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Motivation 
Auto-Tune is an audio effect software program that was created in 1997 by Andy                           

Hildebrand. It has been used by music artists to adjust off pitch singing, but became popularized by                                 

noted artists like Cher and T-pain to add overexaggerated effects to their voices. Most                           

auto-tuning systems implement pitch correction through the "Time-Domain Pitch Synchronous                   

Overlap and Add" (TD-PSOLA). This method corrects frequencies of frames of audio by                         

resampling and piecing the resampled frames together. The advantages of TD-PSOLA are its                         

simplicity and computational efficiency. 

However, we were inspired by the material we learned in 6.003 to attempt to implement                             

auto-tuning in a less conventional way, by using a frequency domain approach. In this approach,                             

we convert the time-domain signal to its frequency representation in order to identify the                           

dominant pitch and correct it. This approach is not commonly used since it is computationally                             

intensive and requires a large memory storage. But with the resources provided by the FPGA, we                               

wanted to attempt this alternative method of auto-tune. 

 

 

Figure 1. Waves-Tune plugin for pitch correction (Auto-Tune for $60!)    



Overview of System 
Our system has four main modules which work together to produce an auto-tuning effect.                           

At a high level, the audio is put into the STFT and once we get the frequency content it goes into                                         

both a peak detector and memory. The data stored in memory is used to display a graph of                                   

frequency over time (spectrogram). The peak detector analyzes the frequency content of one                         

window and finds the frequency bin with the greatest magnitude. Once the maximum is identified,                             

a sine tone at that frequency is generated and output to a speaker.  

 

Figure 2. High level block design describes how the system goes from audio input to visual display 

and audio output 

In addition to this basic system, we designed other features for testing and adding fun                             

audio effects to the final result. We utilized the FPGA’s switches to toggle between generated                             

pure sine tones at different frequencies and microphone audio as inputs to the system. We also                               

created effects that output a harmonized chord, a sine tone an octave higher, and a sine tone an                                   

octave lower than the original signal. 

Together, all of these components give us one system that takes in an audio signal, rounds                               

it to the nearest note on the western scale, and outputs a generated sine tone at that note’s                                   

frequency. For this project Elaine was responsible for the STFT, resynthesis module, and the extra                             

audio effects, while Kika was responsible for the peak detector module, audio inputs and outputs,                             

and visualization. While the modules were developed separately, we spent a majority of our time                             

collaborating together in order to help each other debug and understand how inputs were moving                             

through our system as a whole. We believe this allowed us to have a relatively smooth integration                                 

period, and better cohesive understanding as a team. In the following sections, we will describe                             

each of the four main components of our system and the different challenges we faced as we were                                   

developing this project.  

 



 

Figure 3. Total system  block design describes how the entire system is integrated.   



Details of Main Modules 

Frame Construction and STFT (Elaine) 

We ultimately decided to implement real-time auto-tuning by processing the samples of                       

input audio in frames of length 2048-samples. Our audio processing is based on determining the                             

dominant frequency in each frame through the Short-Time Fourier Transform (STFT). Essentially,                       

instead of saving all of the samples and taking the FFT of the entire signal, we can obtain local                                     

frequency information by just looking at the Fast Fourier Transform (FFT) of each frame. The                             

STFT_fsm module is based on the NEXYS-4 FFT demo that was provided to us [1]. On a high level,                                     

this module oversamples the incoming data by 64x, builds up a 2048-sample frame in BRAM, and                               

performs FFT on the frame. 

 

Figure 4. STFT_fsm module block diagram with submodules. 

Oversampling 

Although samples are coming from the ADC at 1Msps, we needed the sampling rate of the                               

signal into the FFT to be much smaller to meet a target ~8Hz resolution since frequency resolution                                 

is sampling rate/transform length. (8Hz is just enough to differentiate C#3 and D3, which is                             

around the bottom range for a trained bass singer). The demo uses a 4096-point FFT, but to halve                                   

the size of the frame BRAM and the time to construct the frame, we used a 2048-point FFT. With a                                       

transform length of 2048 and 8Hz resolution, the sampling rate had to be downsampled by a                               

factor of 64 (a target sampling rate of ~15.625kHz).  



Instead of downsampling (taking a sample every 64 sample triggers and 12'd0 otherwise),                         

we used the oversampler method in the demo. To oversample the signal by 64x, the signal is                                 

sampled 64 times the target sampling rate and averaged over the extra cycles. The oversampler                             

module outputs this averaged sample every 64 sample triggers and effectively makes          osample)(                

the input 1MHz sample trigger the faster 64x sampling rate. Besides improving our frequency                           

resolution, oversampling by 64x also increases the incoming 12-bit precision to 15 bits of                           

precision. The extra 3 bits comes from the 8x increase in signal-to-noise ratio (SNR).  

The oversampled sampling rate of 15.625kHz meant we now had a Nyquist frequency (half                           

of the sampling rate) of 7.8125kHz. This is the maximum frequency that our system could produce                               

before aliasing occurs. To avoid aliasing, we limited our input audio to signals with frequencies that                               

humans could sing. The highest note we were concerned with was C6 and corresponds to a                               

frequency of 1046.5Hz, well below the Nyquist frequency. 

For testing purposes, we also made an option for the STFT_fsm to be able to take pure sine                                   

waves generated from the FPGA itself and a 16x oversampler. Samples from the sine_generator                           

module were not limited to the 1Msps sampling rate, and the 16x oversampler reduced the wait                               

time by 4x. The 64x oversampler made simulations run for a long time, because we had to wait for                                     

64 sample triggers (6400 clock cycles).  

Building the Frame 

Most of the logic of the STFT_fsm module is for writing the samples in the frame BRAM and                                   

negotiating done and start signals for the oversampler and bram_2_fft modules. As an from                          sampleo    

the oversampler module is ready, which is represented by the output signal, we                      one_osampled      

appended a 1'b0 and wrote it to frame BRAM. Because during the first 2 sample triggers the                                 

oversampler module does not output valid data, we delayed the signal by 2 sample                    one_osampled          

triggers using a shift register, and this delayed signal became the write enable signal for frame                               

BRAM.  

In the demo, the start signal for the bram_2_fft module to read samples from frame BRAM                               

to the FFT block was a signal because the FFT only needed to update as fast as it needed to            synchv                              

be displayed on a VGA monitor [1]. Since we were going for real-time audio processing, we wanted                                 

the frames to be sent one after the other, meaning at a sampling rate of approximately                               

104MHz/2048 samples. When a sample is written into frame BRAM, an 11 bit is                          ample_counters    

incremented. A signal is asserted when is 2048 and frame BRAM is    rame_donef           ample_counters              

full. We could not make this signal the start signal of bram_2_fft exactly, because this            rame_donef                    

signal is high when the sample_counter is full and 64 sample triggers after that. Thisrame_donef                                

6400 clock cycle pulse is much longer than the time needed for the FFT block to perform its                                   

calculation. To avoid having multiple spectrograms per frame, we made the start signal                         

 which is the rising edge of .rame_done_assertedf rame_donef  



FFT 

The bram_2_fft module handles the input into the FFT block and handshake signals of the                             

FFT block. The module is normally in a state. When the start signal is asserted, the read                sending!                    

address and the number of samples sent are resetted. The module then goesaddr)(               send_count)(              

to the sending state where is incremented and the samples from frame BRAM are passed as        ddra                        

inputs until the last sample in memory is read. Before bram_2_fft sends the sample to the FFT                                 

block, it is multiplied by the coefficient in the Hann window corresponding to its address. We                               

chose to multiply the frame by a Hann function to smooth out the edges of the frame. Without the                                     

Hann function, the discontinuities introduced by windowing with a rectangular pulse, which is                         

equivalent to our process of creating the frame, would show up as unwanted artifacts in the FFT.  

 

Figure 5. Hann window function 

The FFT block design is taken from the demo. Since there was not much documentation                             

about the provided block design, we spent a long time trying to understand how this all worked,                                 

and we would like to provide additional details we figured out for the reader. On a high level, the                                     

FFT block consists of several IP blocks: an FFT core, 2 slices, 2 multipliers, an adder, a square root                                     

CORDIC, and an AXI-4 register slice to delay the control signals from the FFT until the CORDIC                                 

receives data. Data transfer for the FFT core and CORDIC are handled through the AXI protocol in                                 

which data is only sent when both the source of data's VALID signal and the receiver's READY                                 

signal are both high. The handshake signals for reading data from frame BRAM to the FFT                               

and are handled by bram_2_fft. The AXI-4 stream register slicef rame_tvalid(     _axis_data_tready)m                    

controls the VALID signals of the CORDIC. Eventually, the CORDIC's signal is                    agnitude_tvalidm      

used by modules like  peak_detector to indicate when the STFT_fsm module is outputting valid data.  

There are also ways to configure the FFT core besides changing the transform length [2].                             

We could decide to use a "Pipelined, Streaming I/O" architecture or "Radix-Burst" architectures.                         

The Radix-Burst architectures result in a smaller core size but more latency. We chose to use the                                 

Pipelined, Streaming I/O architecture at the expense of core size because it allows us to                             



simultaneously process the current frame, load a new frame, and output the results from the                             

previous frame. This significantly reduces latency which is we need for realtime auto-tuning. There                           

is also an option to make the output "Bit/Digit, Reversed Order" or "Natural Order" [2]. We chose                                 

to keep the output in "Natural Order" i.e. have the output in increasing index order. Making the                                 

output "Bit/Digit, Reversed Order" can slightly reduce the latency, but we still had to convert the                               

output back into "Natural Order" for modules downstream. We also kept the Throttle Scheme its                             

"Non-Real Time" option [2]. If we had used the "Real Time" Throttle Scheme, the FFT core would                                 

no longer be using standard AXI protocol. 

The FFT block also takes a configuration signal, whose format is shown                _axis_conf ig_tdatas          

in Figure 4 [2]. The only necessary signal is the FWD/INV signal, which is 1 for the forward FFT                                     

and 0 for the inverse FFT. Our project only uses the forward FFT, so we set to                                _axis_conf ig_tdatas  

always be 1. 

 

Figure 6.  format from FFT Core Documentation_axis_conf ig_tdata  s  

The FFT core has an input data width of 16 bits, which means it represents the real part of                                     

the FFT in 16 bits and the imaginary part of the FFT in 16 bits. To be precise, the FFT core expects                                           

a 32 bit input and a 32 bit output, where the top 16 bits represent the imaginary part and the                                       

lower 16 bits represent the real part [2]. Since we were dealing with real audio signals, we padded                                   

the incoming 16-bit samples from frame BRAM with 16 zeros. The blocks after the FFT core                               

separate the real and imaginary parts of the output of the FFT with the slices and square each part                                     

with the multipliers. The squares are summed in an adder, and the sum is sent through a square                                   

root CORDIC to obtain the magnitude of the FFT. This magnitude is written into STFT BRAM                               

which the spectrogram module accesses, and is also directly passed to the peak detector module.  

   



 

Figure 7. FFT Block Design.   



Peak Detector (Kika) 

Once the STFT is done processing a frame of data, which is signaled by the assertion of                                 

, it will start streaming out one bin of data every clock cycle. These 2,048 consecutive_validt                                

frequency bins are input directly to the peak detector, which compares the values and tracks                             

which bin contains the dominant frequency. Once that bin number is identified, we use a look-up                               

table to trace it to a frequency control word ( ) which is used to increment the phase                  cwf                

accumulator in the later resynthesis module.  

 

Figure 8. Peak_detector module block diagram showing interaction with note_lut 

Peak Detection 

The peak detector module takes in a 24 bit value which represents the magnitude of the                               

FFT at one frequency bin. It relies on to dictate when to start storing and comparing values.              _validt                    

The peak detector stores 3 values in registers: , which is the value at the current time                urrent_valc                  

step, , which is the value at the previous time step t+1, and , which is the value  rev_val1p                         rev_val2p          

at t+2 two time steps prior. There are eight separate conditions that must be met in order for the                                     

peak detector to set a bin and its value to be the dominant frequency bin for that window. If there                                       

is no such bin that meets this criteria for a window, the peak detector will keep the previous                                   

window’s highest magnitude as its maximum. 



 

Figure 9. Graphical relationship between the locations of prev_val1, prev_val2, and current_val in the 

magnitude_tdata output 

 

The first two conditions constrain the bin number as being greater than 10 and less than                               

141. Setting a lower bound on the bin number allows us to avoid setting bin 0, which represents                                   

the DC offset, and its neighboring bins as the maximum. We assume that any frequency below 76                                 

Hz will not be intentionally sung or played into our microphone and thus the peak should never                                 

appear in the first 10 bins. For the case of bin 0, the DC offset is not indicative of the frequency                                         

content within the signal itself. Even if the value in bin 0 is higher than all other bins, since it does                                         

not represent any frequency it should not be taken into consideration for our peak detector. Bin                               

141 is chosen as the upper bound since we chose 1046.50 Hz as the highest frequency we wanted                                   

to detect. Although bin 141 represents a frequency that is above 1046.50 Hz, having it as our                                 

upper limit gives us the ability to tune notes higher than 1046.5 Hz down to our maximum. 

The next three constraints are on . It is compared against two other values,            rev_val1p                

, which is the largest magnitude seen up to that point in the window, andighest_valh                              

, which is the largest magnitude seen in the previous window. must berev_highest_valp                       rev_val1p      

greater than , have a value of greater than , and    ighest_val 000h − 5               rev_highest_val 000p − 2    

generally have a magnitude greater than 15,000. These thresholds were tuned by probing the                           

output of the STFT with the ILA and serve to make the system resistant to noise (further rationale                                   

is provided in the challenges section). 

The final three constraints are on a value labeled as which is the sum of                    urrent_sum,c            

and . represents the two values on either side of the peak. Sincerev_val2p     urrent_valc   urrent_sumc                      

with the FFT there is a smearing effect caused by windowing, we used this to our advantage as an                                     

additional characteristic to help identify true peaks. When looking at the ILA output, a consistent                             

trend showed that when we probed a bin that should contain a true peak, the magnitudes                               

proceeding and following that bin have higher than normal values. Occasionally, due to noise (or                             



possibly aliasing), there were bins in the same window that had higher magnitudes than the bin we                                 

can calculated to have the highest value. However, the bins that fell on either side of these                                 

unexpected peaks would have significantly lower values than the true peak. For this reason,                           

similar to the thresholds used for , is compared against and            rev_val1p current_sum        ighest_sumh    

which represent the largest sum seen thus far in the current window and therev_highest_sump                              

previous window respectively. must be greater than 30, , and      urrent_sumc             ighest_sumh    

. These thresholds were also set by probing the ILA.rev_highest_sump − 5   

If all of these constraints were met, the , , and are set to                ighest_valh   ighest_sumh     est_indexb        

the , , and respectively. When reaches 2048 (the number  rev_val1p   urrent_sumc     ounterc − 1     ounterc        

of samples in a window), , , , and are reset while          ighest_valh   re_val1p   rev_val2p     urrent_valc      

and are updated. The note_lut module is initialized within therev_highest_valp     rev_highest_sump                    

peak detector module and it takes as an input and outputs an which is streamed to            est_indexb             cwf        

the resynthesis module  to generate a sine wave. 

Note LUT 

The note_lut module interacts with the peak detector by taking in a 9 bit index and                               

outputting a 32 bit value. There is an additional input is_sine, which is 1 when our input is a      cwf                                

sine wave output by the sine generator, or 0 if the input is coming from the external microphone.                                   

Based on the input , note_lut outputs a different to accommodate the differences in        s_sinei           cwf            

sampling rate between the two inputs. The is output back to the peak detector since it is              cwf                      

contained within the peak detector module. 

The lookup table was generated by a python script and allows us to map bins to                               

frequencies ranging from B2 to C6 (123.47 Hz to 1046.50 Hz). Each bin has a width of 7.63 Hz,                                     

which is calculated by dividing the sampling rate ( ) of 15,625 Hz by the number of bins. This                f s                    

formula is derived by understanding that the range of frequencies goes from to since the                        − 2
f s   2

f s    

maximum detectable frequency is the nyquist frequency, and the lowest detectable is the negative                           

of that same frequency. The total range of frequency is thus fs, and this makes the size of each bin                                       

7.63 Hz. This bin size defines what the lowest detectable frequency is for our system. Taking into                                 

account numeric rounding, the lowest change in notes we can detect is B2 to C3, which is why this                                     

is the lower threshold for our LUT. In our system, any note below this threshold is mapped to B2.                                     

While the definitive upper bound on the highest frequency we are capable of detecting is                             

approximately 7,800 Hz, we decided to cap it at C6 since 1046.5Hz is generally considered to be                                 

the upper end of the vocal range for a classically trained soprano singer. 

This lookup table allows us to make a conversion from a bin number, to a frequency, to an                                   

. Using python, we combined the last step of converting from frequency to to avoid thecwf                           cwf        

computational cost of creating an additional frequency to FCW lookup table. (The calculations                         

used to convert frequencies to values will be discussed in the next section on resynthesis).          cwf                      



We include two different values for each frequency in order to accommodate the different        cwf                      

sampling rates of the two types of inputs. To convert bin number to frequency, for the table’s                                 

creation, we multiplied the bin number by 7.63 Hz (the width of the bin). Then, this frequency was                                   

mapped to its nearest frequency in the standard western scale [3]. Since the highest frequency we                               

plan on detecting is 1046.5 Hz, if a majority of the frequency content lies above that value (in a bin                                       

number higher than 133), then it gets mapped to 1046.5 Hz, which is encapsulated by the default                                 

case. A similar logic was used for accommodating our lower frequency threshold. 

   



Resynthesis (Elaine) 

The resynthesis module constructs a new signal for a frame at the corrected frequency in                             

sine tones. It takes an input (corresponding to the correct frequency) from the peak detector            cwf                    

module, and uses it to adjust the step size the (an index into a sine lookup table) is                  hasep                  

incrementing by. 

A note about timing here: the system is always playing back something, and the resynthesis                             

module is always outputting a sine wave at the audio sampling rate of 15.625kHz (if the input                                 

comes from the mic) or 16.250kHz (if the input is from the FPGA sine generator). The durations of                                   

notes in the input signal are preserved because the samples passed through peak_detector,                         

resynthesis, and playback all maintain the frame structure created back in STFT_fsm. All these                           

modules after the STFT_fsm take less time than the time STFT_fsm needs to construct the next                               

frame. So the FFT calculation, peak detection, resynthesis of corrected signal for the current frame                             

happen before the next frame is even constructed, thus this system outputs the corrected audio at                               

least frame-by-frame. If there are fast note changes that happen within a single frame, this system                               

cannot faithfully resolve or correct those notes. 

Sine Generator 

The resynthesis module is mostly the sine_generator module from Lab 5A, which generates                         

an entirely positive sine wave from a 32-point, 12-bit lookup table. Because the sine wave would                               

go through a 64x oversampler, we needed more than 64 points in the table. Our table has 512                                   

points with 12-bit depth, which means it has values from 0 to 4095. A sine wave at a specific                                     

frequency corresponds to cycling through the table at a particular step size [4]. This step size is                                 

related to how the sine generator represents the continuous range of angular values between 0                             

and as integers from 0 to . A 32-bit register , which stores the current phase, is  π2           232         hasep              

incremented by at every clock cycle. The correct phase increment is given by the    hase_incrp                          

frequency control word or :cwf  

cw f =  sampling rate
2 (target f requency)32

   

For the resynthesis module, the peak detector provides the corresponding to the correct                  cwf          

frequency. At each clock cycle, the top 9 bits of  is used to index into the sine lookup table.hasep   

Extra Effects 

We also implemented a few extra audio effects for our stretch goal. Depending on                           

switches 1 and 2, we could have: (0) no effect and normal playback, (1) harmonize by a major third,                                     

(2) chipmunk effect, and (3) Darth Vader effect.   

To harmonize by a major third, resynthesis outputs a sample that consists of an amplitude                             

of the sine wave at the correct frequency and an amplitude of a sine wave of the frequency a major                                       



3rd above the correct frequency. For a fixed frequency , the frequency corresponding to a note                  f              

major 3rd above is . Since is proportional to , this means that we just need to grab sine        f4
5     cwf         f                    

values from a second sine lookup table with the phase incrementing by . The chipmunk                        (fcw)4
5      

effect is playback at an octave higher than the correct frequency. For a fixed frequency , the                              f    

frequency corresponding to note an octave above is . The module grabs values from a single                f2                

sine lookup table with the phase incrementing by . Finally, the Darth Vader effect is                (fcw)2              

playback at an octave lower than the correct frequency. For a fixed frequency , the frequency                          f      

corresponding to a note an octave below is . Thus, the module grabs values from a single sine                f
2                    

lookup table with the phase incrementing by .2
fcw  

 

Figure 10. Simplified resynthesis module. 

   



Visualization (Kika) 

The visualization module communicates with the STFT bram through the toplevel module                       

by requesting addresses and receiving a 16 bit value as an input. That value is then mapped to a                                     

color simply by splitting the lower 12 bits into three groups of 4 bits for red, green, and blue.                                     

Colors with a red or yellowish hue map to a higher magnitude, while blue (specifically dark blue)                                 

represents lower magnitude values. The color values for each pixel is then output to the display via                                 

the xvga module provided to us in a prior lab. 

 

Figure 11. Block diagram of how the spectrogram visualization interacts with xvga and the STFT_bram 

 

Figure 12. The spectrogram drawn on the monitor after performing an upward and downward frequency 

sweep with a single frequency played at the very end. The thicker light blue represents values with the highest 

magnitude. Each pixel represents a single frequency bin.  



STFT BRAM 

The STFT bram has a depth of 262,144 values. This corresponds to an image of 512x512                               

pixels in size. This size is the largest we could make the spectrogram since both height and width                                   

have to be a power of two, and we were constrained by the size of the monitor which is 1024x768                                       

pixels. When the STFT begins outputting a window of data, each bin is stored in consecutive                               

positions in the bram. Only the first 512 bins are stored, since the relevant frequency content is                                 

present in these bins. An alternative strategy would be to downsample the bins in a window by 4,                                   

however, since each bin is represented by a single pixel, we felt as though downsampling had the                                 

potential to erase important information from the spectrogram and since the highest bin                         

considered by the peak detector is bin 140, drawing the first 512 bins of a window would be a                                     

sufficient representation of the relevant STFT data. Once 512 windows have been written into                           

bram, the STFT bram simply starts overwriting the existing values, which provides our                         

spectrogram with the ability to draw and update itself in real time.  

View the Spectrogram Drawing Video 

Watch the generation of the spectrogram as you hear the audio sweep up and down. The spectrogram 

draws in real time and accurately depicts the rise and fall in the frequency over time. 

Request Address 

Since the spectrogram values are stored in a one dimensional format, while representing a                           

two dimensional image, we need to have a way to map and to a specific                      count_inh   count_inv      

address in the STFT bram. Since the vga display first draws a horizontal row, and then moves to                                   

the next line, while the STFT bram is written to in columns, the formula for the request address is                                     

as follows: 

pecgram_request_address  s =  

((hcount_in _in ) 512) (vcount_in _in 1 270) hcount_in)   =  − x + 1 * ( −  − y +  +  +   

With this holistic formula, it can be difficult to see how and relate to the                      count_inh   count_inv        

address. A simplified version looks as follows: 

pecgram_request_address  s = (hcount_in ) 512) (vcount_in 1) )  ( + 1 * ( −  +   

The top left corner of the spectrogram should correspond to index 511 in the STFT bram, while                                 

the bottom left corner corresponds to index 0. The next column begins with bram index                           

and ends with . This patternpecgram_request_address 512  s =  * 2 − 1         pecgram_request_address 512  s =       

repeats as we move through the spectrogram image and is the rationale for the derivation of this                                 

equation. 

https://drive.google.com/file/d/1jHWeW5uf995THeDw6Hahe0celQEg9wVO/view?usp=sharing


 

Figure 13. As hcount_in and vcount_in change, the desired output of the specgram_request_address follows 

a distinct pattern which allows us to derive the previous equation. 

The additional factor which is added to the original equation is to help offset any    count_in 70  h − 2                          

latency that is added to the system from having to fetch the address from bram and draw it to the                                       

monitor. This will be discussed further in the section on challenges.  

 

   



Challenges 

Elaine 

Most of my challenges came from the STFT_fsm module. When I first began working on this                               

project, I thought this module would be much easier to implement because it was largely based on                                 

the FFT demo. In reality, my efforts in this project was spent making this module work to a higher                                     

level of precision that the rest of the modules in this project downstream required. This module                               

was particularly difficult to debug because it would take so long to run simulations. At the                               

sampling rates and transform lengths the final system uses, because the frame construction takes                           

at least 6400 clock cycles, the simulation would sometimes take close to an hour to run. That is                                   

why for testing purposes, I also made a 16x oversampler and the option of using the input sine                                   

generator. When we finally could run simulations on simple signals like DC signals and pure sine                               

waves, we noticed that the FFT output would not be correct even after multiplying the windows                               

by a Hann function. As shown in Figure 6, the output of the FFT of a sine wave (which should just                                         

be two symmetric peaks with some smearing) is a bunch of peaks spaced periodically. I was                               

confused why I got this behavior because we were smoothing out the frames and avoiding aliasing                               

(by using pure sine waves at frequencies lower than the Nyquist). The correct peaks were always                               

there, but usually the FFT gave more peaks than it should have. Sometimes those extra peaks were                                 

comparable, even larger than, in magnitude to the correct peaks, so it made the peak_detector's job                               

more difficult. The last thing I tried was to add an input FIR filter just after the oversampler to                                     

certainly get rid of frequencies that would alias. Unfortunately, the filter kept cutting out too much                               

of the signal even at very low cutoffs, so I could not get that to work.  

If I had more time, I would probably have delved more deeply into the timing of the                                 

different modules that made up STFT_fsm module and Xilinx's documentation on the FFT core.                           

Many parts of this module were still black boxes, and I probably would have an easier time                                 

debugging if I knew more deeply what every part was doing. We realized while integrating that                               

there were timing issues, but by then we had so many modules to test to figure out where those                                     

came from. I fixed a few timing issues such as the extra delay for the oversampler to finish before                                     

samples could be written to frame BRAM through test benches for the separate modules that                             

made up STFT_fsm module. During integration, we could not feasibly run simulations anymore, so                           

we tried to use the spectrogram, the segment display, and the ILA. Often what we saw on these                                   

different displays would mismatch, and it was difficult to pinpoint where the errors and extra                             

delays came from. 



 

Figure 14. Simulation of the output of STFT_fsm with a sine wave input. Notice the extra periodic peaks. 

Kika 

I think a lot of my challenges began occurring once we started integrating the system.                             

Originally I had a very simplified view of my modules, and while each one worked exactly how I                                   

had expected when it was on its own, once plugged into the larger system, timing delay and the                                   

variability of the FFT outputs forced me to have to think of “hacky” solutions to the problems I                                   

encountered. The factor that is added to the in the    count_in 70  h − 2             pecgram_request_address  s      

visualization module is one of the first examples of this. Although in testing the spectrogram was                               

drawing horizontal lines (which is the expected output from a sine wave), with the output of the                                 

STFT it began drawing diagonally.  

 

Figure 15. A diagonally drawn and very bad looking spectrogram which is likely the result of timing created by 

timing delays and the noisy output of the  FFT core. 



Finding a solution for this problem was not a major issue, however, realizing that this was a                                 

problem took a significant amount of time since we relied on the previous testing to verify that the                                   

spectrogram would still work. I’m not entirely satisfied with this hack as a solution to the diagonal                                 

drawing. We believe that the source of this problem is pipelining, but without sufficient time to                               

investigate, we are unable to provide a proper solution to this problem. I believe the hack solution                                 

has left the spectrogram with horizontal line artifacts which appear to be present even when there                               

is no audio input whatsoever.  

As discussed in Elaine’s section, the multiple peaks that were output in one frame by the                               

FFT core make the peak detector’s job a lot more difficult than expected as well. Originally the                                 

peak detector was just a very basic comparison of the magnitude of each frequency bin in a                                 

window to find the maximum. However, even with a constant generated sine wave as an input, the                                 

FFT core would output drastically different values every window. This made the peak detector’s                           

output flicker around a lot trying to chase down which bin had the exact maximum value.                               

Figure 16. The FFT core output magnitude_t_data shows different values for two frames generated by a constant                                 

sine wave input. In these two examples, the bin number of the highest peak changes (best_ind_peak does not change                                     

due to the constraints and thresholding detailed in the section on peak detection). 

This prompted the creation of adding in additional constraints to the peak detector in order to                               

make the peak change less often. Although these new constraints accomplished their goal of                           

making the frequency shift less often, they produced an undesirable effect of sometimes not being                             

sensitive enough to intentional changes in frequency. This trade-off is incredibly unfortunate                       

considering that for a true real time auto-tune, the system should be responsive to even subtle                               

changes in frequency. Nevertheless, we chose to stick with a less sensitive outcome since it                             

allowed us to demonstrate the system’s overall capabilities. My suspicion is that without the                           

square root cordic, we would have been able to make a better peak detector and even a better                                   

spectrogram since the large magnitude values would be even more pronounced. Unfortunately, it                         

was too late when I came to this realization.   



Lessons Learned and Advice for Future Projects 
As evidenced by the challenges we faced, we wish we had more time. We have a few regrets, but                                     

all in all we enjoyed the challenge of attempting to create auto-tune and learned many valuable                               

things.  

1. Make test benches and simulations for individual modules and as you integrate.                       

Simulations not only helped us determine if individual modules were functioning by                       

themselves, but also if they worked with other modules. For example, when we were                           

investigating why STFT_fsm was not outputting valid data. By looking at all the signals                           

through the different stages in simulation, we were able to trace it to a bit-depth mistake in                                 

bram_2_fft. When running simulations, it is helpful to use test signals that the FPGA can                             

easily generate and have easy transforms, such as DC offsets and sine waves. It is also                               

helpful to make the audio sampling rate much higher than 16.25kHz and smaller transform                           

lengths. 

2. Timing is important. Figure out how long individual modules take and make sure you give                             

enough time for each module to perform its logic. It is best to think about timing and                                 

additional pipelining as you connect modules rather than blindly integrating everything                     

into a system that glitches. Simulations help with this! 

3. Instead of the oversampler, wewanted to try directly downsampling the input signal and                           

passing it through an input FIR filter. Although we thought we avoided aliasing, during                           

checkoff Joe mentioned that some of the behavior in the higher frequency region of our                             

spectrogram looked like aliasing. Since this project is mostly concerned with relatively low                         

frequency content, we think it might have been better if we had just downsampled (take a                               

sample every 64 clock cycles and 16'd0 otherwise). We think cutting everything off above                           

the Nyquist using an FIR filter would definitely get rid of aliasing and a lot of the noise we                                     

were seeing and probably lead to a cleaner FFT. 

4. Instead of using the square root CORDIC, output the square of the magnitude. An                           

interesting last minute realization that we made was that the square root CORDIC was                           

potentially reducing our ability to detect peaks and output a nice spectrogram. We kept                           

the CORDIC due to timing issues that we were running into with the AXI protocol. Had we                                 

been able to work with the magnitude squared, it would have made our peaks more                             

pronounced, which would give more defined coloration on the spectrogram since we could                         

potentially see red at peaks instead of the light blue. It would also increase the difference                               

in magnitude of maximum values which could have both negative or positive side effects                           

depending on if the FFT is outputting the maximum value in the correct frequency bin. 

5. Cover themicrophone circuit with a soundproof box. The system is actually very sensitive                           

to all kinds and levels of audio. It was difficult to test and auto-tune input signals because                                 

the microphone would pick up noise and sounds from around the lab. We think covering                             



the microphone circuit along with the source of input audio inside a soundproof box would                             

help. 

6. Try resynthesizing a general signal at the correct frequency instead of sine tones. We                           

had a plan for implementing our stretch goal of a more generalized resynthesis module that                             

would require a few changes in the current structure of the system. A general signal has                               

harmonics in addition to the fundamental frequency, so the peak detector would have to                           

detect and pass the peaks and correct for the harmonics as well. Pitch shifting for this              cwf                    

general signal means to not only shift the fundamental to its correct location, but also to                               

shift each of the harmonics by an amount that depends on the shift in fundamental, but is                                 

different for each harmonic. We were going to create a filter for the STFT of the frame of                                   

samples we are trying to tune that consists of "delta functions" at the correct frequency                             

bins for the fundamental and harmonics. Then we were going to convolve this filter with                             

the STFT of the frame, store that result in another BRAM. And through a method similar to                                 

the process outlined in STFT_fsm the data from this new BRAM would be sent to an inverse                                 

FFT core to generate the samples of pitch corrected audio. 

7. Be ok with change and don't be afraid to ask for help. We think a lot of the integration                                     

would have moved a lot faster had we not been hesitant to ask for help, and also more                                   

willing to test for bugs and issues in unexpected areas. A majority of the time, we had                                 

assumed the problem was contained in one part of the system when in fact it was a                                 

completely different part. We got stuck being hesitant to changing staff code and                         

implementations that had previously worked. This was unfortunately where we lost a lot of                           

time. 

8. Get a partner that complements your faults. One of the things that we enjoy about                             

working with each other is how different we are. We have very different skill sets and ways                                 

of approaching problems. Even though we were responsible for different modules in the                         

system, we ended up working together a lot when helping each other debug, and obviously                             

while integrating. We were able to provide each other with fresh perspectives and gain a                             

general understanding of the whole system by the end of the project. 
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Verilog Source Files 

Link to public GitHub repository: https://github.mit.edu/elaineng/fpga_autotune 
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