
E.D.I.T.H. 6.111 Final Project

E.D.I.T.H.
Timi Omotunde and Roberto Ramirez

Omotunde and Ramirez 1

E.D.I.T.H. 6.111 Final Project

Table of Contents

1. Abstract

2. Introduction

3. Goals
a. Baseline
b. Expected
c. Stretch

4. Block Diagrams

a. System
b. Visual
c. FFT

5. Design and Overview

6. Subsystem Overview

a. Visual
i. Glove

1. Purpose
2. Hardware Schematic

b. Audio
i. FFT

1. Block Diagram
2. Overview

ii. Audio Hardware Schematic

7. Testing and Debugging

8. Challenges and Improvements

9. Conclusion

10. Acknowledgments

Omotunde and Ramirez 2

E.D.I.T.H. 6.111 Final Project

Abstract
The aim of this project is to design and implement a computer interface that

you can interact with through your hand and voice using digital logic written in
System Verilog HDL. In order to implement this interface it is necessary that the
digital logic is written to follow the same logic of a regular mousepad. Thus, the
basic scroll, left click, right click, double left click, and so forth.

The techniques that have been implemented include RGB values, FFT

sectioning and serial UART communication. While these methods are sufficient
for basic communication between the FPGA and a laptop we added additional
complexity in each module in order to make the system robust. The purpose of
implementing the aforementioned techniques is to significantly reduce the amount
of edge cases that the user encounters, allowing the user to have a much smoother
experience overall. The FPGA that will be used is the Nexys DDR development
board. There were additional hardware components needed that we will delve into
in the following sections.

Introduction
E.D.I.T.H​ is a modern and creative alternative to the computer mouse and

laptop touchpad that combines visual and audio components to replicate all of the
functionality of a normal mouse. The system consists of a black glove with LEDs
attached, a Nexys4 FPGA Board, and a Teensy, along with an external circuit that
sends audio information to the FPGA. There are three LEDs attached to the
fingertips of the glove: a red one which is always on and is used to determine the
direction and magnitude of each mouse movement, a green one that acts as the left
button of the mouse (when the green LED is on, it’s as if the left button of a mouse
is pressed), and a blue one which acts as the right button of the mouse, similar to
the green LED. The motivation behind the project comes from some of Tony
Stark’s technology and how he remotely interacts with computers via his hands and
vocal commands.

Omotunde and Ramirez 3

E.D.I.T.H. 6.111 Final Project

Goals

Baseline

1. High and low tone detection - 2 tones
a. High tone will correspond to a certain mouse action
b. Low tone will correspond to another certain mouse action

2. LED light to track mouse coordinates onto the monitor

3. Wired connection between buttons on the glove and the FPGA

4. Filters on audio and visual portion to protect from noise

Expected

1. Increased functionality on audio segment
a. Noise level/threshold adjustable

2. Programmable audio mode

a. Frequency range is adjustable to use with human voices and sine
generators

3. RGB LEDS to act as selection button on the glove for the mouse

a. Red tracks to XY-position for the mouse
b. Green corresponds to a left click
c. Blue corresponds to a right click

4. The glove is fully wireless

a. The glove uses a battery pack for the LED
b. FPGA communicates to a laptop wirelessly via a Teensy
c. All wiring hidden in the glove

Omotunde and Ramirez 4

E.D.I.T.H. 6.111 Final Project

Stretch
1. Increased functionality on audio button selection

a. A continuous high tone corresponds to scrolling up
b. A continuous low tone corresponds to scrolling down

2. Basic words recognition

a. Train the FPGA to recognize certain words in order to give commands

3. The ability to change mouse sensitivities for faster and slower mouse
movements

4. The ability to change LED colors without losing functionality in the glove -

purely for preference

Omotunde and Ramirez 5

E.D.I.T.H. 6.111 Final Project

Block Diagram

Omotunde and Ramirez 6

E.D.I.T.H. 6.111 Final Project

Design and Overview
For our team, there were many initial difficult decisions that we had to make

before we began. Which specific techniques that we wished to employ such as
RGB against HSV and FFT against sound patterns. These two examples were two
of the most important subset of things we needed to settle upon before we began.
Additional aspects that we deliberated on included the connection between the
Teensy and the FPGA as well as the serial commands for the Teensy in order for
the Teensy to replicate a mouse.

The reason that we had many starting costs was because we realized that

once we began the project there would not be much room for changing how we
planned to implement a specific piece of our project. Thus, we needed to have a
plan set in stone before we began writing even the first bitstream to go into the
FPGA.

Subsystem Overview

Visual
Glove

The purpose of the glove is to streamline the interaction of a user and a
computer in order to improve upon the existing Human-Computer Interface device,
the mouse. The inspiration behind the device came through Tony Stark and how he
interacts with his computers using only his hands and none of the traditional tools
such as the mouse and keyboard. And, there are many practical applications of
what we made such as people who are bedridden and still want to use a computer
comfortably and people that need to use a computer, but cannot physically be at
that workstation.

The glove has three LEDS. A red LED on the index finger for the camera to

track XY-coordinates for the monitor; a green LED on the middle finger to act as
left click when turned on by touching the copper wire on the thumb to the copper
wire on the base of the middle finger; and, a blue LED on the ring finger to act as

Omotunde and Ramirez 7

E.D.I.T.H. 6.111 Final Project

right click when turned on by touching the copper wire on the thumb to the copper
wire on the base of the ring finger. The copper wire on the thumb is connected to a
5V source and acts as a switch when it is connected or unconnected to the copper
tape wires on the middle and ring fingers. Each LED is connected to a 510 Ohm
resistor so that the LED does not burn out as well as to decrease the bleed effect
when the camera detects the LED. If you are recreating the circuit make sure that
there is enough current flowing through the LED so depending on your LED you
need to adjust the resistors accordingly. As seen below, we used a 3.7V 1200mAh
battery that we fed through boost converter to get 5V.

Omotunde and Ramirez 8

E.D.I.T.H. 6.111 Final Project

LED Tracking
Originally, the idea was to convert the RGB values for each pixel received

from the camera to HSV values in order to determine whether or not the LEDs
were in the output image and, if so, where the red LED was in the image. This is
because HSV values are better for object detection since they separate color
information (hue) from luminance/light, which RGB values fail to do. Out of
curiosity, however, I decided to whether or not I could make RGB thresholds that
would detect only the LEDs. Surprisingly, I was able to find thresholds that
detected only the LEDs and nothing else (assuming there were no other similar
LEDs in the background), so I decided to stick with RGB values throughout the
rest of the project.

Omotunde and Ramirez 9

E.D.I.T.H. 6.111 Final Project

With these RGB thresholds in place, I check to see whether or not the LEDs
were detected in the image. If the green LED or blue LED is detected in the image,
I return a high value (1) to the FSM that will pass that information over to the
Teensy, otherwise I return a low value (0). I perform this check every fifth of a
second because checking too often doesn’t provide the FPGA enough time to
generate enough frames to see whether or not the LEDs have appeared and/or
disappeared in the image. The same check is done for the red LED, but this time if
the red LED is in the image, we also check to see where the LED is in relation to
the center.

If the red LED is to the left of the center of the image, the mouse on the

laptop will move left, if it is above the center, the mouse will move up, and the
same rules apply for below or to the right of the center. The farther away the red
LED is from the center of the image, the faster the mouse on the laptop screen will
move, similar to a joystick for games. There are also two switches that can be
flipped that allow for a total of four different mouse sensitivities. By increasing the
sensitivity (done by increasing the value of the switches), changes in the position
of the red LED result in larger changes in mouse speed.

Omotunde and Ramirez 10

E.D.I.T.H. 6.111 Final Project

Teensy/FSM

For everything to come together, we needed a finite state machine that
would control what values got sent to the Teensy which would act as a mouse. The
FSM would take in the LED values described above as well as audio values
(described below in the next section, basically 1’s are sent if a certain command is
being performed), and determine what state the mouse should currently be in (what
action should be performed). The actions are: pressing down the left button, right
clicking, double left clicking, scrolling up, and scrolling down. The mouse is
constantly being sent movement values (even when the mouse technically is not
moving), so movement is not a state of the FSM. The FPGA is connected to the
Teensy through three serial ports on the Teensy. The first port is used for
communicating the mouse state, the second port for the mouse horizontal
movement value, and the last port for the mouse vertical movement value. The
Teensy has its own type of FSM compiled on to it to determine what action it
should perform based on each incoming byte. In order to make the mouse

Omotunde and Ramirez 11

E.D.I.T.H. 6.111 Final Project

movement smooth, the movement values are sent every one twenty-fifth of a
second.

Audio

Fast Fourier Transform (FFT)
We are using an FFT system so that we can analyze the incoming sound

from a microphone in terms of frequency. We are doing this so that we can control
aspects of a mouse by the pitch that we pass into the microphone. Thus, specific
frequencies will activitate specific corresponding outputs.

Omotunde and Ramirez 12

E.D.I.T.H. 6.111 Final Project

Testing and Debugging

In testing and debugging modules, some test benches were employed, but as
the systems became more and more developed the best debugging tools became
generating the bitstream and interacting with it as it either worked or it did not.

Each system was tested independently before the final integration. The final
integration required the most rigorous testing as there existed numerous overlaps
and dependencies that needed to be accounted.

For the visual portion of the project, there was a lot of trial and error
involved in finding the correct RGB values to look for and use. In the Arduino
code for the camera, there were three different gains: a blue gain, red gain, and
green gain. The green gain was by default much lower than the red and blue gain,
which made many of the pixels in the output image appear more red than they
should have been. Fortunately, the effects of adjusting these gains could be seen
immediately by compiling the code and viewing the output image, and eventually
we found a combination of gains that worked pretty well.

Omotunde and Ramirez 13

E.D.I.T.H. 6.111 Final Project

Filtering out the correct RGB values that corresponded to the LED colors
involved a similar approach to finding the correct gains for the camera settings.
This time, however, some Verilog was written so that when a switch was flipped,
the output image pixels would be red if the pixel output from the camera was red
enough, blue if the pixel output was blue enough, and green if the output was green
enough (and black otherwise). By doing this, we were able to see which pixels
were being detected as red, green, and blue, and after many attempts we narrowed
down the range for each pixel to correspond to the colors emitted by the LEDs so
that only the LEDs would be detected.

In testing and debugging the audio portion, there were a few key phases:
knowing what I could and could not remove, adding different tones, thresholding,
and scrolling.

For testing what we could and could not remove, we had to read through the
code and get a good understanding of what the FFT system is doing. In our first
attempt we tried removing everything remotely related to the XVGA system
however this had repercussions in respect to the system not working. Throughout
this process it gave us a better intuition of what each part did as we repeated this
process a few times. We found that there are only two things at most that we can
remove. The XVGA initialization signal near the start and the XVGA call at the
bottom. Everything else is closely tied to the histogram which gives meaning to the
loudness of each frequency.

For adding different tones, we needed to experiment with what tones we

could actually produce via a sine generator and human vocal chords. Additionally,
we need to test what actual frequencies the FFT system would recognize. To do all
of this we downloaded a sine generator on a phone for testing as well as an FFT on
our phone to give meaning to specific frequency ranges in order to expedite the
process so that we do not need to wait on every bitstream call. We discovered that
the FFT we had on the FPGA could go up to 15kHz, but we did not need to 9kHz
at the highest for humans - unless that person has incredible pitch control. We
discovered that each bin contains approximately 15Hz worth of frequencies as the

Omotunde and Ramirez 14

E.D.I.T.H. 6.111 Final Project

sample rate is 62.5kHz and there are 4096 frames. Thus to target specific
frequencies we would divide that frequency by 15 (Hz/bin) to find the bin that it
would exist in.

Furthermore, to find an acceptable threshold, we had to play directly with

the FPGA in order to find one that is high enough to disregard noise, but one that
does not penalize intentional tones greatly. We did this by printing out bin
magnitude values to the hex display and taking an average of the upper magnitude
values.

Integrating the visual and audio components together involved doing a lot of
testing on the FSM that merged the two together. This was very tricky, but
fortunately the Teensy has a Serial Monitor that can print things to the screen, so
we relied heavily on this monitor to test and debug the FSM. Every time a byte was
transmitted to the Teensy, we would print it to the Serial Monitor to see what state
was passed in, and by doing this we were able to see whether or not the state that
was passed in was correct or not (and whether or not the byte was transmitted at
the correct time).

Challenges and Improvements

One of the greatest challenges for this project was time, mainly referring to
the amount of time it took to generate the bitstream in order to verify that our
solution was actually usable. We could run all the test benches that we wanted on
the system, but there were some aspects of the project that we had to verify by
human testing. Namely, pitch control on the audio side and button selection on the
Visual side. As we added more and more complexity layers onto the system, the
bitstream generation time also increased. We should also add that this was before
integration. Pre-integration, the bitstream generation times would average between
50 and 60 minutes. Post-integration bitstream generation times would average 60
minutes or more. Sufficient to say, but whenever we changed or loaded something
onto the FPGA, we made certain that our change was efficient and effective for the
problem on hand.

Omotunde and Ramirez 15

E.D.I.T.H. 6.111 Final Project

On the visual side, additional challenges included finding what RGB values

correspond to each LED, and figuring out how often to send information to the
Teensy to make mouse movements and actions appear smooth.

As mentioned in the testing and debugging section, finding the RGB values
that corresponded to each LED involved a lot of trial and error through plugging in
many different values until we found the ones that worked. Timing and sending
information to the Teensy was definitely more difficult and required far more
testing since the Teensy and the FPGA were running on different clocks. Also,
when sending mouse movement information to the Teensy, we had to make sure to
send the information at the perfect times, since sending it too fast would make the
mouse zoom across the screen, and sending it too slow would make the mouse
movement extremely choppy. Figuring out when to send the mouse actions to the
Teensy was also difficult, since different actions needed to be sent at different
times and at different intervals. The mouse right click, for example, only needed to
be sent to the Teensy as soon as the blue LED is seen, but the green LED meant
that the mouse left button was held down, so we had to keep track of when the
green LED appears and when it disappears as well.

Some improvements that we would make to the visual aspect of the project
would be allowing users to switch which LEDs correspond to which action.
Currently the red LED is for movement, the green for left clicking, and the blue for
right clicking, and all of these actions are fixed and cannot be changed. While we
feel that the placement of each LED is very intuitive and easy to understand, some
users might prefer clicking with different fingers or might not want to move the
mouse with their index finger, so it makes sense to give users the option to select
their preferences before using the glove. This wouldn’t be too difficult to
implement in Verilog, but modifying the glove’s internal circuit to allow the LEDs
to function differently (constantly on vs. controlled using switch) depending on
user preferences would definitely be tricky.

Omotunde and Ramirez 16

E.D.I.T.H. 6.111 Final Project

On the audio side, additional challenges included microphone reliability,
outside noise, and controlling the scroll. Movereover, we managed to handle each
problem accordingly as they arose.

I can address microphone reliability and outside noise in the same paragraph
because the implemented solution handled them as different sides of the same coin.
We initially thought that getting a better microphone would solve our problems,
but we realized not necessarily as even though the sound is refined it does not
cancel the outside noise. Also a high quality microphone is not really necessary for
6.111 projects. It should be noted, we did consider switching microphones, but we
realized that we would still be running into some of the same problems such as
outside noise even though we have a more mobile, better microphone. Instead, we
decided to filter out the noise and add a threshold to activate the system. In this
way, only intentional sounds are processed. By definition an FFT is a filter, so we
played around with the internal settings and settled on one that penalized ambient
sounds, but still allowed generous spikes for intentional noises. Furthermore, we
added a threshold not only for sine generators, but also for human voices. Thus, the
threshold became critical for tones made by humans. This is important because you
may not think about it, but when you speak, whistle, or make any type of noise
with your vocal chords it is not purely in one frequency, but in numerous
frequencies. Yet, not all these frequencies are in the same decibel range as there is
almost always one dominant frequency in terms of decibels. So, in our project, we
exploited this fact to hone in on the biggest spike and targeted that one and pretend
as the other undertones are random noise that we wish to ignore.

For controlling the scroll, we wanted some way in order to generate a
magnitude to be able to translate how much we want to scroll. It should be noted
that we sandboxed this method to smooth and streamline the system. However the
controls are still present in the system, so one can play around with it and also
further activate it. We will still expound upon it as it took a considerable amount of
time and contributed to the end product. Initially, we wanted to be able to be able
to adjust/slide in a frequency range in order to gain a magnitude by subtracting the
pointers as they hold different bin numbers. In this method, we would be

Omotunde and Ramirez 17

E.D.I.T.H. 6.111 Final Project

generating the beginning and ending pointers then subtracting the difference. The
pointers would store the bin number that they were held in that range. The
magnitude/difference would change every clock cycle. However, the main problem
with this implementation is that we were trying to do everything in the same clock
cycle which - even if it were successful which it would not be - would make the
magnitudes small and not what we want. Thus, in the second implementation, the
system only responds if you enter the range directly in the middle so that you can
slide the frequency up or down with enough space on either side. The first pointer
would be set because you started in the middle and would only change if you exit
and start again. The second pointer is free to move up or down and record the
current bin number.

Moving on, some improvements that we would make to the audio would be
word recognition. One could already say there is some basic word recognition as
when you say the word “double” the system will double click. However that comes
about due to the word “double” matching the same frequency range that triggers a
double click. Thus, we came up with multiple ways - after the project deadline - to
generate some word recognition. The first way is to ignore frequency ranges and
only focus on the aggregate amount of sound coming into the microphone. The
microphone would listen for specific aspects of the word relating to peaks and
troughs - local and maxima. This method would be less specific, but more general
and likelier to pick up words. The second method is more complex and more
powerful. You would still listen for the peaks and troughs of the aggregate sound,
but you would add the frequency range as some words start high or low and pitch
up or down accordingly. If you do not know what a transformers are in the context
of word recognition and machine learning you would need to hard code each word
to be recognized by the FPGA. In this way you could more confidently stretch and
compress words, since everyone does not speak at the same speed. In the first
method it would be harder because it could just be random noise, but it is still
doable.

Omotunde and Ramirez 18

E.D.I.T.H. 6.111 Final Project

Conclusion

Overall, this project was a success. We were able to smoothly integrate our
video and audio aspects so that a user can utilize their hands to control a computer
monitor - doing everything that a regular computer mouse can plus more!

Additionally, there is not a high learning curve for our device, so literally
anyone can pick it up and use it intuitively.

As it was said to me, I would like to emphasize the importance of starting as
early as you can. Our project was substantial in size and complexity, and it barely
made it over the finish line in time - luckily integration worked on the first attempt
after we solved all the syntax issues. Starting early will save you time and stress, as
integration usually does not work the first, second, or third time you try it. Another
important thing to note is that you are not always guaranteed two weeks after
Thanksgiving, so if you only have one week after the break life will get tough. So,
please remember to sleep and do not put off your problems until the last moment
for your own sake.

Moreover, through this project, we learned an incredible amount of project
creation - seeing it through from inception to implementation. We learned what it
means to come up with an original idea and how to test and debug your original
concepts and creations. We also learned that innovation is not necessarily a straight
path, but one with numerous twists and turns that one should be prepared to go
down. Moreover, we would emphatically recommend 6.111 to any other students.

Lastly, to any students attempting this or any similar project, we would
recommend again that you start early and pick a fast computer that can generate the
bitstream in under 30 minutes. These files are massive, so editing and running the
bitstream on the older computers once took an hour and 20 minutes to finish the
audio portion pre-integration alone! When we integrated both parts, the run time
climbed to an hour and 40 minutes at its highest. However, the faster, newer

Omotunde and Ramirez 19

E.D.I.T.H. 6.111 Final Project

computers will generate the bitstream in around 40 minutes at their slowest.
Additionally, try to reach all of our stretch goals as they are all doable if you are
clever in your approach, we realized in hindsight. We realized the scroll and the
multiple mouse sensitivities.

Acknowledgments

We found 6.111 to be a truly enjoyable class, and it would not have been
possible without the amazing staff. Specifically, for our team, Gim, Joe, Sarah,
Mike, and Diana who have been supportive and kept the lab open through late
nights and early mornings.

Verilog Code:
`timescale 1ns / 1ps
//
//
// Updated 11/10/2019 EDITH
// Updated 8/12/2018 V2.lab5c
// Create Date: 10/1/2015 V1.
// Module Name: top_level_visual
// Based on lab 3 code and code from Joe
//

module top_level(
 input clk_100mhz,
 input[15:0] sw,
 input btnc, btnu, btnl, btnr, btnd,
 input [7:0] ja,
 input [2:0] jb,
 input AD3N, AD3P,
 output logic [1:0] jc,
 output jbclk,
 output logic [2:0] jd,

Omotunde and Ramirez 20

E.D.I.T.H. 6.111 Final Project

 output jdclk,
 output[3:0] vga_r,
 output[3:0] vga_b,
 output[3:0] vga_g,
 output vga_hs,
 output vga_vs,
 output led16_b, led16_g, led16_r,
 output led17_b, led17_g, led17_r,
 output[15:0] led,
 output ca, cb, cc, cd, ce, cf, cg, dp, // segments a-g, dp
 output[7:0] an // Display location 0-7
);

 parameter FIFTH = 13000000; // the number of cycles corresponding to one fifth
of a second
 parameter UPDATE = 2600000; // the number of cycles corresponding to one
twenty-fifth of a second
 wire clk_65mhz;
 wire clk_104mhz;
 // create 65mhz system clock, happens to match 1024 x 768 XVGA timing
 clk_wiz_0 clkdivider(.clk_in1(clk_100mhz), .reset(0), .clk_out1(clk_65mhz),
.clk_out2(clk_104mhz));

 wire [31:0] data; // instantiate 7-segment display; display (8) 4-bit hex
 wire [6:0] segments;
 assign {cg, cf, ce, cd, cc, cb, ca} = segments[6:0];
 // display_8hex display(.clk_in(clk_65mhz),.data_in(data), .seg_out(segments),
.strobe_out(an));
 //assign seg[6:0] = segments;
 assign dp = 1'b1; // turn off the period

 assign led16_b = audio_mode;
 assign data = {28'h0123456, sw[3:0]}; // display 0123456 + sw[3:0]

Omotunde and Ramirez 21

E.D.I.T.H. 6.111 Final Project

 assign led16_r = btnl; // left button -> red led
 assign led16_g = btnc; // center button -> green led
 assign led17_r = btnl;
 assign led17_g = btnc;
 assign led17_b = btnr;

 wire [10:0] hcount; // pixel on current line
 wire [9:0] vcount; // line number
 wire hsync, vsync, blank;
 wire [11:0] pixel;
 reg [11:0] rgb;
 reg [23:0] hsv;
 logic audio_mode = 0; // audio commands can only be used when audio_mode is
1
 logic clean; // clean and old_clean used to determine audio_mode
 logic old_clean;
 logic left_click = 0; // 1 when left mouse button should be pressed down, 0
otherwise
 logic right_click = 0; // 1 when right mouse button should be pressed down, 0
otherwise
 logic double_click = 0;
 logic scroll_up = 0;
 logic scroll_down = 0;
 logic green_found = 0; // these "found" values are 1 if the corresponding values
were seen during the last fifth of a second, 0 otherwise
 logic red_found = 0;
 logic blue_found = 0;
 logic double_found = 0;
 logic scrollu_found = 0;
 logic scrolld_found = 0;
 logic double_out = led[14]; // 1 when audio command for double click is heard,
0 otherwise

Omotunde and Ramirez 22

E.D.I.T.H. 6.111 Final Project

 logic scrollu_out = led[7]; // 1 when audio command for scroll up is heard, 0
otherwise
 logic scrolld_out = led[0]; // 1 when audio command for scroll down is heard, 0
othwerise
 logic [25:0] left_counter = 0; // gets reset to 0 every fifth of a second
 logic [25:0] update_counter = 0; // gets reset to 0 when this counter reaches
UPDATE
 logic [10:0] xcount = 320; // the current hcount pixel value of the center of the
red LED (320 when LED is not found)
 logic [9:0] ycount = 240; // the current vcount pixel value of the center of the red
LED (240 when LED is not found)
 logic signed [7:0] x_val; // the x value corresponding to how the mouse will
move on the screen (sent to Teensy)
 logic signed [7:0] y_val; // the y value corresponding to how the mouse will
move on the screen
 logic right;
 logic up;
 logic aud_pwm, aud_sd;
 xvga xvga1(.vclock_in(clk_65mhz),.hcount_out(hcount),.vcount_out(vcount),
 .hsync_out(hsync),.vsync_out(vsync),.blank_out(blank));

 nexys4_fft_demo fft(.CLK100MHZ(clk_100mhz),
 .clk_104mhz(clk_104mhz),
 .clk_65mhz(clk_65mhz),
 .hcount(hcount),
 .vcount(vcount),
 .hsync(hsync),
 .vsync(vsync),
 .SW(sw),
 .BTNU(btnu), .BTNR(btnr),
 .LED(led),
 .AD3P(AD3P),
 .AD3N(AD3N),

Omotunde and Ramirez 23

E.D.I.T.H. 6.111 Final Project

 .AUD_PWM(aud_pwm), .AUD_SD(aud_sd));

 debounce audio(.clock_in(clk_65mhz),
 .reset_in(reset),
 .noisy_in(btnc),
 .clean_out(clean));

 debounce rbutton(.clock_in(clk_65mhz),
 .reset_in(reset),
 .noisy_in(btnr),
 .clean_out(right));

 debounce ubutton(.clock_in(clk_65mhz),
 .reset_in(reset),
 .noisy_in(btnu),
 .clean_out(up));

 // btnc button is user reset
 wire reset;
 debounce
db1(.reset_in(btnd),.clock_in(clk_65mhz),.noisy_in(btnd),.clean_out(reset));

 top_serial left(.clk_100mhz(clk_100mhz),
 .left_click(left_click),
 .right_click(right_click),
 .double_click(double_click),
 .scroll_up(scroll_up),
 .scroll_down(scroll_down),
 .btnd(btnd),
 .jc(jc),
 .jd(jd),
 .x_val(x_val),
 .y_val(y_val));

Omotunde and Ramirez 24

E.D.I.T.H. 6.111 Final Project

 logic xclk;
 logic[1:0] xclk_count;

 logic pclk_buff, pclk_in;
 logic vsync_buff, vsync_in;
 logic href_buff, href_in;
 logic[7:0] pixel_buff, pixel_in;

 logic [11:0] cam;
 logic [11:0] frame_buff_out;
 logic [15:0] output_pixels;
 logic [15:0] old_output_pixels;
 logic [12:0] processed_pixels;
 logic [3:0] red_diff;
 logic [3:0] green_diff;
 logic [3:0] blue_diff;
 logic valid_pixel;
 logic frame_done_out;

 logic [16:0] pixel_addr_in;
 logic [16:0] pixel_addr_out;

 assign xclk = (xclk_count >2'b01);
 assign jbclk = xclk;
 assign jdclk = xclk;

 assign red_diff =
(output_pixels[15:12]>old_output_pixels[15:12])?output_pixels[15:12]-old_output
_pixels[15:12]:old_output_pixels[15:12]-output_pixels[15:12];

Omotunde and Ramirez 25

E.D.I.T.H. 6.111 Final Project

 assign green_diff =
(output_pixels[10:7]>old_output_pixels[10:7])?output_pixels[10:7]-old_output_pi
xels[10:7]:old_output_pixels[10:7]-output_pixels[10:7];
 assign blue_diff =
(output_pixels[4:1]>old_output_pixels[4:1])?output_pixels[4:1]-old_output_pixels
[4:1]:old_output_pixels[4:1]-output_pixels[4:1];

 blk_mem_gen_0 jojos_bram(.addra(pixel_addr_in),
 .clka(pclk_in),
 .dina(processed_pixels),
 .wea(valid_pixel),
 .addrb(pixel_addr_out),
 .enb(1),
 .clkb(clk_65mhz),
 .doutb(frame_buff_out));

 always_ff @(posedge pclk_in)begin
 if (frame_done_out)begin
 pixel_addr_in <= 17'b0;
 end else if (valid_pixel)begin
 pixel_addr_in <= pixel_addr_in +1;
 end
 end

 always_comb begin
 // sw[1:0] determines the mouse sensitivity (higher values mean higher
sensitivies)
 // when you increase sensitivity, smaller changes in x or y will result in larger
increases in mouse speed
 case (sw[1:0])
 2'b11: begin

Omotunde and Ramirez 26

E.D.I.T.H. 6.111 Final Project

 if (xcount < 45) x_val = -28;
 else if (xcount < 55) x_val = -27;
 else if (xcount < 65) x_val = -26;
 else if (xcount < 75) x_val = -25;
 else if (xcount < 85) x_val = -24;
 else if (xcount < 95) x_val = -23;
 else if (xcount < 105) x_val = -22;
 else if (xcount < 115) x_val = -21;
 else if (xcount < 125) x_val = -20;
 else if (xcount < 135) x_val = -19;
 else if (xcount < 145) x_val = -18;
 else if (xcount < 155) x_val = -17;
 else if (xcount < 165) x_val = -16;
 else if (xcount < 175) x_val = -15;
 else if (xcount < 185) x_val = -14;
 else if (xcount < 195) x_val = -13;
 else if (xcount < 205) x_val = -12;
 else if (xcount < 215) x_val = -11;
 else if (xcount < 225) x_val = -10;
 else if (xcount < 235) x_val = -9;
 else if (xcount < 245) x_val = -8;
 else if (xcount < 255) x_val = -7;
 else if (xcount < 265) x_val = -6;
 else if (xcount < 275) x_val = -5;
 else if (xcount < 285) x_val = -4;
 else if (xcount < 295) x_val = -3;
 else if (xcount < 305) x_val = -2;
 else if (xcount < 315) x_val = -1;
 else if (xcount < 325) x_val = 0;
 else if (xcount < 335) x_val = 1;
 else if (xcount < 345) x_val = 2;
 else if (xcount < 355) x_val = 3;
 else if (xcount < 365) x_val = 4;

Omotunde and Ramirez 27

E.D.I.T.H. 6.111 Final Project

 else if (xcount < 375) x_val = 5;
 else if (xcount < 385) x_val = 6;
 else if (xcount < 395) x_val = 7;
 else if (xcount < 405) x_val = 8;
 else if (xcount < 415) x_val = 9;
 else if (xcount < 425) x_val = 10;
 else if (xcount < 435) x_val = 11;
 else if (xcount < 445) x_val = 12;
 else if (xcount < 455) x_val = 13;
 else if (xcount < 465) x_val = 14;
 else if (xcount < 475) x_val = 15;
 else if (xcount < 485) x_val = 16;
 else if (xcount < 495) x_val = 17;
 else if (xcount < 505) x_val = 18;
 else if (xcount < 515) x_val = 19;
 else if (xcount < 525) x_val = 20;
 else if (xcount < 535) x_val = 21;
 else if (xcount < 545) x_val = 22;
 else if (xcount < 555) x_val = 23;
 else if (xcount < 565) x_val = 24;
 else if (xcount < 575) x_val = 25;
 else if (xcount < 585) x_val = 26;
 else if (xcount < 595) x_val = 27;
 else x_val = 28;
 if (ycount < 25) y_val = -22;
 else if (ycount < 35) y_val = -21;
 else if (ycount < 45) y_val = -20;
 else if (ycount < 55) y_val = -19;
 else if (ycount < 65) y_val = -18;
 else if (ycount < 75) y_val = -17;
 else if (ycount < 85) y_val = -16;
 else if (ycount < 95) y_val = -15;
 else if (ycount < 105) y_val = -14;

Omotunde and Ramirez 28

E.D.I.T.H. 6.111 Final Project

 else if (ycount < 115) y_val = -13;
 else if (ycount < 125) y_val = -12;
 else if (ycount < 135) y_val = -11;
 else if (ycount < 145) y_val = -10;
 else if (ycount < 155) y_val = -9;
 else if (ycount < 165) y_val = -8;
 else if (ycount < 175) y_val = -7;
 else if (ycount < 185) y_val = -6;
 else if (ycount < 195) y_val = -5;
 else if (ycount < 205) y_val = -4;
 else if (ycount < 215) y_val = -3;
 else if (ycount < 225) y_val = -2;
 else if (ycount < 235) y_val = -1;
 else if (ycount < 245) y_val = 0;
 else if (ycount < 255) y_val = 1;
 else if (ycount < 265) y_val = 2;
 else if (ycount < 275) y_val = 3;
 else if (ycount < 285) y_val = 4;
 else if (ycount < 295) y_val = 5;
 else if (ycount < 305) y_val = 6;
 else if (ycount < 315) y_val = 7;
 else if (ycount < 325) y_val = 8;
 else if (ycount < 335) y_val = 9;
 else if (ycount < 345) y_val = 10;
 else if (ycount < 355) y_val = 11;
 else if (ycount < 365) y_val = 12;
 else if (ycount < 375) y_val = 13;
 else if (ycount < 385) y_val = 14;
 else if (ycount < 395) y_val = 15;
 else if (ycount < 405) y_val = 16;
 else if (ycount < 415) y_val = 17;
 else if (ycount < 425) y_val = 18;
 else if (ycount < 435) y_val = 19;

Omotunde and Ramirez 29

E.D.I.T.H. 6.111 Final Project

 else if (ycount < 445) y_val = 20;
 else if (ycount < 455) y_val = 21;
 else y_val = 22;
 end
 2'b10: begin
 if (xcount < 50) x_val = -14;
 else if (xcount < 70) x_val = -13;
 else if (xcount < 90) x_val = -12;
 else if (xcount < 110) x_val = -11;
 else if (xcount < 130) x_val = -10;
 else if (xcount < 150) x_val = -9;
 else if (xcount < 170) x_val = -8;
 else if (xcount < 190) x_val = -7;
 else if (xcount < 210) x_val = -6;
 else if (xcount < 230) x_val = -5;
 else if (xcount < 250) x_val = -4;
 else if (xcount < 270) x_val = -3;
 else if (xcount < 290) x_val = -2;
 else if (xcount < 310) x_val = -1;
 else if (xcount < 330) x_val = 0;
 else if (xcount < 350) x_val = 1;
 else if (xcount < 370) x_val = 2;
 else if (xcount < 390) x_val = 3;
 else if (xcount < 410) x_val = 4;
 else if (xcount < 430) x_val = 5;
 else if (xcount < 450) x_val = 6;
 else if (xcount < 470) x_val = 7;
 else if (xcount < 490) x_val = 8;
 else if (xcount < 510) x_val = 9;
 else if (xcount < 530) x_val = 10;
 else if (xcount < 550) x_val = 11;
 else if (xcount < 570) x_val = 12;
 else if (xcount < 590) x_val = 13;

Omotunde and Ramirez 30

E.D.I.T.H. 6.111 Final Project

 else x_val = 14;
 if (ycount < 30) y_val = -11;
 else if (ycount < 50) y_val = -10;
 else if (ycount < 70) y_val = -9;
 else if (ycount < 90) y_val = -8;
 else if (ycount < 110) y_val = -7;
 else if (ycount < 130) y_val = -6;
 else if (ycount < 150) y_val = -5;
 else if (ycount < 170) y_val = -4;
 else if (ycount < 190) y_val = -3;
 else if (ycount < 210) y_val = -2;
 else if (ycount < 230) y_val = -1;
 else if (ycount < 250) y_val = 0;
 else if (ycount < 270) y_val = 1;
 else if (ycount < 290) y_val = 2;
 else if (ycount < 310) y_val = 3;
 else if (ycount < 330) y_val = 4;
 else if (ycount < 350) y_val = 5;
 else if (ycount < 370) y_val = 6;
 else if (ycount < 390) y_val = 7;
 else if (ycount < 410) y_val = 8;
 else if (ycount < 430) y_val = 9;
 else if (ycount < 450) y_val = 10;
 else y_val = 11;
 end
 2'b01: begin
 if (xcount < 60) x_val = -7;
 else if (xcount < 100) x_val = -6;
 else if (xcount < 140) x_val = -5;
 else if (xcount < 180) x_val = -4;
 else if (xcount < 220) x_val = -3;
 else if (xcount < 260) x_val = -2;
 else if (xcount < 300) x_val = -1;

Omotunde and Ramirez 31

E.D.I.T.H. 6.111 Final Project

 else if (xcount < 340) x_val = 0;
 else if (xcount < 380) x_val = 1;
 else if (xcount < 420) x_val = 2;
 else if (xcount < 460) x_val = 3;
 else if (xcount < 500) x_val = 4;
 else if (xcount < 540) x_val = 5;
 else if (xcount < 580) x_val = 6;
 else x_val = 7;
 if (ycount < 45) y_val = -7;
 else if (ycount < 75) y_val = -6;
 else if (ycount < 105) y_val = -5;
 else if (ycount < 135) y_val = -4;
 else if (ycount < 165) y_val = -3;
 else if (ycount < 195) y_val = -2;
 else if (ycount < 225) y_val = -1;
 else if (ycount < 255) y_val = 0;
 else if (ycount < 285) y_val = 1;
 else if (ycount < 315) y_val = 2;
 else if (ycount < 345) y_val = 3;
 else if (ycount < 375) y_val = 4;
 else if (ycount < 405) y_val = 5;
 else if (ycount < 435) y_val = 6;
 else y_val = 7;
 end
 default: begin
 if (xcount < 40) x_val = -4;
 else if (xcount < 120) x_val = -3;
 else if (xcount < 200) x_val = -2;
 else if (xcount < 280) x_val = -1;
 else if (xcount < 360) x_val = 0;
 else if (xcount < 440) x_val = 1;
 else if (xcount < 520) x_val = 2;
 else if (xcount < 600) x_val = 3;

Omotunde and Ramirez 32

E.D.I.T.H. 6.111 Final Project

 else x_val = 4;
 if (ycount < 30) y_val = -4;
 else if (ycount < 90) y_val = -3;
 else if (ycount < 150) y_val = -2;
 else if (ycount < 210) y_val = -1;
 else if (ycount < 270) y_val = 0;
 else if (ycount < 330) y_val = 1;
 else if (ycount < 390) y_val = 2;
 else if (ycount < 450) y_val = 3;
 else y_val = 4;
 end
 endcase
 end

 always_ff @(posedge clk_65mhz) begin
 old_clean <= clean; //for rising edge detection
 if (clean&~old_clean) audio_mode <= ~audio_mode; // audio mode is turned
on when clean goes from 0 to 1
 if (left_counter == FIFTH) begin //every fifth of a second we check to see if
any changes were found to current state
 left_counter <= 0;
 green_found <= 0;
 blue_found <= 0;
 double_found <= 0;
 scrollu_found <= 0;
 scrolld_found <= 0;
 if (green_found) begin // left click takes priority over all other commands
 left_click <= 1;
 end else left_click <= 0;
 if (blue_found&~green_found) begin // only one command will be sent to
the Teensy at a time
 right_click <= 1;
 end else right_click <= 0;

Omotunde and Ramirez 33

E.D.I.T.H. 6.111 Final Project

 if (audio_mode&~blue_found&~green_found) begin
 if (double_found&~scrollu_found&~scrolld_found) begin
 double_click <= 1;
 end else double_click <= 0;
 if (scrollu_found&~double_found&~scrolld_found) begin
 scroll_up <= 1;
 end else scroll_up <= 0;
 if (scrolld_found&~double_found&~scrollu_found) begin
 scroll_down <= 1;
 end else scroll_down <= 0;
 end else begin
 double_click <= 0;
 scroll_up <= 0;
 scroll_down <= 0;
 end
 end else left_counter <= left_counter + 1;
 if (update_counter == UPDATE) begin // every one twenty-fifth of a second a
new mouse movement value will be sent to the Teensy
 update_counter <= 0;
 red_found <= 0;
 if (!red_found) begin
 xcount <= 320;
 ycount <= 240;
 end
 end else begin
 update_counter <= update_counter + 1;
 if ((!red_found) && (rgb[11:8]>4'b1100) && (rgb[7:4]<4'b0100) &&
(rgb[3:0]<4'b0100) && (hcount<640) && (vcount<480)) begin
 xcount <= hcount + 10; // estimating the center of the red LED
 ycount <= vcount + 10;
 red_found <= 1;
 end else if (left_counter != FIFTH) begin

Omotunde and Ramirez 34

E.D.I.T.H. 6.111 Final Project

 if ((rgb[11:8]<4'b0100)&&(rgb[7:4]>4'b1000)&&(rgb[3:0]<4'b1000))
green_found <= 1;
 else if
((rgb[11:8]<4'b0100)&&(rgb[7:4]<4'b1000)&&(rgb[3:0]>4'b1100)) blue_found
<= 1;
 else if (double_out) double_found <= 1;
 else if (scrollu_out) scrollu_found <= 1;
 else if (scrolld_out) scrolld_found <= 1;
 end
 end
 pclk_buff <= jb[0];//WAS JB
 vsync_buff <= jb[1]; //WAS JB
 href_buff <= jb[2]; //WAS JB
 pixel_buff <= ja;
 pclk_in <= pclk_buff;
 vsync_in <= vsync_buff;
 href_in <= href_buff;
 pixel_in <= pixel_buff;
 old_output_pixels <= output_pixels;
 xclk_count <= xclk_count + 2'b01;
 if (sw[3])begin
 //processed_pixels <= {red_diff<<2, green_diff<<2, blue_diff<<2};
 // processed_pixels <= output_pixels - old_output_pixels;
 if
((output_pixels[15:12]>4'b1100)&&(output_pixels[10:7]<4'b0100)&&(output_pix
els[4:1]<4'b0100))begin
 processed_pixels <= 12'hF00;
 end else if
((output_pixels[15:12]<4'b0100)&&(output_pixels[10:7]>4'b1000)&&(output_pix
els[4:1]<4'b1000))begin
 processed_pixels <= 12'h0F0;

Omotunde and Ramirez 35

E.D.I.T.H. 6.111 Final Project

 end else if
((output_pixels[15:12]<4'b0100)&&(output_pixels[10:7]<4'b1000)&&(output_pix
els[4:1]>4'b1100))begin
 processed_pixels <= 12'h00F;
 end else begin
 processed_pixels <= 12'h000;
 end
 end else begin
 processed_pixels =
{output_pixels[15:12],output_pixels[10:7],output_pixels[4:1]};
 end

 end
 assign pixel_addr_out =
sw[2]?((hcount>>1)+(vcount>>1)*32'd320):hcount+vcount*32'd320;
 assign cam = sw[2]&&((hcount<640) &&
(vcount<480))?frame_buff_out:~sw[2]&&((hcount<320) &&
(vcount<240))?frame_buff_out:12'h000;

 camera_read my_camera(.p_clock_in(pclk_in),
 .vsync_in(vsync_in),
 .href_in(href_in),
 .p_data_in(pixel_in),
 .pixel_data_out(output_pixels),
 .pixel_valid_out(valid_pixel),
 .frame_done_out(frame_done_out));
 // UP and DOWN buttons for pong paddle
 wire up,down;
 debounce
db2(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnu),.clean_out(up));
 debounce
db3(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnd),.clean_out(down));

Omotunde and Ramirez 36

E.D.I.T.H. 6.111 Final Project

 wire phsync,pvsync,pblank;
 pong_game pg(.vclock_in(clk_65mhz),.reset_in(reset),
 .up_in(up),.down_in(down),.pspeed_in(sw[15:12]),
 .hcount_in(hcount),.vcount_in(vcount),
 .hsync_in(hsync),.vsync_in(vsync),.blank_in(blank),

.phsync_out(phsync),.pvsync_out(pvsync),.pblank_out(pblank),.pixel_out(pixel));

 wire border = (hcount==0 | hcount==1023 | vcount==0 | vcount==767 |
 hcount == 512 | vcount == 384);

 reg b,hs,vs;
 always_ff @(posedge clk_65mhz) begin
 hs <= phsync;
 vs <= pvsync;
 b <= pblank;
 //rgb <= pixel;
 if
((hcount<10)||((hcount>630)&&(hcount<640))||(vcount<10)||((vcount>470)&&(vc
ount<480))||((hcount==320)&&(vcount==240))) rgb <= 12'b1111_1111_1111;
 else rgb <= cam;
 end

// assign rgb = sw[0] ? {12{border}} : pixel ; //{{4{hcount[7]}}, {4{hcount[6]}},
{4{hcount[5]}}};

 // the following lines are required for the Nexys4 VGA circuit - do not change
 assign vga_r = ~b ? rgb[11:8]: 0;
 assign vga_g = ~b ? rgb[7:4] : 0;
 assign vga_b = ~b ? rgb[3:0] : 0;

 assign vga_hs = ~hs;
 assign vga_vs = ~vs;

Omotunde and Ramirez 37

E.D.I.T.H. 6.111 Final Project

endmodule

//
//
// pong_game: the game itself!
//
//

module pong_game (
 input vclock_in, // 65MHz clock
 input reset_in, // 1 to initialize module
 input up_in, // 1 when paddle should move up
 input down_in, // 1 when paddle should move down
 input [3:0] pspeed_in, // puck speed in pixels/tick
 input [10:0] hcount_in, // horizontal index of current pixel (0..1023)
 input [9:0] vcount_in, // vertical index of current pixel (0..767)
 input hsync_in, // XVGA horizontal sync signal (active low)
 input vsync_in, // XVGA vertical sync signal (active low)
 input blank_in, // XVGA blanking (1 means output black pixel)

 output phsync_out, // pong game's horizontal sync
 output pvsync_out, // pong game's vertical sync
 output pblank_out, // pong game's blanking
 output [11:0] pixel_out // pong game's pixel // r=23:16, g=15:8, b=7:0
);

 wire [2:0] checkerboard;

 // REPLACE ME! The code below just generates a color checkerboard
 // using 64 pixel by 64 pixel squares.

 assign phsync_out = hsync_in;

Omotunde and Ramirez 38

E.D.I.T.H. 6.111 Final Project

 assign pvsync_out = vsync_in;
 assign pblank_out = blank_in;
 assign checkerboard = hcount_in[8:6] + vcount_in[8:6];

 // here we use three bits from hcount and vcount to generate the
 // checkerboard

 assign pixel_out = {{4{checkerboard[2]}}, {4{checkerboard[1]}},
{4{checkerboard[0]}}} ;

endmodule

///
//
// Pushbutton Debounce Module (video version - 24 bits)
//
///

module debounce (input reset_in, clock_in, noisy_in,
 output reg clean_out);

 reg [19:0] count;
 reg new_input;

// always_ff @(posedge clock_in)
// if (reset_in) begin new <= noisy_in; clean_out <= noisy_in; count <= 0; end
// else if (noisy_in != new) begin new <= noisy_in; count <= 0; end
// else if (count == 650000) clean_out <= new;
// else count <= count+1;

 always_ff @(posedge clock_in)
 if (reset_in) begin
 new_input <= noisy_in;

Omotunde and Ramirez 39

E.D.I.T.H. 6.111 Final Project

 clean_out <= noisy_in;
 count <= 0; end
 else if (noisy_in != new_input) begin new_input<=noisy_in; count <= 0; end
 else if (count == 650000) clean_out <= new_input;
 else count <= count+1;

endmodule

//
// Engineer: g.p.hom
//
// Create Date: 18:18:59 04/21/2013
// Module Name: display_8hex
// Description: Display 8 hex numbers on 7 segment display
//
//

module display_8hex(
 input clk_in, // system clock
 input [31:0] data_in, // 8 hex numbers, msb first
 output reg [6:0] seg_out, // seven segment display output
 output reg [7:0] strobe_out // digit strobe
);

 localparam bits = 13;

 reg [bits:0] counter = 0; // clear on power up

 wire [6:0] segments[15:0]; // 16 7 bit memorys
 assign segments[0] = 7'b100_0000; // inverted logic
 assign segments[1] = 7'b111_1001; // gfedcba
 assign segments[2] = 7'b010_0100;

Omotunde and Ramirez 40

E.D.I.T.H. 6.111 Final Project

 assign segments[3] = 7'b011_0000;
 assign segments[4] = 7'b001_1001;
 assign segments[5] = 7'b001_0010;
 assign segments[6] = 7'b000_0010;
 assign segments[7] = 7'b111_1000;
 assign segments[8] = 7'b000_0000;
 assign segments[9] = 7'b001_1000;
 assign segments[10] = 7'b000_1000;
 assign segments[11] = 7'b000_0011;
 assign segments[12] = 7'b010_0111;
 assign segments[13] = 7'b010_0001;
 assign segments[14] = 7'b000_0110;
 assign segments[15] = 7'b000_1110;

 always_ff @(posedge clk_in) begin
 // Here I am using a counter and select 3 bits which provides
 // a reasonable refresh rate starting the left most digit
 // and moving left.
 counter <= counter + 1;
 case (counter[bits:bits-2])
 3'b000: begin // use the MSB 4 bits
 seg_out <= segments[data_in[31:28]];
 strobe_out <= 8'b0111_1111 ;
 end

 3'b001: begin
 seg_out <= segments[data_in[27:24]];
 strobe_out <= 8'b1011_1111 ;
 end

 3'b010: begin
 seg_out <= segments[data_in[23:20]];
 strobe_out <= 8'b1101_1111 ;

Omotunde and Ramirez 41

E.D.I.T.H. 6.111 Final Project

 end
 3'b011: begin
 seg_out <= segments[data_in[19:16]];
 strobe_out <= 8'b1110_1111;
 end
 3'b100: begin
 seg_out <= segments[data_in[15:12]];
 strobe_out <= 8'b1111_0111;
 end

 3'b101: begin
 seg_out <= segments[data_in[11:8]];
 strobe_out <= 8'b1111_1011;
 end

 3'b110: begin
 seg_out <= segments[data_in[7:4]];
 strobe_out <= 8'b1111_1101;
 end
 3'b111: begin
 seg_out <= segments[data_in[3:0]];
 strobe_out <= 8'b1111_1110;
 end

 endcase
 end

endmodule

//
// Update: 8/8/2019 GH
// Create Date: 10/02/2015 02:05:19 AM
// Module Name: xvga

Omotunde and Ramirez 42

E.D.I.T.H. 6.111 Final Project

//
// xvga: Generate VGA display signals (1024 x 768 @ 60Hz)
//
// ---- HORIZONTAL ----- ------VERTICAL -----
// Active Active
// Freq Video FP Sync BP Video FP Sync BP
// 640x480, 60Hz 25.175 640 16 96 48 480 11 2 31
// 800x600, 60Hz 40.000 800 40 128 88 600 1 4 23
// 1024x768, 60Hz 65.000 1024 24 136 160 768 3 6 29
// 1280x1024, 60Hz 108.00 1280 48 112 248 768 1 3 38
// 1280x720p 60Hz 75.25 1280 72 80 216 720 3 5 30
// 1920x1080 60Hz 148.5 1920 88 44 148 1080 4 5 36
//
// change the clock frequency, front porches, sync's, and back porches to create
// other screen resolutions
//

module xvga(input vclock_in,
 output reg [10:0] hcount_out, // pixel number on current line
 output reg [9:0] vcount_out, // line number
 output reg vsync_out, hsync_out,
 output reg blank_out);

 parameter DISPLAY_WIDTH = 1024; // display width
 parameter DISPLAY_HEIGHT = 768; // number of lines

 parameter H_FP = 24; // horizontal front porch
 parameter H_SYNC_PULSE = 136; // horizontal sync
 parameter H_BP = 160; // horizontal back porch

 parameter V_FP = 3; // vertical front porch
 parameter V_SYNC_PULSE = 6; // vertical sync
 parameter V_BP = 29; // vertical back porch

Omotunde and Ramirez 43

E.D.I.T.H. 6.111 Final Project

 // horizontal: 1344 pixels total
 // display 1024 pixels per line
 reg hblank,vblank;
 wire hsyncon,hsyncoff,hreset,hblankon;
 assign hblankon = (hcount_out == (DISPLAY_WIDTH -1));
 assign hsyncon = (hcount_out == (DISPLAY_WIDTH + H_FP - 1)); //1047
 assign hsyncoff = (hcount_out == (DISPLAY_WIDTH + H_FP +
H_SYNC_PULSE - 1)); // 1183
 assign hreset = (hcount_out == (DISPLAY_WIDTH + H_FP +
H_SYNC_PULSE + H_BP - 1)); //1343

 // vertical: 806 lines total
 // display 768 lines
 wire vsyncon,vsyncoff,vreset,vblankon;
 assign vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT - 1)); // 767
 assign vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP - 1));
// 771
 assign vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP +
V_SYNC_PULSE - 1)); // 777
 assign vreset = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP +
V_SYNC_PULSE + V_BP - 1)); // 805

 // sync and blanking
 wire next_hblank,next_vblank;
 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
 always_ff @(posedge vclock_in) begin
 hcount_out <= hreset ? 0 : hcount_out + 1;
 hblank <= next_hblank;
 hsync_out <= hsyncon ? 0 : hsyncoff ? 1 : hsync_out; // active low

 vcount_out <= hreset ? (vreset ? 0 : vcount_out + 1) : vcount_out;

Omotunde and Ramirez 44

E.D.I.T.H. 6.111 Final Project

 vblank <= next_vblank;
 vsync_out <= vsyncon ? 0 : vsyncoff ? 1 : vsync_out; // active low

 blank_out <= next_vblank | (next_hblank & ~hreset);
 end

Endmodule

module top_serial(input clk_100mhz,
 input left_click,
 input right_click,
 input double_click,
 input btnd,
 input scroll_up,
 input scroll_down,
 input [7:0] x_val,
 input [7:0] y_val,
 output logic [1:0] jc,
 output logic [2:0] jd
);

 parameter LEFT = 1; // left click
 parameter RIGHT = 0; // right click
 parameter SCROLL_UP = 2;
 parameter SCROLL_DOWN = 3;
 parameter DOUBLE = 4; // double left click
 parameter UNCLICK = 5; // release left click
 parameter CYCLES = 25000000; // number of cycles corresponding to a quarter
of a second
 parameter UPDATE = 4000000; // number of cycles corresponding to one
twenty-fifth of a second

 logic clean1; // corresponds to left_click

Omotunde and Ramirez 45

E.D.I.T.H. 6.111 Final Project

 logic old_clean1;
 logic clean2; // corresponds to right_click
 logic old_clean2;
 logic clean3; // corresponds to scroll_up
 logic old_clean3;
 logic clean4; // corresponds to scroll_down
 logic old_clean4;
 logic clean5; // corresponds to double_click
 logic old_clean5;
 logic up_trigger; // tells the Teensy to scroll_up
 logic down_trigger; // tells the Teensy to scroll_down
 logic update_trigger; // tells the Teensy to move the mouse
 logic [24:0] up_counter = 0; // when up or down counter reaches CYCLES, the
Teensy will scroll the mouse by a set value
 logic [24:0] down_counter = 0;
 logic [24:0] update_counter = 0; // when this counter reaches UPDATE, a new
mouse movement value will be sent to the Teensy
 logic [7:0] state; // the current state corresponding to an action that will be sent
to the Teensy

 assign jc[1] = 0;
 assign jd[2] = 0;
 always_ff @(posedge clk_100mhz)begin
 if (update_counter == UPDATE) begin
 update_trigger <= 1;
 update_counter <= 0;
 end else begin
 update_trigger <= 0;
 update_counter <= update_counter + 1;
 end
 old_clean1 <= clean1; //for rising edge detection
 old_clean2 <= clean2;
 old_clean3 <= clean3;

Omotunde and Ramirez 46

E.D.I.T.H. 6.111 Final Project

 old_clean4 <= clean4;
 old_clean5 <= clean5;
 if (up_counter == CYCLES) begin
 up_trigger <= 1;
 up_counter <= 0;
 end else if (down_counter == CYCLES) begin
 down_trigger <= 1;
 down_counter <= 0;
 end else begin
 up_trigger <= 0;
 down_trigger <= 0;
 if (clean3) begin
 up_counter <= up_counter + 1;
 end else up_counter <= 0;
 if (clean4) begin
 down_counter <= down_counter + 1;
 end else down_counter <= 0;
 end
 end

 always_comb begin
 if (clean1&~old_clean1) begin
 state = LEFT;
 end else if (clean2&~old_clean2) begin
 state = RIGHT;
 end else if ((clean3&~old_clean3)|up_trigger) begin
 state = SCROLL_UP;
 end else if ((clean4&~old_clean4)|down_trigger) begin
 state = SCROLL_DOWN;
 end else if (clean5&~old_clean5) begin
 state = DOUBLE;
 end else if (old_clean1&~clean1) begin
 state = UNCLICK;

Omotunde and Ramirez 47

E.D.I.T.H. 6.111 Final Project

 end
 end

 debounce my_deb(.clock_in(clk_100mhz),
 .reset_in(btnd),
 .noisy_in(left_click),
 .clean_out(clean1));

 debounce my_deb2(.clock_in(clk_100mhz),
 .reset_in(btnd),
 .noisy_in(right_click),
 .clean_out(clean2));

 debounce my_deb3(.clock_in(clk_100mhz),
 .reset_in(btnd),
 .noisy_in(scroll_up),
 .clean_out(clean3));

 debounce my_deb4(.clock_in(clk_100mhz),
 .reset_in(btnd),
 .noisy_in(scroll_down),
 .clean_out(clean4));

 debounce my_deb5(.clock_in(clk_100mhz),
 .reset_in(btnd),
 .noisy_in(double_click),
 .clean_out(clean5));

 serial_tx my_tx(.clk_in(clk_100mhz),
 .rst_in(btnd),

.trigger_in((clean1&~old_clean1)|(clean2&~old_clean2)|(clean3&~old_clean3)|(cl
ean4&~old_clean4)|up_trigger|down_trigger|(clean5&~old_clean5)

Omotunde and Ramirez 48

E.D.I.T.H. 6.111 Final Project

 |(old_clean1&~clean1)),
 .val_in(state),
 .data_out(jc[0]));

 serial_tx x_tx(.clk_in(clk_100mhz),
 .rst_in(btnd),
 .trigger_in(update_trigger),
 .val_in(x_val),
 .data_out(jd[0]));

 serial_tx y_tx(.clk_in(clk_100mhz),
 .rst_in(btnd),
 .trigger_in(update_trigger),
 .val_in(y_val),
 .data_out(jd[1]));
endmodule//top_level

module serial_tx(input clk_in,
 input rst_in,
 input trigger_in,
 input [7:0] val_in,
 output logic data_out);
 parameter DIVISOR = 868; //treat this like a constant!!

 logic [9:0] shift_buffer; //10 bits...interesting
 logic [31:0] count;

 // assign data_out = shift_buffer[0];

 always @(posedge clk_in)begin
 if (rst_in) begin
 count <= 32'b0;
 shift_buffer <= 10'b11_1111_1111;

Omotunde and Ramirez 49

E.D.I.T.H. 6.111 Final Project

 data_out <= shift_buffer[0];
 end else if (trigger_in) begin
 shift_buffer <= {1'b1, val_in, 1'b0};
 data_out <= shift_buffer[0];
 end else if (count == DIVISOR - 1) begin
 count <= 32'b0;
 shift_buffer <= {1'b1, shift_buffer[9:1]};
 data_out <= shift_buffer[0];
 end else begin
 count <= count + 1;
 end
 end
Endmodule

//`default_nettype none
//
// Audio Portion
// Based on code from Mitchell Gu
// Project Name: Nexys4 FFT Demo
//

module nexys4_fft_demo (
 input wire CLK100MHZ,
 input clk_104mhz,
 input clk_65mhz,
 input [10:0] hcount,
 input [9:0] vcount,
 input hsync, vsync, blank,
 input wire [15:0] SW,
 input wire BTNU, BTNR,
 input wire AD3P, AD3N, // The top pair of ports on JXADC on Nexys 4
 output wire AUD_PWM, AUD_SD,

Omotunde and Ramirez 50

E.D.I.T.H. 6.111 Final Project

 output logic [15:0] LED // LEDs above switches //Can cut back on
this
);

//Need this
// **************** BEGIN BASIC IO SETUP
*******************************//

 // INSTANTIATE SEVEN SEGMENT DISPLAY
 logic [18:0] filler;

// **************** END BASIC IO SETUP
*******************************//
 //Need this
 wire [15:0] sample_reg;
 wire eoc, xadc_reset;
 // INSTANTIATE XADC IP
 xadc_demo xadc_demo (
 .dclk_in(clk_104mhz), // Master clock for DRP and XADC.
 .di_in(0), // DRP input info (0 becuase we don't need to write)
 .daddr_in(6'h13), // The DRP register address for the third analog input
register
 .den_in(1), // DRP enable line high (we want to read)
 .dwe_in(0), // DRP write enable low (never write)
 .drdy_out(), // DRP ready signal (unused)
 .do_out(sample_reg), // DRP output from register (the ADC data)
 .reset_in(xadc_reset), // reset line
 .vp_in(0), // dedicated/built in analog channel on bank 0
 .vn_in(0), // can't use this analog channel b/c of nexys 4 setup
 .vauxp3(AD3P), // The third analog auxiliary input channel
 .vauxn3(AD3N), // Choose this one b/c it's on JXADC header 1
 .channel_out(), // Not useful in sngle channel mode
 .eoc_out(eoc), // Pulses high on end of ADC conversion

Omotunde and Ramirez 51

E.D.I.T.H. 6.111 Final Project

 .alarm_out(), // Not useful
 .eos_out(), // End of sequence pulse, not useful
 .busy_out() // High when conversion is in progress. unused.
);
 assign xadc_reset = BTNR;

// //Low Pass filter
// parameter SAMPLE_COUNT = 2082;//gets approximately (will generate
audio at approx 48 kHz sample rate.
// logic [15:0] sample_counter;
// always @(posedge CLK100MHZ) begin
// if (sample_counter == SAMPLE_COUNT)begin
// sample_counter <= 16'b0;
// end else begin
// sample_counter <= sample_counter + 16'b1;
// end
// end
// wire [17:0] filtered_data;
// fir31 lowpass(.clk_in(CLK100MHZ), .rst_in(BTND_clean), .ready_in(),
.x_in(sample_reg[11:4]), .y_out(filtered_data));

 //Need this
 // INSTANTIATE 16x OVERSAMPLING
 // This outputs 14-bit samples at a 62.5kHz sample rate
 // (2 more bits, 1/16 the sample rate)
 wire [13:0] osample16;
 wire done_osample16;
 oversample16 osamp16_1 (
 .clk(clk_104mhz),
 .sample(sample_reg[15:4]), //originally .sample(sample_reg[15:4]),
potentially change too .sample(filtered_data[17:6]) if want filter
 .eoc(eoc),
 .oversample(osample16),

Omotunde and Ramirez 52

E.D.I.T.H. 6.111 Final Project

 .done(done_osample16));

 //Need this
 // INSTANTIATE SAMPLE FRAME BLOCK RAM
 // This 16x4096 bram stores the frame of samples
 // The write port is written by osample16.
 // The read port is read by the bram_to_fft module and sent to the fft.
 wire fwe;
 reg [11:0] fhead = 0; // Frame head - a pointer to the write point, works as
circular buffer
 wire [15:0] fsample; // The sample data from the XADC, oversampled 15x
 wire [11:0] faddr; // Frame address - The read address, controlled by
bram_to_fft
 wire [15:0] fdata; // Frame data - The read data, input into bram_to_fft
 bram_frame bram1 (
 .clka(clk_104mhz),
 .wea(fwe),
 .addra(fhead),
 .dina(fsample),
 .clkb(clk_104mhz),
 .addrb(faddr),
 .doutb(fdata));

 //Need this
 // SAMPLE FRAME BRAM WRITE PORT SETUP
 always @(posedge clk_104mhz) if (done_osample16) fhead <= fhead + 1; //
Move the pointer every oversample
 assign fsample = {osample16, 2'b0}; // Pad the oversample with zeros to pretend
it's 16 bits
 assign fwe = done_osample16; // Write only when we finish an oversample
(every 104*16 clock cycles)

 // SAMPLE FRAME BRAM READ PORT SETUP

Omotunde and Ramirez 53

E.D.I.T.H. 6.111 Final Project

 // For this demo, we just need to display the FFT on 60Hz video, so let's only
send the frame of samples
 // once every 60Hz. If you want to though, you can send frames much faster, one
right after each other.
 // For this 4096pt fully pipelined FFT, the limit is
104Mhz/4096cycles_per_frame = 25kHz (approx)
 // The next two modules just synchronize the 60Hz vsync to the 104Mhz domain
and convert it to a 1 cycle pulse.
 wire vsync_104mhz, vsync_104mhz_pulse;
 synchronize vsync_synchronize(
 .clk(clk_104mhz),
 .in(vsync),
 .out(vsync_104mhz));

 level_to_pulse vsync_ltp(
 .clk(clk_104mhz),
 .level(~vsync_104mhz),
 .pulse(vsync_104mhz_pulse));

 //Need this
 // INSTANTIATE BRAM TO FFT MODULE
 // This module handles the magic of reading sample frames from the BRAM
whenever start is asserted,
 // and sending it to the FFT block design over the AXI-stream interface.
 wire last_missing; // All these are control lines to the FFT block design
 wire [31:0] frame_tdata;
 wire frame_tlast, frame_tready, frame_tvalid;
 bram_to_fft bram_to_fft_0(
 .clk(clk_104mhz),
 .head(fhead),
 .addr(faddr),
 .data(fdata),
 .start(vsync_104mhz_pulse),

Omotunde and Ramirez 54

E.D.I.T.H. 6.111 Final Project

 .last_missing(last_missing),
 .frame_tdata(frame_tdata),
 .frame_tlast(frame_tlast),
 .frame_tready(frame_tready),
 .frame_tvalid(frame_tvalid)
);

 //Need this
 // This is the FFT module, implemented as a block design with a 4096pt, 16bit
FFT
 // that outputs in magnitude by doing sqrt(Re^2 + Im^2) on the FFT result.
 // It's fully pipelined, so it streams 4096-wide frames of frequency data as fast as
 // you stream in 4096-wide frames of time-domain samples.
 wire [23:0] magnitude_tdata; // This output bus has the FFT magnitude for the
current index
 wire [11:0] magnitude_tuser; // This represents the current index being output,
from 0 to 4096
 wire [11:0] scale_factor; // This input adjusts the scaling of the FFT, which can
be tuned to the input magnitude.
 wire magnitude_tlast, magnitude_tvalid;
 fft_mag fft_mag_i(
 .clk(clk_104mhz),
 .event_tlast_missing(last_missing),
 .frame_tdata(frame_tdata),
 .frame_tlast(frame_tlast),
 .frame_tready(frame_tready),
 .frame_tvalid(frame_tvalid),
 .scaling(12'b110000011101), //SCALING IS GIVEN THIS
NUMBER FROM EXPERIENCE TO CUT DOWN ON NOISE - otherwise
.scaling(SW_clean[15:4])
 .magnitude_tdata(magnitude_tdata),
 .magnitude_tlast(magnitude_tlast),
 .magnitude_tuser(magnitude_tuser),

Omotunde and Ramirez 55

E.D.I.T.H. 6.111 Final Project

 .magnitude_tvalid(magnitude_tvalid));

 // Let's only care about the range from index 0 to 1023, which represents
frequencies 0 to omega/2
 // where omega is the nyquist frequency (sample rate / 2)
 wire in_range = ~|magnitude_tuser[11:10]; // When 11 and 10 are 0, we're on
indexes 0 to 1023

//The two different thresholds - just for fun in case you want to be change it
 logic [15:0] test_thresh = 16'h32c8;
 logic [15:0] vocal_thresh = 16'h1b58;

logic [15:0] thresh;

 //Here are the frequency ranges for all ranges
//The bit sizes can go up to the 12k range - if you want to above increase the

sizes
//Range for the voices
logic [9:0] low_bottom_vocal = 10;
logic [9:0] low_top_vocal = 23;
logic [9:0] high_bottom_vocal = 25;
logic [9:0] high_top_vocal = 30;
logic [9:0] slide_max_lower_vocal = 300;
logic [9:0] slide_max_upper_vocal = 525;
logic [9:0] slide_bound_bottom_vocal = 360;
logic [9:0] slide_bound_upper_vocal = 475;
logic [9:0] slide_termination_lower_vocal = 400;
logic [9:0] slide_termination_upper_vocal = 425;
logic [9:0] scroll_lower_vocal = 333;
logic [9:0] scroll_upper_vocal = 340;

//Range for testing - sine generator
logic [9:0] low_bottom_test = 200;
logic [9:0] low_top_test = 230;

Omotunde and Ramirez 56

E.D.I.T.H. 6.111 Final Project

logic [9:0] high_bottom_test = 255;
logic [9:0] high_top_test = 280;
logic [9:0] slide_max_lower_test = 300;
logic [9:0] slide_max_upper_test = 525;
logic [9:0] slide_bound_bottom_test = 360;
logic [9:0] slide_bound_upper_test = 475;
logic [9:0] slide_termination_lower_test = 400;
logic [9:0] slide_termination_upper_test = 425;
logic [9:0] scroll_lower_test = 333;
logic [9:0] scroll_upper_test = 340;

//Range variables that I will apply in the actual execution
logic [9:0] low_bottom_true = 200;
logic [9:0] low_top_true = 230;
logic [9:0] high_bottom_true = 255;
logic [9:0] high_top_true = 280;
logic [9:0] slide_max_lower_true = 300;
logic [9:0] slide_max_upper_true = 525;
logic [9:0] slide_bound_bottom_true = 360;
logic [9:0] slide_bound_upper_true = 475;
logic [9:0] slide_termination_lower_true = 400;
logic [9:0] slide_termination_upper_true = 425;
logic [9:0] scroll_lower_true = 333;
logic [9:0] scroll_upper_true = 340;

//Switch variables - change threshold and frequencies
//Will not use - there would be too much interference ie stuff going on
logic [9:0] thresh_low_change;
logic [9:0] thresh_high_change;
logic [9:0] freq_low_change;
logic [9:0] freq_high_change;

Omotunde and Ramirez 57

E.D.I.T.H. 6.111 Final Project

//Variables for testing - I am leaving them because perfection fake and you
can always improve
 logic [11:0] bin_peak;
 logic [19:0] max_peak;
 logic [19:0] thresh_display;
 logic [11:0] thresh_bin;

//Variables for audio scrolling

 logic [11:0] scroll_bin = 0;
 logic [11:0] scroll_freeze_bin;
 logic [19:0] scroll_peak;
 logic scroll_flag = 0;

//Change the threshold value and frequency ranges
//switches will be used for testing
//If you change based on frequency use the upper threshold
always @(posedge CLK100MHZ) begin

if (SW[14]) thresh = vocal_thresh; //If
sw[14] change threshold to use it for your voice

else thresh = test_thresh;
//Else change to the testing mode

//A LOT of conditional statements
if (SW[15])

//If sw[15] change frequency range for the vocal range
begin

low_bottom_true = low_bottom_vocal;
low_top_true = low_top_vocal;
high_bottom_true = high_bottom_vocal;
high_top_true = high_top_vocal;
slide_max_lower_true = slide_max_lower_vocal;
slide_max_upper_true = slide_max_upper_vocal;
slide_bound_bottom_true = slide_bound_bottom_vocal;

Omotunde and Ramirez 58

E.D.I.T.H. 6.111 Final Project

slide_bound_upper_true = slide_bound_upper_vocal;
slide_termination_lower_true =

slide_termination_lower_vocal;
slide_termination_upper_true =

slide_termination_upper_vocal;
scroll_lower_true = scroll_lower_vocal;
scroll_upper_true = scroll_upper_vocal;

end
else

//Else use the testing mode frequencies
begin

low_bottom_true = low_bottom_test;
low_top_true = low_top_test;
high_bottom_true = high_bottom_test;
high_top_true = high_top_test;
slide_max_lower_true = slide_max_lower_test;
slide_max_upper_true = slide_max_upper_test;
slide_bound_bottom_true = slide_bound_bottom_test;
slide_bound_upper_true = slide_bound_upper_test;
slide_termination_lower_true =

slide_termination_lower_test;
slide_termination_upper_true =

slide_termination_upper_test;
scroll_lower_true = scroll_lower_test;
scroll_upper_true = scroll_upper_test;

end
end
//Finds the absolute peak for every iteration of the FFT

 always @(posedge CLK100MHZ) begin
 if (magnitude_tuser == 0)
 begin
 scroll_peak <= 0;
 scroll_bin <= 0;

Omotunde and Ramirez 59

E.D.I.T.H. 6.111 Final Project

 end
 else if (magnitude_tdata > scroll_peak && magnitude_tdata > thresh)
 begin
 scroll_peak <= magnitude_tdata;
 scroll_bin <= magnitude_tuser;
 end
 end

 always @(posedge CLK100MHZ) begin
 //Isolate and identify frequencies
 if (BTNU)
 begin
 max_peak <= 0;
 bin_peak <= 0;
 end

 else
 begin
 if (magnitude_tuser >= low_bottom_true && magnitude_tuser <=
low_top_true) //Lower frequency
 begin
 thresh_display = magnitude_tdata;

//Use this to see all
magnitude_tdata - will be too fast
 if (magnitude_tdata >= thresh)

//Only consider bins above this
threshold
 begin

 if (magnitude_tdata > max_peak)

//If this bin magnitude is larger
than our last greatest bin magnitude proceed

Omotunde and Ramirez 60

E.D.I.T.H. 6.111 Final Project

 begin
 max_peak <= magnitude_tdata;

//Record bin magnitude
 bin_peak <= magnitude_tuser;

//Record bin number
 end

 thresh_bin <= magnitude_tuser;

//Record bin magnitude in a
seperate variable
 LED[0] <= 1;

//For humans to
confirm this process is happening
 LED[1] <= 1;
 LED[15:2] <= 0;
 end
 else
 begin
 LED[0] <= 0;

 LED[1] <= 0;
 end
 end
 else if (magnitude_tuser >= high_bottom_true && magnitude_tuser <=
high_top_true) //Higher frequecy
 begin

//Similar to
what is happeing above - consult above if confused
 if (magnitude_tdata >= thresh)
 begin
 LED[15] <= 1;
 LED[14] <= 1; // double click
 LED[13:0] <= 0;

Omotunde and Ramirez 61

E.D.I.T.H. 6.111 Final Project

 end
 else
 begin
 LED[15] <= 0;
 LED[14] <= 0;
 end
 end
 else if (magnitude_tuser >= scroll_lower_true && magnitude_tuser <=
scroll_upper_true)
 begin
 if (magnitude_tdata >= thresh)
 begin
 LED[5] <= 1;
 LED[4:0] <= 0;
 LED[15:6] <= 0;
 end
 else LED[5] <= 0;

 end
 else if (magnitude_tuser >= slide_max_lower_true && magnitude_tuser <=
slide_max_upper_true) //Sliding frequency

begin
if (magnitude_tdata >= thresh)

begin
if (magnitude_tuser <

slide_bound_bottom_true || magnitude_tuser > slide_bound_upper_true) //If you
reach the ends of this frequency range cut everything off before we leave this range

begin
scroll_flag <= 0;
LED[4] <= 0;
LED[7] <= 0;
LED[11] <= 0;

end

Omotunde and Ramirez 62

E.D.I.T.H. 6.111 Final Project

else if (magnitude_tuser >=
slide_termination_lower_true && magnitude_tuser <=
slide_termination_upper_true) //Must turn this frequency range on before you can
scroll

begin
scroll_flag = 1;

 //1 - scrolling allowed; 0 - scrolling not
allowed

scroll_freeze_bin = 415;
//magnitude_tuser

 //Record the magnitude for the scroll - if necessary
LED[7] <= 1;
LED[4] <= 0;
LED[11] <= 0;

end
else if (scroll_flag == 1 &&

(magnitude_tuser <= slide_termination_lower_true && magnitude_tuser >=
slide_termination_upper_true))

//Scrolling allowed

begin
if (scroll_peak >

scroll_freeze_bin)
begin

LED[4] <=
1; // scroll up

 //If you are on the upper side of the bound scroll up
//LED[11]

<= 0;
//No interference wanted

end
else LED[4] <= 0;

Omotunde and Ramirez 63

E.D.I.T.H. 6.111 Final Project

if (scroll_peak <

scroll_freeze_bin)
begin

LED[11] <=
1; // scroll down

 //If you are on the lower side of the bound scroll down
//LED[4] <=

0;
//No interference wanted

end
else LED[11] <= 0;

end
end

end

 end
 end

 // INSTANTIATE HISTOGRAM BLOCK RAM
 // This 16x1024 bram stores the histogram data.
 // The write port is written by process_fft.
 // The read port is read by the video outputter or the SD care saver
 // Assign histogram bram read address to histogram module unless saving
 wire [9:0] haddr; // The read port address
 wire [15:0] hdata; // The read port data
 bram_fft bram2 (
 .clka(clk_104mhz),
 .wea(in_range & magnitude_tvalid), // Only save FFT output if in range and
output is valid
 .addra(magnitude_tuser[9:0]), // The FFT output index, 0 to 1023
 .dina(magnitude_tdata[15:0]), // The actual FFT magnitude
 .clkb(clk_104mhz), // input wire clkb used to be clk_65mhz

Omotunde and Ramirez 64

E.D.I.T.H. 6.111 Final Project

 .addrb(haddr), // input wire [9 : 0] addrb
 .doutb(hdata) // output wire [15 : 0] doutb
);

 // INSTANTIATE HISTOGRAM VIDEO
 // A simple module that outputs a VGA histogram based on
 // hcount, vcount, and the BRAM read values
 wire [2:0] hist_pixel;
 wire [1:0] hist_range;
 histogram fft_histogram(
 .clk(clk_65mhz),
 .hcount(hcount),
 .vcount(vcount),
 .blank(blank),
 .range(2'b00), // How much to zoom on the first part of the spectrum -
OTHERWISE SW_clean[1:0]!!!!
 .vaddr(haddr),
 .vdata(hdata),
 .pixel(hist_pixel));

 // INSTANTIATE PWM AUDIO OUT MODULE
 // 11 bit PWM audio out is reasonable because otherwise, the PWM frequency
would
 // drop close to the audible and unfiltered range. 11bits -> 104Mhz/2^11=51Khz
 wire [10:0] pwm_sample;
 pwm11 pwm_out(
 .clk(clk_104mhz),
 .PWM_in(osample16[13:3]),
 .PWM_out(AUD_PWM),
 .PWM_sd(AUD_SD));

Endmodule

Omotunde and Ramirez 65

E.D.I.T.H. 6.111 Final Project

Teensy Code:

// set this to the hardware serial port you wish to use
#define HWSERIAL Serial1
#define HWSERIAL2 Serial2
#define HWSERIAL3 Serial3

void setup() {
 // put your setup code here, to run once:
 HWSERIAL.begin(115200); // will receive the current action for the mouse to
perform
 HWSERIAL2.begin(115200); // receives the x value for mouse movement
 HWSERIAL3.begin(115200); // receives the y value for mouse movement
}

void loop() {
 // put your main code here, to run repeatedly:
 int8_t incomingByte; // the current state of the system (aka action to be
performed)
 int8_t incomingByte2;
 int8_t incomingByte3;
 if (HWSERIAL.available() > 0) {
 incomingByte = HWSERIAL.read();
 // for testing purposes
 Serial.print("UART received: ");
 Serial.println(incomingByte, DEC);
 //HWSERIAL.print("UART received:");
 // HWSERIAL.println(incomingByte, DEC);
 if (incomingByte == 0) { // corresponds to right click
 Mouse.set_buttons(0, 0, 1);
 Mouse.set_buttons(0, 0, 0);
 }
 else if (incomingByte == 1) { // pressing down left button

Omotunde and Ramirez 66

E.D.I.T.H. 6.111 Final Project

 Mouse.set_buttons(1, 0, 0);
 }
 else if (incomingByte == 2) { // scrolling up
 Mouse.scroll(1);
 }
 else if (incomingByte == 3) { // scrolling down
 Mouse.scroll(-1);
 }
 else if (incomingByte == 4) { // double left click
 Mouse.click();
 Mouse.click();
 }
 else if (incomingByte == 5) { // releasing the left button (and also the right
button)
 Mouse.set_buttons(0, 0, 0);
 }
 }
 if (HWSERIAL2.available() > 0 && HWSERIAL3.available() > 0) { // will only
move the mouse when both x and y values are received
 incomingByte2 = HWSERIAL2.read();
 incomingByte3 = HWSERIAL3.read();
 Mouse.move(incomingByte2, incomingByte3);
 // for testing purposes
 // Serial.print("UART X received: ");
 // Serial.println(incomingByte2, DEC);
 // Serial.print("UART Y received: ");
 // Serial.println(incomingByte3, DEC);
 }
}

Omotunde and Ramirez 67

E.D.I.T.H. 6.111 Final Project

Omotunde and Ramirez 68

