6.111 Synthesized Drum

Abstract

The goal of this project is to simulate the membrane of a drum and synthesize a
passable drum sound. We will do so by taking analog input, produced by a piezo grid,
which encodes the input force and strike zone (or “epicenter”) of the strike. Using this
data we will infer the location of the strike in order to simulate the drum membrane and
produce a sound resembling what would happen if playing an actual drum. We hope to
be able to do this with a small latency using the Nexys4 DDR board enabled with an
Artix-7 FPGA chip.

Background

Electronic drum pads use analog signals from piezoelectric components to
produce percussive noises using specialized hardware.

Early (“low quality”) electric drums synthesize the sounds by means of simulating the
response of the drum as opposed to newer (“higher quality”) percussion instruments,
which use mesh heads that closely mimic the response of typical drum membranes.
The difference between these models is that the higher quality drums use a single piezo
(or very few), in conjunction with tensioned applied mesh heads, and acts as a glorified
amplifier. The “lower” quality drums have a peculiar problem in that they need to
synthesize the sound somehow.

Our goal is to mimic the perturbation of this membrane using and synthesizing
the resulting sound. We believe this to be an interesting problem since simulating
multiparticle systems can be computationally expensive; but with some good hardware
we can produce a decent sounding circular percussive membrane within a reasonably
small latency. Real drums create slightly different sounds when struck/dampened at
different locations. We believe that real-time simulation of a drum membrane coupled
with a position-sensitive drum pad could very realistically recreate the position
sensitivity of a real drum, which is a property typically lacking in drum pads on the
market today.

Abstract
Background
Numerical Simulation of Drum Membrane

The Physical Setup
Drum Head
ADC Interface
Sound Output

Modules
Infer Epicenter [Robbie]
Issue with Infer epicenter
Fixed Point Multiplier [Ben]
Complications with the Fixed Point Multiplier
Time Evolution Solver [Ben]
Development flow of the Time Evolution Module
Complications with the Time Evolution Module
Sound Generator [Ben] (handled in top level)
XVGA t [Evan /6.111 Lab 3]
Image Generation [Evan]
Top Level

Block Diagram:
Overall
Interface
Infer Epicenter
Graphics
Time Evolution

External Components

Ideas for Improvement
Migrate towards capacitive touch technology
Found some companies use CTT for some drum designs

Appendix:
Matlab Test Simulation:
Top Level Verilog File:
Time Evolution Module:
Infer Epicenter Module:
Image Generation Module:
Helper Modules:

o 00 NN b

©

10
10
10
11
13
14
14
14
16

17
17
17
18
18
19

20

20
20
20

21
21
23
28
31
34
43

Numerical Simulation of Drum Membrane

e In order to make this a tractable problem we will be making some reasonable
assumptions:
o The membrane can be represented as discrete regions of 2D space,
which we will call “particles”.
o The membrane is only one “particle” in depth or is composed of a single
layer of particles.
o The air column beneath the membrane does not add to the sound but
does damp the movement of the membrane somewhat
o The tension is strong enough to avoid having to use a damping constant.
Although we may explore this later in later iterations.
o For now we will assume that only the boundary conditions are 0, but may
scale by some gaussian function time permitting.
e This is shown by the following:

Discretized Drum Membrane

&vni
Q &yl O e Each mass has mass
m
N N - e Vertical and horizontal
Y & XK@ spacing is a
H B e Tension between each
B a r massis T
CJ MEQ o Z represents
. displacement out of
T T page for each mass

T
Fx.y =My y = E (Zx+1.y + Z_r—l,y + Zx,y—l + Zx.yn - 4zx,y} - ar.y + Fy

Equations of motion for each mass in the coupled oscillator.
F,,
Ve (1 df) = v (1) + ==dlt

Lyy(t+dt)=Zy) (1) vy, (Ddt+ FT:J-I‘-(dr]:

Taylor approximations of the position and velocity of each mass in the coupled
oscillator based on the equations of motion. These calculations were repeated
for each time step of duration dt. The highlighted term was included in the
Matlab simulations, but neglected in the Verilog version.

To characterize the motion of a 2D, finite, membrane we assume the discretized
particles interact only with their nearest neighbors.

o We assume that the force applied by each neighbor is proportional to the
positional difference between that neighbor and center particle.

o Additionally we assume a circular (radius N/2) boundary condition,
inscribed an NxN grid of particles.

Using Euler’'s method, with small time step corresponding to sampling interval,
we calculate the new position vectors for each particle.

Another method we will try to explore is using the normal modes of the system to
characterize the time evolution given an input. We have decomposed the
eigenvectors for a 50x50 grid of particle system and found the normal modes
using Matlab, shown below.
o Using the normal modes we can characterize the time evolution of the
system given some input (strike on the drum pad).

Round Drum Center Hit "u ~ 140 Hz)

Audio Amplitude

0 05 1 15 2 25 3 as 4 45 5
Audio Sample Number (48 KHz) «10*

Audio signal from a simulated drum hit. Matlab was used to simulate a 50x50
2D coupled oscillator. The audio signal was derived from the sum of all

masses in the oscillator.

Drum Simulation in Matlab (early results)

After some time...

Initial

The Physical Setup

e Drum Head

o We tested a number of possible drum pad configurations. The main part of
each were 4 piezos that were arranged with two along two perpendicular
axes. This allowed us to determine a x and a y position for a drum strike
for determining the sound our drum would make. In order to accomplish
this, we needed a drum head that would remain relatively stable so the
piezos would not move as well as material that would pass the vibrations
of a strike along to all 4 piezos relatively quickly.

o Materials we tried were a silicone pad used to place pet food bowls on,
foam similar to that of a mouse pad, ceramic tiling, and cork board

o Our final configuration consisted of a combination of foam, ceramic tiling,
and cork board layers bound together with tape.

Photograph of the drum pad. The 4 piezo transducers were sandwiched
between two % inch layers of neoprene foam. A ceramic tile was placed on top
of the foam to distribute the force of the drum hits, and a layer of cork board

e ADC Interface
o For receiving this piezo outputs in a meaningful form to our FPGA, we
needed to scale the voltage output down to the range of 0 - 1V. This is the
range that is able to be received by the ADC on the Artix 7.
o To accomplish this we used a number of voltage dividers for scaling and

capacitors to account for noise.

R2
C1 6ka Nexys ADC
10 pF
I: |
Piozo I I
R1
2.4 kD R3
10 k2

Circuit to interface piezos to the Nexys Board's ADC. R1 reduces the voltage
of the signal from the piezo to approximately 1 Vpp, and C1 AC couples the
piezo signal. R1 and R2 bias the signal to approximately 0.5 V, and OA1
buffers the input signal.

e Sound Output

In order to “see” what the simulation was doing we thought it would be natural to
listen to how the simulation is oscillating. We decided a good representation of
this would be the sum of the positions of the pseudo-particles.

We then had to figure out a smart way to truncate this 32-bit number to 8 bits to
feed in as inputs to the on-board PWM. Although we could have come up with a
scheme that would let us avoid this truncation we decided it be best to focus our
efforts on the simulation aspect of the project.

Modules

We need to run a time step of the simulation by solving for the new positions and

velocities of each simulated particle. The ADC sampling rate is 48kHz, and if we use a
100MHz clock, then we have 2083 clock cycles to perform these tasks.

Infer Epicenter [Robbie]

This module makes use of the on-board 4-channel ADC . Each channel was
16-bits wide, but ignored the 4 LSB auxiliary bits. The remaining 12-bits had
corresponded to discretized voltages between 0V-1V. The ADC reads are then
measured across a time window following a trigger threshold being surpassed,
indicating a strike. Across this time window, the values are averaged in order to
extrapolate the likely origin of the strike. This is then mapped to an x, y
coordinate across a range of 50 by 50. From this information we also come up
with a 12 bit measure of the force that is fed into the image generation and time
evolution modules. Some issues in making this module included finding a proper
threshold and determining the best means of inferring the origin of the drum hit,
whether it be a difference in force experienced or difference in time of triggering.
What was decided was essentially integrating the values across the time window.

a b c

Two piezos were placed on the x-axis of the drum pad and their signals fed
into the oscilloscope. The drum pad was then struck on a) the left side, b) the
center, and c) the right side. Note that the signals line up for the center hit, but
are offset from one another on the side hits. The time delay between the
signals were used to estimate the position of the strike on the drum pad.

Issue with Infer epicenter

First issue was stepping down the 30V p-p signal of the piezos, then biasing that
signal about 0.5V. The imprecision of this operation introduced some artifacts in
the behavior which we were able to better detect with the display module.

Additionally, the module makes a lot of assumptions about how the wave travels
through the board and to the piezos. Although most waves should have travelled
relatively consistently, we believe the way we were sampling the piezos could be
greatly improved by relying less on physical assumptions.

One minor (but humorous) artifact was that the piezos were in some cases
sensitive to noise, both electrical and physical. As a result there were times when
the drum would randomly go off from electrical noise around it or pick up the
vibrations of you putting your phone on the table.

Fixed Point Multiplier [Ben]

In order to carry out Euler’'s method, multiplication by small numbers is
necessary. A fixed point multiplier was designed that allows us to represent
fractional numbers with a fixed resolution. This module carries out regular integer
multiplication between its two multiplicands, the result of which has double the
bits. The module then rounds the result back to the original bit length of the
inputs and sign-extends the result.

Complications with the Fixed Point Multiplier

We initially used a 16-bit format to represent all numbers in the used in the
coupled oscillator simulation (4 bits to the left of the decimal place, and 12 to the
right), but eventually a 24-bit format was used to increase resolution (6 bits to the
left of the decimal point and 18 to the right). Even higher precision would have
been desirable, but any format exceeding 24 bits resulted in over-utilization of the
FPGA’s DSPs.

e Time Evolution Solver [Ben]

This module was used to update the position and velocities of the particles in the
simulated coupled oscillator using Euler's method to solve the equations of
motion for each particle over a small time step (i.e. the time between audio
samples). This module parallelized the update of the position and velocity for an
entire column of the system at once (which in this case ranged from 25 to 50
particles long). In order to parallelize RAM access, the positions and velocities for
an entire column were concatenated into a single large register. Hardware was
then synthesized in a generate block to update each section of the position and
velocity register according to the corresponding mass’s current velocity, position,
and the positions of its nearest neighbors.

This module was meant to have its inputs changed in the top-level to iterate
through the columns of a 2D coupled oscillator and speed up the time evolution
calculation compared to updating each mass individually. With slight
modifications to the math in this module, it could be used to solve for a 1D
coupled oscillator in only a few clock cycles.

Development flow of the Time Evolution Module

Several instances of the fixed point multiplier were used to construct the first
order Taylor approximation of the position and velocity derived from the
equations of motion for a spring-mass system/single-mass system. This
simplified version was then tested with a test bench. We found that round-off
error would accumulate over many time steps and cause the simulation to
diverge if no damping was applied.

The simulation was then made iteratively more complex. First, it was modified to
calculate updated positions and velocities for a 1D coupled oscillator over one
time step within. This calculation was originally not pipelined, and took place in
one clock cycle. Second, it was modified to accept inputs for the positions of the
column to the left and right of the update column. This allows it to be used to

10

calculate the time evolution of a 2D system. Both the 1D and 2D systems were
tested using test benches before proceeding.

The audio signal from the simulation was derived by summing the positions of all
particles used in the simulation. Test benches were used to determine what
constant to add to the sum to make it unsigned, and how much to shift it to
convert it to an 8-bit amplitude value for the audio PWM module.

Tv_siep_h_beha sl
O W 8 & 2 « H M = = &

Haree Wk

A test bench for a 3x3 coupled oscillator. Initially only the center mass (pos5)

was displaced. Note that the upper right and lower left corner positions (pos3

and pos7) match up, which is what one would expect given the symmetries of
this particular system

Once the test benches verified that the math was being performed correctly, we
tried uploading the code to an FPGA and tested it by setting the audio output to
the sum of all positions in the simulated coupled oscillator. Due to complications,
which will be discussed below, we were not able to run the 2D simulations on the
FPGA, but we were able to run a simulation of a 50-mass 1D system which only
required 3 clock cycles to update.

11

Once the simulation was working and producing an audio output, it was modified
to take a force_in input, which stored the force applied to every mass.
Infer_epicenter would provide the data necessary to determine which mass to
apply a force to, and the magnitude of said force.

M Pos: 3220m:

MNexys audio output from the simulation of a) a single-mass system, b)a 1D
3-mass system, c) the final 1D 50-mass system.

Later iterations of the time evolution module allowed for the values of Gamma
and k (k = T/(m*a)) to be modified by means of btnu, btnd, btnl, and btnr. Values
of Gamma and k were displayed on the 7-segment hex displays. This allowed for
easy adjustment of the drum noise produced by the pad, particularly the
dominant pitch of the sound, and its decay time.

Complications with the Time Evolution Module

Some of the terms in the coupled oscillator simulation required 3 multiplications.
Thus, our initial design that solved for an entire column in one clock cycle
contained multipliers that fed into other multipliers. This resulted in high latency
and timing violations. We solved this problem by breaking the calculations into 3
separate steps, each performed during separate clock cycles. While we got this
working for 1D systems, we were unable to get this pipelined time evolution
module to work successfully for 2D systems.

12

The time evolution module was plagued by round-off error, which ended up being
the most fundamental limitation of this module. This round off error was relatively
small for the single mass system, and, so long as damping was included in the
simulation, could safely be ignored. In the case of the 1D 3-mass system and the
2D 3x3 system, this led to the interesting behavior where, once perturbed, none
of the particle positions in the system would return to their equilibrium position.

As the size of the system was scaled up to larger and larger numbers of
particles, the complications from round-off error became increasingly severe. By
the time we were working with a 1D 25-mass system, the sum of positions was
no longer oscillating about zero, and would remain negative once it was
perturbed. The problem was even worse for our final 50-mass system.
None-the-less, the sum would still oscillate when the simulated system was
perturbed by a force and could still be used to generate an audio signal.

Further improvements of this module would include modification to use floating
point numbers and optimization of the DSP utilization. Both would allow for a
much more accurate implementation of the larger coupled-oscillator systems we
hoped to be able to simulate. Updates would also need to be made to perform a
2D simulation with our pipelined version of the time evolution module

Sound Generator [Ben] (handled in top level)

The audio signal was derived from the sum of the position of all masses in the
coupled-oscillator simulation. The sum was converted to an unsigned value by
adding a constant slightly larger than the smallest negative sum value. The sum
was then converted to an 8-bit amplitude value via a bit shift. The 8-bit amplitude
value was used to set the duty cycle of the PWM module used in lab 5A. This
PWM signal is fed into a 4th-order analog low-pass filter on the Nexys board to
create an analog audio signal. The analog audio signal was then fed into either
headphones or a set of portable speakers for listening.

13

e XVGA t [Evan /6.111 Lab 3]

This module is used to handle the display signals of the FPGA, namely the blank,
vsync, hsync, and rgb signals. Each of these directly feeds to one of the pins of
the VGA output on the board. We used the same module in a previous lab and
simply incorporated it into our display module

e Image Generation [Evan]

This consists of two display modes, both synced to a clock generated
specifically for this module as VGA at 60fps on a 1024 by 768 display is easily
updated using a 65 MHz clock. We produced this module by having inputs of
information necessary for vga display directly from the board, the value of a
switch in order to control what mode is currently displayed, a value for the size of
the array to be displayed, the current force and x and y positions from the infer
epicenter module, and the values of positions determined in the time evolution
module. From this, the module outputs the relevant display information.

If the value of the relevant switch is off, then the display mode is display
mode 1. Pixels on the screen are categorized as either a mass or blank space. In
this mode, what is displayed in regions of mass are points of an n by n array of
discrete particles where n is passed into the module from our top level. The
particles are by default colored solid white, but the mass at position x, y as
determined by infer epicenter has a color proportional to the 12 bit force passed
in, up to a max value of 111100000000, corresponding to the color of solid red.
Regions determined to represent blank space are left black. This updates once
per frame if the force surpasses a threshold defined in the top level to mitigate
conflicts of data since they update at different intervals. We neglected to get
pictures of this module in action but this is an example of a medium strength
strike determined to be at point (26, 29):

14

A 50x50 grid representing the possible locations of the drum strike. One pixel
at the location of the drum strike as determined by the infer_epicenter module
is colored according to the force of the hit. In this case, it is the green pixel.

If the switch value is on, then the display is in display mode 2. In this mode
we display the same grid of the same size as in the previous mode. This time, all
particles are displayed as white in mass regions unless they fall in the middle
row. This is because we initially planned for a 2-dimensional time evolution
module but instead had to make due with a 1-dimensional model for computation
purposes. However, if given full functionality of the time evolution module, we are
prepared to display the full grid’s time evolution. Each particle along the middle
row has a color corresponding to the most significant 12 bits of the 24 bit value of
position for that x coordinate. Since these values consistently hovered below 0,
we flipped the sign of the signed input and made the maximum value red as we
did in the previous mode. This module also updates once per frame but since it
was difficult to determine an adequate threshold for an array of 50 24 bit values it
simply relied on the last values passed in.

15

e Top Level

Our top level module managed to connect all the inputs and outputs of each of
the other modules, also handling some thresholding and timing. It handles all of
the inputs from the ADC as well as the switches on the board and the clock. The
top level is also where we implemented our sound generation. This was done by
taking the 32 bit signed output from our time evolution modul, converted it to a
positive, unsigned value, and selected a range of 8 bits that would model the
generated sound wave between 0 and 1 volt for the aux output on the board.
Further, we made use of plenty of the on-board 10 for fine tuning. This allowed us
to reach a stretch goal of adjusting the damping and tension values that were
being used in the simulation.

16

Block Diagram:

e Overall

Analog
Input

e Interface

Virtual Drum

. Audio Out

— = Display Out

Virtual Drum

17

e Infer Epicenter

infer_epicenter

12

ADCO P A10[11:0] 6 (
: xpos_out[5:0] 3 R

12 ” Tlm?
ADC 1 >>A11[11:0] 6 |—> Evolution

12 ypos_out[5:0]
ADC 2 » AI2[11:0] A

12

12 y

ADC 3 > AT3[11:0] force[11:0]
-
~ >
\ > Graphics
\) Module
\
e Graphics
g — -
¥ pos | ‘_ - GFEI.DhiCS Mudule RGE | 2'? .
g hsync i - :
! WG — | Display
. Farpe———————=
Virtual Drum 2 el i out
Position Data . R (VGA)
1200 [:
Pasifion Sum | 3_2,
swi0]

18

e Time Evolution

Top Level
3
Fd
o
Infer
Epicenter

Time Evolution

rst_in

hold_in

btnr, btnl, btnd, btnu
force_in

k
gamma
position
velocity

ﬂ

hex display

N

Display

19

External Components

We used 4 piezo transducers to readout the force of the drum hit and infer the
position of the hit.

To get the voltage range of the piezos to match that of the Nexys board’s ADCs,
we used 2 MCP6002 opamps as buffers,capacitors to ac-couple the signal, and
some resistors to divide the signal and bias it.

We used a ceramic plate or a high-density foam slab as the drum pad itself.

We sandwiched the piezos between layers of V4" thick neoprene foam
underneath the ceramic tile

A layer of cork board was placed on top of the ceramic tile to dampen drum hits
slightly.

Ideas for Improvement

Use Floating Point
Migrate away from piezos for positional data

o Could still use piezo for force data
Migrate away from an XY coordinate system

o Migrate towards radial coordinate system

Migrate towards capacitive touch technology
O Found some companies use CTT for some drum designs

20

Appendix:

Matlab Test Simulation:

Nsamples =

N = 5

gamma = 8;

X = zeros(1,N);

Vel = zeros(1,N);
mVec = m.*ones(1,N);

K = zeros(N,N);

tStep = H
A = zeros(1l, Nsamples);

Boundary = zeros(1,N);

for y = ((sqrt(N)/2)-2):((sqrt(N)/2)+2)
for x = ((sqrt(N)/2)-2):((sqrt(N)/2)+2)
sqrt(N)*(y-1)+x
X(sqrt(N)*(y-1) + x) = *exp (- (((x-(sqrt(N)/2))"2+(y-(sart(N)/2))"2))"2/(2*372));
end
end

for y = 1:sqrt(N)
for x = 1l:sqrt(N)
if(sgrt((x-sqrt(N)/2)22 + (y-sqrt(N)/2)22) > sqrt(N)/2) mVec(sqrt(N)*(y-1)+x) =
mVec (sqrt(N)*(y-1)+x) = m;
end
end
end
M = diag(mVec);
invM = inv(M);

C=zeros(1,N);

if(x ==y) K(y,x) = 4*T/a;
elseif(x == y+1 & mod(y,sqrt(N)) ~= 08) K(y,x) = -T/a ;

elseif(x == y-1 & & mod(y - 1,sqrt(N)) ~= 0) K(y,x) = -T/a;
elseif(x == y+sqrt(N)) K(y,x) = -T/a;

elseif(x == y-sqrt(N)) K(y,x) = -T/a;

end

end

sparseK = sparse(K);

X = transpose(X);
Vel = transpose(Vel);

Xplot = zeros(sqrt(N), sqrt(N));
y=1;
for y = 1:sqrt(N)
Xplot(y,:) = transpose(X((y-1)*sqrt(N)+1l:y*sqrt(N)));
end
figure(fig)
fig = fig + 1;
surf(l:sqrt(N),1l:sgqrt(N),Xplot);

KMinv = sparse(invM*K);

for t = 1:Nsamples
Vel = (Vel + (-KMinv*X-gamma.*invM*Vel).*tStep);
X = X + Vel*tStep + 1/2*(-KMinv*X-gamma*invM*Vel)*tStep*tStep;
A(t) = sum(X);

if(mod(t,10) == 0)fprintf('sample = %f, A = %f \n', t, A(t));end

end

figure(fig)

fig = fig + 1;
plot(1l:Nsamples, A);

Xplot = zeros(sqrt(N), sqrt(N));
y=1;
for y = 1:sqrt(N)
Xplot(y,:) = transpose(X((y-1)*sqrt(N)+1l:y*sqrt(N)));
end
figure(fig)
fig = fig + 1;
surf(l:sqrt(N),1:sqrt(N),Xplot);

22

Top Level Verilog File:

“timescale

module top

assign

assign
assign
assign

assign

ins / 1ps

_level(input

input
input
input
input
input
input

output

clk_100mhz,
vauxp2, vauxn2,
vauxp3, vauxn3,
vauxpl@, vauxnle,
vauxpll, vauxnll,
[15:0] sw,
btnc, btnr, btnl,
[15:0] led,

btnu, btnd,

output [3:0] vga_r, vga_b, vga_g,

output
output
output
output
output
output
output
output
output
output
)s

btnl_clean, b
btnl_debounce
btnl_old, btn
rst;

rst = btnc;

btnu_clean
btnd_clean
btnr_clean
btnl_clean

vga_hs, vga_vs,

aud_pwm, aud_sd,

[7:0] an,
ca,
cb,
cc,
cd,
ce,
G
cg

tnr_clean, btnu_clean, btnd_clean;

, btnr_debounce,
r_old, btnd_old,

btnu_debounce
btnd_debounce
btnr_debounce

btnl_debounce

btnd_debounce, btnu_debounce;
btnu_old;

I'btnu_old;
Ibtnd_old;
Ibtnr_old;
Ibtnl_old;

always_ff @(

if (rst)begin
btnu_old <=
btnd_old <=
btnr_old <=
btnl_old <=

end else begin
btnu_old <=
btnd_old <=
btnr_old <=
btnl_old <=

clk_1@@mhz)begin

1'bo;
1'b0;
1'bo;
1'bo;

btnu_debounce;
btnd_debounce;
btnr_debounce;
btnl_debounce;

dbl(.reset_in(0),
dbr(.reset_in(0),
dbu(.reset_in(0),
dbd(.reset_in(0),

[11:0] UT

[11:0] LT
stepsPerSample

.clock_in(clk_10@mhz),
.clock_in(clk_10@mhz),
.clock_in(clk_10@mhz),
.clock_in(clk_1e@mhz),

(sw[13:12] == 3) ? 500 :
(sw[13:12] == 2) ? 400 :
(sw[13:12] == 1) ? 300 :
0 - UT;

= 50;

.noisy_in(btnl),
.noisy_in(btnr),
.noisy_in(btnu),

.noisy_in(btnd),

150;

.clean_out(btnl_debounce));
.clean_out(btnr_debounce));
.clean_out(btnu_debounce));

.clean_out(btnd_debounce));

N = 50;
decPrec = 18;
intPrec = 6;
len = intPrec+decPrec;
adc2 = 8'h12;

adc3 = 8'h13;

adcle = 8'hla;

adcll = 8'hlb;

[11:0] adc_data;
[6:0] adc_address =
fresh_values = 0;

adc2;

eos_out;
[1:0] delay;

my_adcO(.dclk_in(clk_10emhz),
.vauxp2(vauxp2),

.daddr_in(adc_address),

.vauxn2(vauxn2), .vauxn3(vauxn3),

.vauxp3(vauxp3),

.vauxple(vauxploe), .vauxnll(vauxnll),
.do_out(adc_data),

.eos_out(eos_out));

.vauxnl@(vauxnl@), .vauxpll(vauxpll),

.di_in(@), .den_in(1), .dwe_in(@), .reset_in(®), .vp_in(®), .vn_in(9),

ready;
[11:0] x1;
[11:0] x2;
[11:0] y1;
[11:0] y2;
[5:0] x;
[5:0] y;

[11:0] f;

inf_epi(.clk_1@0mhz(clk_100mhz), .ready(ready), .sw(sw[4:3]),
-x1(x1), .x2(x2), .y1(y1l), .y2(y2),
x(x), wy(y), -f(f), .led(led));

display(.clk_100mhz(clk_1@0mhz), .sw(sw), .btnc(btnc),
.xcoord(x), .ycoord(y), .resol(N), .force_in(f), .positions(position),

.vga_r(vga_r), .vga_b(vga_b), .vga_g(vga_g), .vga_hs(vga_hs), .vga_vs(vga_vs));

ao_temp@, ao_templ;
[7:0] audio_out;
[11:0] sample_delay;
pwm_val;

pwm (.clk_in(clk_1@@mhz), .rst_in(btnc), .level_in(audio_out), .pwm_out(pwm_val));

[31:0] sum;

[31:0] audio_out_temp;

[31:0] offset_sum = sw[15] ? 2_000_000 : 4_000_000;
[4:0] shift = sw[14] ? 16 : 14;

assign audio_out_temp = ((sum) + offset_sum) >> shift;

assign aud_pwm = pwm_val;

assign aud_sd = 1;

[(intPrec+decPrec)*N-1:0] position;

[(intPrec+decPrec)*N-1:0] velocity;

[6:0] n = 0;
hold = 9;

[63:0] colSum;
[63:0] accum = 0;
[63:0] audioSig = 0;

[7:0] stepCount;
[4:0] delayCount;
[1:0] step = ©;
[N*len-1:0] force_in = 0;
[15:0] multiplyTest = -100;
[11:0] x_shift;
[23:0] gamma;
[23:0] k;
#(.N(N), .intPrec(intPrec), .decPrec(decPrec))
evolution(.clk_in(clk_1@0mhz), .rst_in(rst),
.hold_in(hold), .Gamma_in(gamma), .k_in(k),
.btnl(btnl_clean), .btnr(btnr_clean), .btnd(btnd_clean), .btnu(btnu_clean),
.position(position), .velocity(velocity), .force_in(force_in));

my_ila(.clk(clk_1@@mhz), .probe@(audio_out_temp), .probel(sum), .probe2(gamma), .probe3(k));

#(.N(N), .len(len)) my_sum(.clk(clk_1@@mhz), .rst(rst), .position(position), .out(sum));

my_seven_seg_controller(.val_in({gamma[23:8], k[23:8]}), .rst_in(rst), .clk_in(clk_1@@mhz),

.cat_out({cg,cf,ce,cd,cc,cb,ca}), .an_out(an));

always_ff @(clk_100mhz) begin

if (eos_out) begin
fresh_values <= 1;
delay <= 0;

end

if (!fresh_values & !delay) begin
ready <= 0;

end

if (fresh_values) begin
case (adc_address)
adc2: begin
adc_address <= adc3;
x1 <= adc_data;
ready <= 0;
end
adc3: begin
adc_address <= adcl0;
end
adcle: begin
adc_address <= adcll;
end
adcll: begin
adc_address <= adc2;
fresh_values <= 0;
delay <= 1;
end
default: begin
adc_address <= adc2;
ready <= 0;
fresh_values <= 0;
end
endcase
end
if (delay) begin
case (delay)
1: x2 <= adc_data;
2: yl <= adc_data;
3: y2 <= adc_data;
endcase
delay <= delay + 1;
if (delay == 3) begin
ready <= 1;

end

if(!rst)begin

if(stepCount < stepsPerSample)begin
if(hold == 1)begin
hold <= 0;
stepCount <= stepCount+1;

end else begin

if(delayCount == 8)begin

hold <= 1;

delayCount <= 0;
end else begin

delayCount <= delayCount + 1;
end

end
end else begin
hold <= 1;

end

if(sample_delay < 2080) begin

sample_delay <= sample_delay + 1;

end else if (sample_delay == 2080) begin
sample_delay <= sample_delay + 1;
x_shift <= x*len;
else if (sample_delay == 2083) begin
force_in <= (f > UT | f < LT) ? f<<(x_shift+1)
sample_delay <= 12'bo;

audio_out <= audio_out_temp[7:0];
stepCount <= 0;

else begin

sample_delay <= sample_delay + 1;

Time Evolution Module:

module time_evolution #(N = 25, intPrec = 4, decPrec = 12, len = intPrec+decPrec)(
input clk_in,
input rst_in, hold_in,
input btnr, btnl, btnu, btnd,
input [N*1len-1:0] force_in,
output [23:0] k_in, Gamma_in,
output [N*len-1:0] position,
output [N*1len-1:0] velocity

gamma_add = {1'bl, 8'be};
k_add = {1'b1l, 15'b0};

[1:0] n;

maxPos = 250000;
maxVel = 3000;
timeStep = 512;

[len-1:0] Gamma;
[len-1:0] k;

always_ff @(clk_in) begin
if (btnl) Gamma_in <= Gamma_in - gamma_add;
else if (btnr) Gamma_in <= Gamma_in + gamma_add;
else if (btnd) k_in <= k_in - k_add;
else if (btnu) k_in <= k_in + k_add;
else begin
Gamma <= Gamma_in;
k <= k_in;

end

alg

for(i = 1; i <= N; i=i+1)

velTempl;
velTemp2;
posTemp;
posDouble;
velSum;

posSum;

inBVelTempl;

inBVelTemp2;

inBVelocity;

inBPosition;

posSumTempl;
posSumTemp2;

velSumTempl;
velSumTemp2;

posN;
posNPlus;
posNMinus;

positionTempl;
positionTemp2;
velocityTempl;
velocityTemp2;

[1:0] state;
assign posDouble = "(position[((i)*1len)-1:(i-1)*1en]) <<< 1;
#(.len(len), .decimals(decPrec)) velocityTempMult2(.clk_in(clk_in),
.rst_in(rst_in), .inA(-Gamma), .inB(inBVelTemp2), .out(velTemp2));
#(.len(len), .decimals(decPrec))

velocityMult(.clk_in(clk_in),.rst_in(rst_in), .inA(timeStep), .inB(inBVelocity), .out(velSum));

#(.len(len), .decimals(decPrec))

positionMult(.clk_in(clk_in),.rst_in(rst_in),.inA(timeStep), .inB(inBPosition), .out(posSum));

#(.len(len), .decimals(decPrec))
velocityTempMultl(.clk_in(clk_in),.rst_in(rst_in), .inA(k), .inB(inBVelTempl), .out(velTempl));

always_ff @(clk_in) begin
if(rst_in)begin
position[i*len-1:(i-1)*1len] <= ©;

velocity[i*len-1:(i-1)*1len] <= 0;

inBVelTempl
inBVelTemp2 <
inBVelocity <
inBPosition
state <= 0;

else if(!hold_in) begin

case (state)

0: begin

inBVelTemp2 <= "(velocity[i*len-1:(i-1)*1en]);
if(i == 1)begin

inBVelTempl <= '(position[(i+1)*1len-1:(i)*1en]) - posDouble;
end else if (i == N) begin

inBVelTempl <= "(position[(i-1)*1len-1:(i-2)*1en]) - posDouble;
end else begin

inBVelTempl <= '(position[(i+1)*len-1:(i)*1len]) +

'(position[(i-1)*1len-1:(i-2)*1en]) - posDouble;

end

end

state <= state + 1;

1: begin

end

inBVelocity <= velTempl + velTemp2 + '(force_in[i*len-1:(i-1)*1en]);

inBPosition <= '(velocity[i*len-1:(i-1)*1en]);

state <= state + 1;

2: begin

end

if(("(position[i*len-1:(i-1)*1en]) + posSum) > maxPos) begin

position[i*len-1:(i-1)*1en] <= maxPos;

end else if(('(position[i*len-1:(i-1)*1en]) + posSum) < (-maxPos))begin
position[i*len-1:(i-1)*1len] <= -maxPos;

end else begin

position[i*len-1:(i-1)*1len] <= '(position[i*len-1:(i-1)*1len]) +

end

if(("(velocity[i*len-1:(i-1)*1en]) + velSum) > maxVel)begin
velocity[i*len-1:(i-1)*1len] <= maxVel;

end else if(('(velocity[i*len-1:(i-1)*1en]) + velSum) < -maxVel) begin
velocity[i*len-1:(i-1)*1en] <= -maxVel;

end else begin
velocity[i*len-1:(i-1)*1len] <= '(velocity[i*len-1:(i-1)*1len]) +

end

state <= 0;

default: state <= 9;

endcase

end

end

31

Infer Epicenter Module:

“timescale 1ns / 1ps

module infer_epicenter (
input clk_100mhz,
input ready,
input [1:0] sw,
input [11:0] x1, x2, yl ,y2,
output [5:0] x, vV,
output [11:0] f,
output [15:0] led

[11:0] THRESHOLD = sw[1] ? 750 : 650;
[11:0] OFFSET = sw[@] ? -50 : -20;

[11:0] UPPER_THRESHOLD = OFFSET + THRESHOLD;
[11:0] LOWER_THRESHOLD = OFFSET - THRESHOLD;

[5:0] xtemp, ytemp;

[11:0] ftemp;

x1_trigger;
x2_trigger;

yl_trigger;
y2_trigger;
trigger = x1_trigger | x2_trigger | yl trigger | y2 trigger;

[9:0] x1_trigger_ time;
[9:0] x2_trigger_time;
[9:0] y1_trigger_time;
[9:0] y2_trigger_time;

[9:0] ready_count;

x1_module(.lower (LOWER_THRESHOLD), .upper(UPPER_THRESHOLD),
.signal(x1), .signal_triggered(x1_trigger));

x2_module(.lower(LOWER_THRESHOLD), .upper(UPPER_THRESHOLD),
.signal(x2), .signal_triggered(x2_trigger));

y1 module(.lower(LOWER_THRESHOLD), .upper(UPPER_THRESHOLD),
.signal(yl), .signal_triggered(yl_trigger));

y2_module(.lower(LOWER_THRESHOLD), .upper(UPPER_THRESHOLD),
.signal(y2), .signal triggered(y2_trigger));

x_module(.clk(clk_100mhz), .bottom(x1_trigger_time), .top(x2_trigger_ time),
.position(xtemp));

y_module(.clk(clk_100mhz), .bottom(yl_trigger_time), .top(y2_trigger_ time),
.position(ytemp));

signal_module(.clk(clk_1@0mhz), .x1(x1), .x2(x2), .yl(yl), .y2(y2), .average(ftemp));

always_ff @(clk_100mhz) begin
if (ready) begin

if (I!x1_trigger time | !x2_trigger time | !yl trigger time | !y2 trigger_time) begin

if (ready_count) ready_count <= ready_count + 1;
else begin

X <= xtemp;

y <= ytemp;

f <= ftemp;

x1_trigger_time

x2_trigger_time

yl_trigger time

y2_trigger_time

led[11:0] <= 0;

x1_trigger_time;

x2_trigger_time;

yl trigger time;

y2_trigger_time;

end

end
if (trigger) begin
if (!led[@] & x1_trigger) led[©
(!led[1] & x2_trigger) led[1
(!led[2] & yl1 trigger) led[2
(!led[3] & y2_trigger) led[3

]
]
]
]

_trigger_time <= ((x1_trigger_time == 1023) & x1_trigger) ? ready_count :

x2_trigger_time <= ((x2_trigger_time == 1023) & x2_trigger) ? ready_count :

yl trigger time <= ((yl_trigger_time == 1023) & yl trigger) ? ready count :

y2_trigger_time <= ((y2_trigger_time == 1023) & y2_trigger) ? ready_count :

end

else begin

if (trigger) begin
ready_count <= 1;

if (x1_trigger) x1_trigger_time
if (x2_trigger) x2_trigger_time
if (yl_trigger) yl_ trigger_time
if (y2_trigger) y2 trigger time

34

Image Generation Module:

module image_generation(input clk_1@@mhz,
input[15:0] sw,
input btnc,
input [1199:0] positions,
input [23:0] [49:0] pos_col,
input [5:0] col, xcoord, ycoord, resol, resol2,
input [11:0] force_in,
input pos_we,
output[3:0] vga_r, vga_b, vga_g,
output vga_hs, vga_vs

clk_65mhz;
clkdivider(.clk_inl1(clk_1@0mhz), .clk_outl(clk_65mhz));

[5:0] resol_test, xcoord_test, ycoord_test;
[11:0] force_in_test;

[1199:0] positions_test ;
[23:0] [49:0] pos_col_test;
pos_we_test;

[5:0] col_test;

[5:0] resol2_test;

assign resol_test = 6'd50;
assign xcoord_test = 6'd24;
assign ycoord_test = 6'd24;
assign force_in_test = 12'b1111_0000_0000;

assign positions_test = {24'b111100000 , 24'b1110000000000000 , 24'be, 24'be, 24'bo, 24'bo,
24'b0, 24'b0, 24'bO, 24'b0, 24'bO, 24'bo, 24'bO, 24'bO, 24'bo, 24'bO, 24'bo, 24'bO, 24'bo, 24'b0, 24'bO, 24'bo, 24'bO,
24'b0, 24'b0, 24'bO, 24'bo, 24'bO, 24'bo, 24'bO, 24'bO, 24'bo, 24'bO, 24'bo, 24'bO, 24'bo, 24'b0, 24'bO, 24'bo, 24'bO,
24'b0, 24'b0, 24'bo, 24'b0, 24'bO, 24'b0, 24'b0, 24'b0, 24'b0, 24'b0O};

assign pos_col_test = 0;

assign pos_we_test = 0;

assign col_test = 0;

assign resol2_test = 6'd50;

[10:0] hcount;

[9:0] vcount;

hsync, vsync, blank;

[11:0] pixell, pixel2;

[11:0] rgb;

xvgal(.vclock_in(clk_65mhz), .hcount_out(hcount), .vcount_out(vcount),

.hsync_out(hsync), .vsync_out(vsync), .blank_out(blank));

reset;

dbl(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnc),.clean_out(reset));

phsync,pvsync,pblank;

d1(.vclock_in(clk_65mhz), .reset_in(reset), .sw(sw[1]),
.xcoord(xcoord), .ycoord(ycoord), .force_in(force_in), .resol(resol),
.hcount_in(hcount), .vcount_in(vcount),
.hsync_in(hsync), .vsync_in(vsync), .blank_in(blank),
.phsync_out(phsync), .pvsync_out(pvsync), .pblank_out(pblank), .pixel_out(pixell));

d2(.vclock_in(clk_65mhz), .reset_in(reset),
.hcount_in(hcount), .vcount_in(vcount), .positions(positions), .resol(resol2_test),
.hsync_in(hsync), .vsync_in(vsync), .blank_in(blank),
.phsync_out(phsync), .pvsync_out(pvsync), .pblank_out(pblank), .pixel_out(pixel2));

border = (hcount==0 | hcount==1023 | vcount==0 | vcount==767 |
hcount == 512 | vcount == 384);

b,hs,vs;
always_ff @(clk_65mhz) begin
if (sw[@]) begin

hs <= hsync;

VS <= VSync;
b <= blank;
rgb <= pixel2;

else begin

hs <= phsync;
VS <= pvVsync;
b <= pblank;

rgb <= pixell;

assign vga_r = ~b ? rgb[11:8]: 0;
assign vga_g = ~b ? rgb[7:4] : 0;
assign vga_b = ~b ? rgb[3:0] : ©;

assign vga_hs = ~hs;

assign vga_vs = ~vs;

endmodule

module displayl (
input vclock_in,
input reset_in,
input [5:0] resol, xcoord, ycoord,
input [11:0] force_in,
input [10:0] hcount_in,

input [9:0] vcount_in,

input hsync_in,

input vsync_in,

input blank_in,

input [0:0] sw,

output phsync_out,
output pvsync_out,
output pblank_out,
output [11:0] pixel_out
)

mass_side = 3'd5;
spacing = 4'd10;
red = 12'b1111_0000_0000;

hsync_out, vsync_out, blank_out;
[11:0] rgb, color;

assign phsync_out hsync_out;
assign pvsync_out vsync_out;
assign pblank_out blank_out;

assign pixel_out = rgb;

[16:0] right_edge;
[9:0] bottom_edge;

[10:0] x_loc, xtemp;
[9:0] y_loc, ytemp;

[9:0] last_vcount_in;
vertical_flag = 0;
[2:0] hcount;

[2:0] vcount;

mass = 0;

assign right_edge = (spacing * resol + mass_side);
assign bottom_edge = (spacing * resol);

[11:0] THRESHOLD = sw ? 250 : 200;

assign x_loc = xtemp + mass_side;

assign y_loc = ytemp + mass_side;

always_ff @(vsync_in) begin
if (force_in > THRESHOLD) begin
xtemp <= spacing * xcoord;
ytemp <= spacing * ycoord;

color <= force_in;

always_ff @(vclock_in) begin

if(hcount_in == @)begin
hcount <= 9;
mass <= 0;

end

else if(hcount != (mass_side - 1)) hcount <= hcount + 1;

else if(hcount == (mass_side - 1)) begin
mass <= !mass;
hcount <= 9;

end

if (last_vcount_in != vcount_in) begin
if(vcount_in == @)begin
vcount <= 0;
vertical_flag <= 0;
end
else if(vcount != (mass_side - 1)) vcount <= vcount + 1;
else if(vcount == (mass_side - 1)) begin
vcount <= 0;
vertical_flag <= !vertical_flag;
end

end

last_vcount_in <= vcount_in;
hsync_out <= hsync_in;
vsync_out <= vsync_in;
blank_out <= blank_in;

end

always_comb begin

if((hcount_in <= right_edge) && (vcount_in <= bottom_edge)) begin

if(mass && vertical_flag)begin
if((hcount_in >= x_loc) && (hcount_in <= (x_loc + mass_side)) && (vcount_in >= y_loc) && (vcount_in <=
(y_loc + mass_side))) rgb = color;
else rgh = 12'b1111_1111_1111;
end
else rgb = 12'b0;
end
else rgb = 12'do;

end

endmodule

module display2 (
input vclock_in,
input reset_in,
input [10:0] hcount_in,
input [9:0] vcount_in,
input hsync_in,
input vsync_in,
input blank_in,
input [5:0] resol,
input [1199:0] positions,
output phsync_out,
output pvsync_out,
output pblank_out,
output [11:0] pixel_out
)

assign phsync_out hsync_in;
assign pvsync_out = vsync_in;

assign pblank_out blank_in;

hsync_out;
vsync_out;
blank_out;

assign phsync_out hsync_out;
assign pvsync_out vsync_out;
assign pblank_out = blank_out;

[11:0] rgb;

assign pixel_out = rgb;

parameter mass_side = 3'd5;

parameter spacing = 4'd10;

logic[10:0] right_edge;
logic[9:0] bottom_edge;

logic [10:0] x_loc;

logic [9:0] y_loc;

logic [8:0] xcoord = 0;

logic [8:0] ycoord = 48;

logic signed [23:0] positions1[49:0];
logic [7:0] hold_count;

logic mass = 0;

logic [9:0] last_vcount_in;
logic vertical_flag = 0;
logic[2:0] hcount;

logic[2:0] vcount;

logic [3:0] r;

logic [3:0] g;

logic [3:0] b;

logic [11:0] color = ©;

logic [11:0] color_out;

parameter red = 12'b1111_0000_0000;

assign right_edge = (spacing * resol + mass_side);

assign bottom_edge = (spacing * resol);

assign x_loc = (spacing * (xcoord[8:1]) + mass_side);

assign y_loc = (spacing * (ycoord[8:1]) + mass_side);

always_ff @(posedge vsync_in) begin
if((positions <= -24'sd4096)) begin
hold_count <= 0;
positionsl <= {positions[1199:1176], positions[1175:1152], positions[1151:1128], positions[1127:1104],
positions[1103 : 1080],
positions[1079:1056], positions[1055:1032], positions[1031:1008], positions[1007:984], positions[983:960],
positions[959:936],
positions[935:912], positions[911:888], positions[887:864], positions[863:840], positions[839:816],
positions[815:792], positions[791:768],
positions[767:744], positions[743:720], positions[719:696], positions[695:672], positions[671:648],
positions[647:624], positions[623:600],
positions[599:576], positions[575:552], positions[551:528], positions[527:504], positions[503:480],
positions[479:456], positions[455:432],
positions[431:408], positions[407:384], positions[383:360], positions[359:336], positions[335:312],
positions[311:288], positions[287:264],
positions[263:240], positions[239:216], positions[215:192], positions[191:168], positions[167:144],
positions[143:120], positions[119:96],
positions[95:72], positions[71:48], positions[47:24], positions[23:0]};
end
else hold_count <= hold_count + 1;

end

always_ff @(vclock_in) begin

r <= ~positionsi[xcoord[8:1]][22:19];
g <= ~positionsi[xcoord[8:1]][18:15];
b <= ~positionsl[xcoord[8:1]][14:11];
color <= ({r, g, b} > 12'b0) ? {r, g, b} : 12'b111111111111;

if(hcount_in == @)begin
hcount <= 9;
mass <= 0;
xcoord <= 0;

end

else if(hcount != (mass_side - 1)) hcount <= hcount + 1;

else if(hcount == (mass_side - 1)) begin
mass <= !mass;

hcount <= 9;

xcoord <= xcoord
end

if (last_vcount_in != vcount_in) begin
if(vcount_in == @)begin
vcount <= 0;
vertical_flag <= 0;

end

if(vcount != (mass_side - 1)) vcount <= vcount + 1;

if(vcount == (mass_side - 1)) begin
vcount <= 0;

vertical_flag <= lvertical_flag;

end

last_vcount_in <= vcount_in;
hsync_out <= hsync_in;
vsync_out <= vsync_in;
blank_out <= blank_in;

end

always_comb begin
color_out = ((red > color) || (color == 12'b111111111111)) ? color:red;

if((hcount_in <= right_edge) && (vcount_in <= bottom_edge)) begin

if(mass && vertical_flag)begin

if((hcount_in >= x_loc) && (hcount_in <= (x_loc + mass_side)) && (vcount_in >= y_loc) && (vcount_in <=
(y_loc + mass_side))) rgb = color_out;
else rgb = 12'b1111 1111 1111;
end
else rgb = 12'bo;

else rgb = 12'do;

end

endmodule

module synchronize #(

NSYNC = 3)

(input clk,in,

output out);

[NSYNC-2:0] sync;

always_ff @ (
begin

clk)

{out,sync} <= {sync[NSYNC-2:0],in};

end

endmodule

module xvga(input vclock_in,
[10:0] hcount_out,

output
output
output
output

[9:0] vcount_out,
vsync_out, hsync_out,
blank_out);

DISPLAY_WIDTH 1024;
DISPLAY_HEIGHT 768;

H_FP =

24;

H_SYNC_PULSE

H_BP =

V_FP =

160;

3;

V_SYNC_PULSE

V_BP =

295

hblank,vblank;
hsyncon, hsyncoff,hreset,hblankon;
assign hblankon = (hcount_out == (DISPLAY_WIDTH -1));
assign hsyncon = (hcount_ == (DISPLAY_WIDTH + H_FP - 1));
assign hsyncoff = (hcount_ == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE - 1));
assign hreset = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE + H_BP - 1));

vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT - 1));
assign vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP - 1));
assign vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE - 1));
assign vreset = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE + V_BP - 1));

next_hblank,next_vblank;
assign next_hblank = hreset ? © : hblankon ? 1 : hblank;
assign next_vblank = vreset ? © : vblankon ? 1 : vblank;
always_ff @(vclock_in) begin
hcount_out <= hreset ? @ : hcount_out + 1;
hblank <= next_hblank;
hsync_out <= hsyncon ? @ : hsyncoff ? 1 : hsync_out;

vcount_out <= hreset ? (vreset ? © : vcount_out + 1) : vcount_
vblank <= next_vblank;

vsync_out <= vsyncon ? @ : vsyncoff ? 1 : vsync_out;

blank_out <= next_vblank | (next_hblank & ~hreset);

end

endmodule

43

Helper Modules:

fixed_point mult #(len, decimals) (
input [len-1:0] inA,
input [len-1:0] inB,
output [len-1:0] out

[len*2 - 1:0] tempo;
assign temp@ = inA*inB >>> decimals;

assign out = temp@[len-1:0];

endmodule

module summer #(N = 50, len = 16)

(input clk, rst,

input [N*1len - 1:0] position,

output [31:0] out

)s

[1:0] step;
[31:0] classic_sum@, classic_suml, classic_sum2, classic_sum3, classic_sum4,
classic_sum5, classic_sum6, classic_sum7, classic_sum8, classic_sum9;

[31:0] intermediate®, intermediatel;

always_ff @(clk) begin
case (step)
0: begin
classic_sum@ <= '(position[len-1:0]) + "(position[len*(2)-1:1en*(2-1)]) +
'(position[len*(3)-1:1len*(3-1)]) +
'(position[len*(4)-1:1len*(4-1)])+ '(position[len*(5)-1:1len*(5-1)]);
classic_suml <=
'(position[len*(6)-1:1len*(6-1)])+ '(position[len*(7)-1:1len*(7-1)])+ '(position[len*(8)-1:1
en*(8-1)])+ '(position[len*(9)-1:1en*(9-1)])+ "(position[len*(10)-1:1en*(10-1)]);
classic_sum2 <=
"(position[len*(11)-1:1en*(11-1)])+ "(position[len*(12)-1:1en*(12-1)])+ "(position[len*(13
)-1:1len*(13-1)])+ "(position[len*(14)-1:1en*(14-1)])+ '(position[len*(15)-1:1en*(15-1)]);
classic_sum3 <=
'(position[len*(16)-1:1en*(16-1)])+ "(position[len*(17)-1:1en*(17-1)])+ '(position[len*(18
)-1:1len*(18-1)])+ "(position[len*(19)-1:1en*(19-1)])+ '(position[len*(20)-1:1en*(20-1)]);

classic_sumd <=
'(position[len*(21)-1:1en*(21-1)])+
:len*(23-1)])+

classic_sum5 <=
'(position[len*(26)-1:1en*(26-1)])+
:len*(28-1)])+

classic_sumé <=
'(position[len*(31)-1:1en*(31-1)])+
:len*(33-1)])+

classic_sum7 <=
'(position[len*(36)-1:1en*(36-1)])+
:len*(38-1)1)+

classic_sum8 <=
'(position[len*(41)-1:1en*(41-1)])+
:len*(43-1)])+

classic_sum9 <=
'(position[len*(46)-1:1en*(46-1)])+
:len*(48-1)])+
step <= step + 1;

end
1: begin

'(position[len*(24)-1:

"(position[len*(29)-1:

'(position[len*(34)-1:

'(position[len*(39)-1:

'(position[len*(44)-1:

'(position[len*(49)-1:

'(position[len*(22)-1:1en*(22-1)])+
len*(24-1)])+

'(position[len*(27)-1:1en*(27-1)])+
len*(29-1)])+

'(position[len*(32)-1:1en*(32-1)])+
len*(34-1)])+

'(position[len*(37)-1:1en*(37-1)])+
len*(39-1)])+

'(position[len*(42)-1:1en*(42-1)])+
len*(44-1)])+

'(position[len*(47)-1:1en*(47-1)])+
len*(49-1)])+

'(position[len*(25)-1:

'(position[len*(30)-1:

'(position[len*(35)-1:

'(position[len*(40)-1:

'(position[len*(45)-1:

'(position[len*(50)-1:

'(position[len*(23
len*(25-1)1);

'(position[len*(28
len*(30-1)1]);

'(position[len*(33
len*(35-1)1);

'(position[len*(38
len*(40-1)1);

'(position[len*(43
len*(45-1)1);

'(position[len*(48
len*(50-1)1);

intermediate® <= classic_sum@ + classic_suml + classic_sum2 + classic_sum3 + classic_sum4;

intermediatel <= classic_sum5 + classic_sum6 + classic_sum7 + classic_sum8 + classic_sum9;

step <= step + 1;
end

2: begin

out <= intermediate® + intermediatel;

step <= 0;
end
default: step <= 0;
endcase

end

endmodule

module time_ diff(input clk,
input [9:0] bottom,
input [9:0] top,
[5:0] position);

output
MAX_TIME = 400;
LENGTH 50;

step = 0;

intermediate_ A0,
intermediate A1,
intermediate A2,
intermediate_A3,

intermediate_A4,

intermediate_BO,
intermediate B1,
intermediate B2,
intermediate_B3,

intermediate_B4;

always_ff @(

case (step)

clk) begin

0: begin
intermediate_A® <= top - bottom;
intermediate BO <= bottom - top;
step <= step + 1;

end

1: begin

intermediate Al <= intermediate_A0>>3;

intermediate_B1l <= intermediate_B@>>3;
step <= step + 1;

end

2: begin
intermediate_A2 <= LENGTH - intermediate_A1;

intermediate B2 <= LENGTH - intermediate_B1;
step <= step + 1;

end

3: begin

intermediate_A3 <= intermediate_A2>>1;

intermediate_B3 <= intermediate_B2>>1;

step <= step + 1;

end
4: begin
if (top > bottom) begin
position <= (intermediate_A® < MAX_TIME) ? LENGTH - intermediate A3 : LENGTH;
end else if (bottom > top) begin
position <= (intermediate B® < MAX TIME) ? intermediate B3 : 0;
end else begin
position <= 25;
end
step <= 0;
end
default: step <= 0;
endcase
end

endmodule

module signal trigger(input [11:0] lower, upper, signal,
output signal_triggered);

always_comb begin

signal triggered = (signal < lower) | (upper < signal);

end

endmodule

module average signal(input clk,
input [11:0] x1, x2, y1, y2,
output [11:0] average);
[13:0] intermediate;
[11:0] x1temp, x2temp, yltemp, y2temp;
always_ff @(clk) begin
x1ltemp <= (x1 < 9) ? ~(x1-1) : x1;
yltemp <= (yl < @) ? ~(yl1-1) : yi;
x2temp <= (x2 < @) ? ~(x2-1) : x2;
y2temp <= (y2 < 0) ? ~(y2-1) : y2;
intermediate <= (x1temp+x2temp+yltemp+y2temp)>>2;
average <= intermediate;
end

endmodule

module pwm (input clk_in, input rst_in, input [7:0] level_in, output
[7:0] count;
assign pwm_out = count<level_in;
always_ff @(clk_in)begin
if (rst_in) count <= 8'b0;
else count <= count+8'bl;

module debounce (input reset_in, clock_in, noisy_in,

output clean_out);

[19:0] count;
new_input;

always_ff @(clock_in)
if (reset_in) begin
new_input <= noisy_in;
clean_out <= noisy_in;
count <= 0; end
else if (noisy_in != new_input) begin new_input<=noisy_in; count <= @; end
else if (count == 650000) clean_out <= new_input;

else count <= count+1;

endmodule

module seven_seg controller(input clk_in,

input rst_in,
input [31:0] val_in,
output [7:0] cat_out,
output [7:0] an_out

segment_state;
segment_counter;

routed_vals;

[6:0] led_out;

my_converter (.bin_in(routed_vals), .led out(led out));
assign cat_out = ~led out;

assign an_out = ~segment_state;

always_comb begin
case(segment_state)
8'bo000_0001: routed_vals = val_in[3:0];
8'b0000_0010: routed_vals val _in[7:4];
8'bo000 0100: routed_vals = val _in[11:8];
8'b000 _1000: routed_vals = val_in[15:12];
8'b0001 _0000: routed_vals = val_in[19:16];
8'b0010_0000: routed_vals = val_in[23:20];
8'b0100_0000: routed_vals = val_in[27:24];
8'b1000_0000: routed_vals = val_in[31:28];
default: routed_vals val_in[3:0];

11
15
19
23
27
31

endcase

end

always_ff @(clk_in)begin
if (rst_in)begin
segment_state <= 8'b0000_0001;
segment_counter <= 32'b0;
end else begin
if (segment_counter == 32'd100_000)begin
segment_counter <= 32'd0;
segment_state <= {segment_state[6:0],segment_state[7]};
end else begin
segment_counter <= segment_counter +1;

end
end
endmodule
module binary_to_seven_seg(

input[3:0] bin_in,
output [6:0] led_out

num@, numl, num2, num3,
num4, num5, numé, num7,
num8, num9, numA, numB,

numC, numD, numE, numF;

assign num@ = !bin_in[3] && !bin_in[2] && !bin_in[1] && !bin_in[0@];

assign numil
assign num2
assign num3
assign numé4
assign num5
assign numé6
assign num?7
assign num8
assign num9
assign numA
assign numB
assign numC
assign numD
assign numkE

assign numF

Ibin_in[3]
Ibin_in[3]
Ibin_in[3]
Ibin_in[3]
Ibin_in[3]
Ibin_in[3]
Ibin_in[3]

bin_in[3]
bin_in[3]
bin_in[3]
bin_in[3]
bin_in[3]

assign led_out[@]

assign led_out[1]

assign led_out[2]

assign led out[3]

assign led out[4]

assign led_out[5]

assign led_out[6]

endmodule

&&

&& !

&&
&&
&&
&&
&&
&&
&&
&&
&&
&&

Ibin_in[2] && !bin_in[1] && bin_in[0];

in[2] && bin_in[1] && !b

Ibin_in[2] && bin_in[1] && bi

bin_in[2]
bin_in[2]
bin_in[2]
bin_in[2]
Ibin_in[2]
Ibin_in[2]
Ibin_in[2]
Ibin_in[2]

&&
&&
&&
&&
&&
&&
&&
&&

Ibin_in[1] && !bin_in[0];
Ibin_in[1] && bin_in[0];
bin_in[1] && !bin_in[@0];
bin_in[1] && bin_in[@];

Ibin_in[1] && !bin_in[0];
Ibin_in[1] && bin_in[0];
bin_in[1] && !bin_in[@0];
bin_in[1] && bin_in[0@];

bin_in[2] && !bin_in[1] && !bin_in[0];
&& bin_in[2] && !bin_in[1] && bin_in[0];

&& bin_in[2] && bin_in[1] && !bin_in[0];

&& bin_in[2] && bin_in[1] &&bin_in[0];

num4 | |
numé | |
numC | |
numé4 | |
num3 | |
num2 ||

numl ||

numE || numF);

numF) ;
num?7 || num9);

numD) ;

50

