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1 Abstract 
 

A good piano partner is often hard to come by, and with the help of a Nexys 4 DDR                   
FPGA board, we can show the reigns of the keyboard to a robotic companion. Our               
goal was to build a sound processing system as well as a robotic mechanism, able to                
be actuated to reproduce the processed sounds on a keyboard. The keyboard is in an               
anchored location to eliminate the need for vision capabilities, while emphasizing           
the robot’s ability to reproduce operator-played chords and melodies on the same            
keyboard as an operator. This project will showcase the ability to create a state              
machine with listening and playing capabilities, involving analyzing playable         
frequencies and creating a strategy for playing reproducible chords and melodies           
using controlled motorized fingers. 

 

2 Design 
 

2.0 Block Diagram 
 

 
Figure 2.0.a: Piano-Playing Robot FPGA Block Diagram 
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As seen in Figure 2.0.a, the FPGA Piano-Playing Robot operates under the            
cooperation of several different modules responsible for different aspects of the           
system’s logic. Debouncing mechanical inputs such as push-buttons is vital for the            
clean operation of the FSM (2.5) given what they represent. 
 
As soon as the record button is pressed and held, a new state of operation is entered                 
in which the feed from the microphone analog circuit is sampled and stored to              
BRAM, where windows of the continuous audio feed are independently sent through            
a Fast Fourier Transform (2.1) operation to later be stitched together in a new state               
(after detecting peaks with the Spectrogram (2.2)) and to be stored in Music Storage              
(2.4). 
 
After this process, the Finite State Machine is able to control the release of this data                
into a feed that can be read according to the rhythm to which it was recorded                
(within the resolution of a predetermined “beat-clock”) (2.5). In this state, the feed             
is sent on to the controls block in the form of a bitmap, where is the            2x30n1    n    

frequency of the chosen beat-clock. Each bit in the list of 12-bit values represents              
the activation of a specific note in the chromatic scale, to then be sent on to the                 
controls block to readjust its current activation state. 
 
The Synchronization & Timing block (2.6) then keeps track of the release of             
information by keeping its own internal clock consistent with the rate of the serial              
communication protocol of the ESP32, referencing each bit’s relation to a specific            
motor address, held in the Address Key Map Lookup table, and sending that             
particular address if that particular motor’s note was to be active in that state of               
operation. 
 
Finally, the ESP32 motor driver manages the received serial information by           
counting a maximum of 12 bytes as input (according to the 12 possible addresses)              
before actuating the motors to which those address bytes correspond. During the            
playback state of the Finite State Machine, those notes are then sent on a loop at the                 
positive edge of the “beat-clock” for the stored time that those notes are to be active. 

 
2.1 Signal Processing Logic (Max) 

 
The signal processing logic required for the project was extensively researched.           
While the fast Fourier transform was always the backbone of the approach, there             
were several variations on the downstream analysis of the spectral information           
which varied in accuracy and complexity.  
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Figure 2.1.a: Generated Spectrogram Example 

 
The figure above is a spectrogram generated during simulations performed in           
Python. The horizontal axis represents time, while the vertical shows frequency. It is             
generated by applying FFTs to ‘windows’ of audio input. This approach is powerful             
because it gains information in the frequency domain, while retaining information in            
the time domain - both of which are important in music. Various window sizes were               
tried, as increasing window size increases frequency resolution at the cost of speed. 

 
Many strategies for note detection were attempted in Python Simulations. Initial           
approaches included functions which searched for power surges during note onsets,           
followed by various algorithms for selecting relevant notes at such onsets. Such            
approaches recorded all audio, performed all FFTs, found all onsets, and found all             
corresponding notes sequentially.  
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Figure 2.1.b: Onset Peak Detection Example 

 
The above figure illustrates peaks which signify potential note onsets from the            
previous spectrogram. At such peaks, the relevant time step is recorded, then logic             
is needed to determine which note or notes were activated at that time step from               
the stored spectrogram. At this stage, several algorithms were attempted to           
determine relevant notes. This approach was highly accurate and capable of           
capturing nuances in music, but cumbersome to implement in Verilog. This           
approach was effective for slower processing rates and relied heavily on large            
storage space, which would not utilize the strengths of the FPGA - speed and not               
storage.  
 
The FPGA was fast enough to produce spectral information in near real time, even              
with substantial window sizes. In other words, it was fast enough to process all              
audio as it arrived (not the case in a Python simulation), so there would be little                
need for large amounts of stored information to process retroactively. Because of            
this, a more basic approach was chosen in which a simple, customizable power             
threshold determined activated notes in real time. This was significantly simpler to            
implement in digital logic.  
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Figure 2.1.c: Frequency Prominence  Thresholding 

 
The above image is a simulation of what the FPGA would do, in which the horizontal                
axis represents frequency, and the vertical axis represents power. Essentially, the           
FPGA would take a real time FFT and search for any spectral bands that broke a                
power threshold (orange line). Because spectral power levels tend to oscillate over            
the course of a ringing note, a refractory period was built in that would prevent a                
note from activating many times over the course of a single ring. This approach              
would take advantage of the strengths of the FPGA and be relatively easy to              
implement.  

 
2.2 Fast Fourier Transform (Max & Anthony) 

 
The FFT was provided by the Verilog IP Core. The team integrated the core with the                
BRAM such that the FFT operated on audio samples stored in BRAM, and output the               
spectral information in a different BRAM. An FFT window size of 16384 was used              
for high resolution spectral information. Larger window sizes require longer          
computations, but provide higher resolution between notes - i.e. adjacent notes are            
separated by more bins in the spectral histogram. The output of the FFT was cut               
down substantially before being stored in the BRAM. Only the lowest 1024 bins             
were stored, as most of the higher frequency bins were not relevant to music or               
even in the range of human hearing. FFT window size and stored window size were               
chosen after repeated testing both in Python simulations, as well as in verilog.  
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2.3 Spectrogram (Brendan & Max) 
 

The spectrogram displays the current Fourier Transform in the frequency domain           
on a VGA output monitor attached to the FPGA. The spectrogram also completes the              
role of fundamental frequency analysis, where it determines the activations of           
certain notes within in octave. 
 
The VGA spectrogram shows the lowest 256 bins of an 8192-sample Fourier            
Transform, which has enough information to display the majority of frequencies           
present along the range of a piano (it loses the top few keys). Colored based on their                 
power activations, with red showing many decibels and yellow showing background           
noise, one can dynamically see the frequency analysis of the incoming audio input             
on the VGA screen. 
 

 
Figure 2.3.a: Implemented VGA Frequency Amplitude Map 
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On the screen, 12 bins are colored green. These bins are the frequencies of the               
fundamental notes, keys starting at A, A-sharp, B, ... ending at G and G-sharp. There               
are two horizontal lines that represent a configurable power threshold. When the            
green bin activations go above the threshold, they are categorized as ON. As long as               
they are above the threshold, they continue to be on. When the power goes below               
the threshold, they will continue to be on for a second, before turning off              
automatically. This allows both full, rich pianos that can generate enough power            
above the noise threshold to play well, while also smaller electronic keyboards that             
are harder to detect. 

 
2.4 Start-End Detector (Brendan) 
 

Storing all of the notes would be too logic-intensive to synthesize in look-up tables              
on an FPGA. To compress the notes, we take an effective discrete derivative of the               
note activations. When the beat clock fires, the Start-End Detector calculates the            
changes between the current note activations and the previous note activations. If            
these changes are not negligible, the Start-End Detector notes a change and clocks             
the delta between the current note and the previous note to the Music Storage              
module. 
 
The Start-End Detector is the crucial step in compressing music before storing it on              
the FPGA. When it notes a change, it notes the current timer coming from the Finite                
State Machine and indexes the change based on that timer. This allows the Finite              
State Machine to find the relevant changes based on the current playback time as              
opposed to storing many irrelevant, non-changes in idle time. 

 
2.5 Music Storage (Brendan) 
 

The Music Storage module takes clocked input from the Start-End Detector and            
stores it in a lookup table based on the current count from the Music Finite State                
Machine. The Music Storage module can store a maximum of 1024 note changes,             
allowing for a maximum of about 4 minutes of playback on the double-speed FSM              
clock. 
 
Upon reset (the center button), the Music Storage clears and allows one to re-record              
from the beginning without reprogramming the FPGA. 
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2.6 Music FSM (Brendan) 
 

The Music Finite State Machine is the core module of the FPGA side of the Piano                
Playing Robot. The Music FSM implements a Mealy finite state machine that            
combines inputs from the buttons (center, left, right, and up) with the beat clock and               
various states that include PLAYING, PAUSED, RECORDING, ANALYZING, and IDLE. 
 
From these states, it sends environment information including whether it's paused,           
playing, recording, analyzing, or idle, where each is a glitch-free bit window into the              
state value. Each state can only transition into a number of states based on the               
inputs, as is a requirement for Mealy FSMs. 
 
The Finite State Machine handles the counter and length calculates for each            
recorded song. As the beat clock ticks, the counter increments, and when the FPGA              
transitions from the recording to the analyzing states, the length is set and the              
counter reset for playback. 
 
Once recording is done, the FSM transitions to the paused state. Pressing the right              
button transitions it into the play state, while letting go of it pauses it in time.                
Pressing the play button again returns it to playing where you left off. When the               
song is done, it resets to the beginning in a loop. One cannot record over a song                 
without resetting the FSM with the center button. Using the top button, one can fast               
forward through the song, through both playback and recording. This allows the            
user to have more fine-grained control over the beat clock frequency, allowing            
either longer songs to be recorded, or faster songs with better resolution. 

 
2.7 Synchronization & Timing (Anthony) 
 

As explained in Serial Communications (2.7), Synchronization & Timing is of utmost            
importance in the development of smooth and responsive controls from the FPGA to             
the ESP32 motor driver. Interfacing directly with the Finite State Machine (2.5), the             
serialToKey module receives its playback instructions in such a way to maintain            
rhythm to a resolution that is compatible with both the Nexys 4’s storage and the               
required time for servo motor actuation. 
 
As the Fundamental Isolator (2.3) interacts with the Finite State Machine to store             
note changes, we compress the incoming data into a form that can capture both              
single note presses and chords (multiple notes being activated on the piano at the              
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same time) with a multi-hot 12-bit value with each bit corresponding to a note on               
the chromatic scale (i.e. A, A#, B, C, C#, D, D#, E, F, F#, G, G#). 
 

 
Figure 2.6.a: Bit Mapping of Key Values in the Chromatic Scale 

 
From here serialToKey is able to iterate through each bit in the 12-bit state value to                
determine which addresses to send serially between each 115200hz cycle. This is            
done through an interface with the addressKeyMap lookup table that maps each            
note’s activation state with an 8-bit motor address. 
 
Because the serialToKey module’s operations are done on a 100Mhz clock, we can             
take care of any processing between the receipt of the 12-bit state value and trigger               
of the serial_tx send in ample time. If a bit is high, then the address can be received                  
and sent during the next 115200 baud cycle, or else the line will simply stay high,                
indicating to the ESP that no new serial stream is available, while it still counts that                
stream as a blank instruction and thus incrementing its internal counter to figure             
out if the instruction set is complete and ready for actuation. 

 
2.8 Serial Communications (Anthony) 
 

Serial communications is one of the most important structures to have solidified in             
the FPGA Piano-Playing Robot because if the notes calculated from the FFT and             
signal processing blocks can’t reach the motors, then there is no bridge between the              
FPGA processing and the physical output of the robot. This module involves a             
sensitive translation between the instructions coming from the Finite State Machine           
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(2.5) and the Motor Controls (2.8), meaning that our compressed playback data            
needs to be dissected and translated into addresses that the ESP32 will find useful. 
 
Because the ESP32 is capable of easily configurable UART 8N1 serial           
communications protocol, we could structure the serialToKey module in such a way            
to act as a median between a 12-bit multi-hot encoding scheme and the serial_tx              
module’s translation into an 8-bit address. From the Finite State Machine during            
playback, states of the notes are received for serial processing in the form of a 12-bit                
sequence given for each time division (determined according to the beat-clock). For            
example, if the beat-clock is running at 2hz (resolution of playback is an update              
every 500ms, which was used in the demo), then 30 seconds of playback would be               
encoded in a 60x12 array of note states, corresponding to their states every half              
second. 
 
When this 12-bit binary value is sent to the serialToKey module, the timing is              
handled to produce a 115200 baud, in which time the 12-bit stream can be iterated               
over to find out which key addresses should be sent through the serial_tx module.              
By determining the intended key state for a given value in time, a correspondence              
with the addressKeyMap lookup table is established to gather the address of that             
intended motor. Acting for ten cycles to complete the 8N1 stream, the serial_tx             
stream is given the trigger (dependent on a parallel 115200hz clock in serialToKey)             
to send the motor address byte until all 12 are sent and the ESP32 can actuate. It                 
does this by setting its input “val” address to a shift register that can then shift in                 
bits according to its own clock compatible with the baud rate, with a default high to                
provide the end bits, or blank instructions in the case that that particular motor is               
not to be actuated. However, there may have been a discrepancy in our             
implementation in how serial communications would work at when taking into           
considerations the implication of a beat clock, and how instructions are only sent at              
the rising edge of this clock. This bug caused a failure in simultaneous actuation of               
keys as well as producing a mechanical error in false instructions, causing certain             
keys to oscillate between the upward and downward positions.  

 
2.9 Motor Controls (Max & Anthony) 
 

The motor controls are managed through an ESP32 microcontroller acting as both a             
serial receiver for FPGA motor instructions and a motor driver for the Piano Robot’s              
servo array hands. After the Nexys FPGA generates a bitmap of note activations (the              
time values for which a given note should be playing in order to replicate the input),                
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that bitmap is sent serially to the ESP32 through a UART 8N1 protocol, controlling              
the operation of the motors. 
 
On the ESP32 side, actuation of the motors in a stable domain in which chords as                
well as notes are possible (simultaneous actuation of multiple motors within one            
beat value). To ensure this, the ESP runs a loop in which it is constantly looking for                 
Serial input, verified by the presence of a serial address being received by a Serial               
Read function. Because the FSM (2.5) sends a passive high signal over the serial line               
at 115200 baud in its “play” state, the ESP32 is able to receive these streams and                
indicate them as an idle stream. 
 
Because of this protocol, the ESP32 is able to detect every 12 adjacent serial              
transmissions, actuating up to all 12 at the same time. The states of each finger is                
kept as either a 1 or a 0 (indicating activation and deactivation respectively), and              
after each serial stream, the old and new states are compared to determine whether              
a certain finger is required to change states. This ensures that a finger is only               
pressed when serial instructions are received to keep that finger in the downward             
position, otherwise it will return back to its raised position. 
 
There are several instances in which the team had to test different methods of              
keeping finger states, different information being sent serially, and implementations          
of the motor mount’s interface with the physical keyboard. Firstly, the physical            
setup is comprised of the motor mount’s securing of 6 servo motors for each hand at                
about 11mm apart (the rough spacing between keys on the piano). This required             
precise calculation of angles of depression for actuated fingers as well as lengths of              
each finger for different key shapes (natural keys and sharps) and their optimal             
contact locations to reduce stress on the servo motor gears. 
 
The process of measuring resting angles for the two states of the fingers came from               
trial and error of testing values to ensure that the motors would not stall and draw                
excess current from pressing the keys, but also sustaining a distance away from the              
keys in its idle position such that it can actuate within a very short period of time                 
from when it is called to change states. The mount was then mounted to the               
keyboard with rubber bands to act as a failsafe to motor failure, such that slack can                
be produced by a sufficiently large angle of depression during the testing phase of              
the project. 
 
Some of the problems in the design of this system that we would correct upon               
include the linear nature of servo actuation. For this project, it would be impractical              
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to add series current sensors to detect stall current draw to stop motors from              
actuating too far given the time we allotted for the mechanical side; however, an              
alternative method to prevent overactuation would be to use take advantage of the             
internal Hall outputs of the MG90S servos to determine if the correct position has              
been reached by gauging the rotor’s permanent magnets. If this position does not             
match a predetermined range of action, this servo motor can promptly be            
deactivated or moved back to its idle position. Furthermore, the hand case design             
with 6 fingers was not originally intended to be mounted to the piano statically, but               
instead attached to a rack and pinion rail to move around the piano freely to its next                 
location. Of course, this implementation was abandoned for the purposes of this            
project due to time and material constraints, and our design would have to move              
forward with a mounting technique in which one hand was mounted above the keys,              
and one was mounted below, as seen in Figure 2.8.a. 
 

 
Figure 2.8.a: Mechanical Configuration of Motor Mount Hands 

 

3 Implementation 
 

In implementing the Piano-Playing Robot, our station consists of a playable           
keyboard for musical input into a microphone, the Finite State Machine controllable            
from the FPGA’s onboard buttons and switches, and the ESP32 driver connected to             
the servo arrays mounted onto the robot’s playback keyboard. Note identification           
can be controlled with manual switches to set an onset-threshold and tune the             
identification process to the environment in which the recording is taking place. 
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In activating the robot, one must press and hold the record button on the FPGA to                
begin taking in audio data, while there is a musical stimulus to the microphone.              
During our demonstration, this came from an independant keyboard playing into a            
microphone. After the preferred recording is complete, the user releases the record            
button and now has that audio clip saved and processed for playback. 
 
By holding down the playback button, the FPGA will cycle through the divisions in              
time that it operates under (the beat clock), which can be changed for resolution in               
rhythm. The notes playing back in this playback mode will be manifested by both              
mounted LEDs on the FPGA to distinguish notes, as well as a finger from the robot                
physically pressing the keys of the piano on which it’s mounted. 
 
Playback options include fast-forward, pause, and reverse to control the way the            
robot plays the tune that it just heard. The fingers will move to press keys               
corresponding to which note should be playing at what time, and release when it is               
time for the note to end. 

 

4 Review & Future Development 
 

In the product’s end phase of testing and demonstration, our system proved its             
ability to detect notes, determine their activity over a period of time of recording,              
store their states within a single octave, and enter a playback state in which notes               
could be correctly sent to the motor driver with accuracy in piano-key activation             
and in the time domain / rhythm. However, a misconception in the process of serial               
communication with the controls had prevented the perfected demonstration of the           
Piano-Playing Robot. 
 
A notable bug in the implementation of the robot during demonstration was that             
although the correct motor addresses and times of activation were received for the             
note that was intended to be activated, there was an issue with a finger’s ability to                
properly change states. This problem could be recognized by short taps of the keys              
as well as a constant oscillation between the upward and downward state transition             
of keys that were intended to be held. This can be explained by a dissonance in the                 
effective note transfer from the FPGA to the ESP32 motor driver through the beat              
clock. 
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Essentially, between every beat clock, there is an idle high signal sent across the              
line, which had been considered to be a “nonactivity” signal, and that we could count               
off 12 of those signals and be ready to actuate, resetting the remaining states.              
However, in the time between each rising edge of the beat clock, those states reset,               
making it impossible to detect continuous sustains of notes or time-sensitive           
changes. In the future, we have learned to first seek out any discrepancies in the               
ways that different devices handle the same serial data, as there are many ways to               
get the same data across the same wire. 
 
Furthermore, because a complex and robust mechanical structure of the project was            
not the primary goal, many design choices came from convenience and affordability.            
Most notably, this manifested in the rubber-band mount for a          
pseudo-proprioceptive stress on the servo motors, as well as the use of MG90S             
servo motors for high speed actuation. Problems that arose from these choices            
included fingers slipping from the keys, and small debugging errors in which the             
servos were trying to reach an angle far below the physical piano, drawing excess              
current and causing stress on its internal gears. 
 
Although the rubber bands allowed for some stress relief in lifting the hands instead              
of allowing the motors to stall for too long, this is a very ineffective solution, and                
could be solved by implementing failsafe operations for motor actuation that would            
take intended and actual position into account, ensuring that the motors have safely             
reached their position in a feasible amount of time, otherwise overriding them and             
setting them to an idle state. This could be done by streaming the internal Hall               
feedback from the servo motors and controlling it according to that feed. However,             
this feed is not perfect considering the design of these servos to be cost effective.  
 
Finally, an important consideration is the necessity of the ESP32 driver. The design             
choice was made due to its ease of control decisions and changes, while offering a               
quick method to debug possible note storage and propagation issues that would            
have been difficult to catch with an Internal Logic Analyzer or testbench. For this              
reason, the ESP32 microcontroller makes for an excellent prototyping logic device,           
but in the design of a more refined and final system, we would look into operating                
the Pulse Width Modulus states of the servo motors from the FPGA directly to              
decrease wiring required. 

 

5 Parts/Hardware 
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5.1 Nexys 4 DDR FPGA 
 
The Nexys 4 DDR is the FPGA board at the heart of the 6.111 Digital Systems Lab                 
curriculum, armed with operational tools such as an ADC, VGA capabilities, a            
seven-segment display, and several switches to debug and operate the Piano Man            
FPGA Piano-Playing Robot. It is armed with ports for serial communication,           
specifically used to communicate with the ESP32 as a motor driver and I2C             
communication device to fully operate the mechanical aspects of the project, as well             
as being well equipped for temporary Block RAM storage, useful not only for servo              
motor strategy storage, but also for digital signal processing, at the heart of which              
lies the Discrete Fast Fourier Transform. 

 
5.2 ESP32 
 

The ESP32 Microcontroller was the obvious choice for an external Servo Motor            
driver, as it has onboard 16 PWM channels, perfect for operating PWM-controlled            
Servo Motors. It is capable of instantiating up to 3 hardware UART channels,             
programmable to many different subprotocols; the Piano Man simply communicates          
with the ESP32 through a singular 8N1 UART Serial port. 
 
Serial communications to the ESP32 involved an I2C-like addressing function, in           
which the input byte was indicative of a “change” required for a specifically             
addressed motor. As 8N1 is the default supported protocol for UART serial            
communications, 12 motors were programmed to actuate when their 8-bit address           
is read, and return to an idle state hovering above the keyboard if their address is                
not read during a 12 byte stream. This simplifies the process of programming finger              
movements by giving the Nexys 4 FPGA board access to the motor array completely              
serially. 
 

5.3 Sennheiser e935 Condenser Microphone 
 

The Sennheiser e935 Condenser Microphone is a passive transducer manufactured          
for vocal and acoustic recording. It offers a clean means of recording audio in a               
specific direction with minimal outside noise, and provides a reliable feed up to a              
24-bit depth. It is connected to the FPGA through the “hot” and ground lines from               
the microphone’s XLR port. 
 
As the passive peak-to-peak voltage maximum for the purposes of this project is             
around 2.0mV, there was some modification to be done with the signal so that it               
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provided a readable output to the FPGA’s onboard ADC. This is discussed further in              
5.5 Input Amplification Circuit​. 

 
5.4 MG90S Tower Pro Servo Motors 
 

The MG90S Tower Pro Servo Motors are excellent prototyping motors for their high             
torque output for such a small size and mass. They were the perfect contenders for               
our Piano-Playing Robot for their affordability and versatile mounting capabilities.          
We used two arrays of 6 servo motors each between two 3D printed motor mount               
“hands” for operation of a keyboard from an ESP32 driver. 
 
These motors operate within a 180° range by PWM signaling. Programmable within            
a specific range, a specific duty cycle will map the motor to move to a specific angle                 
associated with it. This range will typically be read within an operation cycle of              
50hz, where a 1-2ms duty cycle in a 20ms period will cover the entire 180° range.                
To decrease the time constraints of motor actuation, the ESP32 only drives each             
motor as a toggling function between two positions in a 90° range. 

 
5.5 Input Amplification Circuit (Max & Anthony) 
 

 
Figure 5.5.a: Input Analog Amplification Circuit 

 

To allow the Microphone we used to be readable by the Nexys 4 DDR on-board ADC,                
it was important that we did some analog signal processing to not only amplify the               
incoming hot signal, but to also center it around 0.5V so it may be digitized. 
 
This begins with a capacitive coupler into a LT1632 operational amplifier circuit,            
offset on the positive port with a rough functional voltage divider to get a 0.5V offset                
from a 3.3V input from the FPGA. From here, the roughly 2.0mV Pk-Pk input voltage               
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is effectively phase shifted by 180° and amplified to get a 1.0V Pk-Pk amplitude with               
minimal clipping out of the op-amp. From here, the signal passes through a             
band-pass filter, allowing frequencies within the frequency response range of the           
Sennheiser e935 to pass through at full amplitude, while reducing the intensity of             
frequencies outside of that range. The result is passed on to the Nexys 4 DDR ADC                
for digitization. 

 
5.6 3D Printed PLA Motor Mount “Hand” 
 
5.6.1 Motor Mount 

 
The Motor Mount “hands” were 3D printed in PLA plastic with an 11mm separation              
between the servo actuators, measured to a standard MIDI keyboard. A small            
window behind each motor allows for ease of wiring. Printed in the Cypress             
Engineering Design Studio. 
 

 
Figure 5.6.1.a: Motor Mount Hand Dimensions (in.) 

 
5.6.2 Acrylic Fingers 

 
Twelve laser-cut black acrylic fingers were used to press the piano keys in our              
system, attached to the servo arrays with a dowel-fit insertion, allowing them to             
sustain pressure without slip. Various sizes were used (ranging from 6.5cm to            
12cm) in order to reach each key in an octave and reduce the total torque               
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requirement of its attached servo motor. Laser cut in the Cypress Engineering            
Design Studio. 

 

 
Figure 5.6.2: Acrylic Laser-Cut Finger Dimensions (in.) 
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6 Appendix 
 
6.1 Associated FPGA SystemVerilog 
 
6.1.1 fft.sv (Max, Anthony, Brendan) 
 
// The main module for the Piano Playing Robot 

// built on an FPGA. 

// Team: Brendan Ashworth, Max Hardy, Anthony Nardomarino 

// December 9 2019 

module piano_playing_robot ( 

CLK100MHZ, 

// ADC and VGA. 

VGA_R, VGA_B, VGA_G, 

VGA_HS, VGA_VS, 

AD3P, AD3N, 

// Inputs 

SW, BTNC, BTNU, BTNL, BTNR, BTND, 

// 8-segment display 

SEG, AN, 

// Lights 

LED16_B, LED16_G, LED16_R, 

LED17_B, LED17_G, LED17_R, 

LED, 

// Outputs to microcontroller 

JA 

); 

 

// inputs 

input logic CLK100MHZ; 

input [15:0] SW; 

input logic BTNC; 

input logic BTNU; 

input logic BTNL; 

input logic BTNR; 

input logic BTND; 

input logic AD3P; 

input logic AD3N; 

  

// outputs 

output logic [3:0] VGA_R; 

output logic [3:0] VGA_B; 

output logic [3:0] VGA_G; 

output logic VGA_HS; 

output logic VGA_VS; 

  

output logic LED16_B, LED16_G, LED16_R; 

output logic LED17_B, LED17_G, LED17_R; 

output [15:0] LED; 

output [7:0] SEG; 

output [7:0] AN; 
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output [7:0] JA; 

 

// Split the 100mhz clock into lower and higher frequencies. 

// ADC takes 104mhz, VGA takes 65mhz. 

logic clk_104mhz, clk_65mhz; 

clk_wiz_0 clockgen( 

 .clk_in1(CLK100MHZ), 

 .clk_out1(clk_104mhz), 

 .clk_out2(clk_65mhz)); 

 

logic hsync, vsync, blank; 

logic [10:0] hcount; 

logic [9:0] vcount; 

xvga xvga1( 

 .vclock(clk_65mhz), 

 .hcount(hcount), 

 .vcount(vcount), 

 .vsync(vsync), 

 .hsync(hsync), 

 .blank(blank)); 

 

logic BTNC_clean, BTNU_clean, BTND_clean, BTNL_clean, BTNR_clean; 

debounce #(.COUNT(5)) db0 ( 

 .clk(clk_104mhz), 

 .reset(1'b0), 

 .noisy({BTNC, BTNU, BTND, BTNL, BTNR}), 

 .clean({BTNC_clean, BTNU_clean, BTND_clean, BTNL_clean, BTNR_clean})); 

 

// Full system reset. 

logic system_reset; 

assign system_reset = BTNC_clean; 

 

logic [15:0] adc_sample; 

logic eoc; 

// Sample audio input from the ADC. 

// Taken with inspiration from the nexys_fft_ddr demo. 

xadc_demo xadc_demo ( 

 .dclk_in(clk_104mhz),  // Master clock for DRP and XADC. 

 .di_in(0), // DRP input info (0 becuase we don't need to write) 

 .daddr_in(6'h13), // The DRP register address for the third analog input register 

 .den_in(1), // DRP enable line high (we want to read) 

 .dwe_in(0), // DRP write enable low (never write) 

 .drdy_out(), // DRP ready signal (unused) 

 .do_out(adc_sample),   // DRP output from register (the ADC data) 

 .reset_in(system_reset), 

 .vp_in(0), // dedicated/built in analog channel on bank 0 

 .vn_in(0), // can't use this analog channel b/c of nexys 4 setup 

 .vauxp3(AD3P), // The third analog auxiliary input channel 

 .vauxn3(AD3N), // Choose this one b/c it's on JXADC header 1 

 .channel_out(), // Not useful in sngle channel mode 

 .eoc_out(eoc), // Pulses high on end of ADC conversion 

 .alarm_out(), // Not useful 

 .eos_out(), // End of sequence pulse, not useful 

 .busy_out() // High when conversion is in progress. unused. 

); 

 

// Increase sampling fidelity by oversampling 16x. 
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// Taken from the FFT demo. 

logic [13:0] osample16; 

logic done_osample16; 

oversample16 osamp16_1 ( 

 .clk(clk_104mhz), 

 .sample(adc_sample[15:4]), 

 .eoc(eoc), 

 .oversample(osample16), 

 .done(done_osample16)); 

 

// This BRAM stores the FFT frame that was last generated. 

// This is before we process via FFT and then take the usable part of the spectrogram. 

logic [13:0] frame_head = 0; // Frame head - a pointer to the write point, works as 

circular buffer 

logic [13:0] frame_addr; // Frame address - The read address, controlled by 

bram_to_fft 

logic [15:0] frame_data; // Frame data - The read data, input into bram_to_fft 

bram_frame bram1 ( 

 .clka(clk_104mhz), 

 .wea(done_osample16), 

 .addra(frame_head), 

 .dina({osample16, 2'b0}), 

 .clkb(clk_104mhz), 

 .addrb(frame_addr), 

 .doutb(frame_data)); 

 

// On every sample, increase the frame head pointer. 

// It'll overflow back when we take enough samples. 

always @(posedge clk_104mhz) if (done_osample16) frame_head <= frame_head + 1; 

 

// The FFT can be taken much faster than we take it, but because we only care about 

// visible and human readable frequencies, let's use one thats more reasonable. 

// The VGA vsync happens about every 60hz so we can use that. 

// This logic converts it to a single clock pulse. 

logic vsync_104mhz, vsync_104mhz_pulse; 

synchronize vsync_synchronize0( 

 .clk(clk_104mhz), 

 .in(vsync), 

 .out(vsync_104mhz)); 

 

level_to_pulse vsync_ltp0( 

 .clk(clk_104mhz), 

 .level(~vsync_104mhz), 

 .pulse(vsync_104mhz_pulse)); 

 

// Read frames from the BRAM and pipe it to the FFT. 

logic last_missing; // All these are control lines to the FFT block design 

logic [31:0] frame_tdata; 

logic frame_tlast, frame_tready, frame_tvalid; 

bram_to_fft bram_to_fft_0( 

 .clk(clk_104mhz), 

 .head(frame_head), 

 .addr(frame_addr), 

 .data(frame_data), 

 .start(vsync_104mhz_pulse), 

 .last_missing(last_missing), 

 .frame_tdata(frame_tdata), 
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 .frame_tlast(frame_tlast), 

 .frame_tready(frame_tready), 

 .frame_tvalid(frame_tvalid) 

); 

 

// We take an FFT with 16384 samples each of 16 bit depth. This logic 

// sends it to the FFT IP to get the magnitudes of each frequency. 

logic [23:0] magnitude_tdata; 

logic [13:0] magnitude_tuser; 

logic magnitude_tlast, magnitude_tvalid; 

fft_mag fft_mag_i( 

 .clk(clk_104mhz), 

 .event_tlast_missing(last_missing), 

 .frame_tdata(frame_tdata), 

 .frame_tlast(frame_tlast), 

 .frame_tready(frame_tready), 

 .frame_tvalid(frame_tvalid), 

 // Scaling isn't necessary. 

 .scaling(12'b0000_0000_0000), 

 .magnitude_tdata(magnitude_tdata), 

 .magnitude_tlast(magnitude_tlast), 

 .magnitude_tuser(magnitude_tuser), 

 .magnitude_tvalid(magnitude_tvalid)); 

 

// We use a huge number of samples into our FFT (~16k), but we only care 

// about the lowest of bins. This is because they contain the fundamental 

// frequencies of piano notes spaced far enough apart to be distinguishable. 

// This only store to BRAM when it's the lowest eighth. 

logic fft_is_lowest_chunk; 

assign fft_is_lowest_chunk = ~|magnitude_tuser[13:10]; 

// Store a single window of FFT in BRAM, with 1024 bins x 16 bit depth. 

// log2(1024) => 10 bit address space 

logic [9:0] fft_bin_index; 

// 16 bit depth describes the magnitude of the frequency in that bin 

logic [15:0] fft_magnitude; 

bram_fft fft_windows ( 

 .clka(clk_104mhz), 

 .clkb(clk_104mhz), 

 .wea(fft_is_lowest_chunk & magnitude_tvalid), 

 // Writing port. 

 .addra(magnitude_tuser[9:0]), 

 .dina(magnitude_tdata[15:0]), 

 // Reading port. 

 .addrb(fft_bin_index), 

 .doutb(fft_magnitude) 

); 

 

// These are the currently activated notes, updated every 60hz. 

logic [11:0] notes; 

 

// We allow for a range of thresholds for the audio analysis because 

// of the wide variability in piano volume and outside noise. Take 

// it from the switches. 

logic [15:0] threshold; 

assign threshold = SW[15:0]; 

 

// The spectrogram both shows the spectrogram on the 
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// VGA port and also isolates fundamental notes from it 

// to pass to the finite state machine and start end detector. 

fft_spectrogram spectrogram( 

 .vclk_in(clk_65mhz), 

 .hcount(hcount), .vcount(vcount), .blank(blank), 

 .hsync(hsync), .vsync(vsync), 

 .rgb({VGA_R, VGA_G, VGA_B}), 

 .fft_bin_index(fft_bin_index), 

 .fft_magnitude(fft_magnitude), 

 .hsync_out(VGA_HS), 

 .vsync_out(VGA_VS), 

 .notes(notes), 

 .threshold(threshold) 

 ); 

  

// Beat clock. How quickly the notes can change. 

logic music_clk; 

 

// Assign RGB LEDs 

assign {LED16_R, LED16_G, LED16_B} = {2'b00, music_clk}; 

  

// The number of note changes we need to uniquely identify 

// to play the entirety of the song. 

parameter NUM_CHANGES = 1024; 

 

logic is_recording; 

logic fast_forward; 

assign fast_forward = BTNU_clean; 

 

mega_clk_div mega_clk_div0( 

 .fast_forward(fast_forward), 

 .clk_in(clk_65mhz), 

 .clk_out(music_clk)); 

  

logic backwards; 

assign backwards = BTND_clean; 

  

// interop between the start_end_detector 

// and the music_storage. 

logic [11:0][1:0] note_change; 

logic [$clog2(NUM_CHANGES)-1:0] note_change_index; 

logic note_clk; 

   

// Playback on the LEDs. 

start_end_detector detector0( 

 .rst_in(system_reset), 

 .activated_notes_in(notes), 

 .note_clk_in(music_clk & is_recording), 

 .note_change_out(note_change), 

 .note_change_index_out(note_change_index), 

 .note_change_clk_out(note_clk) 

 ); 

 

// Counter is the time, seq_ptr is the index. 

logic [$clog2(NUM_CHANGES)-1:0] counter; 

logic [$clog2(NUM_CHANGES)-1:0] ptr; 
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display_8hex display( 

 .clk(clk_65mhz), 

 .data({6'b0, ptr[9:0], 6'b0, counter[9:0]}), 

 .seg(SEG[6:0]), 

 .strobe(AN)); 

assign SEG[7] = 1; 

 

// Assign RGB LEDs 

 

// Print debugging states to the LEDs. 

logic is_playing; 

logic paused_out; 

assign {LED17_R, LED17_G, LED17_B} = {is_recording, is_playing, paused_out};   

  

// For displaying the current state on the FPGA. 

logic [3:0] state; 

 

fsm fsm0( 

 .clk_in(music_clk), 

 .rst_in(system_reset), 

 .fft_done(1'b1), 

 .state_out(state), 

 .counter(counter), 

 .recording_in(BTNL_clean), .playing_in(BTNR_clean), 

 .playing_out(is_playing), .recording_out(is_recording), .paused_out(paused_out)); 

 

logic [NUM_CHANGES-1:0][$clog2(NUM_CHANGES)-1:0] notes_indexes; 

logic [NUM_CHANGES-1:0][11:0] notes_stored; 

logic [NUM_CHANGES-1:0][11:0] notes_on; 

 

logic note_clk_with_reset; 

assign note_clk_with_reset = note_clk | system_reset; 

 

music_storage music_storage0( 

 .rst_in(system_reset), 

 .notes_on(notes_on), 

 .note_change_in(note_change), 

 .note_change_index_in(note_change_index), 

 .note_change_clk_in(note_clk_with_reset), 

 .notes_stored(notes_stored), 

 .notes_indexes(notes_indexes)); 

 

logic [15:0] led_proxy; 

assign LED[11:0] = led_proxy[11:0]; 

assign LED[15:12] = state[3:0]; 

  

logic fft_clk; 

assign fft_clk = music_clk | system_reset; 

 

always_ff @(posedge fft_clk) begin 

 if (system_reset) begin 

 ptr <= 0; 

 led_proxy[11:0] <= 12'b0; 

 // If recording. 

 end else if (is_recording) begin 

 led_proxy[11:0] <= notes[11:0]; 

 // If playing. 
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 end else if (is_playing) begin 

 // Play out the notes onto the LEDs. 

 led_proxy[11:0] <= notes_on[ptr]; 

   

 // allow for playing backwards 

 if (backwards) begin 

 // backwards lookup 

 // Check the next pointer. 

 if ((notes_indexes[ptr - 1] >= counter) & (notes_indexes[ptr - 1] > 0)) 

 ptr <= ptr - 1; 

// else if (counter < ptr) 

// ptr <= 0; 

 end else begin 

 // regular order 

 // Check the next pointer. 

 if ((notes_indexes[ptr + 1] <= counter) & (notes_indexes[ptr + 1] > 0)) 

 ptr <= ptr + 1; 

 else if (counter < ptr) 

 ptr <= 0; 

 end 

 // If paused. 

 end else if (paused_out) begin 

 // Keep the notes. 

 led_proxy[11:0] <= notes_on[ptr][11:0]; 

 end else begin 

 led_proxy[11:0] <= 12'b0; 

 end 

end 

 

assign JA[7:1] = 7'b0; 

  

// logic [11:0] interest_note; 

// assign interest_note = notes_stored[ptr]; 

  

logic data_output_pin; 

assign JA[0] = ~(~data_output_pin & is_playing); 

 

serialToKey hands (.clk_100mhz(CLK100MHZ), .rst(system_reset), 

.data_out(data_output_pin), 

 .beat_clk(fft_clk), .pb(is_playing), .interest_note(notes_on[ptr])); 

  

endmodule 
 
6.1.2 fft_spectrogram.sv (Brendan) 
 
// Generates a visual spectrogram that contains 

// VGA-generating display logic. This augments 

// the audio output to provide another way to 

// look at what the robot is doing. 

// This also contains the fundamental note isolator/ 

// note recognition module. I merged the two to 

// simplify note identification. 

// Author: Brendan Ashworth 

module fft_spectrogram( 

vclk_in, 

 

// VGA output 

hcount, vcount, blank, 
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hsync, vsync, 

rgb, 

hsync_out, vsync_out, 

 

// note identification 

fft_bin_index, 

fft_magnitude, 

notes, 

threshold 

); 

  

// Fixed screen parameters. 

parameter SCREEN_HEIGHT = 767; 

parameter SCREEN_HEIGHT_HALF = 383; 

parameter SCREEN_WIDTH = 1023; 

 

input logic vclk_in; 

  

input [10:0] hcount; 

input [9:0] vcount; 

  

input logic blank; 

input logic hsync; 

input logic vsync; 

 

output logic [11:0] rgb; 

  

output logic hsync_out; 

output logic vsync_out; 

  

input logic [15:0] threshold; 

  

output [9:0] fft_bin_index; 

input [15:0] fft_magnitude; 

  

// old 

logic [9:0] hheight; 

logic [9:0] vheight; 

logic [1:0] intensity; 

  

parameter [27:0] NOTE_ACTIVATION = 28'd33_500_000; 

  

// COLORS is the color spectrum that we use to generate the spectrogram. 

// This makes it visually pleasing but not computationally or space 

// intensive. 

parameter [11:0] COLOR_RED = 12'hD11; 

parameter [11:0] COLOR_ORANGE = 12'hF84; 

parameter [11:0] COLOR_YELLOW = 12'hFD0; 

parameter [11:0] COLOR_BLACK = 12'h000; 

  

logic [27:0] A = 0; 

logic [27:0] As = 0; 

logic [27:0] B = 0; 

logic [27:0] C = 0; 

logic [27:0] Cs = 0; 

logic [27:0] D = 0; 

logic [27:0] Ds = 0; 

logic [27:0] E = 0; 

logic [27:0] F = 0; 

logic [27:0] Fs = 0; 

logic [27:0] G = 0; 

logic [27:0] Gs = 0; 

 

output logic [11:0] notes; 

assign notes = {A > 0, As > 0, B > 0, C > 0, Cs > 0, D > 0, Ds > 0, E > 0, F > 0, Fs > 

0, G > 0, Gs > 0}; 
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// cooldown of 9.75*10^7 

  

always_ff @(posedge vclk_in) begin 

 // We pipeline to allow for some computation, so 

 // delay all logics equally. 

 hheight <= fft_magnitude >> 7; 

 vheight <= SCREEN_HEIGHT - vcount; 

 // Intensity depends on the FFT magnitude. 

 intensity <= {hheight > 210, hheight > 20}; 

 {hsync_out, vsync_out} <= {hsync, vsync}; 

 

 rgb <= blank ? COLOR_BLACK : 

 (vheight == SCREEN_HEIGHT_HALF + threshold) ? 12'hFFF : 

 (vheight == SCREEN_HEIGHT_HALF - threshold) ? 12'hFFF : 

 // First, filter out what shouldn't be colored. 

 // Center the spectrogram on half screen height. 

 (vheight > (SCREEN_HEIGHT_HALF + hheight)) ? COLOR_BLACK : 

 (vheight < (SCREEN_HEIGHT_HALF - hheight)) ? COLOR_BLACK : 

 // Now do it based on intensity. 

 // Color our fundamental frequencies specially. 

 ((fft_bin_index == 210) | (fft_bin_index == 187) | (fft_bin_index == 166) | 

(fft_bin_index == 147) | (fft_bin_index == 131) | (fft_bin_index == 117)) ? 12'h0F0 : 

 ((fft_bin_index == 222) | (fft_bin_index == 197) | (fft_bin_index == 175) | 

(fft_bin_index == 155) | (fft_bin_index == 139) | (fft_bin_index == 125)) ? 12'h0F0 : 

 // Otherwise, just color according to how strong it is. 

 (intensity[1]) ? COLOR_RED : 

 (intensity[0]) ? COLOR_ORANGE : 

 COLOR_YELLOW; 

 

 // If a note is on, we "empty the bucket" progressively, 

 // until the note turns off. 

 if (A > 0) 

 A <= A - 1; 

 if (As > 0) 

 As <= As - 1; 

 if (B > 0) 

 B <= B - 1; 

 if (C > 0) 

 C <= C - 1; 

 if (Cs > 0) 

 Cs <= Cs - 1; 

 if (D > 0) 

 D <= D - 1; 

 if (Ds > 0) 

 Ds <= Ds - 1; 

 if (E > 0) 

 E <= E - 1; 

 if (F > 0) 

 F <= F - 1; 

 if (Fs > 0) 

 Fs <= Fs - 1; 

 if (G > 0) 

 G <= G - 1; 

 if (Gs > 0) 

 Gs <= Gs - 1; 

 

 // If a note is above our threshold, we reset 

 // its activation, "filling the bucket". 

 if (fft_bin_index == 117 & A == 0) 

 A <= (hheight > threshold) ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 125 & As == 0) 

 As <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 131 & B == 0) 

 B <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 139 & C == 0) 
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 C <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 147 & Cs == 0) 

 Cs <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 155 & D == 0) 

 D <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 166 & Ds == 0) 

 Ds <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 175 & E == 0) 

 E <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 187 & F == 0) 

 F <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 197 & Fs == 0) 

 Fs <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 210 & G == 0) 

 G <= hheight > threshold ? NOTE_ACTIVATION : 0; 

 if (fft_bin_index == 222 & Gs == 0) 

 Gs <= hheight > threshold ? NOTE_ACTIVATION : 0; 

end 

 

// We fit 256 bins on the screen. This makes each bin 

// wide enough to see, but small enough that we can fit 

// our octave of interest on the screen. 

assign fft_bin_index = hcount[9:0] >> 2; 

 

endmodule 

 

 
6.1.3 freqKeyMap.sv (Anthony) 
 
////////////////////////////////////////////////////////////////// 

// 

// freqKeyMap.sv 

// Anthony Nardomarino 

// FPGA Piano Playing Robot 

// MIT 6.111 Digital Systems Lab 

// 11-15-2019 

// 

////////////////////////////////////////////////////////////////// 

 

module addressKeyMap( 

countIn, addrOut 

); 

 

input   logic   [3:0] countIn; 

output  logic   [7:0] addrOut; 

 

// i2c Address Key: 

// 

// 0100_0000 - A 0101_0000 - C#   0100_1000 - F 

// 0010_0000 - A# 0011_0000 - D 0010_1000 - F# 

// 0110_0000 - B 0111_0000 - D#   0110_1000 - G 

// 0001_0000 - C 0000_1000 - E 0001_1000 - G# 

 

always_comb begin 

 case(countIn) 

 4'd0: addrOut = 8'b0100_0000; 

 4'd1: addrOut = 8'b0010_0000; 

 4'd2: addrOut = 8'b0110_0000; 

 4'd3: addrOut = 8'b0001_0000; 
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 4'd4: addrOut = 8'b0101_0000; 

 4'd5: addrOut = 8'b0011_0000; 

 4'd6: addrOut = 8'b0111_0000; 

 4'd7: addrOut = 8'b0000_1000; 

 4'd8: addrOut = 8'b0100_1000; 

 4'd9: addrOut = 8'b0010_1000; 

 4'd10: addrOut = 8'b0110_1000; 

 4'd11: addrOut = 8'b0001_1000; 

 default: addrOut = 8'b1111_1111; 

 endcase 

end 

endmodule // freqKeyMap 

 

6.1.4 mega_clk_div.sv (Brendan) 
// The beat clock generator. 

// Allows for fast-forward with the fast_forward 

// input, taken from button up. 

// Author: Brendan Ashworth 

module mega_clk_div( 

fast_forward, 

clk_in, 

clk_out); 

  

logic [23:0] mid = 0; 

  

input logic fast_forward; 

  

input logic clk_in; 

output logic clk_out; 

  

// mid[22] will be twice the speed 

assign clk_out = fast_forward ? mid[22] : mid[23]; 

  

always_ff @(posedge clk_in) begin 

 mid <= mid + 1; 

end 

  

endmodule 

6.1.5 music_storage.sv (Brendan) 
// The music storage module stores all recorded note changes 

// as a two-dimensional logic array. It's from this music storage 

// module that the music FSM reads and loads notes to send 

// to the controls modules. 

// Author: Brendan Ashworth 

module music_storage( 

rst_in, 

note_change_in, 

note_change_index_in, 

note_change_clk_in, 

notes_on, 

notes_stored, 

notes_indexes); 

 

input logic rst_in; 

// Clocked in when a note change is found by the start_end_detector. 

input logic note_change_clk_in; 
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// This is the number of fundamental notes / frequencies 

// that the piano can play. This is a result of applying 

// the fundamental isolator on the activated frequencies in 

// the Fourier transform. 

parameter NUM_NOTES = 12; 

 

// The number of note changes we need to uniquely identify 

// to play the entirety of the song. Identical to: 

// The number of sequences we need to uniquely identify 

// to play the entirety of the song. NUM_CHANGES * sample_duration 

// gives the maximum length of a song 

parameter NUM_CHANGES = 1024; 

 

// The delta functions that represent changes in 

// the activated frequencies. This also includes 

// information about the current activated frequency; 

// i.e., given a single note_change_out, you can 

// start playing a song at that point. 

// For some given frequency, note_change_out is: 

// 00 = no change in activation, off 

// 11 = no change, on 

// 10 = note turns off 

// 01 = note turns on 

// note_change_out is designed such that 

// note_change_out[0] ^ note_change_out[1] 

// signifies that the motors must be actuated in some 

// direction specified by note_change_out[0]. 

input logic [11:0][1:0] note_change_in; 

 

// Starting at 0, this is the index for a note change. 

// It will increment with every clock and can be used 

// to uniquely identify the activated frequencies in 

// a song at any point in time. 

input logic [$clog2(NUM_CHANGES)-1:0] note_change_index_in; 

  

// The actual storage array. We need to store information 

// about the notes that change at what time periods. 

// This necessitates two logical 2d arrays: one for notes, 

// one to index the time periods. 

  

// Activations for each note at a certain time index. 

// This is effectively the LSB of note_change_in across the notes. 

output logic [NUM_CHANGES-1:0][11:0] notes_stored; 

  

output logic [NUM_CHANGES-1:0][11:0] notes_on; 

  

// Time indexes for each stored note. For each entry in notes_stored[i], there 

// is an equivalent entry in notes_indexes[i] that describes the time period at 

// which this note change occurs. 

output logic [NUM_CHANGES-1:0][$clog2(NUM_CHANGES)-1:0] notes_indexes; 

  

// index_pointer contains a time index that indicates at which notes location 

// we should store the next note. Storing this prevents traversing the logic 

// until the notes_index[j] == 0, which is conceptually the same. 

logic [$clog2(NUM_CHANGES)-1:0] index_pointer; 
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always_ff @(posedge note_change_clk_in) begin 

 integer i; 

 if (rst_in) begin 

 notes_stored <= '{default:'0}; 

 notes_on <= '{default:'0}; 

 notes_indexes <= '{default:'0}; 

 // Begin writing at t=1. 

 index_pointer <= 1'b1; 

 end else begin 

 // Store the new note. 

 notes_indexes[index_pointer] <= note_change_index_in; 

   

 // Store each note activation individually because it comes 

 // in as a [1:0] but we only care about the LSB. 

 for (i=0; i < 12; i++) begin 

 notes_stored[index_pointer][i] <= note_change_in[i][0] ^ note_change_in[i][1]; 

 notes_on[index_pointer][i] <= note_change_in[i][1]; 

 end 

   

 // Increment the pointer. 

 index_pointer <= index_pointer + 1'b1; 

 end 

end 

 

endmodule 

6.1.6 serial_tx.sv (Anthony) 
`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// 

// serial_tx.sv 

// Created by: Anthony Nardomarino 

// 6.111 - Digital Systems Laboratory 

// Piano Playing Robot 

// 12-02-2019 

// 

// Based off of 6.111 Lab 2, in which Serial communications are established 

// between a serial python reader and the FPGA. This module takes instructions 

// sent by the serialToKey.sv module and sends them via 8N1 UART to an ESP32 

// with a precalculated baud of 115200 (100Mhz clock / 868). 

// 

//////////////////////////////////////////////////////////////////////////////// 

 

 

module serial_tx( 

 clk, reset, trigger, val, data_out, is_sending//, counter_serial 

  ); 

input   logic clk; 

input   logic reset; 

input   logic trigger; 

input   logic [7:0] val; 

output  logic data_out; 

output  logic is_sending; 

  

// output logic [7:0] counter_serial; 

  

parameter DIVISOR = 868; //4.  115.2 kbps baud divisor from 100Mhz 
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logic [7:0] shift_buffer; 

logic [31:0] counter; 

// assign counter_serial = counter[7:0]; 

 

logic old_trigger; 

  

always_ff @(posedge clk) begin 

 old_trigger <= trigger; 

 if(reset)begin 

 is_sending <= 0; 

 counter <= 32'd0; 

 shift_buffer <= 8'b11111111; 

 end else begin 

 if (trigger & ~old_trigger) begin 

 // take the first edge of the trigger 

 shift_buffer[7:0] <= val[7:0]; 

 counter <= 32'd0; 

 is_sending <= 1; 

 end else if (is_sending) begin 

 counter <= counter + 1; 

 case(counter[14:0]) 

 DIVISOR*0: data_out <= 1'b0; 

 DIVISOR*1: data_out <= shift_buffer[0]; 

 DIVISOR*2: data_out <= shift_buffer[1]; 

 DIVISOR*3: data_out <= shift_buffer[2]; 

 DIVISOR*4: data_out <= shift_buffer[3]; 

 DIVISOR*5: data_out <= shift_buffer[4]; 

 DIVISOR*6: data_out <= shift_buffer[5]; 

 DIVISOR*7: data_out <= shift_buffer[6]; 

 DIVISOR*8: data_out <= shift_buffer[7]; 

 DIVISOR*9: begin 

 data_out <= 1'b1; 

 is_sending <= 0; 

 end 

 endcase 

 end 

 end 

end  

  

endmodule 

 

6.1.7 serialToKey.sv (Anthony) 
 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// 

// serialToKey.sv 

// Created by: Anthony Nardomarino 

// 6.111 - Digital Systems Laboratory 

// Piano Playing Robot 

// 12-02-2019 

// 

// Interface for reading motor strategy BRAM and sending instructions 

// via the serial_tx.sv module to an ESP32, which uses an I2C protocol 

// to address motor arrays (consisting of 12 motors). Operation uses 

// a 8N1 UART serial communication protocol between FPGA and ESP32, 

// necessitating an 8 bit address for the motors (5 bits followed by 
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// 3 zeros) 

// 

////////////////////////////////////////////////////////////////////////////////// 

 

 

module serialToKey( 

 clk_100mhz, rst, data_out, 

 beat_clk, pb, interest_note 

// debug, counter_out, counter_serial 

); 

  

parameter DIVISOR = 868; 

  

// INPUTs 

input logic clk_100mhz; 

input logic rst; 

input logic beat_clk;   // slow beat clock from pb (min 2hz, max 10hz) 

input logic pb; // playback wire 

 

// note of interest (active note according to beat clk) 

input logic [11:0]  interest_note; 

  

// OUTPUTs 

output logic data_out; // serial out 

  

// output logic [24:0] debug; 

// assign debug = {motor_addy, key_addy, motor_count, trigger, is_sending, sending, 

curr_beat, old_beat}; 

// output logic [9:0] counter_out; 

  

// Internal logic 

logic [7:0] motor_addy; // 8 bit address of the motor to be actuated 

logic [7:0] key_addy; // 8 bit address of motor of interest, 

 // specified by value of motor_count 

logic [3:0] motor_count; // counter to 12 motor streams 

logic trigger; // trigger to send serial info 

logic is_sending; // trigger from serial to indicate full 

serial stream sent 

logic sending; 

logic curr_beat; 

logic old_beat; 

  

logic [31:0] counter; 

// assign counter_out = counter; 

  

// output logic [7:0] counter_serial; 

  

serial_tx fingers (.clk(clk_100mhz), .reset(rst), .trigger(trigger), 

 .val(motor_addy), .data_out(data_out), .is_sending(is_sending)/*, 

 .counter_serial(counter_serial)*/); 

  

addressKeyMap motorKey (.countIn(motor_count), .addrOut(key_addy)); 

 

always_ff @(posedge clk_100mhz) begin 

 curr_beat <= beat_clk; 

 old_beat <= curr_beat; 

 if (rst) begin 
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 trigger <= 0; 

 sending <= 0; 

 motor_count <= 4'd0; 

 counter <= 0; 

 // onset of beat clock: send notes 

 end else if (curr_beat & ~old_beat & pb) begin 

 sending <= 1; 

 motor_count <= 4'd1; 

 counter <= 0; 

 motor_addy  <= interest_note[11] ? 8'b0100_0000 : 8'b1111_1111; 

 end else if (motor_count == 12) begin 

 sending <= 0; 

 counter <= 0; 

 end else if (sending & (counter==32'd8680)) begin 

 counter <= 0; 

 motor_count <= motor_count + 1; 

 trigger <= 1; 

// motor_count <= ~is_sending ? (motor_count + 1)  : (motor_count); 

// trigger <= is_sending; 

 motor_addy  <= interest_note[11 - motor_count] ? key_addy : 8'b1111_1111; 

 end else if (sending) begin 

 trigger <= 0; 

// trigger <= is_sending; 

 counter <= counter + 1; 

 end 

end 

  

endmodule // serialToKey 

 

6.1.8 start_end_detector.sv (Brendan) 
 

// The start end detector effectively takes the 

// derivative of an array of activated frequencies, 

// giving the time indices at which they change in value 

// (turn off or on). This transforms a step function in 

// both directions to delta functions towards negative and 

// positive infinity. 

// Brendan Ashworth 

module start_end_detector( 

rst_in, 

activated_notes_in, 

note_clk_in, 

note_change_out, 

note_change_index_out, 

note_change_clk_out 

); 

  

// This is the number of fundamental notes / frequencies 

// that the piano can play. This is a result of applying 

// the fundamental isolator on the activated frequencies in 

// the Fourier transform. 

parameter NUM_NOTES = 12; 

 

parameter NUM_CHANGES = 1024; 

  

input logic rst_in; 
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// An array of activated notes - a 0 signifies 

// the note is off, a 1 is on. 

input [11:0] activated_notes_in; 

// note_clk_in pulses when a new sequence of activated notes 

// are introduced. 

input logic note_clk_in; 

  

// The delta functions that represent changes in 

// the activated frequencies. This also includes 

// information about the current activated frequency; 

// i.e., given a single note_change_out, you can 

// start playing a song at that point. 

// For some given frequency, note_change_out is: 

// 00 = no change in activation, off 

// 11 = no change, on 

// 10 = note turns off 

// 01 = note turns on 

// note_change_out is designed such that 

// note_change_out[0] ^ note_change_out[1] 

// signifies that the motors must be actuated in some 

// direction specified by note_change_out[0]. 

output logic [11:0][1:0] note_change_out; 

  

// Starting at 0, this is the index for a note change. 

// It will increment with every clock and can be used 

// to uniquely identify the activated frequencies in 

// a song at any point in time. 

output logic [$clog2(NUM_CHANGES)-1:0] note_change_index_out; 

 

// The activated notes on the last clock pulse. 

// The same value as the LSB of note_change_out for 

// all notes. 

logic [11:0] last_activated_notes; 

  

// Whether or not that specific frequency has a change. 

// OR ing this entire logic will provide a logical 1 if 

// there is a note change detected. 

logic [11:0] note_has_change; 

 

// This clk pulses any time there is a new note_change_out 

// available to process. 

output logic note_change_clk_out; 

   

always_ff @(posedge note_clk_in) begin 

 if (rst_in) begin 

 for (integer i = 0; i < 12; i++) begin 

 note_change_out[i] <= 2'b00; 

 last_activated_notes[i] <= 0; 

 end 

   

 note_change_index_out <= 0; 

 note_change_clk_out <= 0; 

 end else if (note_change_clk_out) begin 

 // Turn off the clock out if it was on. 

 // Technically speaking this disallows the start end detector 

 // from detecting changes that happen immediately after another 

 // change, but this is short-lived for the duration of one 
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 // sample. In other words, for the real piano this doesn't 

 // actually matter, and if anything will improve performance 

 // by smoothing the outcoming notes. 

 note_change_clk_out <= 0; 

   

 end else begin 

 // If we just clocked the pulse, unpulse. 

 // Go through each individual note. 

 for (integer i = 0; i < 12; i++) begin 

 // Let [1] be the last note. 

 // Let [0] be the current activated note. 

 note_change_out[i] <= {last_activated_notes[i], activated_notes_in[i]}; 

   

 // Store the old notes so we don't reactivate on the same one. 

 last_activated_notes[i] <= activated_notes_in[i]; 

 end 

   

 note_change_clk_out <= (last_activated_notes[0] ^ activated_notes_in[0]) 

 | (last_activated_notes[1] ^ activated_notes_in[1]) 

 | (last_activated_notes[2] ^ activated_notes_in[2]) 

 | (last_activated_notes[3] ^ activated_notes_in[3]) 

 | (last_activated_notes[4] ^ activated_notes_in[4]) 

 | (last_activated_notes[5] ^ activated_notes_in[5]) 

 | (last_activated_notes[6] ^ activated_notes_in[6]) 

 | (last_activated_notes[7] ^ activated_notes_in[7]) 

 | (last_activated_notes[8] ^ activated_notes_in[8]) 

 | (last_activated_notes[9] ^ activated_notes_in[9]) 

 | (last_activated_notes[10] ^ activated_notes_in[10]) 

 | (last_activated_notes[11] ^ activated_notes_in[11]); 

   

 // Increment the index. 

 note_change_index_out <= note_change_index_out + 1'b1; 

 end 

end 

 

endmodule 

 
6.1.9 fsm.sv (Brendan) 
// The finite state machine. This represents the different possible 

// states the piano playing robot can enter, as a superposition 

// of possible environment observables. 

// Author: Brendan Ashworth 

module fsm(clk_in, rst_in, 

 fft_done, 

 counter, 

 state_out, 

 recording_in, playing_in, 

 playing_out, recording_out, paused_out); 

 

// The number of note changes we need to uniquely identify 

// to play the entirety of the song. 

parameter NUM_CHANGES = 1024; 

 

// System 

input logic clk_in; 

input logic rst_in; 
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// Signifies that the FFT is done with processing 

// data. 

input logic fft_done; 

  

// User inputs 

// recording_in is a switch 

input logic recording_in; 

// playing_in is a switch 

input logic playing_in; 

  

// We output information about the state as information 

// about the environment. 

output logic playing_out; 

output logic recording_out; 

output logic paused_out; 

  

// State storage. 

logic [3:0] state; 

  

output logic [3:0] state_out; 

assign state_out = state; 

  

// Counter for song playback. 

// Each tick (+1) in this counter represents 

// a window length for the FFT. 

output logic [$clog2(NUM_CHANGES)-1:0] counter; 

logic [$clog2(NUM_CHANGES)-1:0] length; 

  

// Each state can be broken down into environment states. 

const int ENV_PAUSED = 4'b0010; 

assign paused_out = (state & ENV_PAUSED) == ENV_PAUSED; 

  

const int ENV_PLAYING = 4'b0001; 

assign playing_out = (state & ENV_PLAYING) == ENV_PLAYING; 

  

const int ENV_RECORDING = 4'b0100; 

assign recording_out = (state & ENV_RECORDING) == ENV_RECORDING; 

  

const int ENV_IDLE = 4'b1000; 

  

// Represent each state as a combination of those 

// environments. 

const logic [3:0] STATE_PLAY = ENV_PLAYING; 

const logic [3:0] STATE_PAUSED = ENV_PAUSED; 

const logic [3:0] STATE_RECORDING = ENV_RECORDING; 

const logic [3:0] STATE_ANALYZING = 0; // analyzing represents none of the environments 

const logic [3:0] STATE_IDLE = ENV_IDLE; 

  

always_ff @(posedge clk_in) begin 

 if (rst_in) begin 

 // If reset is high, transition to the idle state. 

 state <= STATE_IDLE; 

 // Reset the counter, length. 

 counter <= 0; 

 length <= 14'b11_1111_1111_1111; // max value 

 end else begin 
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 // Handle state transitions based on inputs. 

 if (state == STATE_PLAY) begin 

 // If we stop playing transition to paused. 

 if (!playing_in) 

 state <= STATE_PAUSED; 

 // The counter reaching the song length means we're done with playback. 

 else if (counter == length) begin 

 // Go back to the beginning. 

 counter <= 0; 

 state <= STATE_PAUSED; 

 end else begin 

 // We're currently playing the song, 

 // increment the counter. 

 counter <= counter + 1'b1; 

 end 

 end else if (state == STATE_PAUSED) begin 

 // If we hit the play button continue/start. 

 if (playing_in) 

 state <= STATE_PLAY; 

 end else if (state == STATE_RECORDING) begin 

 // Increment the counter so long as we're recording. 

 // This allows us to find the length of the song. 

 counter <= counter + 1'b1; 

   

 // If the user stops recording, transition to finish analyzing. 

 if (!recording_in) 

 state <= STATE_ANALYZING; 

 end else if (state == STATE_ANALYZING) begin 

 // Reset the counter, set the length accordingly. 

 length <= counter + 1'b1; 

 counter <= 0; 

   

 // Analyzing continues as the FFT finishes in the pipeline. 

 // However long FFT takes, we wait for it to finish before allowing 

 // the user to continue with playback. 

 // FFT signifies it's done with analyzing with an input signal of 

 // fft_done. fft_done is low when it's processing real audio data. 

 if (fft_done) 

 state <= STATE_PAUSED; 

 end else if (state == STATE_IDLE) begin 

 // Resetting the system automatically transitions us 

 // to the idle state, and so does a song finishing playback. 

 // The user can begin recording by hitting the recording switch. 

 if (recording_in) 

 state <= STATE_RECORDING; 

 end 

 end 

end 

  

endmodule 

 
6.1.10 onset_detector.sv (Max) 
 

Note: 6.1.10 was not in synthesis on the FPGA but was adopted as we got closer to the deadline to 

be simpler. Merged with the spectrogram.sv. 
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// Max Hardy 

module H(input reg [15:0] x, 

 output reg [31:0] h  

 ); 

 

reg [15:0] abs_x;  

 

   

abs my_abs(.x(x),.abs(abs_x)); 

 

always @* begin 

 // rejects decreasing peaks 

 // allows increasing peaks to have non-zero value 

 h =(x+abs_x)/2; 

 

end 

 

endmodule 

 

6.1.11 peak_detector.sv (Max) 
 

Note: 6.1.11 was not in synthesis on the FPGA but was adopted as we got closer to the deadline to 

be simpler. Merged with the spectrogram.sv. 

 

// Max Hardy 

module peak_detector( input logic clk_in, 

 input logic rst_in, 

 input logic frame_done, 

 input logic [31:0] dif, 

 input logic [15:0] threshold, 

 output logic max_flag, 

 output logic peak 

); 

  

logic [21:0] cool_off; 

 

always_ff @(posedge clk_in) begin 

 

 if (rst_in) begin 

 

 peak<=0; 

 cool_off<=0; 

 

 end else if (frame_done & cool_off == 0) begin 

 

 if (dif > threshold) begin 

 

 peak<=1; 

 cool_off<=threshold[3:0] << 18; 

   

 end else begin 

   

 peak<=0; 

   

 end 

 

 end else if (frame_done & cool_off > 0) begin 
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 cool_off<=cool_off-1; 

 peak<=0; 

 end 

end 

endmodule 

 
6.2 Associated ESP32 C++ 
 
#include <ESP32Servo.h> 

#include <HardwareSerial.h> 

 

#define RXP   26 // rx pin for MySerial reading 

#define TXM   17 // misc tx pin for MySerial interface 

#define BAUD  115200 // Serial baud rate for FPGA interfacing 

#define IDLE  0 

#define PLAY  1 

#define IDLE_TIME 2000 // milliseconds until idle transition 

#define ACT_DELAY 100 // actuation delay for servos to reach desired position 

#define NUM_MOTORS 12 // motors cover one octave 

 

/* pianoMan.ino 

  @author: Anthony Nardomarino 

  6.111 Digital Systems Laboratory 

  12-01-2019 

  ESP32 Interface with FPGA Piano Playing Robot Hands 

*/ 

 

HardwareSerial MySerial(1); 

 

// Key: 

// 

// 0100_0000 - A 0101_0000 - C#   0100_1000 - F 

// 0010_0000 - A# 0011_0000 - D 0010_1000 - F# 

// 0110_0000 - B 0111_0000 - D#   0110_1000 - G 

// 0001_0000 - C 0000_1000 - E 0001_1000 - G# 

 

Servo fgA, fgAs, fgB, fgC, fgCs, fgD; 

Servo fgDs, fgE, fgF, fgFs, fgG, fgGs; 

 

Servo keys[NUM_MOTORS] = {fgA,  fgAs, fgB, fgC,  fgCs, fgD, 

                          fgDs, fgE,  fgF, fgFs, fgG,  fgGs}; 

 

// 8 bit addresses for each motor 

const byte  addresses[NUM_MOTORS] = {64, 32, 96, 16, 80, 48, 112, 8, 72, 40, 104, 24}; 

 

// measured resting high angles for servo fingers 

const int __upStrats[NUM_MOTORS] = {700, 700, 650, 2200, 2250, 2150, 2200, 2300, 2200, 700, 

700, 700}; 

 

// measured low angles for activated servo fingers 

const int downStrats[NUM_MOTORS] = {840, 820, 810, 2000, 2000, 1850, 2050, 2000, 2000, 900, 

900, 900}; 

   

const byte  servoPins[NUM_MOTORS] = {4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22}; 
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// strategies for all motors 

byte dirs[NUM_MOTORS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // 0 for up, 1 for down 

 // old state of motors to be 

compared 

 

byte buttons[NUM_MOTORS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // onset control 

 // new state of motors 

received serially 

int state; // PLAY or IDLE hands 

 

int timer; // idle timer 

 

int   serialIn; // Serial input from FPGA 

int   counter; // counts 12 serial inputs before actuation 

byte  needDel = 0; // dynamic delay logic 

 

void setup() { 

  // Setup serial channels 

  Serial.begin(BAUD); 

  MySerial.begin(BAUD, SERIAL_8N1, RXP, TXM); 

  // attach and program rest state servos 

  for (int i = 0; i < NUM_MOTORS; i ++){ 

keys[i].attach(servoPins[i]); 

  } 

  for (int i = 0; i < NUM_MOTORS; i ++){ 

keys[i].writeMicroseconds(__upStrats[i]); 

  } 

  delay(100); 

  counter = 0; 

  // detach to prevent current flow from skipping motors 

  for (int i = 0; i < NUM_MOTORS; i ++){ 

keys[i].detach(); 

  } 

  state = IDLE; 

  timer = millis(); 

} 

 

void loop() { 

  // onset reads 

  // Read Serial and update onset control buttons 

  serialIn = MySerial.read(); 

  if(serialIn != -1){ 

counter ++; 

timer = millis(); 

if (state == IDLE){ 

 state = PLAY; 

 for (int i = 0; i < NUM_MOTORS; i ++){ 

 keys[i].attach(servoPins[i]); 

 } 

} 

for (int i = 0; i < NUM_MOTORS; i ++){ 

 if(serialIn == addresses[i]){ 

 buttons[i] = 1; 

 needDel = 1; 

 } 

} 

  } 
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  // Check for state change 

  if(millis() - timer > IDLE_TIME && state == PLAY){ 

state = IDLE; 

for (int i = 0; i < NUM_MOTORS; i ++){ 

 keys[i].writeMicroseconds(__upStrats[i]); 

} 

delay(100); 

for (int i = 0; i < NUM_MOTORS; i ++){ 

 keys[i].detach(); 

} 

  } 

 

  // Actuate activated motors 

  if(counter >= 12 && state == PLAY){ 

for(int i = 0 ; i < NUM_MOTORS; i ++){ 

 // onset of play 

 if (dirs[i] == 0 && buttons[i] == 1){ 

 keys[i].writeMicroseconds(downStrats[i]); 

 // onset of release 

 } else if (dirs[i] == 1 && buttons[i] == 0) { 

 keys[i].writeMicroseconds(__upStrats[i]); 

 } 

} 

 

if(needDel){ 

 delay(ACT_DELAY); 

} 

needDel = 0; 

// reset serial received states and update old states 

for(int i = 0; i < NUM_MOTORS; i ++){ 

 dirs[i] = buttons[i]; 

 buttons[i] = 0; 

} 

  } 

} 

 
6.3 Associated Signal Processing Simulation Python (Max) 
 
# -*- coding: utf-8 -*- 

""" 

Created on Sat Nov  9 19:38:16 2019 

 

@author: mhare 

""" 

 

import pyaudio 

import wave 

import numpy as np 

import wav_utils 

import pandas 

from numpy.fft import fft as nfft 

from numpy.fft import ifft as nifft 

import time 

 

import matplotlib.pyplot as plt 
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import matplotlib.ticker as ticker 

from math import e, pi, sin, cos, log 

j = 1j 

 

def fft(x):  

    return (nfft(x)/len(x)).tolist() 

 

def ifft(x): 

    return (nifft(x)*len(x)).tolist() 

  

def mic_in(name,seconds,rate): 

    FORMAT = pyaudio.paInt16 

    CHANNELS = 1 

    RATE = rate 

    CHUNK = 1024 

    RECORD_SECONDS = seconds 

    WAVE_OUTPUT_FILENAME = name 

  

    audio = pyaudio.PyAudio() 

  

    # start Recording 

    stream = audio.open(format=FORMAT, channels=CHANNELS, 

                    rate=RATE, input=True, 

                    frames_per_buffer=CHUNK) 

    print("recording...") 

    frames = [] 

  

    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): 

        data = stream.read(CHUNK) 

        frames.append(data) 

    print("finished recording") 

  

  

    # stop Recording 

    stream.stop_stream() 

    stream.close() 

    audio.terminate() 

  

    waveFile = wave.open(WAVE_OUTPUT_FILENAME, 'wb') 

    waveFile.setnchannels(CHANNELS) 

    waveFile.setsampwidth(audio.get_sample_size(FORMAT)) 

    waveFile.setframerate(RATE) 

    waveFile.writeframes(b''.join(frames)) 

    waveFile.close() 

  

def read_in(name): 

    file=Wave.from_file(name) 

    file.plot() 

    samples=file.samples 

    return samples 

 

def stft(x, window_size, step_size, sample_rate): 

    nsteps = (len(x)-window_size)//step_size + 1 

    return [fft([a*b for a,b in 

zip(x[i*step_size:i*step_size+window_size],np.hanning(window_size))]) for i in range(nsteps)] 

 

def k_to_hz(k, window_size, step_size, sample_rate): 
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    return k*sample_rate/(window_size) 

 

 

def hz_to_k(freq, window_size, step_size, sample_rate): 

    return round(freq*window_size/(sample_rate)) 

 

 

def timestep_to_seconds(i, window_size, step_size, sample_rate): 

    return round(i*step_size/sample_rate,2) 

 

 

def transpose(x): 

    return [[i[j] for i in x] for j in range(len(x[0]))] 

 

def spectrogram(X, window_size, step_size, sample_rate): 

    return [[abs(i)**2 for i in j] for j in transpose(X)] 

 

 

def plot_spectrogram(sgram, window_size, step_size, sample_rate): 

    width = len(sgram[0]) 

    height = len(sgram)//2+1  # only plot values up to N/2 

 

    plt.imshow([[log(i) if i !=0 else -30 for i in j] for j in sgram[:height+1]], 

aspect=width/height) 

    plt.axis([0, width-1, 0, height-1]) 

 

    ticks = ticker.FuncFormatter(lambda x, pos: '{0:.1f}'.format(timestep_to_seconds(x, 

window_size, step_size, sample_rate))) 

    plt.axes().xaxis.set_major_formatter(ticks) 

    ticks = ticker.FuncFormatter(lambda y, pos: '{0:.0f}'.format(k_to_hz(y, window_size, 

step_size, sample_rate))) 

    plt.axes().yaxis.set_major_formatter(ticks) 

 

    plt.xlabel('time [s]') 

    plt.ylabel('frequency [Hz]') 

 

    plt.colorbar() 

    plt.show() 

  

def H(x): 

    return (x + abs(x))/2 

 

def spectral_difference(X): 

    N = len(X[0]) 

    out = [] 

    for ix in range(len(X)): 

        o = 0 

        for k in range(N): 

            if ix == 0: 

                o += abs(X[ix][k])**2 

            else: 

                o += H(abs(X[ix][k]) - abs(X[ix-1][k]))**2 

        out.append(o) 

    return out 

 

def find_peaks(x, threshold, min_spacing): 

    x = x[:] 
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    out = [] 

    while True: 

        p = max(range(len(x)), key=lambda i: x[i]) 

        if x[p] <= threshold: 

            break 

        out.append(p) 

        for i in range(min_spacing): 

            for index in {p-i, p+i}: 

                if 0 <= index < len(x): 

                    x[index] = 0 

    return sorted(out) 

  

def k_at_time(X, n, music_dictionary): 

    valids=[j[1] for j in music_dictionary.values()] 

    return max([i for i in range(len(x[n])) if i in valids], key=lambda ix: abs(X[n][ix])**2) 

 

def mode(x): 

    return max(x, key=lambda i: x.count(i)) 

 

def k_for_note(X, n_start, n_stop, music_dictionary): 

    return mode([k_at_time(X, i, music_dictionary) for i in range(n_start+1, n_stop)]) 

 

 

def notes_ref_table(window_size, step_size, sample_rate): 

    ref_table=pandas.read_excel('C:\\Users\\mhare\\Desktop\\Life\\MIT\\Course 

6\\6.111\\Musical_Frequencies.xlsx',sheet_name='Sheet1') 

    frequencies=list(ref_table.iloc[:,4].dropna())[1:] 

    names = list(ref_table.iloc[:,2].dropna())[1:] 

    octaves = list(ref_table.iloc[:,3].dropna())[1:] 

    simple_names = [i.split(' ')[0] for i in names] 

    full_names=[simple_names[i]+str(octaves[i]) for i in range(len(octaves))] 

    music_dictionary = dict(zip(full_names, frequencies)) 

  

  

    for i in music_dictionary.keys(): 

        k=hz_to_k(music_dictionary[i], window_size, step_size, sample_rate) 

        music_dictionary[i]=[music_dictionary[i], k] 

  

    return music_dictionary 

 

def instructions(x, peaks, music_dictionary, window_size, step_size, sample_rate): 

    notes=[] 

    for i in peaks: 

        try: 

            notes.append(k_for_note(x, i, i+20, music_dictionary)) 

        except IndexError: 

            cap=len(x)-i-1 

            notes.append(k_for_note(x, i, i+cap, music_dictionary)) 

  

    instructions=[] 

    for i in range(len(notes)): 

        for j in music_dictionary.keys(): 

            if music_dictionary[j][1]==notes[i]: 

                onset=timestep_to_seconds(peaks[i], window_size, step_size, sample_rate) 

                instructions.append([j,onset]) 

    return instructions 
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def play_back(music_dictionary, ins, samples, name): 

    sr=44100 

    notes=[i[0] for i in ins] 

    times=[i[1] for i in ins] 

    freqs=[music_dictionary[i][0] for i in notes] 

    ns=[int(sr*i) for i in times] 

    ns.append(len(samples)) 

    amps=[] 

    for i in range(0,len(ns)-1): 

        t=np.arange(ns[i],ns[i+1])/44100 

        amps.extend(np.cos(freqs[i]*t*2*np.pi)) 

    w=Wave(amps,sr) 

    w.save(name) 

  

    chunk=1024 

    wf = wave.open('C:\\Users\\mhare\\Desktop\\Life\\MIT\\Course 6\\6.111\\'+name, 'rb') 

  

    p = pyaudio.PyAudio() 

  

    stream = p.open(format = 

                    p.get_format_from_width(wf.getsampwidth()), 

                    channels = wf.getnchannels(), 

                    rate = wf.getframerate(), 

                    output = True) 

  

  

    data = wf.readframes(chunk) 

    start=time.time() 

    while data != '': 

        stream.write(data) 

        data = wf.readframes(chunk) 

        end=time.time() 

        if (end-start>=5): 

            break 

  

  

    stream.close()  

    p.terminate() 

  

def highest(y): 

    m=0 

    for i in y: 

        for j in i: 

            a=j 

            if (a>m): 

                m=a 

    return m 

 

def fundamentals(music_dictionary,y, window_size, step_size, sample_rate): 

    m=highest(y) 

    ks=[i[1] for i in music_dictionary.values()] 

    ks=list(set(ks)) 

    ks.sort() 

    all_notes=[] 

    for k in ks: 

        times=y[k]  

        note=[] 
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        for t in times: 

            if (t>=.02*m): 

                note.append(1) 

            else: 

                note.append(0) 

        all_notes.append(note) 

  

    whole=[] 

    for n in range(len(all_notes)): 

        sub=[i for i in music_dictionary.keys() if ks[n]==music_dictionary[i][1]] 

        note = all_notes[n] 

        subsub=[] 

        for i in range(1,len(note)): 

            if note[i]-note[i-1]==1: 

                subsub.append(timestep_to_seconds(i, window_size, step_size, sample_rate)) 

            elif note[i]-note[i-1]==-1: 

                subsub.append(timestep_to_seconds(i, window_size, step_size, sample_rate)) 

            if len(subsub)==2: 

                sub.append(subsub) 

                subsub=[] 

        whole.append(sub) 

  

    return whole 

 

def chords(music_dictionary,y, window_size, step_size, sample_rate, peaks): 

    valids=[j[1] for j in music_dictionary.values()] 

    for time in peaks: 

        powers={} 

        for k in valids: 

            power=0 

            for i in range(20): 

                power = power+abs(x[time+i][k])**2 

            powers[(time,k_to_letter(music_dictionary, k))]=power/20 

        high=max(powers.values()) 

        for key in powers.keys(): 

            if powers[key]>=.1*high: 

                print(key, powers[key]) 

        #print(sorted(powers.items(), key = lambda kv:(kv[1], kv[0]))) 

        print('************************') 

  

def k_to_letter(music_dictionary, k): 

    for i in music_dictionary.keys(): 

        if music_dictionary[i][1] == k: 

            return i 

 

window_size = 8192 

step_size = 256 

sample_rate = 44100 

name = 'test20.wav' 

mic_in(name,5,44100) 

samples=read_in(name) 

x=stft(samples, window_size, step_size, sample_rate) 

y=spectrogram(x, window_size, step_size, sample_rate) 

plot_spectrogram(y, window_size, step_size, sample_rate)  

 

music_dictionary=notes_ref_table(window_size, step_size, sample_rate) 
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print(music_dictionary) 

 

#ins2=fundamentals(music_dictionary,y, window_size, step_size, sample_rate) 

 

dif=spectral_difference(x) 

plt.plot(dif) 

plt.show() 

peaks=find_peaks(dif,.00005,40) 

print(peaks) 

 

ins=instructions(x, peaks, music_dictionary, window_size, step_size, sample_rate) 

 

chords(music_dictionary,y, window_size, step_size, sample_rate, peaks) 

 

#play_back(music_dictionary, ins, samples, 'testback20.wav') 

 

 

#print(instructions) 

print('done') 

# 

#def main(): 

#    window_size = 8192 

#    step_size = 256 

#    sample_rate = 44100 

#    name = 'test10.wav' 

#    mic_in(name,5,44100) 

#    samples=read_in(name) 

#    x=stft(samples, window_size, step_size, sample_rate) 

#    y=spectrogram(x, window_size, step_size, sample_rate) 

#    plot_spectrogram(y, window_size, step_size, sample_rate)  

#  

#    music_dictionary=notes_ref_table(window_size, step_size, sample_rate) 

#  

#  

#    print(music_dictionary) 

#  

#    instructions=fundamentals(music_dictionary,y, window_size, step_size, sample_rate) 

#    print(instructions) 

#    print('done') 

# 

#if __name__=="__main__": 

#    main() 
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