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Project   Overview  
The   DiGuitar   receives   an   input   from   an   electric   guitar   and   digitize   it   to   a   Musical   Instrument  
Digital   Interface   (MIDI)   compliant   serial   datastream   in   real   time.   To   do   this,   the   DiGuitar   takes  
advantage   of   the   Artix-7’s   onboard   ADC   to   sample   the   incoming   audio   waveform.   Further   digital  
signal   processing   (DSP)   techniques,   namely   digital   Finite   Impulse   Response   (FIR)   filtering   and  
Autocorrelation   are   used   to   detect   the   frequency   composition   of   the   guitar   input   waveform.  
Further   processing   of   the   spectral   content   takes   place   to   detect   the   particular   notes   being  
played.   Note   information   is   transmitted   in   a   MIDI   compliant   format   to   be   received   by   other  
devices   for   recording,   playback,   or   manipulation.  

Constraints   and   Requirements   Exploration  
The   key   driving   requirements   of   this   project   is   that   it   must   take   a   guitar   audio   input   (in   standard  
tuning)   and   be   able   to   decode   in   real   time.   Since   these   requirements   drive   the   design   the   rest   of  
the   digital   system,   it   is   important   to   specifically   quantify   what   these   requirements   mean.  
 
Requirements   driven   by   Guitar   Audio   Input  
Using   a   guitar   as   an   input   source   primarily   dictates   the   dynamic   range   of   frequencies   the  
DiGuitar   must   be   able   to   process.   The   lowest   note   that   a   guitar   can   produce   is   an   E2 [1]    (low  
E-string,   MIDI   code   40,   82.41   Hz [2] ).   The   second   lowest   note   that   it   can   produce   is   an   F2   (low  
E-string,   MIDI   code   41,   87.31   Hz [2] ).   These   low   notes   in   conjunction   to   our   latency   requirement  
drive   the   DSP   strategy   used   to   differentiate   between   these   low   notes.   This   will   be   further  
discussed   later   in   the   report.  
The   highest   note   that   a   guitar   ( Bullet   Stratocaster )   can   play   is   a   C # 6   (high   E-string   fret   closest   to  
guitar   body,   MIDI   code   85,   1108.7   Hz [2] ).   This   dictates   our   Nyquist   frequency,   i.e.   the    sampling  
frequency   for   the   system   must   be   ~2250Hz   or   higher.    Since   high   frequency   harmonics   are  
present   in   the   audio   input   and   can   alias   at   low   sampling   frequencies,   we   chose   to   sample   at  
30kHz   and   downsample   after   using   a   low-pass   FIR.   This   enables   us   to   diminish   the   effects   of  
aliasing   before   analyzing   the   frequency   content   of   each   octave   of   the   guitar.  
 
Requirements   driven   by   Real-time   Note   Computation  
One   of   the   key   motivations   for   this   project   was   to   design   something   that   would   be   difficult   to  
implement   in   a   traditional   programming   language   e.g.   Python.   One   of   the   strengths   of   FPGAs   is  
their   parallel   computing   and   real-time   signal   processing   capability.   Thus,   the   DiGuitar   should  
ideally   be   a   zero-latency   system.  

https://www.amazon.com/Squier-Fender-Stratocaster-Beginner-Electric/dp/B07B6PZG4Q


 

 
Zero-latency   is   effectively   impossible,   so   a   more   realistic   objective   is   to   design   a   system   with  
imperceptible    latency.   Different   sources   provide   different   latency   targets   for   digital   audio  
systems.   For   example,    this   source [4]    recommends   a   <12ms   latency   for   guitarists,    this   source [5]  
suggests   that   musicians   can   recognize   latencies   of   20ms,   and   a    Wikipedia   article   about  
audio-video   synchronization [6]    notes   that   up   to   45ms   of   latency   is   acceptable.   We   established   a  
target   latency   of   75ms   for   our   project.   This   latency   target   directly   affected   our   selection   of   note  
detection   strategies.   Ultimately,   we   were   able   to   detect   the   lowest   frequency   notes   (E2   and   F2)  
within   ~70ms   of   note   onset.   This   detection   latency   improved   as   frequencies   increased,   with   C#6  
having   a   detection   latency   of   ~27ms,   most   of   that   being   debouncing.   

System   Architecture/Block   Diagram  

 
 

 

https://www.soundonsound.com/techniques/optimising-latency-pc-audio-interface#7
https://www.highfidelity.com/blog/how-much-latency-can-live-musicians-tolerate-da8e2ebe587a
https://en.wikipedia.org/wiki/Audio-to-video_synchronization
https://en.wikipedia.org/wiki/Audio-to-video_synchronization


 

Module   Descriptions  
Preamplifier   (EXTERNAL)   [Eric]  
Buffers   and   amplifies   the   guitar   voltage   output   to   something   that   can   be   read   by   the   FPGA   ADC  
(0-1V   range).   Amplification   ratio   was   determined   after   measuring   guitar   pickup   output   voltage   at  
+/-   100mV,   and   is   set   to   4x.   Gain   and   offset   requirements   of   this   application   are   easily   met   by  
Op-amps   available   in   EDS   or   lab.   We   selected   the   LM358   as   our   op-amp.  

In   the   circuit   below,   we   buffer   the   output   of   the   guitar   and   amplify   it   by   a   factor   of   4   using  
an   LM358.   We   then   bias   the   guitar   signal   by   0.5V,   using   a   summing   amplifier   to   add   the   AC  
signal   with   a   0.5V   DC   offset   generated   by   a   voltage   divider.   We   chose   to   power   our   op-amps  
with   +12V   and   -5V   rails   because   the   power   supply   at   our   bench   had   isolated   +12V   and   +5V  
outputs.   We   put   these   outputs   in   series   and   were   able   to   easily   generate   +12V   and   -5V  
supplies.   Using   3   diodes,   each   with   0.6V   forward   voltages,   we   clamp   the   output   of   our   summing  
amplifier   between   -0.6   and   +1.2V   in   order   to   protect   the   ADC   on   the   FPGA.   

 
Circuit   Diagram  

 



 

 
Breadboard   Circuit   (with   wires   between   power   supplies   removed   for   clarity)  

 

 
Power   supply   used   to   create   +12V,   -5V  

 
ADC  
Xilinx   IP   block   to   digitize   the   input   audio   waveform.   We   only   utilize   the   top   8   bits,   and   we   flip   the  
MSB.   This   has   the   effect   of   making   the   ADC   signal   signed   two’s-complement   8-bit,   with   the   0  
value   centered   around   0.5V.   



 

 
Sample   Clock   Generator   [Eric]  
A   module   that   generates   a   sample   clock   signal   for   each   of   the   octave   decoders.   We   use   this   to  
generate   four   separate   triggers   that   pulse   high   when   the   corresponding   octave   decoder   should  
read   in   an   8   bit   sample   from   the   ADC.   We   down   sample   to   decrease   the   data   throughput   to   the  
rest   of   the   note   decoder   system,   eliminating   unnecessary   multiply/add   cycles.   
Since   we   fixed   the   size   of   the   FIRs   in   the   autocorrelation   module   at   125   taps   and   our   system  
clock   is   set   at   100MHz,   we   have   an   upper   bound   on   our   sampling   frequency   as   shown   by   the  
relation   below.   If   we   violate   this   upper   bound,   autocorrelation   will   not   complete   before   we  
receive   the   next   audio   sample.  

 
As   shown   above,   the   upper   bound   on   our   sampling   frequency   is   34632   kHz.   To   meet   this  
constraint,   we   used   this   module   to   generate   30kHz,   15kHz,   7.5kHz,   and   3.75kHz   sampling  
frequencies.   We   selected   our   highest   frequency   such   that   it   would   fall   just   below   the   upper  
bound,   maximizing   resolution   while   meeting   timing   requirements.   We   selected   each   sampling  
frequency   to   be   twice   that   of   its   neighboring   frequency   so   that   we   could   reuse   12   FIR   modules  
(one   for   each   note   in   an   octave)   for   all   4   octaves.   This   is   explained   further   in   the   discussion   of  
the   Octave   Frequency   Decoder   Block   below.  
As   can   be   seen   in   the   Verilog   at   the   end   of   this   report,   the   sample   clock   module   is  
parameterized   by   a   maximum   16   bit   count   value.   This   module   is   fed   the   100MHz   system   clock  
and   it   counts   clock   cycles   from   zero   up   to   the   specified   16   bit   count   value.   Once   the   specified  



 

count   is   reached,   the   trigger   is   pulsed   high   and   the   count   resets.   To   generate   these   frequencies  
with   a   100MHz   clock,   we   must   count   3333,   6666,   13332,   and   26664   clock   cycles,   respectively,  
between   each   pulse.  
 
Digital   LP   Filters   [Eric]   
IP   modules   that   digitally   filter   (FIR)   high   frequency   harmonics   of   the   input   audio.   There   is   one  
FIR   for   each   of   the   four   octaves   on   the   guitar.   Each   FIR   is   designed   to   pass   frequencies   in   a  
particular   octave   and   stop   frequencies   at   and   above   the   nyquist   of   its   corresponding   sample  
clock.   Output   is   9   bits   of   signed   data.   The   design   of   these   filters   is   discussed   in   depth   in   the  
Design   Process   section   of   this   report.  
There   is   one   FIR   filter   for   each   of   the   four   octaves   on   the   guitar.   Each   FIR   filter   is   composed   of  
81   taps.   Using   the   SciPy   library   to   generate   prototype   filters,   we   found   that   81   taps   provide   a  
sharp   enough   cutoff   for   the   purpose   of   removing   nyquist   frequencies   and   above   while   retaining  
the   frequencies   of   interest   in   a   given   octave.   81   tap   filters   also   ensure   a   sub-3ms   latency,   which  
is   necessary   given   our   75ms   target   latency   and   the   time   consuming   nature   of   autocorrelation.  
For   the   lowest   Octave   1   (E2-D#3),   the   cutoff   frequency   is   set   at   500Hz.   This   guarantees   that  
D#3   is   attenuated   to   no   less   than   -.8dB   and   the   nyquist   frequency   of   the   corresponding   3.75kHz  
sample   clock   falls   inside   the   stop   band.  

 
Octave   1   FIR  

 
 
 
 
 
 
 



 

The   cutoff   of   Octave   2   (E3-D#4)   is   set   at   750Hz,   ensuring   D#4   will   pass   with   minimal  
attenuation   and   nyquist   of   the   7.5kHz   sample   clock   will   fall   inside   the   stop   band.  

 
Octave   2   FIR   Filter  

 
The   cutoff   of   Octave   3   (E4-D#5)   is   set   at   1kHz,   such   that   a   622Hz   D#5   will   pass   with   minimal  
attenuation   but   the   nyquist   of   the   15kHz   sample   clock   will   be   cutout.   

 
Octave   3   FIR   Filter  



 

The   cutoff   of   Octave   4   (E5-C#6)   is   set   at   2kHz,   such   that   a   C#6   will   pass   with   minimal  
attenuation   but   nyquist   frequency   and   above   of   the   30kHz   sample   clock   will   be   removed.  

 
Octave   4   FIR   Filter  

 
Given   the   constraints   imposed   by   the   frequency   bands   each   filter   had   to   pass   and   remove,  
these   filters   were   developed   through   an   iterative   process   of   guess-and-check.   We   made   use   of  
the   SciPy   library   and   NumPy   to   generate   and   visualize   the   frequency   response   of   each   filter.  
Here   is   the   code   used:  
 
import   numpy   as   np  
import   matplotlib.pyplot   as   plt  
from   numpy   import   cos,   sin,   pi,   absolute,   arange  
from   scipy   import   signal  
from   scipy.signal   import   kaiserord,   lfilter,   firwin,   freqz  
from   pylab   import   figure,   clf,   plot,   xlabel,   ylabel,   xlim,   ylim,   title,   grid,   axes,   show  

 
#Input   Sampling   Frequency:  
fs   =   30000.0   #30kHz  
nyq_fs   =   fs/2.0  
 
#FIR   Filtering   by   Octave:  
#Octave   1:   We   sample   at   3.75kz   and   cutoff   out   everything   above   500Hz  
#Octave   2:   cutoff   =   750Hz  
#Octave   3:   cutoff   =   1kHz  
#Octave   4:   cutoff   =   2kHz  
 
#Variable   to   be   adjusted   for   each   FIR   Filter  
filter_cutoff   =   500   #VARIABLE  
 
#Specify   number   of   Delay   and   number   of   taps:  
delay   =   .002   #   2ms  



 

N   =   81   #81   taps   (2ms   delay)  
 
#   Use   firwin   with   a   BlackmanHarris   window   to   create   a   lowpass   FIR   filter.  
taps   =   firwin(N,   filter_cutoff/nyq_fs,   window   =   ('blackmanharris'))   *   (2**12   -1)  
taps   =   np.round(taps)/(2**12   -1)   #convert   to   fixed   point  
 
#   Use   lfilter   to   filter   x   with   the   FIR   filter.  
filtered_x   =   lfilter(taps,   1.0,   x)  
 
#------------------------------------------------  
#   Plot   the   FIR   filter   coefficients.  
#------------------------------------------------  
 
figure(1)  
title('   (%d   taps)'   %   N)  
grid(True)  
 
#------------------------------------------------  
#   Plot   the   magnitude   response   of   the   filter.  
#------------------------------------------------  
 
w,h   =   signal.freqz(taps,1)  
h_db   =   20*np.log10(np.abs(h))  
plt.plot(w/max(w)*fs/2,h_db)  
plt.ylabel("Magnitude   in   db")  
plt.xlabel(r'Frequency')  
plt.show()  
 
show()  

 
The   81   taps   for   each   of   the   FIRs   are   as   follows.  
Octave   1   FIR:  
   [-0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0002442002442002442,   -0.0002442002442002442,   -0.0002442002442002442,  
-0.0004884004884004884,   -0.0004884004884004884,   -0.0007326007326007326,   -0.0007326007326007326,  
-0.0009768009768009768,   -0.0007326007326007326,   -0.0007326007326007326,   -0.0004884004884004884,   0.0,  
0.0007326007326007326,   0.0017094017094017094,   0.0031746031746031746,   0.004884004884004884,   0.006837606837606838,  
0.009523809523809525,   0.012454212454212455,   0.015873015873015872,   0.019536019536019536,   0.023687423687423687,  
0.02783882783882784,   0.03199023199023199,   0.036141636141636145,   0.040293040293040296,   0.04395604395604396,  
0.04713064713064713,   0.04981684981684982,   0.051770451770451774,   0.05299145299145299,   0.053235653235653234,  
0.05299145299145299,   0.051770451770451774,   0.04981684981684982,   0.04713064713064713,   0.04395604395604396,  
0.040293040293040296,   0.036141636141636145,   0.03199023199023199,   0.02783882783882784,   0.023687423687423687,  
0.019536019536019536,   0.015873015873015872,   0.012454212454212455,   0.009523809523809525,   0.006837606837606838,  
0.004884004884004884,   0.0031746031746031746,   0.0017094017094017094,   0.0007326007326007326,   0.0,  
-0.0004884004884004884,   -0.0007326007326007326,   -0.0007326007326007326,   -0.0009768009768009768,  
-0.0007326007326007326,   -0.0007326007326007326,   -0.0004884004884004884,   -0.0004884004884004884,  
-0.0002442002442002442,   -0.0002442002442002442,   -0.0002442002442002442,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0]  

Octave   2   FIR:  
[0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0002442002442002442,   0.0002442002442002442,   0.0002442002442002442,  
0.0002442002442002442,   0.0,   -0.0002442002442002442,   -0.0004884004884004884,   -0.0007326007326007326,  
-0.001221001221001221,   -0.0019536019536019536,   -0.002686202686202686,   -0.003418803418803419,  
-0.004151404151404151,   -0.00463980463980464,   -0.004884004884004884,   -0.00463980463980464,  
-0.003663003663003663,   -0.0017094017094017094,   0.0009768009768009768,   0.004884004884004884,  
0.009768009768009768,   0.01562881562881563,   0.022466422466422466,   0.030036630036630037,  
0.0380952380952381,   0.046153846153846156,   0.05396825396825397,   0.06105006105006105,   0.06691086691086691,  
0.0713064713064713,   0.07423687423687424,   0.07521367521367521,   0.07423687423687424,   0.0713064713064713,  



 

0.06691086691086691,   0.06105006105006105,   0.05396825396825397,   0.046153846153846156,   0.0380952380952381,  
0.030036630036630037,   0.022466422466422466,   0.01562881562881563,   0.009768009768009768,  
0.004884004884004884,   0.0009768009768009768,   -0.0017094017094017094,   -0.003663003663003663,  
-0.00463980463980464,   -0.004884004884004884,   -0.00463980463980464,   -0.004151404151404151,  
-0.003418803418803419,   -0.002686202686202686,   -0.0019536019536019536,   -0.001221001221001221,  
-0.0007326007326007326,   -0.0004884004884004884,   -0.0002442002442002442,   0.0,   0.0002442002442002442,  
0.0002442002442002442,   0.0002442002442002442,   0.0002442002442002442,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0]  
Octave   3   FIR:  
[-0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   0.0,   0.0,   0.0002442002442002442,   0.0004884004884004884,  
0.0007326007326007326,   0.0009768009768009768,   0.001221001221001221,   0.0014652014652014652,  
0.001221001221001221,   0.0009768009768009768,   -0.0,   -0.001221001221001221,   -0.0031746031746031746,  
-0.005128205128205128,   -0.007326007326007326,   -0.00927960927960928,   -0.010500610500610501,  
-0.010744810744810745,   -0.00927960927960928,   -0.005860805860805861,   0.0,   0.00805860805860806,  
0.01855921855921856,   0.03076923076923077,   0.044444444444444446,   0.05811965811965812,   0.07155067155067155,  
0.08302808302808302,   0.09230769230769231,   0.09792429792429792,   0.10012210012210013,   0.09792429792429792,  
0.09230769230769231,   0.08302808302808302,   0.07155067155067155,   0.05811965811965812,   0.044444444444444446,  
0.03076923076923077,   0.01855921855921856,   0.00805860805860806,   0.0,   -0.005860805860805861,  
-0.00927960927960928,   -0.010744810744810745,   -0.010500610500610501,   -0.00927960927960928,  
-0.007326007326007326,   -0.005128205128205128,   -0.0031746031746031746,   -0.001221001221001221,   -0.0,  
0.0009768009768009768,   0.001221001221001221,   0.0014652014652014652,   0.001221001221001221,  
0.0009768009768009768,   0.0007326007326007326,   0.0004884004884004884,   0.0002442002442002442,   0.0,   0.0,   -0.0,  
-0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0]  
Octave   4   FIR:  
[-0.0,   -0.0,   -0.0,   -0.0,   -0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   -0.0,   -0.0002442002442002442,   -0.0004884004884004884,  
-0.0004884004884004884,   -0.0004884004884004884,   0.0,   0.0007326007326007326,   0.0017094017094017094,  
0.002197802197802198,   0.0017094017094017094,   -0.0,   -0.002442002442002442,   -0.004884004884004884,  
-0.006105006105006105,   -0.004395604395604396,   0.0,   0.006593406593406593,   0.012454212454212455,  
0.014896214896214897,   0.01098901098901099,   -0.0,   -0.01562881562881563,   -0.030036630036630037,  
-0.036141636141636145,   -0.02735042735042735,   0.0,   0.0442002442002442,   0.09768009768009768,  
0.1492063492063492,   0.18632478632478633,   0.2,   0.18632478632478633,   0.1492063492063492,   0.09768009768009768,  
0.0442002442002442,   0.0,   -0.02735042735042735,   -0.036141636141636145,   -0.030036630036630037,  
-0.01562881562881563,   -0.0,   0.01098901098901099,   0.014896214896214897,   0.012454212454212455,  
0.006593406593406593,   0.0,   -0.004395604395604396,   -0.006105006105006105,   -0.004884004884004884,  
-0.002442002442002442,   -0.0,   0.0017094017094017094,   0.002197802197802198,   0.0017094017094017094,  
0.0007326007326007326,   0.0,   -0.0004884004884004884,   -0.0004884004884004884,   -0.0004884004884004884,  
-0.0002442002442002442,   -0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   -0.0,   -0.0,   -0.0,   -0.0,   -0.0]  
 
When   generating   the   FIR   IP,   we   expressed   our   taps   as   12   bit   fixed   point   numbers   because   this  
provides   us   with   enough   tap   resolution   to   minimize   stop   band   ripple   while   still   having   relatively  
small   sized   coefficients.  
We   used   the   following   specs   when   generating   IP   for   all   FIRs   used   throughout   the   project:  
 



 

 

 
 



 

 

 



 

 

 

 



 

 
The   output   of   each   FIR   module   is   9   bits,   so   taking   the   lower   8   bits   results   in   an   8   bit   signed  
output   that   is   scaled   by   a   factor   of   2.   This   factor   of   2   is   critical   because   the   FIR   module   scales  
amplitudes   by   ½.   We   discovered   this   through   testing,   as   described   in   the   Testing   section   below.  
 
 
 
Octave   Frequency   Decoder   Blocks   [Ishaan]  
For   note   detection,   an   autocorrelation   with   FIR   pre-filtering   strategy   was   used.   Before   settling   on  
that   strategy,   we   had   been   experimenting   with   using   high-Q   infinite   impulse   response   (IIR)   peak  
filters [9] .   However,   these   IIR   peak   filters   suffered   from   very   large   group   delay   exceeding   our  
latency   requirement.   This   led   us   to   the   FIR   filter   strategy,   due   to   their   very   predictable   latency  
and   ease   of   generation   with   Python   libraries [13] .   
 
A   single   octave   decoder   block   detects   whether   the   fundamental   frequencies   of   E   ->   Eb   of   a  
certain   octave   are   present.   The   input   to   one   of   these   modules   are   signed   8-bit   audio   samples,  
and   the   output   is   a   12-bit   bus,   with   each   bit   representing   whether   a   particular   note   is   detected,  
i.e.   if   the   LSB   is   asserted   (set   to   1),   the   frequency   corresponding   to   an   E   is   present,   and   if   the  
5th   bit   (zero   indexed)   is   present,   the   frequency   corresponding   to   an   A   is   present.  

 
The   input   to   the   octave   decoder   (block   diagram   above)   is   passed   to   12   independent   frequency  
detectors.   Each   frequency   detector   is   comprised   of   three   parts.  
Harmonic-stop   FIR   filter   
Each   detector   consists   of   a   125-tap   FIR   filter   designed   to   filter   out   any   harmonics   of   a   particular  
note’s   fundamental   frequency   (i.e.   for   the   E2   detector,   the   FIR   module   will   let   the   82Hz  
fundamental   pass   but   filter   out   160Hz+   harmonics).   At   our   lowest   sampling   frequency  
(3.75kHz),   this   125-tap   FIR   module   incurs   a   16.5ms   delay [9] .   The   FIR   output   then   gets   queued  
into   a   buffer   that   corresponds   to   the   length   of   2.5   wave   cycles,   i.e.   for   the   E2   detector   (82Hz)  
sampled   at   3.75kHz,   this   buffer   would   be   113   samples   long,   corresponding   to   30.3ms   of  
waveform   data.   To   generate   the   FIR   filter   taps   for   the   frequency   detectors,   the   following   python  
script   was   used:  



 

pb_start   =   center_freq/(2**(PASS_BAND_WIDTH/24))  
pb_end   =   center_freq*(2**(PASS_BAND_WIDTH/24))  
fir   =   signal.firwin(filter_len,   cutoff   =   [pb_start*2/fs,   pb_end*2/fs],   

window   =   'blackmanharris',   pass_zero   =   False)  
Autocorrelator  
The   heart   of   the   frequency   detector   is   the   autocorrelator.   The   autocorrelation   operation   takes  
the   first   cycle’s   worth   of   wave   data   and   effectively   “template-matches”   it   against   the   rest   of   the  
waveform   buffer.   Template   matching   is   accomplished   through   an   operation   similar   to  
convolution,   where   each   sample   from   the   template   sequence   is   multiplied   by   a   corresponding  
sample   in   a   subset   of   the   buffer.   The   products   are   summed   together   and   returned   as   a  
datapoint   in   the   autocorrelation.   Autocorrelation   is   explained   better   by   sources   [10]   and   [11].  
After   the   autocorrelation   is   completed,   the   location   of   the   best   template   match   is   identified  
through   peak   picking;   the   location   of   this   autocorrelation   peak   relates   to   the   period   of   the  
incoming   waveform   to   the   frequency   detector.   If   this   calculated   period   is   close   to   the   expected  
period   of   the   frequency   detector,   then   a   ‘note_detected’   line   is   asserted   high.   Parameters   for   the  
autocorrelation   module   were   also   generated   with   python   scripts.  
Debouncer  
Before   being   outputted   from   the   module,   the   ‘note_detected’   line   is   debounced   for  
approximately   20ms.   This   is   accomplished   by   registering   the   ‘note_detected’   outputs   from   the  
past   20ms   and   performing   a   logical   AND   on   those   previous   outputs.   The   result   of   the   logical  
AND   is   the   output   from   each   frequency   detector   module.  
 
All   12   frequency   detector   outputs   are   stitched   together   to   form   the   output   of   the   octave   decoder  
module.   Through   clever   selection   of   sampling   frequencies,   four   identical   copies   of   this   octave  
decoder   module   can   be   used   to   detect   all   notes   a   guitar   can   produce.   Since   the   ratios   of  
frequencies   between   different   octaves   is   2:1   (i.e.   an   E2   is   ~82.5Hz   and   an   E3   is   165Hz),  
doubling   the   sample   clock   to   a   higher   octave   decoder   will   make   higher   octave   notes   appear  
identical   to   lower   octave   notes   sampled   at   half   the   frequency.   This   effect   is   exploited   in   our   note  
detection   strategy.   
 
 
Note   Decoder   [Ishaan   and   Eric]  
Since   an   individual   guitar   note   is   composed   of   a   fundamental   frequency   and   several   harmonics,  
the   output   from   the   frequency   decoders   must   be   further   processed.   This   is   done   through   the  
note   decoder   module.   Since   we   are   only   designing   for   single   note   detection.   The   note   decoder  
simply   needs   to   select   the   lowest   frequency   detected   by   all   octave   frequency   decoder   blocks.  
Inputs   and   outputs   to   the   Note   Decoder   are   synchronized   to   the   slowest   sample   clock   (3.75kHz)  
to   ensure   no   transient   glitches   when   playing   low   frequency   notes   (i.e.   if   the   harmonics   of   low  
frequency   notes   get   detected   before   their   fundamentals).   
 
MIDI   Protocol   Layer   [Eric]  
The   Protocol   Layer   transmits   the   MIDI   messages   in   a   serial   format.   The   MIDI   protocol   is   a  
relatively   straightforward   UART-style   serial   communication   protocol   running   at   31250   baud.    This  

http://www.tigoe.com/pcomp/code/communication/midi/


 

source [8]    along   with   countless   others   on   the   internet   describe   the   specifics   of   the   MIDI  
communication   protocol   and   hardware.   The   input   to   this   module   is   a   46   single-bit-wide   input  
channels   (1   per   note),   with   a   0-1   transition   describing   a   NOTE_ON   for   that   particular   channel  
and   a   1-0   transition   describing   a   NOTE_OFF.   At   this   stage,   different   note   velocities   are   not  
supported.   The   output   is   a   single   pin   with   inverted   logic   for   the   MIDI   Line   Driver.   
 
MIDI   Line   Driver   (EXTERNAL)  
This   is   a   simple   single-transistor   driver   for   the   MIDI   transmitter.   The   schematic   is   the   following  
(from    this   source [8] ).  

 
MIDI   Line   Driver   Schematic  

 

 
Breadboard   Circuit   for   MIDI   Line   Driver  

 
This   circuit   requires   inverted   logic   from   the   FPGA,   which   is   easily   accomplished   by   inverting   the  
output   from   the   MIDI   Protocol   Module   before   sending   it   to   the   MIDI   output.   
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Challenges   and   Advice  
Our   greatest   challenge   was   developing   a   real   time   note   decoding   scheme.   We   knew   that  

FFTs   would   not   be   fast   enough   to   differentiate   between   all   notes   in   our   lowest   octave   in   real  
time,   but   we   did   not   have   sufficient   knowledge   of   alternative   methods.   Our   first   thought   was   IIR  
filtering,   but   this   proved   to   be   a   deadend   after   substantial   testing   in   Python.   We   then   settled   on  
FIRs,   which   we   had   explored   in   Lab   5a,   and   Autocorrelation,   which   was   entirely   new   to   us.  
Once   we   familiarized   ourselves   with   these   approaches   and   prototyped   them   in   Python,   we   were  
confident   that   they   were   our   best   bet.   We   proceeded   to   reproduce   them   in   Verilog,   and   this   was  
definitely   the   easier   part   of   the   project.  

Another   challenge   we   faced   was   the   extremely   long   simulation   time   when   running   test  
benches   on   our   FIRs.   Because   we   were   simulating   with   frequencies   as   low   as   100Hz,   our   test  
benches   could   take   up   to   45   minutes   to   complete   just   2.5   cycles   of   a   waveform.   We   would   not  
recommend   this   testing   approach   to   future   6.111   teams.   To   verify   the   outputs   of   filters,   we  
strongly   recommend   using   an   ILA,   if   possible.   ILAs   can   save   groups   immense   amounts   of   time,  
and   they   were   very   effective   in   helping   us   to   debug.  

Our   advice   for   future   groups   is   to   start   the   project   early.   Our   final   build   times   were  
approximately   40   minutes   and   we   needed   to   finely   tune   our   autocorrelation   parameters.   This  
tuning   process   became   very   tedious,   and   we   were   extremely   glad   that   we   had   not   left   things  
down   to   the   wire.   We   also   highly   recommend   using   Python   (and   SciPy)   as   a   simulation   tool   for  
any   groups   interested   in   signal   processing.   The   ability   to   quickly   and   easily   prototype   our  
designs   was   critical   for   during   the   early   stages   of   our   project.  

Testing  

Preamplifier   Testing  

For   preliminary   testing   of   the   preamplifier   circuit,   we   generated   a   waveform   with   a  
function   generator   with   the   expected   amplitude   from   the   guitar   pickups   (~100mV  
nominal),   and   verified   that   the   output   of   the   amplifier   was   centered   around   500mV   and  
remained   within   0-1V.   In   this   test,   we   noticed   a   slight   distortion   of   our   test   waveforms  
near   the   zero-crossing   of   the   input   signal.   We   attribute   this   effect   to   the   quality   of   our  
op-amps   used   in   our   design,   but   didn’t   think   it   would   pose   a   significant   challenge   toward  
note   detection.   Following   that   test,   we   replaced   the   line   input   to   the   preamplifier   with   a  
signal   from   an   actual   guitar.   The   guitar   line   input   reached   peak   amplitudes   higher   than  
what   we   expected   (~200mV),   so   we   decreased   the   gain   of   the   preamplifier   accordingly.  
Once   the   performance   of   the   preamplifier   circuit   was   satisfactory,   we   connected   the   line  
output   from   the   preamp   to   ja[0]   on   the   Artix-7   board.   
 



 

Sample   Clock   Testing  

We   developed   a   test   bench   to   verify   the   timing   of   triggers   (t1-t4)   produced   by   our   sample  
clocks.   We   ran   our   testing   with   target   sampling   frequencies   of   20kHz,   10kHz,   5kHz,   and   2.5kHz.  
As   seen   in   the   plot   below,   triggers   occur   every   50us,   100us,   200us,   and   400us.   This   validates  
our   sample   clock   module.  

 
 

In   order   to   verify   that   our   triggers   were   functioning   properly   in   real   time,   we   created   an  
ILA   IP   to   probe   the   triggers.   Initially,   we   found   that   they   were   out   of   synch   and   discovered   an  
off-by-one-error   in   the   counting   method   of   our   module.   As   a   result,   the   triggers   got   farther   out   of  
synch   as   time   went   on.   We   then   corrected   our   sample   clock   module   and   achieved   proper  
alignment   of   our   sample   triggers   as   seen   below.  
 

 
Trigger   Alignment   with   ILA  



 

 

Anti-aliasing   FIR   Filter   Testing  

We   took   the   same   FIR   testing   approach   introduced   in   Lab   5a.   We   created   waveform  
files   in   Python.   Using   these   files,   we   were   able   to   verify   that   the   FIRs   for   each   octave   passed  
the   frequencies   contained   in   that   octave   with   minimal   attenuation   and   stopped   frequencies   at  
and   above   the   nyquist   frequency.   The   sampling   frequencies   we   used   during   these   tests   were  
20kHz,   10kHz,   5kHz,   and   2.5kHz.   The   following   screenshots   depict   the   results   of   each   test:  
 
Octave   1   FIR   Stopping   1250Hz   Wave:  

 
 
Octave   2   FIR   Stopping   2500Hz   Wave:  

 
 
 



 

Octave   3   FIR   Stopping   5000Hz   Wave:  

 
 
Octave   1   FIR   Passing   165Hz   Wave:  

 
 
 
 
 
 
 
 
 
 
 
 



 

Octave   2   FIR   Passing   330Hz   Wave:  

 
 
 
Octave   3   FIR   Passing   660Hz   Wave:  

 
 
As   seen   in   the   plots   above,   the   outputs   of   the   FIR   modules   are   scaled   by   a   factor   of   ½.   To  
compensate   for   this,   we   effectively   left   shift   the   outputs   of   each   FIR   module   in   Verilog.  
 
In   order   to   visualize   the   outputs   of   our   FIR   modules   in   real-time,   we   created   an   ILA   to   probe   the  
signals.   We   observed   the   plot   below.  



 

 
FIR   Outputs   in   Real   Time   with   ILA  

 
We   noticed   that   the   samples   for   Octave   4   were   out   of   phase   with   the   samples   in   the   other   3  
octaves.   This   was   due   to   the   fact   that   we   initially   were   not   applying   an   FIR   filter   to   Octave   4.   In  
response,   we   developed   an   FIR   for   Octave   4   so   that   all   outputs   would   be   in   phase.   While   this  
was   not   critical,   we   made   this   change   to   reduce   the   possibility   of   error   downstream   in   the  
system.  

 

 

 

 

 

 
 
 



 

Verilog  
Top   level  
module   top_level(     input   clk_100mhz,  
                     input   btnc,  
                     input   vauxp3,  
                     input   vauxn3,  
                     input   vn_in,  
                     input   vp_in,  
                     output   logic   midi_tx,  
                     output   logic[15:0]        led  
     );  
 
     //===========================   ADC   and   sampling   ==============================  
 
     logic   [15:0]   adc_data;   //for   some   reason   the   ADC   is   16   bits?  
     logic   [7:0]   two_comp_samp;   //signed   two's   complement   8-bit   representation   of   adc   sampled   data  
     logic   adc_ready;  
  
     assign   two_comp_samp   =   {~adc_data[15],   adc_data[14:8]};//convert   ADC   sample   to   8   bit   twos   complement  
  
     //configuration   more   or   less   taken   from   lab   5A  
     xadc_wiz_0   my_adc   (   .dclk_in(clk_100mhz),   .daddr_in(8'h13),   //read   from   0x13   for   a  
                         .vauxn3(vauxn3),.vauxp3(vauxp3),  
                         .vp_in(1),.vn_in(1),  
                         .di_in(16'b0),  
                         .do_out(adc_data),.drdy_out(adc_ready),  
                         .den_in(1),   .dwe_in(0));  
  
     //========================   Sample   Clock   Generators   =========================  
  
     //   generate   a   single-cycle   30kHz,   15kHz,   7.5kHz,   and   3.75kHz   pulse   train   respectively  
     //   these   sample   clocks   drive   the   FIR   filters   and   the   downstream   octave   decoders   
  
     logic   trigger_3_75k;   //2.5kHz  
     logic   trigger_7_5k;   //5kHz  
     logic   trigger_15k;   //10kHz  
     logic   trigger_30k;   //20kHz  
  
     //Generate   30kHz   Pulse,   Indicates   when   to   read   from   ADC   and   when   to   read   from   FIR4  
     //also   "clocks"   the   highest   octave   decoder   block  
     sample_clock_gen   #(.COUNT('d3333))   my_samp4   (   
                             .clk(clk_100mhz),   
                             .rst(btnc),   
                             .trigger(trigger_30k));   
  
     //Generate   15kHz   Pulse,   Indicates   when   to   read   from   FIR3  
     //also   "clocks"   the   second-highest   octave   decoder   
     sample_clock_gen   #(.COUNT('d6666))   my_samp3   (   
                             .clk(clk_100mhz),   
                             .rst(btnc),   
                             .trigger(trigger_15k));   
  
     //Generate   7.5kHz   Pulse,   Indicates   when   to   read   from   FIR2  
     //also   "clocks"   the   second-lowest   octave   decoder  



 

     sample_clock_gen   #(.COUNT('d13332))   my_samp2   (   
                             .clk(clk_100mhz),   
                             .rst(btnc),   
                             .trigger(trigger_7_5k));   
  
     //Generate   3.75kHz   Pulse,   Indicates   when   to   read   from   FIR1  
     //also   "clocks"   the   lowest   octave   decoder   
     sample_clock_gen   #(.COUNT('d26664))   my_samp1   (  
                             .clk(clk_100mhz),   
                             .rst(btnc),   
                             .trigger(trigger_3_75k));  
  
     //============================   Antialiasing   FIR   Filters   ============================  
  
     //filter   the   sampled   ADC   data   to   prevent   frequency   aliasing   before   downsampling  
     //downsampled   ADC   data   gets   sent   to   their   respective   octave   decoder   modules  
  
     logic   [8:0]   fir1_out;   //9   Bit   output   of   FIR   Modules  
     logic   [8:0]   fir2_out;  
     logic   [8:0]   fir3_out;  
     logic   [8:0]   fir4_out;  
  
     //have   to   multiply   the   FIR   outputs   by   2   to   get   an   output   that's   scaled   appropriately  
     logic   [7:0]   oct1_samp;   //8   Bits   of   FIR   Oct   1  
     logic   [7:0]   oct2_samp;   //8   Bits   of   FIR   Oct   2  
     logic   [7:0]   oct3_samp;   //8   Bits   of   FIR   Oct   3  
     logic   [7:0]   oct4_samp;   //8   Bits   of   FIR   Oct   4  
  
     //not   really   using   these   valid   lines   from   the   FIRs   
     //by   the   time   we   sample,   the   FIRs   should   have   plenty   of   time   to   compute   
//      logic   fir1_valid_out;   //Valid   Out   of   FIR   X   
//      logic   fir2_valid_out;  
//      logic   fir3_valid_out;  
//      logic   fir4_valid_out;  
 
     //multiplying   the   FIR   outputs   by   2   effectively  
     assign   oct1_samp   =   fir1_out[7:0];   //Take   Lower   8   bits   of   FIR   X   Output  
     assign   oct2_samp   =   fir2_out[7:0];  
     assign   oct3_samp   =   fir3_out[7:0];  
     assign   oct4_samp   =   fir4_out[7:0];  
  
     //High   frequency   filter   for   the   highest-octave   decoder   module  
     //honestly   not   *super*   necessary,   but   keeps   the   audio   to   the   highest   decoder   in   phase   with  
     //audio   going   to   the   other   octave   decoders  
     //81   taps,   passes   ~1300Hz   and   rolls   off   to   <-60dB   close   to   nyquist   
     fir_compiler_4   my_comp4(   
         .aclk(clk_100mhz),  
         .s_axis_data_tvalid(trigger_30k),   //30kHz   trigger  
         .s_axis_data_tdata(two_comp_samp),  
         .m_axis_data_tdata(fir4_out));   //9   Bit   Value  
         //.m_axis_data_tvalid(fir4_valid_out));   //Octave   4   Valid   out   pulse  
  
     //Antialiasing   FIR   to   filter   audio   data   going   to   the   second-highest   octave   decoder   module  
     //81   taps,   passes   660Hz   and   rolls   off   to   -60dB   around   7.5kHz  
     fir_compiler_3   my_comp3(   
         .aclk(clk_100mhz),  
         .s_axis_data_tvalid(trigger_30k),   //30kHz   trigger  



 

         .s_axis_data_tdata(two_comp_samp),  
         .m_axis_data_tdata(fir3_out));   //9   Bit   Value  
         //.m_axis_data_tvalid(fir3_valid_out));   //Octave   3   Valid   out   pulse  
  
     //for   second-lowest   octave   decoder   bank  
     //81   taps,   passes   330Hz   and   rolls   off   to   -60dB   around   3.75kHz  
     fir_compiler_2   my_comp2(   
         .aclk(clk_100mhz),  
         .s_axis_data_tvalid(trigger_30k),   //20kHz   trigger  
         .s_axis_data_tdata(two_comp_samp),  
         .m_axis_data_tdata(fir2_out));   //9   Bit   Value  
         //.m_axis_data_tvalid(fir2_valid_out));   //Octave   2   Valid   out   pulse  
  
     //for   lowest   octave   decoder   bank  
     //81   taps,   passes   330Hz   and   rolls   off   to   -60dB   around   1.875kHz  
     fir_compiler_1   my_comp(   
         .aclk(clk_100mhz),  
         .s_axis_data_tvalid(trigger_30k),   //20kHz   trigger  
         .s_axis_data_tdata(two_comp_samp),  
         .m_axis_data_tdata(fir1_out));   //9   Bit   Value  
         //.m_axis_data_tvalid(fir1_valid_out));   //Octave   1   Valid   out   pulse  
  
  
     //==========================   Octave   Decoder   Modules==========================  
     //do   the   note   frequency   detection  
     //so   the   cool   thing   is   that   since   after   an   octave,   frequencies   are   doubled,  
     //we   can   reuse   basically   everything   if   we   adjust   our   sampling   frequency   accordingly  
     //i.e.   we   can   detect   a   higher   octave   by   doubling   our   sampling   frequency   and   keeping   almost   everything   else   the   same  
     //which   is   what   we   do   exactly  
  
     //Side   Note:   we   had   some   synthesis   issues   with   the   reset   lines   (something   about   distribution   and   that   we   should   declare   it   as   a  
clock)  
     //    so   we   just   kinda   commented   it   out   lol;   synthesizes   fine   i   guess  
  
     logic   [11:0]   first_octave_notes;  
     logic   [11:0]   second_octave_notes;  
     logic   [11:0]   third_octave_notes;  
     logic   [11:0]   fourth_octave_notes;  
  
     //just   for   some   debugging  
     assign   led[11:0]   =   first_octave_notes;  
  
     //lowest   octave   decoder   bank   
     //clocked   at   3.75kHz   fs   (post   FIR)  
     octave_filter_bank   #(.DEBOUNCE_CYCLES('d80))   octave1(   //about   21ms   of   debouncing  
         .clk_in(clk_100mhz),   
         //.reset(btnc),  
         .sample_clk(trigger_3_75k),   //From   3.75kHz   Trigger  
         .in_sample(oct1_samp),  
         .note_detected(first_octave_notes)   
     );  
  
     //second   lowest   octave   decoder   bank   (7.5kHz)  
     octave_filter_bank   #(.DEBOUNCE_CYCLES('d160))   octave2(   //21ms   debounce   
         .clk_in(clk_100mhz),   
         //.reset(btnc),   
         .sample_clk(trigger_7_5k),   //From   7.5kHz   Trigger  



 

         .in_sample(oct2_samp),  
         .note_detected(second_octave_notes)   
     );  
  
     //second   highest   octave   decoder   bank   (15kHz)  
     octave_filter_bank   #(.DEBOUNCE_CYCLES('d320))   octave3(   //21ms   debounce  
         .clk_in(clk_100mhz),   
         //.reset(btnc),   
         .sample_clk(trigger_15k),   //From   15kHz   Trigger  
         .in_sample(oct3_samp),  
         .note_detected(third_octave_notes)   
     );  
  
     //highest   octave   decoder   bank   (30kHz)  
     octave_filter_bank   #(.DEBOUNCE_CYCLES('d640))   octave4(   //21ms   debounce  
         .clk_in(clk_100mhz),   
         //.reset(btnc),   
         .sample_clk(trigger_30k),   //From   30kHz   Trigger  
         .in_sample(oct4_samp),  
         .note_detected(fourth_octave_notes)   
     );  
  
     //===========================   Note   Decoder   Module   ===========================  
     //since   we're   supporting   single-note   detection,   all   this   does   really   is   
     //pick   out   the   lowest   activated   note   from   the   outputs   of   all   the   octave   bank   decoders  
  
     logic   [45:0]   decoder_in;   //Input   to   Note   Decoder  
     logic   [45:0]   decoder_out;   //To   MIDI   Module  
  
     //concatenate   the   outputs   of   all   the   octave   decoders   together   (but   only   take   the   bottom   10   bits   of   the   highest   octave)  
     //    \-->   since   Ishaan's   guitar   can't   play   a   D6   or   Eb6,   no   point   in   trying   to   send   those   out  
     assign   decoder_in   =   {fourth_octave_notes[9:0],   third_octave_notes,   second_octave_notes,   first_octave_notes};  
  
     note_decoder   #(.MAXINDEX('d45))   my_decoder  
             (     .clk(clk_100mhz),  
                 .trig(trigger_3_75k),  
                 //.rst(btnc),     //had   some   synthesis   error   with   routing   the   reset   line,   so   just   commenting   it   out  
                 .pitches_in(decoder_in),  
                 .notes_out(decoder_out)  
              );   
  
     //=============================   MIDI   Transmitter   ============================  
     //given   whether   a   note   is   activated   or   not,   send   an   appropriate   MIDI   message  
     //NOTE_ONSETs   will   be   sent   if   a   particular   note   is   "newly   played"  
     //NOTE_OFFSETs   will   be   sent   if   a   particular   note   is   "stopped   being   played"   
     logic   midi_temp;  
 
     assign   midi_tx   =   !midi_temp;   //Invert   Output   of   MIDI   Module   ->   has   to   deal   with   how   we   implemented   our   MIDI   transmitter  
  
     midi_tx   my_tx(.clk_in(clk_100mhz),   
                     .rst_in(btnc),  
                     .notes_in(decoder_out),   //From   Note   Decoder   Module  
                     .data_out(midi_temp));   //Invert   this   output  
 
  
endmodule  
 



 

MIDI   Module  
module   midi_tx(       input             clk_in,   //Assume   100   MHz   clock   passed   in  
                     input             rst_in,  
                     input   [45:0]       notes_in,   //one   for   eah   of   46   notes  
                     output   logic      data_out);   //single   bit,   serial   out;   sequence:   command   nybble,   channel   number,   key   byte,   velocity   byte  
  
     parameter     DIVISOR   =   3200;   //Baud   Rate:   31250   bits/sec   so   3200   cycles   between   bits  
     parameter     NOTE_ON   =   4'h9,   NOTE_OFF   =   4'h8;   //Nybbles   to   start   and   stop   notes  
     parameter     CHAN   =   4'd1;   //Working   with   instrument   channel   1  
     parameter     KEY_NUM   =   8'd40;   //Lowest   Note   is   E2   (MIDI   Key   number   40)  
     parameter     NOTE_VEL   =   8'd64;   //Fixed   note   velocity  
     parameter     START   =   1'b0,   STOP   =   1'b1;   //Start   and   Stop   bits  
  
     logic   [29:0]          shift_buffer;   //1   message  
     logic   [31:0]          count;   //   Number   of   clock   cycles   that   have   passed   since   transmitting   last   bit  
     logic   [4:0]           indexToSend;   //indicates   which   index   in   our   buffer   we   should   be   transmitting  
     logic   [7:0]           currentNote;   //8   bits   so   that   it   aligns   with   size   of   midi   data   message  
  
     logic                 transmitting;   //boolean   value   to   indicate   if   we   are   transmitting   message  
  
     logic   [45:0]          notes_old;   //to   store   former   values   of   notes  
  
     always_ff   @(posedge   clk_in)begin  
  
         if(rst_in)begin   
             count   <=   32'b0;   //counts   clock   cycles  
             indexToSend   <=   5'b0;   //tracks   which   index   in   30   bit   message   to   send  
             transmitting   <=   1'b0;   //   indicates   if   we   are   sending   message   or   not  
             currentNote   <=   8'b0;   //indicates   which   note   we   are   checking   for   ON/OFF  
             notes_old   <=   46'b0;   //Stores   previous   values   of   notes   (since   they   were   last   updated)  
             data_out   <=   1'b1;   //Keep   transmit   line   high  
  
         end   else   if   (!transmitting)   begin  
             currentNote   <=   (currentNote   <   8'd45)   ?   currentNote   +   8'b1   :   8'b0;   //iterate   through   46   notes  
             notes_old[currentNote]   <=   notes_in[currentNote];   //   UPDATE  
  
             if   (notes_old[currentNote]   !=   notes_in[currentNote])   begin   //If   the   value   changes,   the   note   has   either   come   on   or   come   off.  
                 shift_buffer[9   :   0]   <=   (notes_in[currentNote]   ==   1'b1)   ?    {STOP,   NOTE_ON,   CHAN,   START}   :   {STOP,   NOTE_OFF,   CHAN,  
START};   //Send   note   on   or   off   message  
                 shift_buffer[19   :   10]   <=   {STOP,   (KEY_NUM   +   currentNote),   START};   //Indicate   which   note   is   coming   on   or   off  
                 shift_buffer[29   :   20]   <=   {STOP,   NOTE_VEL,   START};   //indicate   note   velocity  
                 transmitting   <=   1;   //now   transmitting  
             end   else   data_out   <=   1;   //Keep   transmit   line   high  
  
         end   else   if   (transmitting)   begin  
            if(count>=DIVISOR)   begin   //Check   if   3200   clk   cycles   have   passed  
                 data_out   <=   shift_buffer[indexToSend];   //Send   next   bit   every   3200   cycles  
                 indexToSend   <=   (indexToSend   >=   8'd29)   ?   8'b0   :   indexToSend   +   1;   //Increment   which   bit   we   are   sending  
                 transmitting   <=   (indexToSend   >=   8'd29)   ?   0   :   1;   //If   we   have   sent   everything,   stop   transmitting  
                 count   <=   0;   //reset   count  
            end   else   count   <=   count   +   1;   //Increment   clock   cycle   count   to   mainting   31250   baud  
  
         end   
     end   
endmodule  
 
 



 

Note   Decoder  
module   note_decoder  
           #   (parameter   MAXINDEX)   //parameterize   by   number   of   (notes   -   1)  
             (     input   clk,  
                 input   trig,   //register   the   output   synchronous   to   this   trigger  
                 input   rst,  
                 input   logic   [MAXINDEX:0]   pitches_in,  
                 output   logic   [MAXINDEX:0]   notes_out  
              );  
 
 
     logic   lowest_found;   //Boolean   to   indicate   whether   we   have   found   the   lowest   frequency   on   given   For   Loop   iteration  
  
     logic   [MAXINDEX:0]   in;   //Register   input  
     logic   [MAXINDEX:0]   out;   //Register   output  
  
  
     always_comb   begin  
         lowest_found   =   0;  
         for   (int   i   =   0;   i   <=   MAXINDEX;   i++)   begin  
             out[i]   =   in[i]   &&   !lowest_found;   //will   deassert   anything   after   lowest   note   has   been   found  
             lowest_found   =   lowest_found   ||   in[i];   //lowest   found   will   be   0   until   a   1   is   found  
         end  
     end  
  
     always_ff   @   (posedge   clk)begin  
         if   (rst)   begin  
             notes_out   <=   0;  
             in   <=   0;  
         end  
         else   begin  
             if   (trig)   begin  
                 in   <=   pitches_in;   
                 notes_out   <=   out;   //To   Registered   Output  
             end  
         end  
     end  
endmodule  
 
Harmonic   FIR   Filter,   Autocorrelator,   and   Debouncer  
module   filter_block   
     #(    parameter   SC_LEN,                     //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   31  
         parameter   PEAK_MASK   =   64'hFFFFFFFF,   //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular  
spot   is   valid  
         parameter   DB_THRESHOLD   =   13'sd30,      //autocorrelation   threshold   where   the   output   is   considered   "activated"  
         parameter   DB_LENGTH  
     )  
  
     (     input   clk_in,  
         input   sample_clock,  
         input   reset,  
  
         output   logic   signed   [7:0]   fir_sample,  
         output   logic   fir_start,  
         input   logic   signed   [7:0]   fir_result,  
         input   logic   fir_done,  
  



 

         input   logic   signed   [7:0]   in_sample,      //the   sample   that   we've   been   passed  
         output   logic   note_detected  
     );  
  
     //==========================   STATE   RELEVANT   VARIABLES/PARAMS   ===========================  
     logic   [1:0]   state;  
     parameter   ST_IDLE   =   2'd0;  
     parameter   ST_ADD_AC_QUEUE   =   2'd1;  
     parameter   ST_RUN_AC   =   2'd2;  
     parameter   ST_OUT_DB   =   2'd3;  
  
     //==========================   AUTOCORRELATION   RELEVANT   VARIABLES/PARAMS  
===========================  
     logic   signed   [7:0]   ac_samples   [(SC_LEN   <<   1)   +   (SC_LEN   >>   1)   -   1   :0];     //buffer   to   hold   our   autocorrelation   samples   (2.5  
CYCLES)  
  
     logic   signed   [31:0]   ac_accumulator;   //a   sample   is   8   bits,   we're   multiplying   samples   together   so   need   16   bits   to   store   the   fixed   point  
result  
                                         //adding   like   5   bits   since   we   accumulate   across   an   entire   wave   cycle   (max   like   30   samples   per   cycle)  
  
     logic   [5:0]   cycle_index;   //pointer   which   part   of   the   reference   cycle/autocorrelation   window  
     logic   [5:0]   cycle_offset;   //an   offset   in   our   buffer   for   the   second   waveform   to   convolve   for   the   autocorrelation   if   that   makes   sense  
  
     logic   signed   [31:0]   peak_correlation;    //stores   the   value   of   the   peak   autocorrelation   so   far  
     logic   [5:0]   peak_offset;                  //stores   the   cycle_offset   of   the   peak   autocorrelation   value   so   far  
  
     //========================   DEBOUNCE   RELEVANT   VARIABLES/PARAMS   =======================  
     logic   [DB_LENGTH-1:0]   db_buff;   //how   many   output   samples   have   to   be   true   before   we   output   a   "true"   from   the   frequency  
detector  
 
     //================================================================  
  
     //note   detection   is   the   logical   AND   of   every   value   in   the   debounce   buffer  
     assign   note_detected   =   &db_buff;   //logical   AND   every   element  
  
     always_ff   @(posedge   clk_in)   begin  
  
         if(reset)   begin  
             db_buff   <=   0;   //reset   the   output   debounce   buffer  
             for   (int   i   =   0;   i   <   ((SC_LEN   <<   1)   +   (SC_LEN   >>   1));   i++)   ac_samples[i]   <=   'sd0;      //   clear   out   autocorrelation   samples  
  
             ac_accumulator   <=   'sd0;  
             cycle_index   <=   0;  
             cycle_offset   <=   0;  
             peak_correlation   <=   'sd0;  
             peak_offset   <=   0;  
  
             fir_start   <=   0;   //deassert   this   output   to   the   FIR   module  
             state   <=   ST_IDLE;  
         end  
  
         else   if   (sample_clock)   begin  
             fir_sample   <=   in_sample;  
             fir_start   <=   1;               //start   the   FIR   filter   convolution   next   cycle  
             state   <=   ST_ADD_AC_QUEUE;     //go   into   the   state   where   we're   start   to   enqueue   the   FIR   result   
         end  
  



 

         else   if   (state   ==   ST_ADD_AC_QUEUE)   begin   //if   the   FIR   computation   is   done   and   we're   waiting   to   enqueue   it  
             fir_start   <=   0;   //deassert   start  
  
             if(fir_done)   begin  
                 ac_samples[(SC_LEN   <<   1)   +   (SC_LEN   >>   1)   -   1:1]   <=   ac_samples[(SC_LEN   <<   1)   +   (SC_LEN   >>   1)-2:0];   //shift   our  
autocorrelation   buffer   over  
                 ac_samples[0]   <=   fir_result;   //add   the   new   sample   at   the   beginning   of   our   autocorrelation   buffer  
                 //reset   our   cycle   index   and   offset   for   the   autocorrelation   convolutions  
                 cycle_index   <=   0;  
                 cycle_offset   <=   0;  
                 ac_accumulator   <=   'sd0;  
                 state   <=   ST_RUN_AC;   //run   the   autocorrelation  
  
                 peak_correlation   <=   -'sd2_147_483_648;   //reset   the   peak   index   to   the   smallest   32   bit   number  
  
             end  
         end  
  
         else   if   (state   ==   ST_RUN_AC)   begin  
             //calculate   the   autocorrelation   one   multiplication   at   a   time   (if   it's   in   the   valid   range)  
             //on   the   last   cycle   of   a   particular   convolution,   compare   the   peak   correlation   values   and   update   as   necessary  
             if(cycle_index   <   SC_LEN)   begin  
                 //compute   the   autocorrelation   starting   at   a   half-cycle   shift  
                 ac_accumulator   <=   ac_accumulator   +   (ac_samples[cycle_index]   *   ac_samples[(SC_LEN   >>   1)   +   cycle_offset   +  
cycle_index]);  
                 cycle_index   <=   cycle_index   +   1;  
             end   else   begin   //we're   gonna   update   our   comparison   here   and   reset   our   counter  
                 peak_correlation   <=   (ac_accumulator   >   peak_correlation)   ?   ac_accumulator   :   peak_correlation;  
                 peak_offset   <=   (ac_accumulator   >   peak_correlation)   ?   cycle_offset   :   peak_offset;  
                 cycle_index   <=   0;  
                 cycle_offset   <=   cycle_offset   +   1;  
                 ac_accumulator   <=   'sd0;  
             end  
  
             //if   we've   computed   the   entire   autocorrelation,   move   to   the   next   state,   the   output   computation  
             if((cycle_index   >=   SC_LEN)   &&   (cycle_offset   >=   (SC_LEN   -   1)))   state   <=   ST_OUT_DB;  
         end  
  
         //compute   the   output   going   to   the   debouncer   array  
         else   if   (state   ==   ST_OUT_DB)   begin  
             db_buff[DB_LENGTH-1:1]   <=   db_buff[DB_LENGTH-2:0];  
             db_buff[0]   <=   PEAK_MASK[peak_offset]   &&   (peak_correlation   >=   DB_THRESHOLD);  
             state   <=   ST_IDLE;  
         end  
  
     end  
  
  
endmodule  
 
 
 
 
 
 
 
 



 

E-Flat   FIR   Wrapper   (For   each   FIR   module   in   the   autocorrelator   there   is   a   wrapper.)  
module   w_fir_eflat   (  
         input   logic   clkin,   start,  
         output   logic   done,  
         input   logic   [7:0]   data_in,  
         output   logic   [7:0]   data_out  
     );  
  
     logic   [15:0]   ext_data;  
  
     assign   data_out   =   ext_data[7:0];  
  
     eflat_fir   eflat   (  
         .aclk(clkin),  
         .s_axis_data_tvalid(start),  
         .s_axis_data_tdata(data_in),  
         .m_axis_data_tvalid(done),  
         .m_axis_data_tdata(ext_data)  
     );  
  
endmodule  
 
Octave   Frequency   Decoder   Bank  
module   octave_filter_bank  
     #   (parameter   DEBOUNCE_CYCLES   =   'd83)      //how   many   samples   we   should   debounce   the   output   for   
     (  
         input   clk_in,   reset,   sample_clk,  
         input   logic   signed   [7:0]   in_sample,  
         output   logic   [11:0]   note_detected   
     );  
  
     assign   note_detected   =   {      detect_eflat,  
                                 detect_d,  
                                 detect_dflat,  
                                 detect_c,  
                                 detect_b,  
                                 detect_bflat,  
                                 detect_a,  
                                 detect_gsharp,  
                                 detect_g,  
                                 detect_fsharp,  
                                 detect_f,  
                                 detect_e   };  
  
     //=============================   E   FILTER   ==================================  
  
     logic   signed   [7:0]   f_e_sample;  
     logic   fir_e_start;  
     logic   signed   [7:0]   f_e_result;  
     logic   fir_e_done;  
     logic   detect_e;  
  
     filter_block   #(  
             .SC_LEN('d46),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   31  
             .PEAK_MASK(64'd58720256),         //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot  
is   valid  
             .DB_THRESHOLD(32'sd0),//3768),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  



 

             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   e_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_e_sample),  
             .fir_start(fir_e_start),  
             .fir_result(f_e_result),  
             .fir_done(fir_e_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_e)  
         );  
  
     //125   tap   FIR   filter   to   isolate   the   particular   note   (kills   all   harmonics)  
     //controlled   by   the   note   detector   block  
     w_fir_e   e_fir   (  
             .clkin(clk_in),   .start(fir_e_start),  
             .done(fir_e_done),  
             .data_in(f_e_sample),  
             .data_out(f_e_result)  
         );  
  
     //===========================   F   FILTER   ============================  
  
     logic   signed   [7:0]   f_f_sample;  
     logic   fir_f_start;  
     logic   signed   [7:0]   f_f_result;  
     logic   fir_f_done;  
     logic   detect_f;  
  
     filter_block   #(  
             .SC_LEN('d43),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd31457280),         //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot  
is   valid  
             .DB_THRESHOLD(32'sd0),//3522),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   f_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_f_sample),  
             .fir_start(fir_f_start),  
             .fir_result(f_f_result),  
             .fir_done(fir_f_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_f)  
         );  
  
     //125   tap   FIR   filter   to   isolate   the   particular   note   (kills   all   harmonics)  
     //controlled   by   the   note   detector   block  
     w_fir_f   f_fir   (  
             .clkin(clk_in),   .start(fir_f_start),  
             .done(fir_f_done),  



 

             .data_in(f_f_sample),  
             .data_out(f_f_result)  
         );  
  
     //===========================   F#   FILTER   ============================  
  
     logic   signed   [7:0]   f_fsharp_sample;  
     logic   fir_fsharp_start;  
     logic   signed   [7:0]   f_fsharp_result;  
     logic   fir_fsharp_done;  
     logic   detect_fsharp;  
  
     filter_block   #(  
             .SC_LEN('d41),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd7340032),          //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot  
is   valid  
             .DB_THRESHOLD(32'sd0),//3358),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   f_sharp_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_fsharp_sample),  
             .fir_start(fir_fsharp_start),  
             .fir_result(f_fsharp_result),  
             .fir_done(fir_fsharp_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_fsharp)  
         );  
  
     //125   tap   FIR   filter   to   isolate   the   particular   note   (kills   all   harmonics)  
     //controlled   by   the   note   detector   block  
     w_fir_fsharp   fsharp_fir   (  
             .clkin(clk_in),   .start(fir_fsharp_start),  
             .done(fir_fsharp_done),  
             .data_in(f_fsharp_sample),  
             .data_out(f_fsharp_result)  
         );  
  
     //===========================   G   FILTER   ============================  
  
     logic   signed   [7:0]   f_g_sample;  
     logic   fir_g_start;  
     logic   signed   [7:0]   f_g_result;  
     logic   fir_g_done;  
     logic   detect_g;  
  
     filter_block   #(  
             .SC_LEN('d38),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd3670016),          //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot  
is   valid  
             .DB_THRESHOLD(32'sd0),//3112),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   g_block   (   
             .clk_in(clk_in),  



 

             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_g_sample),  
             .fir_start(fir_g_start),  
             .fir_result(f_g_result),  
             .fir_done(fir_g_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_g)  
         );  
  
     //125   tap   FIR   filter   to   isolate   the   particular   note   (kills   all   harmonics)  
     //controlled   by   the   note   detector   block  
     w_fir_g   g_fir   (  
             .clkin(clk_in),   .start(fir_g_start),  
             .done(fir_g_done),  
             .data_in(f_g_sample),  
             .data_out(f_g_result)  
         );  
 
     //===========================   G#   FILTER   ============================  
  
     logic   signed   [7:0]   f_gsharp_sample;  
     logic   fir_gsharp_start;  
     logic   signed   [7:0]   f_gsharp_result;  
     logic   fir_gsharp_done;  
     logic   detect_gsharp;  
  
     filter_block   #(  
             .SC_LEN('d36),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd1835008),          //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot  
is   valid  
             .DB_THRESHOLD(32'sd0),//2949),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   gsharp_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_gsharp_sample),  
             .fir_start(fir_gsharp_start),  
             .fir_result(f_gsharp_result),  
             .fir_done(fir_gsharp_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_gsharp)  
         );  
  
     w_fir_gsharp   gsharp_fir   (  
             .clkin(clk_in),   .start(fir_gsharp_start),  
             .done(fir_gsharp_done),  
             .data_in(f_gsharp_sample),  
             .data_out(f_gsharp_result)  
         );  
  
  



 

     //===========================   A   FILTER   ============================  
  
     logic   signed   [7:0]   f_a_sample;  
     logic   fir_a_start;  
     logic   signed   [7:0]   f_a_result;  
     logic   fir_a_done;  
     logic   detect_a;  
  
     filter_block   #(  
             .SC_LEN('d34),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd917504),           //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot   is  
valid  
             .DB_THRESHOLD(32'sd0),//2785),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   a_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_a_sample),  
             .fir_start(fir_a_start),  
             .fir_result(f_a_result),  
             .fir_done(fir_a_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_a)  
         );  
  
     w_fir_a   a_fir   (  
             .clkin(clk_in),   .start(fir_a_start),  
             .done(fir_a_done),  
             .data_in(f_a_sample),  
             .data_out(f_a_result)  
         );  
  
     //===========================   Bb   FILTER   ============================  
  
     logic   signed   [7:0]   f_bflat_sample;  
     logic   fir_bflat_start;  
     logic   signed   [7:0]   f_bflat_result;  
     logic   fir_bflat_done;  
     logic   detect_bflat;  
  
     filter_block   #(  
             .SC_LEN('d32),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd458752),           //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot   is  
valid  
             .DB_THRESHOLD(32'sd0),//2621),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   bflat_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_bflat_sample),  
             .fir_start(fir_bflat_start),  
             .fir_result(f_bflat_result),  



 

             .fir_done(fir_bflat_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_bflat)  
         );  
  
     w_fir_bflat   bflat_fir   (  
             .clkin(clk_in),   .start(fir_bflat_start),  
             .done(fir_bflat_done),  
             .data_in(f_bflat_sample),  
             .data_out(f_bflat_result)  
         );  
  
     //===========================   B   FILTER   ============================  
  
     logic   signed   [7:0]   f_b_sample;  
     logic   fir_b_start;  
     logic   signed   [7:0]   f_b_result;  
     logic   fir_b_done;  
     logic   detect_b;  
  
     filter_block   #(  
             .SC_LEN('d30),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd229376),           //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot   is  
valid  
             .DB_THRESHOLD(32'sd0),//2457),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   b_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_b_sample),  
             .fir_start(fir_b_start),  
             .fir_result(f_b_result),  
             .fir_done(fir_b_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_b)  
         );  
  
     w_fir_b   b_fir   (  
             .clkin(clk_in),   .start(fir_b_start),  
             .done(fir_b_done),  
             .data_in(f_b_sample),  
             .data_out(f_b_result)  
         );  
  
     //===========================   C   FILTER   ============================  
  
     logic   signed   [7:0]   f_c_sample;  
     logic   fir_c_start;  
     logic   signed   [7:0]   f_c_result;  
     logic   fir_c_done;  
     logic   detect_c;  
  
     filter_block   #(  



 

             .SC_LEN('d29),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd114688),           //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot   is  
valid  
             .DB_THRESHOLD(32'sd0),//2375),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   c_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_c_sample),  
             .fir_start(fir_c_start),  
             .fir_result(f_c_result),  
             .fir_done(fir_c_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_c)  
         );  
  
     w_fir_c   c_fir   (  
             .clkin(clk_in),   .start(fir_c_start),  
             .done(fir_c_done),  
             .data_in(f_c_sample),  
             .data_out(f_c_result)  
         );   
  
     //===========================   Db   FILTER   ============================  
  
     logic   signed   [7:0]   f_dflat_sample;  
     logic   fir_dflat_start;  
     logic   signed   [7:0]   f_dflat_result;  
     logic   fir_dflat_done;  
     logic   detect_dflat;  
  
     filter_block   #(  
             .SC_LEN('d27),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd49152),            //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot   is  
valid  
             .DB_THRESHOLD(32'sd0),//2211),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   dflat_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_dflat_sample),  
             .fir_start(fir_dflat_start),  
             .fir_result(f_dflat_result),  
             .fir_done(fir_dflat_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_dflat)  
         );  
  
     w_fir_dflat   dflat_fir   (  
             .clkin(clk_in),   .start(fir_dflat_start),  
             .done(fir_dflat_done),  



 

             .data_in(f_dflat_sample),  
             .data_out(f_dflat_result)  
         );  
  
     //===========================   D   FILTER   ============================  
  
     logic   signed   [7:0]   f_d_sample;  
     logic   fir_d_start;  
     logic   signed   [7:0]   f_d_result;  
     logic   fir_d_done;  
     logic   detect_d;  
  
     filter_block   #(  
             .SC_LEN('d26),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd57344),            //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot   is  
valid  
             .DB_THRESHOLD(32'sd0),//2129),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   d_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  
  
             .fir_sample(f_d_sample),  
             .fir_start(fir_d_start),  
             .fir_result(f_d_result),  
             .fir_done(fir_d_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_d)  
         );  
  
     w_fir_d   d_fir   (  
             .clkin(clk_in),   .start(fir_d_start),  
             .done(fir_d_done),  
             .data_in(f_d_sample),  
             .data_out(f_d_result)  
         );  
  
     //===========================   Eb   FILTER   ============================  
  
     logic   signed   [7:0]   f_eflat_sample;  
     logic   fir_eflat_start;  
     logic   signed   [7:0]   f_eflat_result;  
     logic   fir_eflat_done;  
     logic   detect_eflat;  
  
     filter_block   #(  
             .SC_LEN('d24),                    //length   of   a   single   cycle   in   the   autocorrelation   buffer   (samples),   SHOULD   BE   LESS   THAN   63  
             .PEAK_MASK(64'd12288),            //if   theres   a   1   in   a   corresponding   bit,   that   means   a   correlation   peak   in   that   particular   spot   is  
valid  
             .DB_THRESHOLD(32'sd0),//1966),    //autocorrelation   threshold   where   the   output   is   considered   "activated"  
             .DB_LENGTH(DEBOUNCE_CYCLES)  
         )   eflat_block   (   
             .clk_in(clk_in),  
             .sample_clock(sample_clk),  
             .reset(reset),  



 

  
             .fir_sample(f_eflat_sample),  
             .fir_start(fir_eflat_start),  
             .fir_result(f_eflat_result),  
             .fir_done(fir_eflat_done),  
  
             .in_sample(in_sample),      //the   sample   that   we've   been   passed  
             .note_detected(detect_eflat)  
         );  
  
     w_fir_eflat   eflat_fir   (  
             .clkin(clk_in),   .start(fir_eflat_start),  
             .done(fir_eflat_done),  
             .data_in(f_eflat_sample),  
             .data_out(f_eflat_result)  
         );   
  
endmodule  
 
Sample   Clock   Generators  
module   sample_clock_gen   #(parameter   COUNT)   (   //COUNT   shouldn't   be   more   than   16   bits   (65535)  
                         input   clk,   
                         input   rst,  
                         output   logic   trigger   );  
  
     logic   [15:0]   counter;  
 
     assign   trigger   =   (counter   ==   0);  
  
     always_ff   @(posedge   clk)begin  
  
         if   (rst)   begin   
             counter   <=   0;  
         end   else   begin  
             if   (counter   >=   COUNT   -   1)   counter   <=   0;  
             else   counter   <=   counter   +   1;  
       end  
   end  
endmodule  

 
 
 
 
 
 
 
 



 

Purchased   Components  
USB   to   MIDI:  
https://www.amazon.com/gp/product/B0719V8MX1/ref=ox_sc_act_title_1?smid=A2MHNFOYKJ 
HIX1&psc=1  
 
MIDI   Connector:  
https://www.amazon.com/gp/product/B00OE7JU88/ref=ox_sc_act_title_2?smid=A1U6PSXYZS4 
A87&psc=1  
 
¼”   to   3.5mm   Cable:  
https://www.amazon.com/gp/product/B000068O3D/ref=ox_sc_act_title_3?smid=ATVPDKIKX0D 
ER&th=1  
 
3.5mm   jack   breakout:  
https://www.amazon.com/gp/product/B01KFP0HBG/ref=ox_sc_act_title_2?smid=A34K5WF5Z9 
R33P&psc=1  
 
Single   AA   Holders:  
https://www.amazon.com/gp/product/B07BXX62JF/ref=ox_sc_act_title_1?smid=A2UIWYS7E6P 
LOL&psc=1  
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[8]    http://www.tigoe.com/pcomp/code/communication/midi/  
[9]    https://dspguru.com/dsp/faqs/fir/properties/  
[10]    https://www.instructables.com/id/Reliable-Frequency-Detection-Using-DSP-Techniques/  
[11]    https://en.wikipedia.org/wiki/Autocorrelation  
[12]    https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirpeak.html  
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