcount_in,

 input [8:0] vcount_in,

 input SpriteDataToRender[7:0] sprites_data_in,

 /*

 // 2 pattern table bytes

 logic[7:0] tile_byte_1;

 logic[7:0] tile_byte_2;

 // Relevant parts of the attribute byte

 logic[1:0] color_data;

 logic background_priority;

 logic[7:0] x_position;

 */

 input PPUCycleInfo cycle_info_in,

 //sprite_pixel_data bit 5 background priority, bit 4 = 1 to direct to

sprite palettes, bit 3&2 attribute palette data, bit 1&0 color data from pattern tables

 output logic [5:0] sprite_pixel_data,

 output logic [8:0] hcount_out,

 output logic [8:0] vcount_out,

 output logic drawing

);

 //creating registers x locations of sprites

 logic [7:0] location_sprite0;

 logic [7:0] location_sprite1;

 logic [7:0] location_sprite2;

 logic [7:0] location_sprite3;

 logic [7:0] location_sprite4;

 logic [7:0] location_sprite5;

 logic [7:0] location_sprite6;

 logic [7:0] location_sprite7;

 //creating 8 latches with attribute info of sprites bit 0&1 color data bit 2 background

priority

 logic [1:0] attribute_sprite0;

 logic [1:0] attribute_sprite1;

 logic [1:0] attribute_sprite2;

 logic [1:0] attribute_sprite3;

 logic [1:0] attribute_sprite4;

 logic [1:0] attribute_sprite5;

 logic [1:0] attribute_sprite6;

 logic [1:0] attribute_sprite7;

 //creating 16 8-bit shift registers for pattern table bytes, 2 for each sprite

 logic [7:0] first_pattern_sprite0;

 logic [7:0] first_pattern_sprite1;

 logic [7:0] first_pattern_sprite2;

 logic [7:0] first_pattern_sprite3;

 logic [7:0] first_pattern_sprite4;

 logic [7:0] first_pattern_sprite5;

 logic [7:0] first_pattern_sprite6;

 logic [7:0] first_pattern_sprite7;

 logic [7:0] second_pattern_sprite0;

 logic [7:0] second_pattern_sprite1;

 logic [7:0] second_pattern_sprite2;

86
 logic [7:0] second_pattern_sprite3;

 logic [7:0] second_pattern_sprite4;

 logic [7:0] second_pattern_sprite5;

 logic [7:0] second_pattern_sprite6;

 logic [7:0] second_pattern_sprite7;

 //creating latches to hold pixel data for each sprite

 logic [5:0] sprite0_pixel;

 logic [5:0] sprite1_pixel;

 logic [5:0] sprite2_pixel;

 logic [5:0] sprite3_pixel;

 logic [5:0] sprite4_pixel;

 logic [5:0] sprite5_pixel;

 logic [5:0] sprite6_pixel;

 logic [5:0] sprite7_pixel;

 logic priority0;

 logic priority1;

 logic priority2;

 logic priority3;

 logic priority4;

 logic priority5;

 logic priority6;

 logic priority7;

 //latch to hold data to be outputted

 logic [5:0] send_out;

 always_comb begin

 if (sprite0_pixel != 6'b0 && sprite0_pixel != 6'b010000) begin

 send_out = sprite0_pixel;

 end else if (sprite1_pixel != 6'b0 && sprite1_pixel != 6'b010000) begin

 send_out = sprite1_pixel;

 end else if (sprite2_pixel != 6'b0 && sprite2_pixel != 6'b010000) begin

 send_out = sprite2_pixel;

 end else if (sprite3_pixel != 6'b0 && sprite3_pixel != 6'b010000) begin

 send_out = sprite3_pixel;

 end else if (sprite4_pixel != 6'b0 && sprite4_pixel != 6'b010000) begin

 send_out = sprite4_pixel;

 end else if (sprite5_pixel != 6'b0 && sprite5_pixel != 6'b010000) begin

 send_out = sprite5_pixel;

 end else if (sprite6_pixel != 6'b0 && sprite6_pixel != 6'b010000) begin

 send_out = sprite6_pixel;

 end else if (sprite7_pixel != 6'b0 && sprite7_pixel != 6'b010000) begin

 send_out = sprite7_pixel;

 end else begin

 send_out = 6'b0;

 end

 if (hcount_in == 0) begin

 send_out =6'b0;

 end

 end

 always_ff @(posedge clock) begin

 if (reset) begin

 location_sprite0 <= 0;

 location_sprite1 <= 0;

 location_sprite2 <= 0;

 location_sprite3 <= 0;

 location_sprite4 <= 0;

 location_sprite5 <= 0;

 location_sprite6 <= 0;

 location_sprite7 <= 0;

 attribute_sprite0 <= 0;

87
 attribute_sprite1 <= 0;

 attribute_sprite2 <= 0;

 attribute_sprite3 <= 0;

 attribute_sprite4 <= 0;

 attribute_sprite5 <= 0;

 attribute_sprite6 <= 0;

 attribute_sprite7 <= 0;

 first_pattern_sprite0 <= 0;

 first_pattern_sprite1 <= 0;

 first_pattern_sprite2 <= 0;

 first_pattern_sprite3 <= 0;

 first_pattern_sprite4 <= 0;

 first_pattern_sprite5 <= 0;

 first_pattern_sprite6 <= 0;

 first_pattern_sprite7 <= 0;

 second_pattern_sprite0 <= 0;

 second_pattern_sprite1 <= 0;

 second_pattern_sprite2 <= 0;

 second_pattern_sprite3 <= 0;

 second_pattern_sprite4 <= 0;

 second_pattern_sprite5 <= 0;

 second_pattern_sprite6 <= 0;

 second_pattern_sprite7 <= 0;

 sprite0_pixel <= 0;

 sprite1_pixel <= 0;

 sprite2_pixel <= 0;

 sprite3_pixel <= 0;

 sprite4_pixel <= 0;

 sprite5_pixel <= 0;

 sprite6_pixel <= 0;

 sprite7_pixel <= 0;

 priority0 <= 0;

 priority1 <= 0;

 priority2 <= 0;

 priority3 <= 0;

 priority4 <= 0;

 priority5 <= 0;

 priority6 <= 0;

 priority7 <= 0;

 end else begin

 case(cycle_info_in.vstate)

 PRERENDER: begin

 drawing <= 1'b0;

 //load all of the sprite information for each line after the sprite

prefetch

 if (hcount_in == VISIBLE_SCANLINE_LAST_SPRITE_PREFETCH_CYCLE + 2)

begin

 //loading first pattern table byte for each sprite

 first_pattern_sprite0 <= sprites_data_in[0].tile_byte_1;

 first_pattern_sprite1 <= sprites_data_in[1].tile_byte_1;

 first_pattern_sprite2 <= sprites_data_in[2].tile_byte_1;

 first_pattern_sprite3 <= sprites_data_in[3].tile_byte_1;

 first_pattern_sprite4 <= sprites_data_in[4].tile_byte_1;

 first_pattern_sprite5 <= sprites_data_in[5].tile_byte_1;

 first_pattern_sprite6 <= sprites_data_in[6].tile_byte_1;

 first_pattern_sprite7 <= sprites_data_in[7].tile_byte_1;

 //loading second pattern table byte for each sprite

 second_pattern_sprite0 <= sprites_data_in[0].tile_byte_2;

 second_pattern_sprite1 <= sprites_data_in[1].tile_byte_2;

 second_pattern_sprite2 <= sprites_data_in[2].tile_byte_2;

 second_pattern_sprite3 <= sprites_data_in[3].tile_byte_2;

88
 second_pattern_sprite4 <= sprites_data_in[4].tile_byte_2;

 second_pattern_sprite5 <= sprites_data_in[5].tile_byte_2;

 second_pattern_sprite6 <= sprites_data_in[6].tile_byte_2;

 second_pattern_sprite7 <= sprites_data_in[7].tile_byte_2;

 //loading x location of each sprite

 location_sprite0 <= sprites_data_in[0].x_position;

 location_sprite1 <= sprites_data_in[1].x_position;

 location_sprite2 <= sprites_data_in[2].x_position;

 location_sprite3 <= sprites_data_in[3].x_position;

 location_sprite4 <= sprites_data_in[4].x_position;

 location_sprite5 <= sprites_data_in[5].x_position;

 location_sprite6 <= sprites_data_in[6].x_position;

 location_sprite7 <= sprites_data_in[7].x_position;

 //loading color data for each sprite

 attribute_sprite0 <= sprites_data_in[0].color_data;

 attribute_sprite1 <= sprites_data_in[1].color_data;

 attribute_sprite2 <= sprites_data_in[2].color_data;

 attribute_sprite3 <= sprites_data_in[3].color_data;

 attribute_sprite4 <= sprites_data_in[4].color_data;

 attribute_sprite5 <= sprites_data_in[5].color_data;

 attribute_sprite6 <= sprites_data_in[6].color_data;

 attribute_sprite7 <= sprites_data_in[7].color_data;

 //loading background priority data

 priority0 <= sprites_data_in[0].background_priority;

 priority1 <= sprites_data_in[1].background_priority;

 priority2 <= sprites_data_in[2].background_priority;

 priority3 <= sprites_data_in[3].background_priority;

 priority4 <= sprites_data_in[4].background_priority;

 priority5 <= sprites_data_in[5].background_priority;

 priority6 <= sprites_data_in[6].background_priority;

 priority7 <= sprites_data_in[7].background_priority;

 end

 end

 VISIBLE: begin

 drawing <= 1'b0;

 //load all of the sprite information for each line after the sprite

prefetch

 if (hcount_in == VISIBLE_SCANLINE_LAST_SPRITE_PREFETCH_CYCLE + 2)

begin //changed >= to ==

 //loading first pattern table byte for each sprite

 first_pattern_sprite0 <= sprites_data_in[0].tile_byte_1;

 first_pattern_sprite1 <= sprites_data_in[1].tile_byte_1;

 first_pattern_sprite2 <= sprites_data_in[2].tile_byte_1;

 first_pattern_sprite3 <= sprites_data_in[3].tile_byte_1;

 first_pattern_sprite4 <= sprites_data_in[4].tile_byte_1;

 first_pattern_sprite5 <= sprites_data_in[5].tile_byte_1;

 first_pattern_sprite6 <= sprites_data_in[6].tile_byte_1;

 first_pattern_sprite7 <= sprites_data_in[7].tile_byte_1;

 //loading second pattern table byte for each sprite

 second_pattern_sprite0 <= sprites_data_in[0].tile_byte_2;

 second_pattern_sprite1 <= sprites_data_in[1].tile_byte_2;

 second_pattern_sprite2 <= sprites_data_in[2].tile_byte_2;

 second_pattern_sprite3 <= sprites_data_in[3].tile_byte_2;

 second_pattern_sprite4 <= sprites_data_in[4].tile_byte_2;

 second_pattern_sprite5 <= sprites_data_in[5].tile_byte_2;

 second_pattern_sprite6 <= sprites_data_in[6].tile_byte_2;

 second_pattern_sprite7 <= sprites_data_in[7].tile_byte_2;

 //loading x location of each sprite

 location_sprite0 <= sprites_data_in[0].x_position;

 location_sprite1 <= sprites_data_in[1].x_position;

 location_sprite2 <= sprites_data_in[2].x_position;

 location_sprite3 <= sprites_data_in[3].x_position;

 location_sprite4 <= sprites_data_in[4].x_position;

 location_sprite5 <= sprites_data_in[5].x_position;

 location_sprite6 <= sprites_data_in[6].x_position;

 location_sprite7 <= sprites_data_in[7].x_position;

89
 //loading color data for each sprite

 attribute_sprite0 <= sprites_data_in[0].color_data;

 attribute_sprite1 <= sprites_data_in[1].color_data;

 attribute_sprite2 <= sprites_data_in[2].color_data;

 attribute_sprite3 <= sprites_data_in[3].color_data;

 attribute_sprite4 <= sprites_data_in[4].color_data;

 attribute_sprite5 <= sprites_data_in[5].color_data;

 attribute_sprite6 <= sprites_data_in[6].color_data;

 attribute_sprite7 <= sprites_data_in[7].color_data;

 //loading background priority data

 priority0 <= sprites_data_in[0].background_priority;

 priority1 <= sprites_data_in[1].background_priority;

 priority2 <= sprites_data_in[2].background_priority;

 priority3 <= sprites_data_in[3].background_priority;

 priority4 <= sprites_data_in[4].background_priority;

 priority5 <= sprites_data_in[5].background_priority;

 priority6 <= sprites_data_in[6].background_priority;

 priority7 <= sprites_data_in[7].background_priority;

 end

 //calculating if a sprite is there and drawing that pixel

 else if (hcount_in < VISIBLE_SCANLINE_LAST_BACKGROUND_DRAW_CYCLE)

begin //2 is added because of clockcycle offset

 if (hcount_in >= location_sprite7 && hcount_in < location_sprite7

+ 8'd8) begin

 sprite7_pixel <= {priority7, 1'b1,

attribute_sprite7,second_pattern_sprite7[7],first_pattern_sprite7[7]};

 first_pattern_sprite7 <= {first_pattern_sprite7[6:0],1'b0};

 second_pattern_sprite7 <= {second_pattern_sprite7[6:0],1'b0};

 end else begin

 sprite7_pixel <= 6'b0;

 end

 if (hcount_in >= location_sprite6 && hcount_in < location_sprite6

+ 8'd8) begin

 sprite6_pixel <= {priority6, 1'b1,

attribute_sprite6,second_pattern_sprite6[7],first_pattern_sprite6[7]};

 first_pattern_sprite6 <= {first_pattern_sprite6[6:0],1'b0};

 second_pattern_sprite6 <= {second_pattern_sprite6[6:0],1'b0};

 end else begin

 sprite6_pixel <= 6'b0;

 end

 if (hcount_in >= location_sprite5 && hcount_in < location_sprite5

+ 8'd8) begin

 sprite6_pixel <= {priority6, 1'b1,

attribute_sprite6,second_pattern_sprite6[7],first_pattern_sprite6[7]};

 first_pattern_sprite5 <= {first_pattern_sprite5[6:0],1'b0};

 second_pattern_sprite5 <= {second_pattern_sprite5[6:0],1'b0};

 end else begin

 sprite5_pixel <= 6'b0;

 end

 if (hcount_in >= location_sprite4 && hcount_in < location_sprite4

+ 8'd8) begin

 sprite6_pixel <= {priority6, 1'b1,

attribute_sprite6,second_pattern_sprite6[7],first_pattern_sprite6[7]};

 first_pattern_sprite4 <= {first_pattern_sprite4[6:0],1'b0};

 second_pattern_sprite4 <= {second_pattern_sprite4[6:0],1'b0};

 end else begin

 sprite4_pixel <= 6'b0;

 end

 if (hcount_in >= location_sprite3 && hcount_in < location_sprite3

+ 8'd8) begin

 sprite6_pixel <= {priority6, 1'b1,

attribute_sprite6,second_pattern_sprite6[7],first_pattern_sprite6[7]};

 first_pattern_sprite3 <= {first_pattern_sprite3[6:0],1'b0};

 second_pattern_sprite3 <= {second_pattern_sprite3[6:0],1'b0};

 end else begin

90
 sprite3_pixel <= 6'b0;

 end

 if (hcount_in >= location_sprite2 && hcount_in < location_sprite2

+ 8'd8) begin

 sprite6_pixel <= {priority6, 1'b1,

attribute_sprite6,second_pattern_sprite6[7],first_pattern_sprite6[7]};

 first_pattern_sprite2 <= {first_pattern_sprite2[6:0],1'b0};

 second_pattern_sprite2 <= {second_pattern_sprite2[6:0],1'b0};

 end else begin

 sprite2_pixel <= 6'b0;

 end

 if (hcount_in >= location_sprite1 && hcount_in < location_sprite1

+ 8'd8) begin

 sprite6_pixel <= {priority6, 1'b1,

attribute_sprite6,second_pattern_sprite6[7],first_pattern_sprite6[7]};

 first_pattern_sprite1 <= {first_pattern_sprite1[6:0],1'b0};

 second_pattern_sprite1 <= {second_pattern_sprite1[6:0],1'b0};

 end else begin

 sprite1_pixel <= 6'b0;

 end

 if (hcount_in >= location_sprite0 && hcount_in < location_sprite0

+ 8'd8) begin

 sprite6_pixel <= {priority6, 1'b1,

attribute_sprite6,second_pattern_sprite6[7],first_pattern_sprite6[7]};

 first_pattern_sprite0 <= {first_pattern_sprite0[6:0],1'b0};

 second_pattern_sprite0 <= {second_pattern_sprite0[6:0],1'b0};

 end else begin

 sprite0_pixel <= 6'b0;

 end

 if (send_out == 6'b0) begin

 drawing <= 1'b0;

 end else begin

 drawing <= 1'b1;

 end

 sprite_pixel_data <= send_out;

 if (hcount_in == 0) begin

 hcount_out <= 0;

 end else begin

 hcount_out <= hcount_in - 9'd1 ;

 end

 vcount_out <= vcount_in;

 end

 end

 POSTRENDER: drawing <= 1'b0;

 VBLANK: drawing <= 1'b0;

 endcase

 end

 end

endmodule

91

Pixel_mux.sv

module pixel_mux(

 input clock,

 input reset,

 input [8:0] sprite_hcount,

 input [8:0] sprite_vcount,

 input [5:0] sprite_pixel_data,

 input [4:0] background_pixel_data,

 //possibly need this input

 input background_drawing,

 input sprite_drawing,

 output logic [4:0] pixel_to_render,

 output logic [8:0] hcount_out,

 output logic [8:0] vcount_out,

 output logic drawing

);

 logic [4:0] background_hold;

 logic background_drawing_latch;

 always_ff @(posedge clock) begin

 if (sprite_hcount == 9'd255) begin

 background_hold <= 0;

 background_drawing_latch <= 0;

 end else begin

 background_hold <= background_pixel_data;

 background_drawing_latch <= background_drawing;

 end

 //when checking for transparency in these if statements only need to check

 //bits 1&0 because 00 in each color palette is the transparent color

 if (sprite_pixel_data == 6'b0) begin

 pixel_to_render <= background_hold;

 end else if (sprite_pixel_data[5] == 1'b0 && background_hold[1:0] != 2'b0) begin

 pixel_to_render <= background_hold;

 end else if (sprite_pixel_data[5] == 1'b0 && background_hold[1:0] == 2'b0) begin

 pixel_to_render <= sprite_pixel_data[4:0];

 end else if (sprite_pixel_data[5] == 1'b1 && sprite_pixel_data[1:0] == 2'b0) begin

 pixel_to_render <= background_hold;

 end else if (sprite_pixel_data[5] == 1'b1 && sprite_pixel_data[1:0] != 2'b0) begin

 pixel_to_render <= sprite_pixel_data;

 end

 hcount_out <= sprite_hcount;

 vcount_out <= sprite_vcount;

 if (background_drawing_latch == 1'b1 || sprite_drawing == 1'b1) begin

 drawing <= 1'b1;

 end else begin

 drawing <= 1'b0;

 end

 end

endmodule

92

PaletteRAM.sv

module PaletteRAM(

 input logic clock_in,

 input logic reset_in,

 // The pixel palette address being input

 input logic palette_bank_select_in,

 input logic[1:0] palette_select_in,

 input logic[1:0] color_select_in,

 // The position on the display of the pixel being input

 input logic[8:0] pixel_h_count_in,

 input logic[8:0] pixel_v_count_in,

 output PPUColor pixel_color_out,

 output logic[8:0] pixel_h_count_out, // The h_count position of the color being output

 output logic[8:0] pixel_v_count_out // The v_count position of the colot being output

);

 PPUColor transparent_color;

 assign transparent_color = 6'h21; // light grey

 PPUColor[3:0][3:0] background_palettes;

 assign background_palettes = {

 {6'h08, 6'h18, 6'h17, transparent_color},

 {6'h18, 6'h17, 6'h08, transparent_color},

 {6'h17, 6'h08, 6'h18, transparent_color},

 {6'h06, 6'h07, 6'h17, transparent_color}

 };

 PPUColor[3:0][3:0] sprite_palettes;

 assign sprite_palettes = {

 {6'h06, 6'h37, 6'h02, transparent_color},

 {6'h06, 6'h37, 6'h02, transparent_color},

 {6'h06, 6'h37, 6'h02, transparent_color},

 {6'h06, 6'h37, 6'h02, transparent_color}

 };

 always_ff @(posedge clock_in) begin

 if(reset_in) begin

 // Reset output

 pixel_color_out <= 0;

 pixel_h_count_out <= 0;

 pixel_v_count_out <= 0;

 end else begin

 pixel_color_out <= palette_bank_select_in ?

sprite_palettes[palette_select_in][color_select_in]:

background_palettes[palette_select_in][color_select_in];

 // This provides a one-stage pipeline so that the position information follows the

pixel information correctly

 pixel_h_count_out <= pixel_h_count_in;

 pixel_v_count_out <= pixel_v_count_in;

 end

 end

endmodule

93

FrameBuffer.sv

import PPU_Types::*;

/*

 Module notes:

 This module serves as a frame buffer between the output of the PPU and the input to the

VGA module.

 This module contains two memories that each store an entire frame of video. While the PPU

is writing

 the next frame to one buffer, the VGA module is reading the current frame data from the

other.

 Note that the output pixel data lags the VGA v and h count by one clock cycle.

 Also note that vga_v_count_in and ppu_v_count_in should range from 0 to 239 inclusive and

 vga_h_count_in and ppu_h_count_in should range from 0 to 255 inclusive

*/

module FrameBuffer(

 input logic reset_in,

 input logic frame_num_in, // This determines which of the two internal

frame buffers to read from

 // Interface with the video out unit

 input logic vga_clock_in,

 input logic[8:0] vga_v_count_in,

 input logic[8:0] vga_h_count_in,

 output PPUColor pixel_color_out,

 // Interface with the PPU

 input logic ppu_clock_in,

 input logic[8:0] ppu_v_count_in,

 input logic[8:0] ppu_h_count_in,

 input PPUColor pixel_color_in

);

 // Calculate the address to write the new pixel data

 logic[15:0] ppu_write_addr;

 assign ppu_write_addr = (ppu_v_count_in * NUM_HORIZONTAL_PIXELS) + ppu_h_count_in;

 // Calculate the address to read the next pixel data

 logic[15:0] video_out_read_addr;

 assign video_out_read_addr = (vga_v_count_in * NUM_HORIZONTAL_PIXELS) + vga_h_count_in;

 PPUColor buffer1_pixel;

 ppu_frame_buffer buffer1(

 .clka(frame_num_in ? vga_clock_in : ppu_clock_in),

 .wea(~frame_num_in), // Write to this frame buffer when frame_num_in is high

 .addra(frame_num_in ? video_out_read_addr : ppu_write_addr),

 .dina(pixel_color_in),

 .douta(buffer1_pixel)

);

 PPUColor buffer2_pixel;

 ppu_frame_buffer buffer2(

 .clka(frame_num_in ? ppu_clock_in : vga_clock_in),

 .wea(frame_num_in), // Write to this frame buffer when frame_num_in is low

 .addra(frame_num_in ? ppu_write_addr : video_out_read_addr),

 .dina(pixel_color_in),

 .douta(buffer2_pixel)

);

94

 always_ff @(posedge vga_clock_in) begin

 pixel_color_out <= frame_num_in ? buffer1_pixel : buffer2_pixel; // When frame_num_in

is high, output the data read from buffer1

 end

endmodule

95

PPUColorMapper.sv

import PPU_Types::*;

module PPUColorMapper(

 input PPUColor ppu_color_in,

 output VGAColor vga_color_out

);

 // Buckle up

 // There's probably a better way to do this, but idk

 logic[11:0] color_map[63:0]; // 64 x 12 bit array

 assign color_map[0] = 12'h777; // 0x00

 assign color_map[1] = 12'h00F;

 assign color_map[2] = 12'h00B;

 assign color_map[3] = 12'h42B;

 assign color_map[4] = 12'h908;

 assign color_map[5] = 12'hA02;

 assign color_map[6] = 12'hA10;

 assign color_map[7] = 12'h810;

 assign color_map[8] = 12'h530;

 assign color_map[9] = 12'h070;

 assign color_map[10] = 12'h060;

 assign color_map[11] = 12'h050;

 assign color_map[12] = 12'h045;

 assign color_map[13] = 12'h000;

 assign color_map[14] = 12'h000;

 assign color_map[15] = 12'h000; // 0x0F

 assign color_map[16] = 12'hBBB; // 0x10

 assign color_map[17] = 12'h07F;

 assign color_map[18] = 12'h05F;

 assign color_map[19] = 12'h64F;

 assign color_map[20] = 12'hD0C;

 assign color_map[21] = 12'hE05;

 assign color_map[22] = 12'hF30;

 assign color_map[23] = 12'hE51;

 assign color_map[24] = 12'hA70;

 assign color_map[25] = 12'h0B0;

 assign color_map[26] = 12'h0A0;

 assign color_map[27] = 12'h0A4;

 assign color_map[28] = 12'h088;

 assign color_map[29] = 12'h000;

 assign color_map[30] = 12'h000;

 assign color_map[31] = 12'h000; // 0x1F

 assign color_map[32] = 12'hFFF; // 0x20

 assign color_map[33] = 12'h3BF;

 assign color_map[34] = 12'h68F;

 assign color_map[35] = 12'h97F;

 assign color_map[36] = 12'hF7F;

 assign color_map[37] = 12'hF59;

 assign color_map[38] = 12'hF75;

 assign color_map[39] = 12'hFA4;

 assign color_map[40] = 12'hFB0;

 assign color_map[41] = 12'hBF1;

 assign color_map[42] = 12'h5D5;

 assign color_map[43] = 12'h5F9;

 assign color_map[44] = 12'h0ED;

 assign color_map[45] = 12'h777;

 assign color_map[46] = 12'h000;

 assign color_map[47] = 12'h000; // 0x2F

 assign color_map[48] = 12'hFFF; // 0x30

 assign color_map[49] = 12'hAEF;

 assign color_map[50] = 12'hBBF;

96
 assign color_map[51] = 12'hDBF;

 assign color_map[52] = 12'hFBF;

 assign color_map[53] = 12'hFAC;

 assign color_map[54] = 12'hFDB;

 assign color_map[55] = 12'hFEA;

 assign color_map[56] = 12'hFD7;

 assign color_map[57] = 12'hDF7;

 assign color_map[58] = 12'hBFB;

 assign color_map[59] = 12'hBFD;

 assign color_map[60] = 12'h0FF;

 assign color_map[61] = 12'hDDD;

 assign color_map[62] = 12'h000;

 assign color_map[63] = 12'h000; // 0x3F

 logic[11:0] color_bits = color_map[ppu_color_in];

 assign vga_color_out = {

 r: color_bits[11:8],

 g: color_bits[7:4],

 b: color_bits[3:0]

 };

endmodule

97

VGA.sv

//

// Update: 8/8/2019 GH

// Create Date: 10/02/2015 02:05:19 AM

// Module Name: xvga

//

// xvga: Generate VGA display signals (1024 x 768 @ 60Hz)

//

// ---- HORIZONTAL ----- ------VERTICAL -----

// Active Active

// Freq Video FP Sync BP Video FP Sync BP

// 640x480, 60Hz 25.175 640 16 96 48 480 11 2 31

// 800x600, 60Hz 40.000 800 40 128 88 600 1 4 23

// 1024x768, 60Hz 65.000 1024 24 136 160 768 3 6 29

// 1280x1024, 60Hz 108.00 1280 48 112 248 768 1 3 38

// 1280x720p 60Hz 75.25 1280 72 80 216 720 3 5 30

// 1920x1080 60Hz 148.5 1920 88 44 148 1080 4 5 36

//

// change the clock frequency, front porches, sync's, and back porches to create

// other screen resolutions

//

module vga_1024(input vclock_in,

 output reg [10:0] hcount_out, // pixel number on current line

 output reg [9:0] vcount_out, // line number

 output reg vsync_out, hsync_out,

 output reg blank_out);

 parameter DISPLAY_WIDTH = 1024; // display width

 parameter DISPLAY_HEIGHT = 768; // number of lines

 parameter H_FP = 24; // horizontal front porch

 parameter H_SYNC_PULSE = 136; // horizontal sync

 parameter H_BP = 160; // horizontal back porch

 parameter V_FP = 3; // vertical front porch

 parameter V_SYNC_PULSE = 6; // vertical sync

 parameter V_BP = 29; // vertical back porch

 // horizontal: 1344 pixels total

 // display 1024 pixels per line

 reg hblank,vblank;

 wire hsyncon,hsyncoff,hreset,hblankon;

 assign hblankon = (hcount_out == (DISPLAY_WIDTH -1));

 assign hsyncon = (hcount_out == (DISPLAY_WIDTH + H_FP - 1)); //1047

 assign hsyncoff = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE - 1)); // 1183

 assign hreset = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE + H_BP - 1)); //1343

 // vertical: 806 lines total

 // display 768 lines

 wire vsyncon,vsyncoff,vreset,vblankon;

 assign vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT - 1)); // 767

 assign vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP - 1)); // 771

 assign vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE - 1)); //

777

 assign vreset = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE + V_BP - 1));

// 805

 // sync and blanking

 wire next_hblank,next_vblank;

 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;

 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

 always_ff @(posedge vclock_in) begin

 hcount_out <= hreset ? 0 : hcount_out + 1;

98
 hblank <= next_hblank;

 hsync_out <= hsyncon ? 0 : hsyncoff ? 1 : hsync_out; // active low

 vcount_out <= hreset ? (vreset ? 0 : vcount_out + 1) : vcount_out;

 vblank <= next_vblank;

 vsync_out <= vsyncon ? 0 : vsyncoff ? 1 : vsync_out; // active low

 blank_out <= next_vblank | (next_hblank & ~hreset);

 end

endmodule

99

PPUTypes.sv

/*

 Enums and constants used for the PPU

*/

package PPU_Types;

parameter NUM_VERTICAL_PIXELS = 240; // The number of pixels tall the drawn window is

parameter NUM_HORIZONTAL_PIXELS = 256; // The number of pixels wide the drawn window is

parameter NUM_SCANLINES = 262;

parameter NUM_CYCLES_PER_SCANLINE = 341;

// The boundaries for the different scanline phases

parameter LAST_VISIBLE_SCANLINE = 239; // The last scanline number of the visible phase

parameter LAST_POSTRENDER_SCANLINE = 240; // The last scanline number of the postrender phase

parameter LAST_VBLANK_SCANLINE = 260; // The last scanline number of the vblank phase

parameter LAST_PRERENDER_SCANLINE = 261; // The last scanline number of the prerender phase

// The boundaries for the different cycle phases during the visible scanlines

parameter VISIBLE_SCANLINE_LAST_BACKGROUND_DRAW_CYCLE = 255; // The number of the last cycle

of the background draw phase

parameter VISIBLE_SCANLINE_LAST_SPRITE_PREFETCH_CYCLE = 319; // The number of the last cycle

of the sprite data prefetch phase

parameter VISIBLE_SCANLINE_LAST_BACKGROUND_PREFETCH_CYCLE = 335; // The number of the last

cycle of the background data prefetch phase

parameter VISIBLE_SCANLINE_LAST_IDLE_CYCLE = 340; // The number of the last cycle of the

ending idle phase

/*

 VISIBLE: scanlines [0,239]

 POSTRENDER: scaneline 240

 VBLANK: scanlines [241,260]

 PRERENDER: scanline 261

*/

typedef enum {

 PRERENDER, VISIBLE, POSTRENDER, VBLANK

} VerticalState;

/*

 BACKGROUND: When the PPU is drawing the background. Cycles [0, 255]

 SPRITE_PREFETCH: When the PPU is pre-fetching the sprite data for the next frame. Cycles

[256,319]

 HORIZONTAL_IDLE: When the PPU isn't actually drawing anything. Cycles [320,324]

 BACKGROUND_PREFETCH: When the PPU is pre-fetching the background tiles for the next frame.

Cycles [325,340]

*/

typedef enum {

 HORIZONTAL_IDLE, BACKGROUND_DRAW, SPRITE_PREFETCH, BACKGROUND_PREFETCH

} HorizontalState;

/*

 TILE_FETCH_IDLE: the PPU isn't fetching tile data

 NAMETABLE_READ: the PPU is fetching data from a nametable

 ATTRIBUTE_READ: the PPU is fetching data from an attribute table

 PATTERN_READ_1: the PPU is fetching the first byte of tile data

 PATTERN_READ_2: the PPU is fetching the second byte of tile data

*/

100
typedef enum {

 NAMETABLE_FETCH, ATTRIBUTE_FETCH, PATTERN_FETCH_1, PATTERN_FETCH_2, TILE_FETCH_IDLE

} TileFetchState;

/*

 MEM_FETCH_IDLE: the PPU isn't fetching tile data

 VRAM_REQUEST: the PPU is asserting an address to the VRAM

 VRAM_RECIEVE: the PPU is reading the data returned by the VRAM

*/

typedef enum {

 VRAM_REQUEST, VRAM_RECIEVE, MEMORY_FETCH_IDLE

} MemoryFetchState;

typedef struct packed {

 VerticalState vstate;

 HorizontalState hstate;

 TileFetchState tile_fetch_state;

 MemoryFetchState memory_fetch_state;

} PPUCycleInfo;

/*

 This is the data type representing a sprite as it is stored in Object Attribute Memory

(OAM)

*/

typedef struct packed {

 logic[7:0] x_position;

 logic[7:0] y_position;

 logic[7:0] tile_index;

 // Attribute byte

 logic[1:0] color_data;

 logic background_priority;

 logic horizontal_flip;

 logic vertical_flip;

} OAMSprite;

/*

 This is the data type defining a pixel from a sprite as it is passed to the rendering

module

*/

typedef struct packed {

 // 2 pattern table bytes

 logic[7:0] tile_byte_1;

 logic[7:0] tile_byte_2;

 // Relevant parts of the attribute byte

 logic[1:0] color_data;

 logic background_priority;

 logic[7:0] x_position;

} SpriteDataToRender;

/*

 This is the data type defining a background pixel as it is passed to the rendering module

*/

typedef struct packed {

 // 2 pattern table bytes

 logic[7:0] tile_byte_1;

 logic[7:0] tile_byte_2;

 logic[1:0] attributes;

101
} BackgroundDataToRender;

typedef logic[5:0] PPUColor;

typedef struct packed {

 logic[3:0] r;

 logic[3:0] g;

 logic[3:0] b;

} VGAColor;

endpackage

102

Sources

Diskin, Patrick. “Nintendo Entertainment System Documentation.” nesdev.com, 1.0, August 2004.

http://www.nesdev.com/NESDoc.pdf

