MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

INSTRUCTORS: GIM HOM AND JOE STEINMYER
PROJECT SUPERVISOR: MIKE WANG
FaLr 2019

6.111 DIGITAL SYSTEMS LABORATORY

FPGA RFID Utility — Final Report

HaNNAH FIELD AND MILES DAI

December 11, 2019

Contents
1 Overview

2 Background
2.1 Data Transmission
2.2 Data Packet Structure

3 Goals
3.1 Commitment e
3.2 Goals
3.3 Stretch Goals

4 Spoofing (Hannah)
4.1 Analog Frontend
4.1.1 Inductors
4.1.2 Modulation
4.1.3 Phase-locked Pulse oo
4.2 Spoofing Module
4.2.1 Phase-Locked Clock,
4.2.2 Mosfet Control Logic

5 Reading (Miles)
5.1 Analog Frontend
5.2 Reading Moduleo
5.2.1 Pulse Gen Module
5.2.2 Parser Module.
5.2.3 Read FSM Module

6 Graphical User Interface (Hannah)
6.1 Spoof GUL
6.2 Read GUL o
6.3 Implementation Details

7 Portable System (Miles)
7.1 User Interface
7.2 Flash Memory

8 Challenges
8.1 Debugging

9 Future Work
9.1 Security

10 Appendix
10.1 Top Level o o o
10.1.1 top_level .SV o o it
10.2 GUIL . . oo e
10.2.1 rfid_gui.svo

10
10
10

11
11

10.2.2 bits_to_ascii.svo
10.2.3 cstringdisplay.v

10.3 Spoofing

10.3.1 spoofer.sv
10.3.2 debounce.sv

10.4 Reading

1 Overview

In the fields of corporate and building security, contactless smartcards and proximity cards
are the dominant form of access control. Indeed, Radio Frequency Identification (RFID) is
the cornerstone of MIT’s access control system. In recent years, non-contact forms of payment
using Near-Field Communication (NFC) have also been growing in popularity. In our project,
we would like to explore the security of this system by investigating the signals transmitted
from these devices and attempting to replicate them.

2 Background

RFID is a subset of more general non-contact credential systems. In particular, MIT pri-
marily uses passive RFID in the low frequency band, with card readers broadcasting 125kHz
signals. Passive here refers to the fact that the signal sent by the card reader is sufficient to
power the onboard circuitry that is used to transmit the ID data.

RFID cards come in a variety of flavors. The onboard IC can be read-only, read-write, or
write-once, read-many (WORM). Read-only cards have the ID number baked into the circuitry.
Read-write cards allow for a card reader to edit the information on the card. WORM cards
allow the end user to write to the card once, after which it becomes read-only.

2.1 Data Transmission

Embedded within each ID card is a wire coil connected to an integrated circuit. This wire
loop picks up the AC signal emitted by the card reader and rectifies it to provide power to the
IC. The purpose of the IC is to effectively modulate the impedance across the ends of the coil.
Because the coil in the card acts as the secondary of a transformer (with the card reader being
the primary), the impedance changes in the card are reflected across the air gap and can be
detected by the card reader.

The particular brand of ID card used by MIT uses binary phase-shift keying (BPSK) to
encode data. The card reader provides the 125 kHz carrier frequency which the onboard IC in
the card uses to superimpose a 62.5kHz data signal. This data signal is then phase shifted to
send information.

Figure 1: A 62.5kHz signal (green) superimposed on top of a 125kHz carrier (red). The result
(purple) is alternating “high” and “low” peaks.

The ICs on the MIT ID cards send one bit every 16 cycles of the 62.5 kHz wave. If the

current bit is different from the previous bit, then the IC will cause a phase shift in the 62.5
kHz signal. This looks like two consecutive high or low peaks in the carrier waveform.

Figure 2: A phase-shifted signal (green) superimposed on the 125kHz carrier (red) to produce
the purple waveform. The result (purple) is two high or low peaks at the location of phase

shift.

There are essentially three ways to emit a spoofed signal. The first is to record the coil’s
response to an ID card, and store some number of samples using an ADC. The downsides to
this approach are that it requires (1) a lot of memory, (2) a faster ADC than that on the Nexys
4 DDR, and (3) inability to spoof ID cards not already in the system.

A second approach is to recreate the 62.5 kHz signal. This method circumvents all of
the issues exhibited by the previous approach. Unfortunately, generating this discontinuous
signal would prove difficult, and questions of timing synchronization between the incoming and
spoofed signal arise.

The last method and, in particular, the approach we take in this project is to spoof the
superposition signal. In this approach, we modulate the natural response of a receive coil to
the incoming 125 kHz signal. This method provides a clean solution to the problem of time
synchronization; the circuitry is discussed in section 4.

2.2 Data Packet Structure

The data packet sent by the MIT ID is of a constant structure. Because the password
is static and there is no acknowledgement protocol with the reader, it is relatively simple to
reverse engineer the structure of the data packet that is sent. In the table below, the bits are
sent from LSB to MSB. That is, the 30 zeros are sent first followed by bit 30 all the way to 224.

Bits | Length Description
[29:0] 30 All 0’s; synchronization
[51:30] 22 MIT constant bits
[84:52] 33 Personal bits
[224:85] 139 Constant bits

Based on examining multiple ID cards, it is possible to determine that only bits 52 through
84 change between cards. These, we believe are the bits that are being modified to produce
unique identifiers.

3 Goals

3.1 Commitment

e Read module: this module will take raw analog input from the card reading coil and
translate that into bits. Proof of goal: display bits on VGA screen.

e Spoof module: this module will simulate the PSK 62.5kHz signal generated by the ID
card. This can be demonstrated by viewing the resulting waveform on an oscilloscope
and compared to the response of an actual ID card. Proof of goal: View phase shifted
waveform and incoming waveform on oscilloscope.

e Basic Deliverable: Upload code to two FPGA’s, and show the spoofed signal is correctly
read.

3.2 Goals

e SD Card Interface: Each time a new ID is read, offer the option to save it to an SD card.
Then, select ID numbers from the SD card to playback as a spoofed signal. Index into
the SD card via switches.

e VGA Interface: Add visual navigation for the SD card. Display a list of ID numbers
stored on the SD card. Scroll through them with the up and down buttons. Use the
center button to select an 1D to playback.

3.3 Stretch Goals

e Program Cards: Reverse engineer the programming protocol by reading the bits from the
Arduino programmer.

e All Systems Go: Read Joe or Jim’s ID card onto the SD card, and spoof their ID to open
the 38-6 lab doors.

4 Spoofing (Hannah)

The spoofed signal is achieved by modulating a receive coil’s impedance via the use of a
mosfet shorted accross the coil. In this manner, the superposition of the 125 kHz card reader
signal and the 62.5 kHz data signal is simulated by consecutively turning on and off the mosfet.
The key aspect of the spoofing system is that a phase-locked pulse is generated from the
incoming signal. This phase-locked pulse is effectively used as the clock for turning on and off
the mosfet, allowing the spoofed signal to phase align with the incoming signal from the card
reader. We suspect this is a necessary feature for our spoofed signal to be recognized by MIT
card readers.

4.1 Analog Frontend
4.1.1 Inductors

The inductors are hand-wound with approximately 20-turns and encompass a roughly 2-
inch diameter. These inductors had inductances in the tens-of-micro-Henry range. We found
that we had the best results using standard lab wire. One test with a 1000x larger milli-Henry
range inductor made from magnet wire performed worse as a receive coil, which we believe is

Figure 3: Analog frontend for the spoofer module. System consists of (1) a mosfet (IRF740)
for modulating the incoming signal (represented by the 20 Vpp oscillatory source) (2) op-amp
(TLV2371) to ensure the signal will sizable relative to the 3.3 V rails (3) comparator with
hysteresis (MAX941) to generate a phase-locked pulse.

due to it’s higher resistance. Based on measurements, MIT card readers appear to output a 20
Vpp signal. This transfers to roughly 1-2 Vpp on our inductor coils.

4.1.2 Modulation

The modulation is accomplished by an IRF740 N-Channel mosfet in parallel with the receive
coil. An additional capacitor is added in parallel to act as a low-pass filter. A rough estimate
of the capacitor value can be made to ensure that the cutoff frequency #ﬁ ~ 1 MHz. This
value of cutoff frequency is above the 125 kHz necessary for the signal to exist without too
much damping but is also low enough to remove the rapid periodic high-frequency oscillation
in the system. Experimentally, 33 nF worked well.

Figure 4: Clean spoofed signal. The filtering capacitor removes all high-frequency content.

4.1.3 Phase-locked Pulse

The phase-locked pulse is computed with an op-amp and comparator acting upon the
receive-side coil voltage. The first iteration of the analog setup incorporated a potentiome-
ter to set the hysteresis of the comparator. This effectively allowed for analog control of the
relative phase at which the mosfet would be turned on or off. Interestingly, the spoofed signal
with the greatest voltage differentiation between peaks was generated by switching the mosfet
at approximately 270 degrees before the expected maximum in the signal. Figure 5 depicts all
the analog signals for the basic system, which effectively corresponds to transmitting a single
bit.

Figure 5: Oscilloscope output of all analog front-end signals. Yellow: mosfet control. Blue:
spoofed signal out. Pink: op-amp output. Green: phase-locked pulse.

4.2 Spoofing Module

Figure 6: Spoof module block diagram.

The spoofing module accomplishes two tasks: (1) buffering and debouncing the card_reader_in
signal so that it is reliable and (2) computing the state of mosfet_control_out.

4.2.1 Phase-Locked Clock

The main difficulty for the spoof module is to generate a reliable signal for card_reader_in
so that the mosfet may use that signal as a pseudo-clock. If any edge of the analog card_reader_in
signal is missed, the mosfet state will remain unchanged, causing the entire rest of the trans-
mission to be faulty.

The most significant improvement in error rate came from a 3 wide buffer in of the card_reader_in
signal. The remaining errors were improved by debouncing. With the module’s actual logic
clock of 100 MHz, each clock cycle is 10 ns. Thus, an individual high or low peak of the 125
kHz signal lasts for 400 clock cycles. Experimentally, debouncing over 5 clock cycles led to
a near-zero error rate in the signal. Anything much more than that was too stringent of a
condition and resulted in missed edges.

Debugging of this module with the ILA was crucial: (1) the testbench simulations were
correct without either of these features implemented and (2) the oscilloscope could not pick
up on the instabilities in the FPGA from the noisy signal that caused it to fail. Of great
significance was the ability to select a number of frames for the ILA to trigger on (at the small
cost of fewer data points per window).

4.2.2 Mosfet Control Logic

Figure 7: FSM for spoof module logic.

The mosfet control logic first alternates the mosfet on and off for 32 cycles of a 125 kHz
wave. Since the spoof module should cyclically spoof the given bit stream, a pointer is used to
maintain the location of the currently transmitted bit. After the 32 cycles, the module checks
whether a bit shift occurs in the bit stream and flips the mosfet state accordingly. If no bit
shift occurs then the on off behavior continues as before. Otherwise, the bit shift is represented
by maintaining the current state of the mosfet for an additional cycle.

5 Reading (Miles)

Reading the stored data on the card requires first energizing the ID card with a 125 kHz
signal. This is picked up by a coil embedded in the card which is attached to an integrated
circuit that is able to change the impedance across the coil. In order to create a reader, we use
a signal generator connected to a transmit coil made up of 15-20 turns of 22 AWG wire in an
approximately 3-inch diameter loop to simulate a card reader. Another identical coil was made
to act as the receive coil. The voltage across this shows the signal being sent from the card.

5.1 Analog Frontend

The most straightforward way of capturing the changing voltage on the receive coil is to feed
the signal into the on-board ADC. However, the ADC has a maximum sampling rate of 1 Mbps.
The incoming carrier wave is at 125 kHz which corresponds to 8 samples per cycle. This is
insufficient to determine the small differences in amplitude required to decode the modulation.

Instead, an analog frontend is used to preprocess this signal. First, a notch filter tuned
to 125 kHz increases the amplitude difference between consecutive peaks. This signal is then
amplified, and a comparator is set to trigger on each high peak. The comparator pulses can be
polled by a digital pin at 100 MHz and phase shifts can be determined by the timing between
the pulses.

+3.3V +3.3V

V+ 10k

LM311 »
- comparator_out

+3.3V V-

10k

Figure 8: Analog frontend for the reader module. The transmit coil is represented by the
primary of L1 and the receive coil is the secondary.

Because we are also using a hand-wound coil to spoof the signal, there is very different
coupling between the spoof coil and the coil in the ID card. As a result, we need to adjust
the potentiometer to change the comparator threshold since the voltage on the recieve coil will
vary depending on the coupling.

5.2 Reading Module

The job of the Reading Module is to accept the raw input from the analog frontend and
output the 194-bit ID number that is stored on the card. The reader should signal to the next
module when the ID is ready to be read with a flag.

Reader

—Dbit_ready—> id_ready_out—>»
—comparator_in pulse_gen —pulse> parser read_fsm
—current_bit—» id_bits_out [193:0]—>

Figure 9: Reader module block diagram.

5.2.1 Pulse Gen Module

The goal of the pulse gen module is to synchronize the pulses from the LM311 comparator
and convert them into pulses of one clock cycle for the downstream modules.

Because this is the first module to receive the raw input, it needs to make special consid-
erations for the analog nature of the signal. Even though the comparator is fast, it still has a

fall time! the of about 100 ns. With the FPGA’s 100 MHz clock, this is still around 10 clock
cycles in which the comparator is at an intermediate voltage. As a result, it is necessary for
this module to prevent metastability problems. This is done by shifting the data through a
four-stage shift register. The pulse gen module only outputs a pulse when it detects that all
four values in the shift register agree on the logic level.

5.2.2 Parser Module

The role of the parser module is to decode the pulses received from the comparator into
bits. The integrated circuit in the ID card transmits one bit every 16 cycles of the 62.5 kHz
wave. If the current bit to be sent differs from the last bit (i.e. there is a bit flip), then the
IC will cause a phase shift in the 62.5 kHz signal which looks like two consecutive high or low
peaks in the 125 kHz carrier. The parser counts the clock cycles between pulses to determine
if a phase shift has occurred (i.e. the duration between the pulses is either too high or too
low). If so, it flips the value on current_bit. Every 16 cycles, it raises the bit_ready line to
signal that a bit has been sent. Subsequent modules then know that a valid bit is visible on
current_bit.

5.2.3 Read FSM Module

#consbe;:sutve‘1‘22 bits PERSONAL 33 bt+

139 bits

Figure 10: ID Bits decode FSM.

The read FSM represents the highest level of abstraction in decoding the ID number. This
module effectively receives a stream of bits from the parser and needs to figure out where in
the transmitted ID it is. A finite state machine accepts the incoming bits and uses the known
structure of the data packet to parse the bits.

In IDLE state, the module waits until it detects a consecutive sequence of 27 transmissions
of the same bit. This matches up with the 30 zeros sent out at the beginning and indicates
to the FSM that an ID transition is about to begin. After 27 zeros or ones are detected, the
system waits for the first one. The first one indicates the start of the first group of constant
bits. The state machine starts recording bits at this point and raises the id_ready_out flag
once it transitions from CONST2 back to IDLE.

Another benefit of knowing the structure of the data is that it allows the FSM to check the
incoming bits for known segments of data. For example, it is known that the first 22 bits sent
by every MIT card is 1000001110011000010110. We can use this in the state machine to reject
data packets that do not match this sequence since noise in the system can cause spurious bit
flips. Only after the entire 194-bit bus is filled does the FSM raise the id_ready_out flag to
signal to the downstream module that a valid ID has been loaded.

1We use the falling edge of the comparator because the LM311 is an open collector device. Thus it relies on
the 10k pullup resistor shown in Figure 8 to create the rising edge which makes it much slower than the falling
edge.

6 Graphical User Interface (Hannah)

The goal of the GUI module is to provide a way for users to interact with the RFID system.
The user may switch between SPOOF and READ mode via the use of a sw|[15].

6.1 Spoof GUI

Figure 11: GUI display for the spoof module.

In SPOOF mode, users are provided with a glance of the first 55 bits (personal + MIT bits)
stored in the 16 BRAM locations shared between the READ and SPOOF modules. Using the
up and down buttons, they may scroll through the contents. The selected entry is automatically
spoofed.

6.2 Read GUI

In READ mode, users are provided with a live update of the most recent bits read from the
Reading FSM. Furthermore, since the read system requires tuning of a physical potentiometer,
this mode provides feedback such as “MIT ID” or “ID Not Recognized” so that the user may be
able to tune the hardware without an external oscilloscope. This feedback is given by checking
whether the first 22 bits match the 22 MIT bits hardcoded into the module itself. Finally, users
may use the sw(4:0] to select a location in BRAM to which they may save the entire 194 long
sequence of bits.

6.3 Implementation Details

The main ability to display text on the screen is provided by the module cstringdisplay.v
written by I. Chuang and C. Terman. This module takes in the ascii code for up to 64 characters
to be displayed in a single line on the display. The font is provided by a COE file.

Figure 12: GUI display for the read module.

The module bits_to_ascii.sv adds the ability to convert arbitrary sequences of bits to
ascii code so that it may be displayed on the screen in the READ and SPOOF module. Other
text on the screen uses hard-coded ascii valuese.

7 Portable System (Miles)

One of the goals for this project was to create a device that could be held up to a card
reader to spoof an RFID card. This required portability which was not easy with the Nexys
A7 DDR boards. Instead, we switched to a CMOD A7 board from Digilent which contains an
Artix-7 FPGA in a more portable form factor. This allowed us to power the entire system from
a portable power bank and bring the device to a wall-mounted card reader.

Most of the code from the main project was transferred directly to the CMOD A7 with the
exception of the graphics handlers. The only other major modification made was to change
some of the constants since the Artix-7 uses a 20 MHz clock. There are fewer clock cycles
between comparator pulses, so some counting constants need to be changed.

7.1 User Interface

The CMOD A7 board is much more limited in user interface components. For our project,
in order to allow the user to select between the read and spoof modes of operation, we installed
a row of DIP switches with pullup resistors which could be connected to the GPIO pins. We
also took advantage of the two onboard LED lights and pushbuttons to indicate when to record
an id number and when the ID number read matched the MIT constant.

7.2 Flash Memory

The volatile nature of the FPGA causes challenges when making this device portable. Be-
cause the programmed bitstream disappears on each reboot, it is necessary to write the desired
bitstream into non-volatile flash memory so that it can be loaded into the FPGA during start

10

up. We were able to take advantage of the CMOD A7’s onboard Quad SPI Flash memory. We
were able to follow detailed instructions? to generate a binary file that could be written to the
flash memory. Then, on each power up, the FPGA looks first for stored bitstreams in the flash
memory.

8 Challenges

8.1 Debugging

Because this project relies on interfacing between the digital logic and the analog frontend,
the integrated logic analyzer (ILA) proved invaluable. However, one challenge was the difficulty
in debugging some of the larger state machines. The ILA has limited memory and the data
packets takes tens of milliseconds to send. There was a lot of dead time between sending every
two bits that was taking up ILA memory depth. We were able to use more complex triggering
and the multiple sample features to trigger every time a bit is sent and and to only capture a
few samples after each trigger since it only takes one clock cycle to send a bit.

At a higher level, another challenge with debugging was the ability to verify correctness of
the bits that we were reading off the cards. Because the ID card is a black box system, we had
no way of knowing if we were reading or spoofing the bits correctly. We had to carefully verify
each module we built and trust that it was working correctly to debug downstream modules.
The only confirmation we would get is when we were able to use the system to open a door
successfully.

9 Future Work

9.1 Security

Since its use as an authentication mechanism, RFID has received criticism for its security.
Some additional security concerns specific to the MIT system reside in the generation of the
personal bits. Additional analysis can be done to see if there are any patterns or ranges that
the bits span. This would potentially narrow the scope for a brute force attack on the card
readers.

Because the RFID cards use static passwords, they are vulnerable to the exact kind of
spoofing replay attack we have demonstrated in this project. One improvement we can use
to mitigate this attack vector is the use of a one-time password (OTP). Because the card is a
passive system, it would first have to communicate with the card reader to generate the OTP.
With our system, we can implement a handshake and acknowledgement protocol and have the
card FPGA calculate a hash function with a private key along with the acknowledgement data
to generate a unique password per session.

10 Appendix

10.1 Top Level

10.1.1 top_level.sv

1 module top_level(
2 input clk_100mhz,

Zhttps:/ /reference.digilentinc.com/learn /programmable-logic/tutorials /cmod-a7-programming-guide /start

11

//
//
//
//
//
//
//
//

input [1:0] ja,

output logic[0:0] jb,
input [15:0] sw,

logic btnc, // reset
logic btnd, // record
logic btnu, btnl, btnr, // unassigned
output [3:0] vga_r,
output [3:0] vga_b,
output [3:0] vga_g,
output vga_hs,

output vga_vs,

output logic[15:0] led
)

logic record_btn;
assign record_btn = btnd;

// Declare BRAM

logic [3:0] addr;

logic [193:0] data_to_bram;

logic [193:0] data_from_bram;

logic bram_write;

blk_mem_gen_O bit_bram(.addra(addr), .clka(clk_100mhz),
.dina(data_to_bram),
.douta(data_from_bram),
.ena (1), .wea(bram_write));

// Reader
logic id_ready;
logic [193:0] id_bits;
reader card_reader (.comparator_in(jal[0]),
.clk_in(clk_100mhz) ,
.reset_in(sw[15]), // activate reader when sw[15] is
low
.id_bits_out (id_bits),
.id_ready_out (id_ready));

record id_recorder (.addr (addr),
.record_in(record_btn),
.id_bits_in(id_bits),
.id_ready_in(id_ready),
.clk_in(clk_100mhz) ,
.reset_in(sw[15]),
.data_to_bram_out (data_to_bram),
.bram_write_out(bram_write)) ;
// Spoofer
logic [193:0] bits_to_spoof;
spoofer id_spoofer(.card_reader_in(jal[1]),
.card_bits_in(bits_to_spoof),
.clk_in(clk_100mhz) ,
.reset_in(!sw[15]), // activate spoofer when sw[15]
is high
.mosfet_control_out (jb[0]));
[17777777777777777777777/777/77777777777777/777/777777/777/7777
// GUI
// create 65mhz system clock, happens to match 1024 x 768 XVGA timing
wire clk_65mhz;
clk_wiz_0 clkdivider (.clk_in1(clk_100mhz), .clk_outl(clk_65mhz), .reset
(0));

12

90

wire [10:0] hcount; // pixel on current line

wire [9:0] vcount; // line number

wire hsync, vsync;

wire [11:0] pixel;

reg [11:0] rgb;

wire blank;

xvga xvgal(.vclock_in(clk_65mhz) ,.hcount_out (hcount),.vcount_out(vcount)

.hsync_out (hsync) ,.vsync_out (vsync) ,.blank_out (blank));

// btnc button is user reset

logic reset;

debounce_65mhz dbl(.reset_in(0),.clock_in(clk_65mhz),.noisy_in(btnc),.
clean_out (reset)) ;

// UP and DOWN and LEFT and RIGHT for menu interface

wire up,down,left,right;

debounce_65mhz db2(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnu)
,.clean_out (up));

debounce_65mhz db3(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnd)
,.clean_out (down)) ;

debounce_65mhz db4 (.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnl)
,.clean_out (left));

debounce_65mhz db5(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnr)
,.clean_out (right));

wire spoof_switch;
debounce_65mhz db6(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(sw
[15]) ,.clean_out (spoof_switch));

wire phsync,pvsync,pblank;
rfid_gui gui(.vclock_in(clk_65mhz),.reset_in(reset),
.up_in(up),.down_in(down) ,.left_in(left), .right_in(right),
.is_spoof_display(spoof_switch),
.hcount_in(hcount) ,.vcount_in(vcount),
.hsync_in(hsync),.vsync_in(vsync),.blank_in(blank),
.phsync_out (phsync) ,.pvsync_out (pvsync) ,.pblank_out (pblank)
,.pixel_out (pixel),
.save_addr (sw[3:0]1),
.read_module_bits(id_bits),
.data_to_bram(data_to_bram),
.data_from_bram(data_from_bram),
.addr (addr),
.write_to_bram(bram_write),
.bits_to_spoof_out(bits_to_spoof));

reg b,hs,vs;
always_ff @(posedge clk_65mhz) begin
hs <= phsync;
vs <= pvsync;
b <= pblank;
rgb <= pixel;
end

// the following lines are required for the Nexys4 VGA circuit - do not
change

assign vga_r = “b 7 rgb[11:8]: O0;

“b 7 rgb[7:4] : 0O;

“b ? rgb[3:0] : 0;

assign vga_g
assign vga_b

13

110
111
112
113
114

115

116

117

9
10
11
12
13
14
15

16

assign vga_hs = Ths;
assign vga_vs = "vs;

// Debug
assign led[15:0] = sw([14] ? data_from_bram[38:23] : bits_to_spoof
[45:30];

endmodule

10.2 GUI
10.2.1 rfid_gui.sv

//
LITTTTLET 0707707007777 0777777777777 7777777777777 7777777777

//
// RFID GUI

//
// swl[15] == 1 for SPOOF; 0 for READ
//
L1777 777/777777777777777777777/77/77/77/77777

module rfid_gui (

input vclock_in, // 65MHz clock

input reset_in, // 1 to initialize module
input up_in, //

input down_in, //

input left_in,

input right_in,

input is_spoof_display, //connected to sw[15]

input [3:0] save_addr, //connected to sw[3:0], location to save
bits to in bram

input [193:0] read_module_bits,

input [10:0] hcount_in, // horizontal index of current pixel (0..1023)
input [9:0] vcount_in, // vertical index of current pixel (0..767)

input hsync_in, // XVGA horizontal sync signal (active low)

input vsync_in, // XVGA vertical sync signal (active low)

input blank_in, // XVGA blanking (1 means output black pixel)
output phsync_out, // pong game’s horizontal sync

output pvsync_out, // pong game’s vertical sync

output pblank_out, // pong game’s blanking

output logic [11:0] pixel_out, // pong game’s pixel // r=11:8, g=7:4, b
=3:0

input [193:0] data_from_bram,

output logic [193:0] data_to_bram,
output logic [3:0] addr,

output logic write_to_bram,

output logic [193:0] bits_to_spoof_out

)
assign phsync_out = hsync_in;
assign pvsync_out = vsync_in;

assign pblank_out blank_in;

/////// BIT CODE THINGS /////////
parameter MIT_BITS = 22°b0110100001100111000001;

14

42
43
14

1

P |
o

~

6

-
~

-
[0

79

1177177

/////// Pulse UI Buttoms //////////

logic up_pulse;

pulse_65mhz my_up_pulse (.clock_in(vclock_in), .signal_in(up_in),
pulse_out (up_pulse));

logic down_pulse;

pulse_65mhz my_down_pulse (.clock_in(vclock_in), .signal_in(down_in),
pulse_out (down_pulse)) ;

logic left_pulse;

pulse_65mhz my_left_pulse (.clock_in(vclock_in), .signal_in(left_in),
pulse_out (left_pulse));

logic right_pulse;

pulse_65mhz my_right_pulse (.clock_in(vclock_in), .signal_in(right_in),
pulse_out (right_pulse));

L1100 7777777777777 77777777777 777777777

parameter BITS_IN_BRAM = 194;

logic [BITS_IN_BRAM-1:0] ascii_module_in;

logic [8*BITS_IN_BRAM-1: 0] ascii_module_out;

bits_to_ascii my_bits_to_ascii(.bits_in(ascii_module_in), .ascii_out(
ascii_module_out));

///// SWITCHES TO NUMBER ////
logic [15:0] save_addr_ascii;

////// FONT MODULE ///////

logic [64%8-1:0] char_string;

logic [10:0] string_start_x;

logic [9:0] string_start_y;

logic [6:0] line_number; //can fit 32 lines on the screen but line_number
will count up to the blank vsync interval

assign line_number = vcount_in/24; //text heigh is 24 pixels so line
number is module 24
assign string_start_y = line_number x*x 24;

logic coe_pixel_out;

parameter CHARS_PER_LINE = 64; //at most 64 characters per line
char_string_display read_spoof_display(.vclock(vclock_in), .hcount(
hcount_in), .vcount(vcount_in), .pixel(coe_pixel_out), .cstring(
char_string), .cx(string_start_x), .cy(string_start_y));

L1110 7777770777777 7777707777777 7777777777777 7777777777

L1117 77077777777777777777777
////// ASCII
[171777070777777777777777777777777

parameter SPOOF_ASCII = 40°b0101001101010000010011110100111101000110;
parameter READ_ASCII = 32°b01010010010001010100000101000100 ;
parameter ASCII_O = 8’b00110000;

parameter ASCII_1 = 8’b00110001;

parameter ASCII_SPACE = 8’b00100000;

parameter ASCII_COLON = 8°b00111010;

parameter ASCII_BITS_TEXT = 48’
b011000100110100101110100011100110011101000100000; // "bits: "
parameter ASCII_ID = 32°b01001001010001000011101000100000;//"ID: "
parameter ASCII_NOT_REC = 112°
b0110111001101111011101000010000001110010011001010110001101101111011001110110111001
; //"not recognized"

parameter ASCII_MIT = 24°b010011010100100101010100;// "MIT"

parameter ASCII_POUND = 16°b0010001100100000; //"# "

15

90

96

97
98
99

100

106
107
108
109
110
111

112

145

parameter ASCII_EMPTY = 40°b0110010101101101011100000111010001111001; //

n empty n
parameter ASCII_SAVE_AS = 112°

b011100110110000101110110011001010010000001001001010001000010000001100001011100110¢C

; //"save ID as #: "
L1171 77777777777777777777777777777

//logic old_hsync_in;

logic [3:0] selected_id; // 16 IDs in bram to select from using up and

down arrow keys
logic [3:0] displayed_id;
logic verbose_mode;

always_ff @ (posedge vclock_in) begin

/// CLOCKED SPOOF LOGIC
if (is_spoof_display == 1) begin
write_to_bram <= 0;
ascii_module_in <= data_from_bram;
addr <= displayed_id; //will change as hcount and vcount

if (displayed_id == selected_id) begin
bits_to_spoof_out <= data_from_bram;
end
if (reset_in) begin
string_start_x <= 0;
selected_id <= 0;
verbose_mode <= 0;

// keep track of state of selected ID
end else if (up_pulse) begin

if (selected_id > 0) selected_id <= selected_id - 1;
end else if (down_pulse) begin

if (selected_id < 15) selected_id <= selected_id + 1;

end else if (right_pulse) begin
verbose_mode <= 1;

end else if (left_pulse) begin
verbose_mode <= 0;

end

if (line_number == 0) begin
pixel_out = 12°’hFFF*coe_pixel_out;

end else if ((2*selected_id+1) == line_number) begin
pixel_out = “(12’hFFF*coe_pixel_out);

end

else begin
pixel_out = 12’hFFF*coe_pixel_out;

end

///// CLOCKED READ LOGIC

end else begin
ascii_module_in <= read_module_bits;
addr <= save_addr;
//save_addr switches to ascii
case (save_addr)
4°b0000: save_addr_ascii <= ASCII_0+8°dO;
4°b0001: save_addr_ascii <= ASCII_0+8°d1;

16

change

160
161
162
163
164
165
166
167
168

169

188
189
190
191
192
193
194

195

196

197

198

4°b0010: save_addr_ascii <= ASCII_0+8’d2;
4°b0011: save_addr_ascii <= ASCII_0+8°d3;
4°b0100: save_addr_ascii <= ASCII_0+8’d4;
4°b0101: save_addr_ascii <= ASCII_0+8’d5;
4°b0110: save_addr_ascii <= ASCII_0+8°d6;
4°b0111: save_addr_ascii <= ASCII_0+8°d7;
4°b1000: save_addr_ascii <= ASCII_0+8°d8;
4°b1001: save_addr_ascii <= ASCII_0+8’d9;
4°b1010: save_addr_ascii <= {ASCII_1,ASCII_0+8’d0};
4°b1011: save_addr_ascii <= {ASCII_1,ASCII_0+8’d1l};
4°b1100: save_addr_ascii <= {ASCII_1,ASCII_0+8’d2};
4°b1101: save_addr_ascii <= {ASCII_1,ASCII_0+8’d3};
4°b1110: save_addr_ascii <= {ASCII_1,ASCII_0+8’d4};
4°b1111: save_addr_ascii <= {ASCII_1,ASCII_0+8’d5};
endcase

if (right_pulse == 1) begin //write to bram
write_to_bram <= 1;

end else begin //don’t write to bram, just display
write_to_bram <= 0;
if ((line_number == 7) & (right_in == 1)) begin

pixel_out = ~(12’hFFF*coe_pixel_out);
end else begin
pixel_out = 12°’hFFF*coe_pixel_out;

end

end

end
end

// combinational logic determines

// 1) based on line number, what text should be,

// 2) what the color of pixel_out should be by feeding char_string
through cstringdisplay.v to produce coe_pixel_out

// 3) pixel_out based on coe_pixel_out

// uses combinational logic on hcount_in and vcount_into determine what
the element to be displayed is

always_comb begin
////////// //SPOOF DISPLAY //////////////
if (is_spoof_display == 1) begin
//generate ascii for each line -- display rom text on odd lines
in non verbose mode
displayed_id = (line_number - 1) >> 1; //which ID is currently
displayed

//ascii_module

//ascii string to display
case (line_number)
0: char_string = SPOOF_ASCII;
1: char_string {ASCII_O0,ASCII_COLON,ASCII_SPACE,
ascii_module_out [55%¥8-1:0]1};
3: char_string = {ASCII_0+8°d1,ASCII_COLON,ASCII_SPACE,
ascii_module_out [65*x8-1:0]1};
5: char_string
ascii_module_out [55%¥8-1:0]};
7: char_string

{ASCII_0+8°d2,ASCII_COLON,ASCII_SPACE,

{ASCII_0+8°d3,ASCII_COLON,ASCII_SPACE,

17

ascii_module_out [55%¥8-1:0]1};

199 9: char_string = {ASCII_0+8°d4,ASCII_COLON,ASCII_SPACE,
ascii_module_out [65*x8-1:0]1};

200 11: char_string = {ASCII_0+8°d5,ASCII_COLON,6ASCII_SPACE,
ascii_module_out [65%8-1:0]1};

201 13: char_string = {ASCII_0+8°d6,ASCII_COLON,ASCII_SPACE,
ascii_module_out [55%¥8-1:0]1};

202 15: char_string = {ASCII_0+8°d7,ASCII_COLON,6ASCII_SPACE,
ascii_module_out [65*%8-1:0]1};

203 17: char_string = {ASCII_0+8°d8,ASCII_COLON,ASCII_SPACE,
ascii_module_out [55%¥8-1:0]};

204 19: char_string = {ASCII_0+8°d9,ASCII_COLON,ASCII_SPACE,
ascii_module_out [55%¥8-1:0]1};

205 21: char_string = {ASCII_1,ASCII_O,ASCII_COLON,ASCII_SPACE,
ascii_module_out [65%8-1:0]1};

206 23: char_string = {ASCII_1,ASCII_0+8’d1,ASCII_COLON,
ASCII_SPACE,ascii_module_out [55%¥8-1:0]};

207 25: char_string = {ASCII_1,ASCII_0+8°d2,ASCII_COLON,
ASCII_SPACE,ascii_module_out [55%*8-1:0]};

208 27: char_string = {ASCII_1,ASCII_0+8°d3,ASCII_COLON,
ASCII_SPACE,ascii_module_out [55%8-1:0]};

209 29: char_string = {ASCII_1,ASCII_0+8°d4,ASCII_COLON,
ASCII_SPACE,ascii_module_out [55%¥8-1:0]};

210 31: char_string = {ASCII_1,ASCII_0+8°d5,ASCII_COLON,
ASCII_SPACE,ascii_module_out [55*%*8-1:0]};

211 default: char_string = 0;

212 endcase

213

214 end

217 ////////is_spoof_display==0 for READ DISPLAY///////////
218 else begin

220 //ascii

221

222 data_to_bram = read_module_bits;
223 //// display

224 case (line_number)

225 0: char_string = READ_ASCITI;

226 3: char_string = {ASCII_BITS_TEXT, ascii_module_out
[656%8-1:0]1}; //print out 22 MIT and 33 personal from left to right
227 5: begin

228 if (read_module_bits[21:0] == MIT_BITS) begin

229 char_string = {ASCII_ID, ASCII_MIT}; //add
information about whether the ID is mit, unidentified or stored in the
bram

230 end else begin

231 char_string = {ASCII_ID, ASCII_NOT_REC};

232 end

233 end

234 7: char_string = {ASCII_SAVE_AS, save_addr_asciil;

235 default: char_string = O0;

236 endcase

237 end

239

240 end

18

243

244
245
246

247

248
249
250
251
252
253
254
255
256
257

258

260

261

263

277
278
279

280

281
282
283
284
285
286
287
288
289
290

291

//ila_0 myila(.clk(vclock_in), .probeO(hsync_in), .probel(vsync_in),
probe2 (hcount_in), .probe3(pixel_out), .probe4(puck_center_x), .probe5(
puck_center_y));

endmodule

module synchronize #(parameter NSYNC = 3) // number of sync flops.
must be >= 2

(input clk,in,

output reg out);

reg [NSYNC-2:0] sync;

always_ff @ (posedge clk)
begin
{out,sync} <= {sync[NSYNC-2:0],in};
end
endmodule

//
L1110 07 7777707777770 77777777

//
// Rising Edge Pulse
//
//
L1117 1777 777777777777 7777 7777777777777 777777777777777777777777777777777777777

module pulse_65mhz (input clock_in, input signal_in, output pulse_out);

logic old_signal_in;

w6 //

assign pulse_out = (old_signal_in == 0) & (signal_in == 1);
always_ff Q@(posedge clock_in) begin
old_signal_in <= signal_in;

end
endmodule

LILTTTTT 0777777777770 7777777777777 7777777777777 7777777777777 77
//
// Pushbutton Debounce Module (video version - 24 bits)
//
//

L1107 77

module debounce_65mhz (input reset_in, clock_in, noisy_in,
output reg clean_out);

reg [19:0] count;
reg new_input;

always_ff Q@(posedge clock_in)
if (reset_in) begin
new_input <= noisy_in;
clean_out <= noisy_in;

19

292

293

294
295
296
297
298
299
300

301
302
303
304
305
306

307

308

309

310

311

312

313

314

316

317

318

319

320
321
322
323
324
325
326
327

328

330
331
332
333
334
335
336

337

5 //

end

!= new_input) begin new_input<=noisy_in; count <= 0;

1000000)
count+1;

clean_out <= new_input;

L1100 777777777777 77777 77

xvga: Generate VGA display signals

change the clock frequency,

Freq
25.175
40.000
65.000
108.00
75.25

148.5

count <= 0;
else if (mnoisy_in
end
else if (count
else count <=
endmodule
//
// Update: 8/8/2019 GH
// Create Date:
// Module Name: xvga
//
//
//
//
//
//
BP
// 640x480, 60H=z
il
// 800x600, 60Hz
23
// 1024x768, 60Hz
29
// 1280x1024, 60Hz
38
// 1280x720p 60Hz
30
1920x1080 60Hz
36
//
//
create
// other screen resolutions
//

10/02/2015 02:05:19 AM

(1024 x 768 @ 60Hz)

---- HORIZONTAL ----- = ------ VERTICAL
Active Active

Video FP Sync BP Video FP Sync
640 16 96 48 480 11 2
800 40 128 88 600 1 4
1024 24 136 160 768 3 6
1280 48 112 248 768 1 3
1280 72 80 216 720 3 5
1920 88 44 148 1080 4 5

front porches, sync’s, and back porches to

LIT1TTT00 7777700777770 7777777777707 777777777777777777777777

module xvga(input vclock_in,
[10:0] hcount_out,

parameter
parameter

parameter
parameter
parameter

parameter
parameter
parameter

output
output
output
output

[9:0] vcount_out,
vsync_out,

blank_out) ;

DISPLAY_WIDTH
DISPLAY_HEIGHT

H_FP = 24;
H_SYNC_PULSE =
H_BP 160;
V_FP = 3;
V_SYNC_PULSE =
V_BP = 29;

Il

1024,
768;

136;

hsync_out,

//
//

//
//
//

//
//
//

// pixel number on current line
// line number

display width
number of lines

horizontal front porch
horizontal sync
horizontal back porch

vertical front porch
vertical sync
vertical back porch

360
361
362
363

364

366
367
368
369

370

// horizontal: 1344 pixels total

// display 1024 pixels per line

reg hblank,vblank;

wire hsyncon ,hsyncoff ,hreset ,hblankon;

assign hblankon = (hcount_out == (DISPLAY_WIDTH -1));

assign hsyncon = (hcount_out == (DISPLAY_WIDTH + H_FP - 1)); //1047
assign hsyncoff = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE
1)) // 1183

assign hreset = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE +

H_BP - 1)); //1343

// vertical: 806 lines total
// display 768 lines
wire vsyncon,vsyncoff ,vreset,vblankon;

assign vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT - 1)); // T67
assign vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP - 1));

// 771

assign vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP +
V_SYNC_PULSE - 1)); // 777

assign vreset = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP +

V_SYNC_PULSE + V_BP - 1)); // 805

// sync and blanking
wire next_hblank ,next_vblank;
assign next_hblank hreset ? 0 : hblankon 7 1 : hblank;

assign next_vblank = vreset 7?7 O : vblankon 7 1 : vblank;

always_ff @(posedge vclock_in) begin
hcount_out <= hreset ? 0O : hcount_out + 1;
hblank <= next_hblank;
hsync_out <= hsyncon ? 0 : hsyncoff ? 1 : hsync_out; // active low
vcount_out <= hreset ? (vreset 7 O : vcount_out + 1) : vcount_out;
vblank <= next_vblank;
vsync_out <= vsyncon ? O : vsyncoff ? 1 : vsync_out; // active low

blank_out <= next_vblank | (next_hblank & ~hreset);
end
endmodule

10.2.2 bits_to_ascii.sv

//converts entire 194 bits into ascii. later on, can index in
module bits_to_ascii(

input logic [193:0] bits_in,

output logic [8%194-1:0] ascii_out

) g

parameter ASCII_O 8°b00110000;
parameter ASCII_1 = 8°b00110001;
parameter MAX_BITS = 194; //at most 64 characters per line

I

always @ (%) begin
for (int n=0 ; n< MAX_BITS ; n++) begin
ascii_out[8*n +: 8] <= (bits_in[n] == 1) ? ASCII_1 : ASCII_O;
end
end

7 endmodule

10.2.3 cstringdisplay.v

21

29
30
31
32
33
34

36
37

39
40
41
42

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//

5 //

//

//
//
//
//

File: cstringdisp.v
Date: 24-0ct -05
Author: I. Chuang, C. Terman

Display an ASCII encoded character string in a video window at some
specified x,y pixel location.

INPUTS :

vclock - video pixel clock

hcount - horizontal (x) location of current pixel

vcount - vertical (y) location of current pixel

cstring - character string to display (8 bit ASCII for each char)

cx,Cy - pixel location (upper left corner) to display string at
OUTPUT :

pixel - video pixel value to display at current location
PARAMETERS:

NCHAR - number of characters in string to display

NCHAR_BITS - number of bits to specify NCHAR
pixel should be OR’ed (or XOR’ed) to your video data for display.

Each character is 8x12, but pixels are doubled horizontally and
vertically

so fonts are magnified 2x. On an XGA screen (1024x768) you can fit
64 x 32 such characters.

Needs font_rom.v and font_rom.ngo

For different fonts, you can change font_rom. For different string
display colors, change the assignment to cpixel.

LITITLTIT 7077700777777 77777777777777777777777777777

video character string display

L1170 7777007777777 777 7777777777777 777777777777777777777777777777777777

module char_string_display (vclock,hcount,vcount,pixel,cstring,cx,cy);

parameter NCHAR = 64; // number of 8-bit characters in cstring
parameter NCHAR_BITS = 6; // number of bits in NCHAR

input wvclock; // 65MHz clock

input [10:0] hcount; // horizontal index of current pixel (0..1023)
input [9:0] wvcount; // vertical index of current pixel (0..767)
output [2:0] pixel; // char display’s pixel

input [NCHAR*8-1:0] cstring; // character string to display

input [10:0] cx;

input [9:0] cy;

22

// 1 line x 8 character display (8 x 12 pixel-sized characters)

wire [10:0] hoff = (hcount+2)-1-cx; //"prefetch" 2 clock cycles

wire [9:0] voff = vcount-cy;

wire [NCHAR_BITS-1:0] column = NCHAR-1-hoff [NCHAR_BITS -1+4:4]; // <
NCHAR

wire [2:0] h = hoff[3:1]; // 0 .. 7

wire [3:0] v = voff[4:1]; // 0 .. 11

// look up character to display (from character string)
reg [7:0] char;
integer n;
always @(%)
for (n=0 ; n<8 ; n = n+1) // 8 bits per character (ASCII)
char [n] <= cstringl[column*8+n];

// look up raster row from font rom
wire reverse = char[7];
wire [10:0] font_addr = char[6:0]*12 + v; // 12 bytes per character
wire [7:0] font_byte;
font_rom f£f(
.clka(vclock),
.addra(font_addr),
.douta(font_byte));

// generate character pixel if we’re in the right h,v area

wire [2:0] cpixel = (font_bytel[7 - h] ~ reverse) 7 7 : 0;

wire dispflag = ((hcount > cx) & (vcount >= cy) & (hcount <= cx+NCHAR*16)
& (vcount < cy + 24));

wire [2:0] pixel = dispflag ? cpixel : O;

endmodule

10.3 Spoofing
10.3.1 spoofer.sv

module spoofer (
input clk_in,
input reset_in, //center button for reset
input card_reader_in, // ready-signal from incoming 125kHz wave
input [193:0] card_bits_in, // data bits to spoof ([193:0])
output logic mosfet_control_out // mosfet state

)

//mosfet output signal
logic spoof_out; // mosfet state
assign mosfet_control_out = spoof_out;

parameter NUM_BITS = 224;

logic [NUM_BITS-1: 0] data_in;

assign data_in = {30°b0, card_bits_in}; // prepend 30 zeros to the front
of the data bits

logic [NUM_BITS-1:0] cyclic_data_in;

logic [4:0] cycles_per_bit_count; //5 bits so 32 cycles per bit
logic [3:0] card_reader_buffer; //incoming data

logic card_reader_noisy; //buffered
logic card_reader_clean; //buffered and debounced

23

23 debounce card_reader_noisy_debounce (.reset_in(reset_in), .clock_in(
clk_in), .noisy_in(card_reader_noisy) ,

24 .clean_out (card_reader_clean));

25 logic card_reader_pulse; //true on rising edge

26 pulse my_card_reader_pulse (.clock(clk_in), .signal(card_reader_clean),
.pulsed_signal (card_reader_pulse)); //pulse the clean debounced signal

28 logic [7:0] current_bit_loc;

29 parameter MAX_LOC = 223;

30 logic currentBit; //MSB of cyclic_data_in

31 logic previousBit; //previous MSB of cyclic_data_in
32 assign currentBit = data_in[current_bit_loc];
33

34 always_ff @(posedge clk_in) begin

35 if (reset_in) begin //reset and initialize
36 spoof_out <= 0;

37 cycles_per_bit_count <= 1;

38 previousBit <= currentBit;

39 card_reader_buffer <= 4°bO0;

10 card_reader_noisy <= 0;
11 current_bit_loc <= 0;
42 end

44 else begin
15 if (card_reader_pulse) begin //determine spoof_out

16 if (cycles_per_bit_count == 0) begin //move to next bit

47

48 //if bit flip from previous to current, phase shift
implies spoof_out remains the same

19 spoof_out <= (previousBit != currentBit) ? spoof_out : !
spoof_out;

50

51 //get the next bit and bit shift cyclic_data_in

52 previousBit <= currentBit;

53 current_bit_loc <= (current_bit_loc == MAX_LOC) 7 O:
current_bit_loc + 1; //bit shifting cyclic_data_in will pop the MSB

54 end

56 else begin
57 spoof_out <= !spoof_out;
58 end

60 cycles_per_bit_count <= cycles_per_bit_count + 1;

61 end

62

63 card_reader_noisy <= (card_reader_buffer >> 3);

64 card_reader_buffer <= (card_reader_buffer << 1) + card_reader_in
5

65 end

66 end

6s endmodule

71 //module spoof_module (

2 // input clk_100mhz,

3 // input logic btnc, //center button for reset

7 // input logic [0:0] ja, //card_reader_in: ready-signal from
incoming 125kHz wave

5 [/ output logic [0:0] jb //spoof_out: mosfet state

24

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

96
97
98

99
100
101
102
103
104
105

106

107
108

109

110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

//

)

// //mosfet output signal

// logic spoof_out; // mosfet state

// assign jb = spoof_out;

// logic [29:0] consecutive_bits;

// assign consecutive_bits = 30’bO0;

// logic [21:0] constant_bits;

// assign constant_bits = 22’b1000001110011000010110;
// logic [32:0] personal_bits;

// assign personal_bits = 33°b100000100001000010100010001001111; //hannah
/117 // 33°b101010110101000010111000011110100 //miles
// logic[138:0] trash_bits;

// assign trash_bits = 139°

//
//
//

//

//

//
//
//
//

//
//
//

//
//
//

//
//
//
//
//
//
//
//
//

//
//
//

b010110001010110101000001100101110001011011100110001101010101110101111001001000100¢

>

parameter NUM_BITS = 224;

logic [NUM_BITS-1: 0] data_in;

assign data_in = {consecutive_bits, constant_bits, personal_bits,
trash_bits};

logic [NUM_BITS -1:0] cyclic_data_in;

logic [2:0] cycles_per_bit_count; //5 bits so 32 cycles per bit

logic [3:0] card_reader_buffer; //incoming data

logic card_reader_noisy; //buffered

logic card_reader_clean; //buffered and debounced

debounce card_reader_noisy_debounce (.reset_in(btnc), .clock_in(
clk_100mhz), .noisy_in(card_reader_noisy) ,

.clean_out (card_reader_clean)) ;

logic card_reader_pulse; //true on rising edge

pulse my_card_reader_pulse (.clock(clk_100mhz), .signal(
card_reader_clean), .pulsed_signal(card_reader_pulse)); //pulse the clean
debounced signal

logic currentBit; //MSB of cyclic_data_in

logic previousBit; //previous MSB of cyclic_data_in

assign currentBit = btnc ? (data_in >> (NUM_BITS - 1)) : (
cyclic_data_in >> (NUM_BITS - 1));

always_ff Q@(posedge clk_100mhz) begin

if (btnc) begin //reset and initialize
cyclic_data_in <= data_in;
spoof_out <= 0;
cycles_per_bit_count <= 1;
previousBit <= currentBit;
card_reader_buffer <= 4°Db0;
card_reader_noisy <= 0;

end

else begin

if (card_reader_pulse) begin //determine spoof_out
if (cycles_per_bit_count == 0) begin //move to next bit

25

129

130

136
137
138
139
140

141

146
147
148

149

8

//

5 //

5 //

//if bit flip from previous to current, phase shift
implies spoof_out remains the same

// spoof_out <= (previousBit != currentBit) ? spoof_out
!'spoof_out;
// //get the next bit and bit shift cyclic_data_in
// previousBit <= currentBit;
// cyclic_data_in <= (cyclic_data_in << 1) + currentBit;
//bit shifting cyclic_data_in will pop the MSB
end
// else begin
// spoof_out <= !spoof_out;
// end
// cycles_per_bit_count <= cycles_per_bit_count + 1;
// end
// card_reader_noisy <= (card_reader_buffer >> 3);
card_reader_buffer <= (card_reader_buffer << 1) + ja;
// end
// end
//endmodule

10.3.2 debounce.sv

module pulse(

input clock,

input signal,

output pulsed_signal
)

logic old_signal;
assign pulsed_signal = (old_signal == 0) & (signal

]
]
-
~

.

always_ff @ (posedge clock) begin
old_signal <= signal;
end

endmodule

module debounce (input reset_in, clock_in, noisy_in,

output logic clean_out);

logic [4:0] count;
logic new_input;

always_ff @(posedge clock_in)
if (reset_in) begin
new_input <= noisy_in;
clean_out <= noisy_in;
count <= 0; end
else if (noisy_in != new_input) begin new_input<=noisy_in; count <= 0;
end
else if (count >= 5) clean_out <= new_input;
else count <= count+1;

endmodule

26

10.4 Reading

module reader (

input comparator_in,

input clk_in,

input reset_in,

input [3:0] addr_in,

input record_in,

output logic [193:0] id_bits_out,
output logic id_ready_out

)
logic pulse;
logic bit_ready;
logic current_bit;
pulse_gen comparator_cleanup(.comparator_in(comparator_in),
.clk_in(clk_in),
.reset_in(reset_in),
.pulse_out (pulse));
parser comparator_parser (.pulse_in(pulse),
.clk_in(clk_in),
.reset_in(reset_in),
.bit_ready_out (bit_ready),
.current_bit_out (current_bit)) ;
read_fsm fsm(.bit_ready_in(bit_ready),
.sent_bit_in(current_bit),
.reset_in(reset_in),
.clk_in(clk_in),
.id_out (id_bits_out),
.id_ready_out (id_ready_out));
endmodule

module record(

input [3:0] addr,

input record_in, // Signal to record

input [193:0] id_bits_in, // id number to record

input id_ready_in, // id number ready signal from the reader module
input clk_in,

input reset_in,

output logic [193:0] data_to_bram_out,

output logic bram_write_out

// Continuously stores IDs being emitted from the reader module and
stores in internal register

// This allows for instantaneous recording when the button is pressed.
parameter S_IDLE = O0;

parameter S_RECORD = 1;

logic state = S_IDLE;
logic [193:0] last_valid_id_num = 0;

always_ff Q@(posedge clk_in) begin
case(state)
S_IDLE: begin
bram_write_out <= 0; // ensure one cycle pulse
if (record_in) begin
state <= S_RECORD;
end
if (id_ready_in) begin
last_valid_id_num <= id_bits_in;

27

92
93
94
95
96
97
98
99
100
101

102

103
104
105
106

107

108
109
110

111

end
end
S_RECORD: begin
data_to_bram_out <= last_valid_id_num;
bram_write_out <= 1;
state <= S_IDLE;
end
default: begin
state <= S_IDLE;
bram_write_out <=
last_valid_id_num
end

N O
N e
o

endcase
end

endmodule

/ *

parser receives the raw pulse data from the comparator and determines if a

*/

//

bit has been sent

» module parser (

input pulse_in, // Assumed to be a single clock cycle pulse
input clk_in,

input reset_in,

output logic bit_ready_out,

output logic current_bit_out

parameter RFID_FREQ = 125000; // This needs to be tuned depending on the
coil for optimal performance

parameter PULSE_PER_BIT = 16;

parameter CYCLES_PER_PULSE = 2 * 100000000 / RFID_FREQ; //1600; // 1 /
62.5kHz * 100MHz = 1600 clock cycles per pulse
parameter CYCLES_PER_PULSE = 1600;
parameter CYCLE_COUNT_ERROR = 100; // allowable tolerance on the period
logic [4:0] pulse_count; // count the number of pulses detected
logic [11:0] cycle_count; // longest expected duration between pulses is
2400 cycles (1.5 * period)

// Every 16 pulses, output one bit
always_ff Q@(posedge clk_in) begin
if (bit_ready_out) begin
bit_ready_out <= 0; // ensure bit_ready_out is one pulse wide
end
if (pulse_in) begin
// Check for phase shift
if (cycle_count > CYCLES_PER_PULSE + CYCLE_COUNT_ERROR ||
cycle_count < CYCLES_PER_PULSE - CYCLE_COUNT_ERROR) begin
current_bit_out <= current_bit_out ~ 1’bl; // toggle
current_bit_out

end
// Check if a bit has been sent
if (pulse_count == PULSE_PER_BIT - 1) begin

pulse_count <= 0;
bit_ready_out <= 1; // tell next module that a bit is ready
to be read
end else begin
pulse_count <= pulse_count + 1;
end
cycle_count <= 0;

28

112 end else begin
113 cycle_count <= cycle_count + 1;
114 end

116 if (reset_in) begin

117 pulse_count <= 0;

118 current_bit_out <= 0;
119 bit_ready_out <= O0;
120 end

121 end

123 endmodule

125 /* Receives the output from the comparator. Needs to create a sharp
transistion and an output pulse with one clock cycle width x*/
126 module pulse_gen (

127 input comparator_in,

128 input clk_in,

129 input reset_in,

130 output logic pulse_out

131) ;

132 logic prev_input;

133 logic [4:0] input_buffer;

134 always_ff @(posedge clk_in) begin

135 if (pulse_out) begin

136 pulse_out <= 0; // Guarantee one-cycle long pulse

137 end

138 input_buffer <= {comparator_in, input_buffer[4:1]};

139 // Wait until the entire buffer agrees before accepting the bit
since the comparator is slow

140 if (input_buffer == 5°b11111 || input_buffer == 0) begin

141 prev_input <= input_buffer [0];

142 // Check for falling edge

143 if (input_buffer [0] == 0 && prev_input == 1) begin

144 pulse_out <= 1;

145 end

146 end

147 if (reset_in) begin

148 pulse_out <= 0;

149 prev_input <= 0;

150 end

151 end
152 endmodule

154 module read_fsm(input bit_ready_in,
155 input sent_bit_in,

156 input clk_in,
157 input reset_in,
158 output logic [193:0] id_out,

159 output logic id_ready_out);

160

161 // Hyperparameters

162 parameter CONSEC_BIT_THRESHOLD = 25; // Detect 25 consecutive bits
before transitioning to triggered

163 parameter NUM_CONST_1 = 22;

164 parameter NUM_PERSONAL = 33;

165 parameter NUM_CONST_2 = 139;

166

167 // States

168 parameter S_IDLE = O;

29

194
195
196
197
198

199

parameter S_TRIGGERED = 1

parameter S_CONSTANT_1 = 2;
parameter S_PERSONAL = 3;
parameter S_CONSTANT_2 = 4;

logic [2:0] state = S_IDLE;
logic parity = 0; // There’s a chance all the bits are flipped. XOR
inputs with this parity bit to fix this
logic input_bit;

assign input_bit = parity

sent_bit_in;

logic prev_bit;
logic [7:0] bit_count;

always_ff @(posedge clk_in) begin
if (reset_in) begin

end

state <= S_IDLE;
prev_bit <= 0;
bit_count <= 0;
parity <= 0;
id_ready_out <= 0;
id_out <= 0;
else if(bit_ready_in) begin
case(state)

S_IDLE: begin

// Look for consecutive string of same bit

id_ready_out <= 0; // Clear the bit if already set from

a previous run

bit_count <= input_bit == prev_bit ? bit_count + 1 : O0;

prev_bit <= input_bit;
if (bit_count > CONSEC_BIT_THRESHOLD) begin
state <= S_TRIGGERED;
if (input_bit == 1) begin
// If a string of ones is detected,

bit (we are backwards)

parity <= 1;
end
end
end
S_TRIGGERED: begin
// Wait for first one
if (input_bit == 1) begin
id_out [0] <= 1;
bit_count <= 1;
state <= S_CONSTANT_1;
end
end
S_CONSTANT_1: begin

flip parity

if (bit_count == 11 && id_out[9:0] != 10°b0111000001)
begin // invalid, reject

state <= S_IDLE;
bit_count <= 0;
parity <= 0;
prev_bit <= 0;
end
id_out [bit_count] <= input_bit;
bit_count <= bit_count + 1;
if (bit_count == NUM_CONST_1 - 1) begin
state <= S_PERSONAL;
end
end

30

S_PERSONAL: begin
id_out [bit_count] <= input_bit;
bit_count <= bit_count + 1;
if (bit_count == NUM_PERSONAL + NUM_CONST_1 - 1) begin
state <= S_CONSTANT_2;
end
end
S_CONSTANT_2: begin
id_out [bit_count] <= input_bit;
bit_count <= bit_count + 1;

if (bit_count == NUM_PERSONAL + NUM_CONST_1 + NUM_CONST_2
- 1) begin
state <= S_IDLE;
id_ready_out <= 1;
bit_count <= 0;
parity <= 0;
prev_bit <= 0;
end
end
default:
state <= S_IDLE;
endcase
end
end
248 endmodule

31

