
6.111 Final Project
The Video Vitalizer - an NTSC Video System for Quadcopter
Applications
J. Abel, JT. McGuire - Fall 2019

Contents

Project Overview 2

Hardware Setup 3

Implementation 4

Testing and Simulation 5

Design Overview: Block Diagram 6

Memory Control & Camera Interface - JT. McGuire 8
NTSC Input Decoding 8
Colorbar Generator 9
I2C Control 9
ZBT Memory Control 10
Output Module 11

Image Processing - J. Abel 14
Convolution Filtering 14
Edge Detection - Sobel Filtering 14
Noise Removal - Median Filtering 15
Sharpening - Unsharp Masking 16
Sun-Blocker - Threshold-Based Filtering 17
Level Adjustment 18
Colorspace Conversion - YCbCr to RGB 19
Text Overlay 20
Average Brightness Level 21

Reflection 21
Challenges/Difficulties 21
Advice for Future Projects 22

Appendix - Verilog Modules 23

1

Project Overview
The goal of this project is to design and implement an NTSC camera system that

could be used as an FPV camera on a quadcopter. The system takes in a video feed from
an NTSC camera, and displays it in real time on a VGA monitor. Additionally, filters can
be applied to the image, which enhance the image quality in adverse conditions and
improve the flying experience for the drone pilot. The fact that the computations needed
to apply these filters must occur in real-time makes this problem ideally suited to being
implemented with an FPGA.

The board receives the image from the camera as an NTSC composite waveform,
which is sampled by an ADV7185 NTSC video decoder. As per the NTSC standard, the
received image is interlaced, and is received at a frequency of 30 Hz and a resolution of
640 TV lines per frame. The chip then encodes the video data as a 10 bit value
containing luminance and chroma information in YCbCr color space. These values are
extracted from this 10 bit value, and stored in a frame buffer inside a ZBT SRAM
memory. The frame buffer is necessary to account for the interlaced nature of the
incoming image, since the image processing filters require chunks of adjacent pixels to
function. Once an entire frame has been stored, the output pixels are read into a circular
buffer of four video lines, with one line being the active write buffer and the other three
providing the data for the 3x3 pixel output kernel. The three read line buffers are
latched into a series of shift registers on the output clock rate such that an output kernel
can be generated with a height of three (each line buffer) and a width of three (three
pixel-deep shift registers). This configuration means that the pixel currently being read
from the frame buffer is actually two lines beneath and two pixels ahead of the pixel
that is being output to the filtering modules.

For each pixel in the image, the image processing modules receive a 3x3 kernel of
luminance data from adjacent pixels, which allows convolutional filtering to be applied
to the image. Four convolutional filters are available to be applied to the image, as
described below:

- An edge detection filter, which uses a Sobel kernel to highlight sharp transitions
in brightness

- A noise reduction filter, which uses a median filter to remove salt and pepper
noise

- A sharpening filter, which uses an unsharp mask to clarify a blurry image
- A sun blocking filter, which uses thresholding to improve image clarity in direct

sunlight by blocking overly bright pixels
In addition to convolutional filter, a separate filter exists that uses linear mapping to
adjust the brightness levels, hence improving the readability of the image in poor
lighting. This adjustment level can either be set manually or automatically based on the
mean brightness of the image.The filtered pixels are then converted to RGB color space,
and are displayed on a monitor using a VGA interface. A text overlay is also applied to

2

the image at this stage to display the current filter state and overall brightness of the
frame.

Hardware Setup
The hardware setup consists of the following key components:

- An NTSC camera, which captures images in real-time and transmits them as an
interlaced analog composite waveform (CVBS video signal)

- A VGA monitor, which displays the image from the camera in real time. The
monitor is able to display an image with a frame rate up to 1280x1024 pixels @
60 Hz. The final prototype had an output of 640x480 pixels @ 60 Hz.

- The 6.111 Labkit, centered around a Xilinx XC2V6000 Virtex 2 series FPGA. The
Labkit contains the following periphery chips, which are used to interface the
FPGA with external devices

- An ADV7185 NTSC video decoder, which digitizes the incoming NTSC
signal and extracts pixel information in YCrCb space. It outputs this data
in a CCIR656 4:2:2 color standard.

- A 512kx36 bit Cypress ZBT synchronous SRAMi, which is used to store
the incoming frame in a frame buffer to account for the interlaced nature
of NTSC video.

- A 24 bit high speed video DAC for VGA output to a monitor

The intended application of our system forced us to use some legacy hardware
due to the requirement for a large, high-bandwidth memory that could be
simultaneously written to and read from within a single pixel interval. The DDR RAM on
the Nexys4 board requires several clock cycles in order to switch between read and
write modes and therefore was insufficient for out purposes. We required a Zero Bus
Turnaround [ZBT] memory in order to interlace our reads and writes to make the
project possible with a single external memory. This need arises because we have to be
able to save incoming pixel data while also reading outgoing pixel data within a single
pixel clock cycle.

The Virtex 2 series of FPGAs has a 2002 vintage and the newest software that
still supports them was released in 2008 and last updated in 2011. This need to use
legacy hardware caused us a great deal of stress and strife, and we strongly recommend
to all future students that the old labkit be avoided at all costs. Xilinx ISE 10.1 does not
support Windows 10 and only the 32-bit version of the software was usable. However,
the driver incompatibility meant that we could only use ISE on Windows for simulation.
To actually interface with the hardware, we had to use Linux. Fortunately, the debian
athena machines in the lab are capable of running ISE with reasonable effectiveness,
though the software is still prone to crashing and strange file errors. ISE 10.1 definitely
does not play nicely with the newest version of Ubuntu (we checked).

3

ISE 10.1 proved to be our biggest challenge in implementation. It lacked some
programmable logic IP that is present in Vivado and the Nexys4 that would have been
incredibly useful, most notably an internal logic analyzer and a functional clock
generator. The lack of these features made timing control and debugging more difficult
than it would have been on a newer board. We did not want to mess with Chipscope for
obvious reasons and instead used the physical logic analyzer in the lab, which was not
quite fast enough to accurately receive our 108 MHz memory interface signals reliably
over its lengthy wires. Additional delays were caused by the ISE software itself, which
was unstable even on the lab machines and would occasionally interpret Verilog code
slightly differently to Vivado, leading to unexpected results. We found that ISE was often
unable to delete configuration files from the computer RAM for IP after first creation so
that one could not alter any generated modules without a full system reboot. It had
many errors and really took user input more as a guideline than a rule for anything
related to IP. We had major difficulty in generating digital clock modules especially, and
were only able to finally produce properly configured DCMs by skipping the IP
generator and giving express directives in Verilog. Timing issues were the bane of our
project.

Most hobbyist FPV quadcopter camera systems send video using analog NTSC
broadcast signal on a 5.8 GHz RF carrier. To maintain compatibility with this type of
transmission, we needed to adhere to the NTSC video input specification. This signal is
digitized by the ADV7185 video decoder IC before being received by our system. Since
NTSC video signal is sent field-by-field in interlaced format, a frame must first be stored
in a buffer before any convolutional processing can take place (which requires kernels
of adjacent pixels).

Implementation

In part due to the issues described above, the project was not able to be
implemented as intended in the time available. Hence, for the purposes of
demonstrating the functionality of all written Verilog modules, two independent
systems were built; one to demonstrate the memory control and NTSC signal
conversion, and another to demonstrate the image processing and user interface.

To demonstrate the camera input and memory control modules, a system was
built to display an image from an NTSC camera on a VGA monitor using the old Labikt.
This system only included two 3x3 convolution filters to demonstrate how kernels of
adjacent pixels are read from the ZBT memory. This module was implemented in two
ways. Our first implementation included an output module that attempted to upscale
the output from 640x480 to 1280x960 using averaging. This module proved to have a
spotty output and was susceptible to timing issues that we were unable to track down.
The system clock rate was 108 MHz, the same speed as the dot clock required by the
output specification. Thus, we needed 100% throughput from our system and had to
pipeline several combinational paths to meet timing spec with this design. Our second

4

implementation was drastically simplified and included only a 3x3 output with the
original 640x480 resolution. This produced a much more manageable output with
fewer timing issues, no doubt helped by the pixel clock at 25 MHz, or roughly one fourth
of the speed. This eased our already tight frame buffer memory bandwidth constraint
because we were able to keep the system clock rate (and thus frame buffer access rate)
at the same 108 MHz. This simplified 3x3 system was the same one described in the
checklist and the original project outline, so it meets the project goals sufficiently. We
managed to get it to full functionality, though it did still have some light ghosting and
memory timing issues that caused sliding lines to appear on the displayed image. We
will discuss the deficiencies of the implementation more in the reflection section of this
paper.

To demonstrate the image processing features of this system, a simulated front
end was built on a Nexys 4 FPGA. It was chosen to demonstrate these features on the
Nexys 4 instead of the old Labkit due to its faster build time and more reliable
programming interface, under the assumption that any logic written in Verilog would be
portable. Due to the limited memory available on the Nexys 4, this system could only
display a single image at a reduced resolution (640x480 pixels per frame, 14 bits per
pixel) that was stored in a BRAM. Additionally, clock speed limitations meant a 3x3
kernel was generated for each pixel as opposed to a 5x5 kernel as originally designed,
resulting in a slightly simplified implementation of some convolutional filters.
Nevertheless, this system was able to demonstrate the effect of all four possible
convolutional filters and the level adjustment filter on the static image. The application
of these filters was controlled via the buttons on the FPGA and a text-based on screen
user interface.

Testing and Simulation

A critical aspect of development in our project was design verification through
simulation. I (JT) was fortunate enough to get the 32-bit version of ISE 10.1 running on
my Windows 10 laptop and could therefore conduct simulations outside of the 6.111
lab. Though the Xilinx simulator never worked, I managed to download ModelSim as
well and used that software for simulation purposes to tweak the timing of my design. I
am happy to say that because of this testing, the video input and I2C modules both
worked flawlessly on the first implementation try. The frame buffer manager and
output modules were not so lucky, but this was more due to timing and clocking issues
resulting from poor Xilinx software and my assumptions about how the ZBT RAM would
work. The simulations showed that the output would be totally functional, but
simulation timing and real life timing are two very different things as we learned. For
brevity’s sake, we have not included the Verilog testbench code used to simulate our
designs, but we have submitted it on the course website.

5

Design Overview: Block Diagram

6

7

Memory Control & Camera Interface - JT. McGuire

NTSC Input Decoding

The input CVBS video received from the camera was digitized by means of an
ADV7185 video decoder IC on the labkit board. This chip latches out digital data in the
CCIR656 4:2:2 standard which essentially means that color data rate is half of
luminance data rate. This is acceptable because the human eye is much more sensitive
to light intensity than light color. We designed our system to receive 16-bit wide output
from this chip at half of the typical CCIR656 clock rate of 27 MHz. With this method, the
input clock rate is 13.5 MHz and includes luminance data for consecutive pixels on 8 of
the 16 bits. The other 8 bits have multiplexed color data for every other pixel such that 8
bits of red channel and 8 bits of blue channel data are sent for every two luminance
values.

To control input video timing, the CCIR656 standard describes specialized codes
that are sent within the data stream that indicate transitions between states for video
field, horizontal blanking, and vertical blanking. The receiver module therefore required
a state machine to trigger off of these codes to perform tasks such as switching vertical
and horizontal indices or initiating or ending the data output to the frame buffer control
module. The input module was configured with a multiple-register delay. This allowed
the start and stop codes to be recognized on the oldest registers and the encoded data to
be read from the one-cycle newer registers. This was a simple way of extracting the
video timing for triggering the state machine.

Another state machine had to be implemented for this module to upscale the
color data in the image. Because the color channels were only received for every other
pixel, the color information for off-pixels was computed as the average of adjacent
pixels. This required a four-register delay of input information such that the red and
blue channels could be received for the two adjacent pixels. If the oldest pixel is number
4 and the newest is number 1 in the registers, The full color for pixel 3 was computed
using the red channels received with pixels 4 and 2 and the blue channels with pixels 3
and 1. Pixels 2 and 4 already had all color data, and pixel one would not be yet
computable (Fig 1).

8

Figure 1 - Visualized chroma upscaling method

The input module latched the upscaled color data into output registers at the

rate of reception. The data was rescaled into 36 bit words, which is the width of the
frame buffer memory. Each word contained two pixels of information, with 8 bits
dedicated to luminance data and 10 bits to color data (5 for each channel). A control line
was triggered with each new input data to inform the frame buffer controller that a
write needed to occur. The frame buffer controller also had a response line to indicate
when the write was initiated. If the control line was ever triggered twice without a
response, an overflow fault was indicated and the system reset. The clocking of the
input module was purposefully chosen to be exactly one eighth of the system clock rate
such that no syncing registers would be required. The input module also kept track of
the vertical and horizontal counts for the current output pixel and latched out the nine
bit X and Y position signals as appropriate to the memory module.

Colorbar Generator

As a system testing method, it was
important to create a colorbar generator
module to verify that the input and output
was timed properly. This enabled us to
visualize skew in the output and physically
see horizontal timing issues in the
implementation. The colorbar generator merely produced different pixel luminance and
color values as the output progressed across the horizontal line. It also replicated the
frame save signal trigger that was output by the video input module.

I2C Control

To enable the output mode that we used with the ADV7185, we had to write an
I2C interface module to program the configuration registers on the video encoder. This
was essentially a long and complicated state machine that pushed data across the

9

output lines using the I2C standard. It was designed to read from a BRAM configured as
a dual port PROM for easy reconfiguration of the registers. The BRAM held three 8-bit
values for every register to be programmed: the slave address for the ADV7185, the
subaddress for the memory register, and the actual value to program. The state machine
produced a start condition, latched out the 8 bits, received the ack bit from the slave,
and then sent the stop condition for each byte sent at a bitrate of 20 kHz. For proper
configuration, we had to change one bit value in one register in the ADV7185 at every
system startup.

This module also included programmable video brightness and saturation via the
same I2C interface with the ADV7185 module. This chip included these adjustments
natively and was controlled by the setting of memory registers. Thus, we used a series
of buttons and switches to write values to the PROM and to retrigger the I2C output
such that new brightness and saturation levels could be set on the fly during operation
(Fig 2).

Figure 2 - Comparison of normal, high-brightness, and low saturation images from left
to right (modified using I2C module for ADV7185 register control)

ZBT Memory Control

The frame buffer control module was deceptively simple in theory and incredibly
complicated in practice due to timing constraints. It operated on the 108 MHz system
clock rate, interlacing read and write data onto the ZBT memory data lines while
computing the proper addresses. The address computation had to include a hardware
multiplier to compute the proper location for the target pixel with the equation
Y*FRAME_WIDTH+X. Because of the 108 MHz clock rate and the additions and
multiplexing that had to occur for address computation from the input and the output
modules, this had to be implemented in three pipeline stages. Additionally, the ZBT
SRAM itself had a two stage pipeline delay from input to output, meaning that reads had
a total latency of five clock cycles through the system.

Read and write control was implemented using the synchronous write control
lines on the ZBT RAM. However, because the data lines were multiplexed for both
reading and writing, the FPGA had to be told when to set the ports to high impedance
mode for data reception and when to set the ports to drive mode for writing. This
needed to occur two clock cycles after a write was indicated. This module in essence
became a massive series of shift registers for input signals and assignments to output
signals such that the proper operations were conducted at the proper times for both

10

reads and writes. Luckily, the ZBT RAM had a nifty feature wherein it was automatically
configured to put its data port into high impedance mode whenever a write was
indicated at the proper time, provided the output enable pin was held low. Thus, the
FPGA remained in high impedance mode and the RAM in drive mode by default, with
the roles switching when a write was indicated. See figure 3 for a sample timing
diagram.

The interlacing method gave precedence to the output module and always
prioritized reads over writes because reads happened twice as fast due to the 60 Hz
output. Additionally, write data and address information was always saved into a latch
that was guaranteed for eight cycles, so address and data sequencing was much less
critical for writes and could be reasonably ignored. Reads, on the other hand, required
shift registers for all signals to ensure proper timing. Thus, a high output ready trigger
would be shifted back five times to trigger the output capture word latch for each
incoming read address. Incoming X data was also shifted back five times to produce an X
output that was synchronized to the output data, simplifying the output module design.
If a read was not triggered on a given clock cycle and a write was, the system would
raise the write-initiated line to prevent overflow and service the write by triggering the
write-enable output for the ZBT RAM after three clock cycles of address computation.
Then it would put the FPGA data port into drive mode two clock cycles later to write the
output data to the RAM.

Figure 3 - Sample timing diagram of typical interleaved read/write operations

This module was a mess of timing. We know it is functional because we

conclusively proved by suspending input that it was properly writing and reading to the
memory. However, the output contains shifting lines when the camera is engaged that
are not present with suspended input, and this leads us to conclude that there are still
some subtle timing issues where writes are somehow affecting reads when they should
be independent. We unfortunately did not have the time to debug the module, and the
physical logic analyzer does not even have the speed to do so effectively. To find this

11

error, I firmly believe that we would need to switch to a completely different FPGA such
that we could use an integrated logic analyzer and software that was not flaming hot
garbage.

Output Module

The output module went through two design iterations. The first iteration was
more ambitious and involved an image upscaling computation from 640x480 to
1280x1024 that drastically increased complexity. It will be described with less detail
because it did not come to full fruition. The second iteration was the design as
implemented and did achieve full functionality with a 3x3 kernel and straight 640x480
output. For all iterations, full kernels were only generated for luminance data, and
chrominance data was only output for the center pixel of the kernel. This step was taken
to reduce complexity, as we deemed filtering of the color data an unnecessary step due
to the lack of sensitivity to it for human viewers.

The upscaling module worked through a series of five line buffers built from
BRAMs that each saved a single line of video data, or 312 thirty-six-bit words in our
implementation (625 pixels input became 312 words in the input module). These were
written to with an index and switched in a circular style, with the index pointing to the
line that was the active read buffer from the frame stored on the ZBT RAM. This circular
structure had to be faked with large multiplexers, as BRAMs are not actually configured
with indices that wrap around like a real circular buffer. The multiplexers connected the
proper line buffer data outputs to intermediate wires for the previous four consecutive
video lines that occupied the circular frame buffer. The index incremented with each
new line and the multiplexers switched the intermediate wires to point to the new
consecutive buffer data outputs. In this way, four consecutive lines could always be read
simultaneously from four video line buffers while the fifth buffer was used to capture
the next line from the external frame buffer on the ZBT SRAM. From here, the four line
buffer outputs were each sent through shift registers with four cycle depth to generate a
4x4 array of registers that could be simultaneously read for output. This was fed into a
vast array of multiplexers, shifters, and adders that computed pixel values “in between”
the actual values for upscaling, and a state machine controlled the multiplexers to
output these values alternately to generate a full 5x5 kernel of luminance data that was
sent to the image processing modules. We found that this upscaled 5x5 output kernel
with a 108 MHz dot clock had an impressive output data rate of 24 gigabits per second.

12

Figure 4 - Diagram of the output memory architecture and data flow paths

Unfortunately, we were not able to get the upscaled system to a fully functional
state. We think this was the case chiefly because of timing issues. In our second system,
we removed the upscaling and dropped to a 3x3 output kernel for simplicity. We think
that the further timing modifications made with the simplified system may have
enabled full operation of the upscaled system as well, but we were unable to test this
theory due to time constraints.

The 640x480 version used a very similar structure to the upscaled 5x5 version.
However, it required only four line buffers instead of five (three to read from and one to
write to) and a register depth of two instead of four (two words = four pixels of depth)
(Fig 4). Additionally, we were able to skip the upscaling computations and seriously
simplify the state machine that controlled the multiplexers for output. The output
merely had to switch between even and odd pixels to deal with the two-pixel word
storage mechanism (Fig 5). In the upscaled version, the multiplexer also had to deal
with properly sequencing the half-pixels between actual pixels and the half-lines
between actual lines. This was also a nightmare from a timing perspective.

Figure 5 - Diagram of output kernel multiplexing for two-pixel word storage

The multiple line buffer and shift register structure that we implemented for
kernel output was an effective way of reducing the data rate required from the ZBT
memory. While it would have been easier to directly read the pixel values from the
frame buffer, this was impossible with our system clock speed, as there is no way that
we could have read the value for each of the nine pixel values needed for each output
and still had time for writing. At best, we could have possibly doubled our memory read
bandwidth, but even that would have pushed the limit. This method is more robust and
also proved to be scalable in that we were able to quickly refactor the code to reduce the

13

complexity while keeping the same structure. We were able to exploit the speed
benefits of multiple BRAMs, the storage benefits of the ZBT external memory, and the
repetitive nature of image kernels to achieve an output with a very high bitrate that
could deal with interlaced input video signal with a different clock rate than the output.

14

Image Processing - J. Abel

Convolution Filtering

The majority of the image processing was performed using convolutional filters.
These filters perform a mathematical operation on a square kernel of adjacent pixels,
producing a single, processed pixel in the center of the array. In a strictly convolutional
filter, this operation is an element-wise multiplication with another square array known
as the convolutional kernel. This is the operation used for the sharpening and edge
detection filters. Other implemented filters are not strictly ‘convolutional’ in their
application, instead performing a different operation on the kernel (a median operation
for the noise reduction filter, and a thresholding operation for the sun blocking filter). It
is important to note that a convolutional filter is applied to an array of numbers,
however a color image is an array of tuples. Hence, only one channel of the image is
processed - in this case the luminance channel, which we felt to be the best
representation of the overall composition of each image.

Figure 6 - an example of a simple 3x3 convolutional filter (image source - M. Cavaioni, Medium)
To implement convolutional filtering in Verilog, a 72 bit or 200 bit register (for a 3x3 or 5x5
kernel respectively) is used to represent the incoming kernel of adjacent pixels. Generating such
a kernel requires a memory read clock that is significantly faster than the clock used to drive the
VGA output.

Edge Detection - Sobel Filtering

The edge highlighter applies a Sobel convolution kernels to each pixel to detect
and highlight sharp transitions in brightness in the image. This filter works by
performing a convolution operation to each pixel, then comparing the output to a
threshold value to determine the presence of a sharp transition. This filter actually
requires two parallel convolution operations using convolution kernels that are 90°
rotation of each other (shown below), which allows the system to detect horizontal and
vertical edges.

15

In Verilog, this filter was implemented by applying arithmetic operations to

subsets of a 72 bit value representing the input kernel. An OR statement was used to
assign an edge to the output pixel based on the thresholded outputs of the two
convolution filters. This is achieved by assigning either full or zero brightness to an edge
pixel, the color selected based on the aggregate brightness of the frame to maximise the
visibility of the edge. Since the arithmetic for the module only consists of addition and
bit shifts, it can be performed using almost exclusively combinational logic (however,
registers are used to provide a one cycle delay for pipelining purposes).

Figure 7 - Application of the Sobel filter on an image from the NTSC camera

Noise Removal - Median Filtering

A noise removal filter is included to remove salt and pepper noise from an image,
which is a common problem in NTSC video. Removing this kind of noise is best done
using a median filter, which outputs the median value of a 3x3 kernel of adjacent pixels.
While this filter results in some overall smoothing of the image and subsequent loss in
resolution, it can remove almost all salt and pepper noise.

This filter is surprisingly difficult to implement in Verilog, since there is no
simple logical operator that can be used to sort a list of values. Nevertheless, it was
found that the median value could be obtained using the sorting matrix shown below.
Each submodule of this matrix uses combinational logic to find the median, maximum,
and minimum of a set of three values. Since each pixel needs to pass through a
maximum of three subfilters to find the median, this filter introduces the most delay of
the four possible convolutional filters. Hence, all other filters should be pipelined
relative to this filter.

16

https://www.codecogs.com/eqnedit.php?latex=G_x%20%3D%20%5Cbegin%7Bbmatrix%7D%20-1%20%26%200%20%26%20%2B1%5C%5C%20%20-2%20%26%200%20%26%20%2B2%5C%5C%20-1%20%26%200%20%26%20%2B1%20%5Cend%7Bbmatrix%7D%2C%5C%3B%20G_y%20%3D%20%5Cbegin%7Bbmatrix%7D%20-1%20%26%20-2%20%26%20-1%5C%5C%20%200%20%26%200%20%26%200%5C%5C%20%2B1%20%26%20%2B2%20%26%20%2B1%20%5Cend%7Bbmatrix%7D%20%0

Figure 8 - A diagram of the sorting matrix used to find the median of a nine values (image
source: R. Avizienis, Berkeley)

Figure 9 - An image with added salt-and-pepper noise before (left) and after (right) passing
through a median filter

Sharpening - Unsharp Masking

A convolution filter is also available in this system to sharpen the image. Two
different types of sharpening kernels were tested in this project: a simpler 3x3
sharpening kernel, and a 5x5 unsharp mask, which combines a sharpening operation
with a Gaussian blur to create a clearer image. Because of its improved performance, we
planned to implement a 5x5 unsharp mask on the completed system, which is designed
to be able to output a kernel of 25 adjacent pixels for every cycle of the VGA clock.
However, clock speed and memory limitations of our imaging processing test system
meant that the simpler 3x3 sharpening filter was demonstrated instead.

17

https://www.codecogs.com/eqnedit.php?latex=G_s%20%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%26%200%5C%5C%20%20%5Cfrac%7B-1%7D%7B2%7D%20%26%203%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%5C%5C%200%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%260%20%5Cend%7Bbmatrix%7D%2C%5C%3B%20G_u%20%3D%20%5Cfrac%7B-1%7D%7B256%7D%5Cbegin%7Bbmatrix%7D%201%20%26%204%20%26%206%20%26%204%20%26%201%5C%5C%20%204%20%26%2016%20%26%2024%20%26%2016%20%26%204%5C%5C%206%20%26%2024%20%26%20-476%20%26%2024%20%26%206%20%5C%5C%20%204%20%26%2016%20%26%2024%20%26%2016%20%26%204%5C%5C1%20%26%204%20%26%206%20%26%204%20%26%201%5Cend%7Bbmatrix%7D%20%0

Since both of these filters require multipliers to function, this operation cannot
be done without a latency of at least one clock cycle. Hence, the operations for this filter
needed to be registered. In addition to performing the multiplication operations, the
module performs clipping of the output to keep it within the permissible range of
luminance values of a single pixel (between 16 and 235 for an 8-bit pixel).

Figure 9 - The effect of a 3x3 sharpening filter (middle) and 5x5 unsharp mask (right) on a
blurry raw image (middle)

Figure 10 - Application of a 3x3 sharpening filter (right) on an image from the NTSC camera

Sun-Blocker - Threshold-Based Filtering

A common issue faced by drone-mounted FPV cameras is that their image tends
to be washed out by direct sunlight. To counter this, a ‘sun blocking’ filter has been
included, which uses thresholding to block-out pixels constituting the light source.
When used in conjunction with level adjustment to darken the pixels surrounding the
blacked out area, this filter can significantly improve the usability of the camera in
direct sunlight. This filter assumes that a pixel that is part of a light source will have the
maximum possible value of luminance. Based on this assumption, it compares the
luminance value of the pixel against a high threshold, and outputs a black pixel if the
threshold is exceeded.
Initially, this filter was applied on each pixel independently as part of the brightness
level adjustment filter (below). However, this resulted in a noisy output. To counter
this, we applied the thresholding filter to each pixel in a kernel of adjacent pixels, and
output a black pixel only if at least half the pixels in the kernel exceeded the threshold.
Using this method, the resultant black-out area was found to be smoother and more
continuous.

18

Figure 11 - The application of the sun blocking filter to an overexposed image. In this
case, the system is blocking out the whitewater section of the waterfall, which is
otherwise completely washed out.

Level Adjustment

Once convolution filtering has been applied to a pixel, the single output pixel
then passes through a level adjustment filter. This feature is intended to supplement the
brightness correction performed by the camera, which we can control using the I2C
communication module, by allowing the brightness level of pixels to be adjusted after
additional processing has been performed. The filter uses linear mapping to adjust the
luminance value of the pixel, making the overall image brighter or darker without
reducing the brightness range of the image. To increase the brightness of an image for
example, pixels with a luminance values between 0 and 50% can be remapped to values
between 0 and 100%, while pixels outside of this range are assigned the maximum
luminance value possible. This method is a linear approximation of gamma correction,
which remaps pixels on the nonlinear power curve .

Figure 12 - Gamma correction curves to brighten (left) and darken (right) an image, with their
linear approximations superimposed (image source - Mathworks)

19

https://www.codecogs.com/eqnedit.php?latex=AV_%7Bin%7D%5E%5Cgamma%0

Six different adjustment levels have been programmed into this system: three
which darken the image, and three which lighten it. Each adjustment level has its own
linear mapping relation, which is represented as a clipped multiplication operation in
Verilog. The user can either manually set the adjustment level of the filter, or set the
system to automatically apply a filter based on the average brightness of the frame.

Figure 13 - The same image with a luminance level adjustment of -1 (left) and +3 (right)

Colorspace Conversion - YCbCr to RGB

NTSC camera systems send data in a YCbCr color space, which encodes
luminance data on one channel and color data as a blue and red chroma on two other
channels. VGA monitors, by contrast, require data to be received in an RGB color space,
with three channels representing the amount of red, green, and blue in a pixel. We
elected to perform all prior processing on the luminance channel in YCbCr space, which
is the format output by the camera, as it best represents the overall composition of the
image. Thus, the color space conversion occurs after filtering has been applied
immediately before sending the data to the VGA monitor.

Pixel data can be converted between these two color spaces using the matrix
multiplication below. For implementation in Verilog, the coefficients of the matrix were
rounded such that no floating point arithmetic was required. Since this multiplication
includes negative numbers, signed values are used to perform this operation. It is
important to note that some inputs to this function will result in values of R, G, or B that
are outside the permissible range for an 8 bit pixel (0 to 255). Hence, the output must
be clipped.

Figure 14 - Image Source - C. Poynton, A Technical Introduction to Digital Video

20

Text Overlay

The application of these filters was driven by an FSM, which was in turn
controlled by the buttons on the FPGA. The user can see the current state of the FSM,
and hence the filters that are currently applied to the image, using a text-based user
interface overlayed on top of the image. Data to generate the font for this overlay is
stored in a single 1 bit wide array in a BRAM. A Verilog module takes in the current pixel
location on the screen, determines which character (if any) should be displayed at that
location, and reads the corresponding BRAM address to determine whether the
particular pixel should show the processed image or part of the font.

In addition to displaying the state of the filter selection FSM, the overlay also
displays the average frame brightness as a percentage. This requires converting the
average screen brightness to a binary coded decimal, in which each digit of a decimal
number is represented as a 4 bit binary value. This conversion is achieved using the
double-dabble algorithm, which is iteratively applied to the input value using the
following steps:

1. Create a 4 bit register for each digit of the number
2. Iteratively shift the value leftwards into the registers
3. If any register is greater than 5, add 3 to it (this represents carry-over)

 Such an algorithm is able to make use of the parallel computing capabilities of the FPGA
to be carried out in one clock cycle.

Figure 15 - Visualization of the conversion of a number to binary-coded decimal using
the double-dabble algorithm (image source: N. McDonald, University of Utah)

21

Average Brightness Level

Many of these features (e.g. the automatic level adjuster) use the average frame
luminance as an input. This value can be estimated at the frame read stage of the
memory controller, by storing the cumulative sum of luminance of outgoing pixels in a
register and dividing it by the number of pixels in a frame. A new frame signal latches
the calculated value for the previous frame to the output and resets the counter. The key
challenge in this module is performing the division operation needing to calculate the
average, since the FPGA cannot divide by any value apart from powers of two (which is
achieved through bit shifting). A frame as output by the ZBT memory contains 307,200
pixels, which is not a power of two and is hence impossible to divide by. To mitigate this
constraint, the pixels are evenly sampled so that every 64 out of 75 pixels is added to
the cumulative sum. The sum hence needs to be divided by to calculate the average,
which is possible using bit shifts.

Reflection

Challenges/Difficulties

A critical issue that we had to deal with in the implementation of our system was
timing of the system output. In the original design, we were using the input frame rate
to clock the output frame rate. We also had a switchable buffer to avoid writing to the
same set of pixels that we were reading from as was the case in the finalized version.
The essential plan was to use the video input timing from the camera to trigger the
buffer switch. For every input frame of 30 Hz NTSC video, we would output two frames
of 60 Hz VGA video. However, we failed to realize that the NTSC standard actually
operates at a frame rate of 29.97 Hz. This is a vestige of historical bandwidth constraints
that makes this method of operation impossible because the output rate does not equal
the input rate and therefore one cannot trigger the other without producing serious
timing issues (trust us; we tried). If one does try to use the input as a trigger, the VGA
timing specification can never actually be met because the horizontal line timing is
irregular, with alternating lines pushing sync signals at different times. VGA monitors
cannot cope with this sort of drastic timing variation, and thus our hopes of using a
switchable frame buffer were dashed.

To solve this issue, we had to guarantee clocking independence between the
input and output modules. We accomplished this by using a single shared frame buffer
where reads and writes were scheduled and clocked without regard for one another. In
this method, alternate fields are written willy-nilly to the frame buffer while sequential
lines are read out, and strange screen tearing can occur at the output as a result with
alternate lines shifted away from each other due to the interlaced NTSC input. We also
had to use synchronization registers and data latches to interface between the output

22

https://www.codecogs.com/eqnedit.php?latex=2%5E%7B18%7D%0

clock domain and the system clock domain for reads from the frame buffer, because the
output had to operate at 25 MHz, which is not an even multiple of the system 108 MHz.

Another battery of critical problems arose with configuring digital clock
managers using the flaming hot pile of trash that is also known as Xilinx ISE 10.1. As
previously mentioned, this software tends to forget itself and randomly save
untraceable and unchangeable configuration data somewhere in the complicated chain
of software transformations that must occur to configure the FPGA. This means that one
cannot configure IP using the built-in IP configurator with any degree of confidence. We
had to learn how to direct verilog to use Xilinx primitives to generate DCM clock
modules, and even that process still caused errors that could only be fixed by rebooting
the Linux machine. This software is complete shit. Avoid at all costs. Please.

Advice for Future Projects

We recommend the following advice for students wishing to pursue
video/camera based projects in future iterations of 6.111:

- Simulations are incredibly useful for designing and debugging modules. It is
almost always faster to write a testbench to visualize and debug a module than to
try to debug a module when implemented in hardware. However, simulations
make certain assumptions that make them an imperfect representation of the
behavior of real physical systems. Many of these simplifications, such as
assuming all combinational operations occur instantaneously or all clocks are
synchronized, will cause systems to appear to work in simulation, only to fail
when implemented. Hence, don’t assume that a module will work first try just
because it worked in simulation.

- Don’t wait until just before the project deadline to begin integrating your system.
While it may seem like the hardest part of writing Verilog is writing functioning
modules, some of the more frustrating bugs come from issues in the interfaces
between multiple modules. Additionally, it is possible that a module will behave
entirely different when connected to a physical system than in the ideal world of
simulations (see above). Hence, be sure to start this process early to allow time
for debugging

- Use the Nexys 4 and Vivado for your product, instead of trying to work with
legacy hardware and software (i.e. ISE and the old labkit). These tools will
become ever more incompatible with modern computers as time goes on,
making them even more frustrating to work with.

- Timing is important, especially when interfacing with external devices. If the
timings of two modules are not synchronized correctly, they will likely not
transfer information between themselves correctly. Creating a pipelining
diagram is often a good way to resolve these errors.

- Piazza is a great way to get help, especially outside of staffed lab hours - use it.

23

Appendix - Verilog Modules

Note - The modules shown are for the system as demonstrated (i.e. with a 640x480
screen resolution and 3x3 convolution kernels). Modules were also written and tested
in simulation for the intended specifications (1280x1024 screen resolution, 5x5
kernels), however these modules were not implemented into the final system. These
modules are indicated with a * in their title.

///
// Engineer: jt.mcguire (80%), j.abel (20%)
//
// Module Name: labkit
// Description: top level module
//
///

module labkit (beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in,
ac97_synch,

 ac97_bit_clock,

 vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
 vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
 vga_out_vsync,

 tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
 tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
 tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

 tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
 tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
 tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
 tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

 ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,
 ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

 ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,
 ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,

 clock_feedback_out, clock_feedback_in,

 flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
 flash_reset_b, flash_sts, flash_byte_b,

 rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

 mouse_clock, mouse_data, keyboard_clock, keyboard_data,

 clock_27mhz, clock1, clock2,

24

 disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
 disp_reset_b, disp_data_in,

 button0, button1, button2, button3, button_enter,

 button_right,
 button_left, button_down, button_up,

 switch,

 led,

 user1, user2, user3, user4,

 daughtercard,

 systemace_data, systemace_address, systemace_ce_b,
 systemace_we_b, systemace_oe_b, systemace_irq,

 systemace_mpbrdy,

 analyzer1_data, analyzer1_clock,

 analyzer2_data, analyzer2_clock,
 analyzer3_data, analyzer3_clock,
 analyzer4_data, analyzer4_clock);

// Misc outputs

 output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
 input ac97_bit_clock, ac97_sdata_in;

// VGA output
 output [7:0] vga_out_red, vga_out_green, vga_out_blue;
 output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,

 vga_out_hsync, vga_out_vsync;

// Composite output

 output [9:0] tv_out_ycrcb;
 output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,

 tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
 tv_out_subcar_reset;

// Composite input

 input [19:0] tv_in_ycrcb;
 input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
 tv_in, tv_in_hff, tv_in_aff;
 output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,

 tv_in_reset_b, tv_in_clock;
 inout tv_in_i2c_data;

// RAM JAM
 inout [35:0] ram0_data;
 output [18:0] ram0_address;
 output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b,
 ram0_we_b;

25

 output [3:0] ram0_bwe_b;
 inout [35:0] ram1_data;
 output [18:0] ram1_address;
 output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b,
 ram1_we_b;
 output [3:0] ram1_bwe_b;

// RAM clock feedback

 input clock_feedback_in;
 output clock_feedback_out;

//assign clock_feedback_out=1'b0;

// Flash crap
 inout [15:0] flash_data;
 output [23:0] flash_address;
 output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
 input flash_sts;

// Misc outputs
 output rs232_txd, rs232_rts;
 input rs232_rxd, rs232_cts;
 input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

// Clocks
 input clock_27mhz, clock1, clock2;

// System display
 output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
 input disp_data_in;
 output disp_data_out;

// Buttons and LEDs
 input button0, button1, button2, button3, button_enter, button_right,

 button_left, button_down, button_up;
 input [7:0] switch;
 output [7:0] led;

// Data ports

 inout [31:0] user1, user2, user3, user4;
 inout [43:0] daughtercard;
 inout [15:0] systemace_data;
 output [6:0] systemace_address;
 output systemace_ce_b, systemace_we_b, systemace_oe_b;
 input systemace_irq, systemace_mpbrdy;
 output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,

 analyzer4_data;
 output analyzer1_clock, analyzer2_clock, analyzer3_clock,
 analyzer4_clock;

 /////////////////////////
 //// IO Assignments /////
 /////////////////////////

26

 // Audio Input and Output
 assign beep= 1'b0;
 assign audio_reset_b = 1'b0;
 assign ac97_synch = 1'b0;
 assign ac97_sdata_out = 1'b0;
 // ac97_sdata_in is an input

 // VGA Output
// assign vga_out_red = 8'h0;
// assign vga_out_green = 8'h0;
// assign vga_out_blue = 8'h0;
// assign vga_out_sync_b = 1'b1;
// assign vga_out_blank_b = 1'b1;
// assign vga_out_pixel_clock = 1'b0;
// assign vga_out_hsync = 1'b0;
// assign vga_out_vsync = 1'b0;

 // Video Output
 assign tv_out_ycrcb = 10'h0;
 assign tv_out_reset_b = 1'b0;
 assign tv_out_clock = 1'b0;
 assign tv_out_i2c_clock = 1'b0;
 assign tv_out_i2c_data = 1'b0;
 assign tv_out_pal_ntsc = 1'b0;
 assign tv_out_hsync_b = 1'b1;
 assign tv_out_vsync_b = 1'b1;
 assign tv_out_blank_b = 1'b1;
 assign tv_out_subcar_reset = 1'b0;

 // SRAM unused
 assign ram1_data = 36'hZ;
 assign ram1_address = 19'h0;
 assign ram1_adv_ld = 1'b0;
 assign ram1_cen_b = 1'b1;
 assign ram1_ce_b = 1'b1;
 assign ram1_oe_b = 1'b1;
 assign ram1_we_b = 1'b1;
 assign ram1_bwe_b = 4'hF;
 // clock_feedback_in is an input

 // Flash ROM
 assign flash_data = 16'hZ;
 assign flash_address = 24'h0;
 assign flash_ce_b = 1'b1;
 assign flash_oe_b = 1'b1;
 assign flash_we_b = 1'b1;
 assign flash_reset_b = 1'b0;
 assign flash_byte_b = 1'b1;
 // flash_sts is an input

 // RS-232 Interface

27

 assign rs232_txd = 1'b1;
 assign rs232_rts = 1'b1;
 // rs232_rxd and rs232_cts are inputs

 // LED Displays
 assign disp_blank = 1'b1;
 assign disp_clock = 1'b0;
 assign disp_rs = 1'b0;
 assign disp_ce_b = 1'b1;
 assign disp_reset_b = 1'b0;
 assign disp_data_out = 1'b0;
 // disp_data_in is an input

 // button0, button1, button2, button3, button_enter, button_right,
 // button_left, button_down, button_up, and switches are inputs

 // User I/Os
 assign user1 = 32'hZ;
 assign user2 = 32'hZ;
 assign user3 = 32'hZ;
 assign user4 = 32'hZ;

 // Daughtercard Connectors
 assign daughtercard = 44'hZ;

 // SystemACE Microprocessor Port
 assign systemace_data = 16'hZ;
 assign systemace_address = 7'h0;
 assign systemace_ce_b = 1'b1;
 assign systemace_we_b = 1'b1;
 assign systemace_oe_b = 1'b1;
 // systemace_irq and systemace_mpbrdy are inputs

 // Logic Analyzer
 assign analyzer1_clock = 1'b1;
 assign analyzer3_clock = 1'b1;

reg [8:0] rstcnt;

wire sysclk;
wire locked;
wire rst;
wire ram_clk;
wire out_clk;

assign rst = ~button0;
assign ram1_clk = 1'b0;

////////// CLOCK MANAGERS ////////////////
//

wire refclk;

28

IBUFG ref_buf1 (.I(clock_27mhz), .O(refclk));

// Main sysclk generator
wire sysclk_buf;
BUFG CLKFX_BUFG_main (.I(sysclk_buf),

 .O(sysclk));
wire clkfb_main, clk0_main, ramclkout;

 BUFG CLK0_BUFG_main (.I(clk0_main),
 .O(clkfb_main));
 DCM DCM_main (.CLKFB(clkfb_main),
 .CLKIN(refclk),
 .DSSEN(1'b0),
 .PSCLK(1'b0),
 .PSEN(1'b0),
 .PSINCDEC(1'b0),
 .RST(),
 .CLKDV(),
 .CLKFX(sysclk_buf),
 .CLKFX180(),
 .CLK0(clk0_main),
 .CLK2X(),
 .CLK2X180(),
 .CLK90(),
 .CLK180(),
 .CLK270(),
 .LOCKED(),
 .PSDONE(),
 .STATUS());
 defparam DCM_main.CLK_FEEDBACK = "1X";
 defparam DCM_main.CLKDV_DIVIDE = 2.0;
 defparam DCM_main.CLKFX_DIVIDE = 1;
 defparam DCM_main.CLKFX_MULTIPLY = 4;
 defparam DCM_main.CLKIN_DIVIDE_BY_2 = "FALSE";
 defparam DCM_main.CLKIN_PERIOD = 37.037;
 defparam DCM_main.CLKOUT_PHASE_SHIFT = "NONE";
 defparam DCM_main.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
 defparam DCM_main.DFS_FREQUENCY_MODE = "LOW";
 defparam DCM_main.DLL_FREQUENCY_MODE = "LOW";
 defparam DCM_main.DUTY_CYCLE_CORRECTION = "TRUE";
 defparam DCM_main.FACTORY_JF = 16'hC080;
 defparam DCM_main.PHASE_SHIFT = 0;
 defparam DCM_main.STARTUP_WAIT = "FALSE";

 //assign ram0_clk = sysclk;
 // Main ramclk generator
 wire clkfb_ram, clk0_ram, ramram, fb_out;
 BUFG CLK0_BUFG_ram (.I(clk0_ram), .O(fb_out));
 IBUFG RAM_FB (.I(clock_feedback_in), .O(clkfb_ram));
 BUFG del1 (.I(fb_out), .O(clock_feedback_out));
 assign ram0_clk = fb_out;
 DCM DCM_ram (.CLKFB(clkfb_ram),
 .CLKIN(sysclk),

29

 .DSSEN(1'b0),
 .PSCLK(1'b0),
 .PSEN(1'b0),
 .PSINCDEC(1'b0),
 .RST(rstcnt<=9'b111111100),
 .CLKDV(),
 .CLKFX(),
 .CLKFX180(),
 .CLK0(clk0_ram),
 .CLK2X(),
 .CLK2X180(),
 .CLK90(),
 .CLK180(),
 .CLK270(),
 .LOCKED(),
 .PSDONE(),
 .STATUS());
 defparam DCM_ram.CLK_FEEDBACK = "1X";
 defparam DCM_ram.CLKDV_DIVIDE = 2.0;
 defparam DCM_ram.CLKFX_DIVIDE = 1;
 defparam DCM_ram.CLKFX_MULTIPLY = 4;
 defparam DCM_ram.CLKIN_DIVIDE_BY_2 = "FALSE";
 defparam DCM_ram.CLKIN_PERIOD = 37.037;
 defparam DCM_ram.CLKOUT_PHASE_SHIFT = "NONE";
 defparam DCM_ram.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
 defparam DCM_ram.DFS_FREQUENCY_MODE = "LOW";
 defparam DCM_ram.DLL_FREQUENCY_MODE = "LOW";
 defparam DCM_ram.DUTY_CYCLE_CORRECTION = "TRUE";
 defparam DCM_ram.FACTORY_JF = 16'hC080;
 defparam DCM_ram.PHASE_SHIFT = 0;
 defparam DCM_ram.STARTUP_WAIT = "FALSE";

 // Main out clk generator
 wire outclk_buf;
 BUFG CLKFX_BUFG_out (.I(outclk_buf),
 .O(out_clk));
 wire clkfb_out, clk0_out;
 BUFG CLK0_BUFG_out (.I(clk0_out),
 .O(clkfb_out));
 DCM DCM_out (.CLKFB(clkfb_out),
 .CLKIN(refclk),
 .DSSEN(1'b0),
 .PSCLK(1'b0),
 .PSEN(1'b0),
 .PSINCDEC(1'b0),
 .RST(),
 .CLKDV(),
 .CLKFX(outclk_buf),
 .CLKFX180(),
 .CLK0(clk0_out),
 .CLK2X(),
 .CLK2X180(),

30

 .CLK90(),
 .CLK180(),
 .CLK270(),
 .LOCKED(),
 .PSDONE(),
 .STATUS());
 defparam DCM_out.CLK_FEEDBACK = "1X";
 defparam DCM_out.CLKDV_DIVIDE = 2.0;
 defparam DCM_out.CLKFX_DIVIDE = 27;
 defparam DCM_out.CLKFX_MULTIPLY = 25;
 defparam DCM_out.CLKIN_DIVIDE_BY_2 = "FALSE";
 defparam DCM_out.CLKIN_PERIOD = 37.037;
 defparam DCM_out.CLKOUT_PHASE_SHIFT = "NONE";
 defparam DCM_out.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
 defparam DCM_out.DFS_FREQUENCY_MODE = "LOW";
 defparam DCM_out.DLL_FREQUENCY_MODE = "LOW";
 defparam DCM_out.DUTY_CYCLE_CORRECTION = "TRUE";
 defparam DCM_out.FACTORY_JF = 16'hC080;
 defparam DCM_out.PHASE_SHIFT = 0;
 defparam DCM_out.STARTUP_WAIT = "FALSE";

////////// END CLOCK MANAGERS ////////////////////////

assign tv_in_clock = refclk;

wire out_done;
wire in_ready, out_ready;
wire in_done;
wire new_out;
wire nf, f;
reg f0;
reg [21:0] fcnt;
reg [20:0] fcnt2;
wire [8:0] in_x, in_y, out_x, read_x, read_y;
wire [35:0] word, data_in;
wire tv_clk;
wire highZ;

ram_manager2 deconflict (.clk(sysclk), .rst(rst),

 .out_ready(out_ready), .read_x(read_x),
 .read_y(read_y), .out_x(out_x),
 .new_out(new_out), .in_ready(in_ready),
 .in_done(in_done), .in_x(in_x), .in_y(in_y),
 .data_in(data_in), .addr(ram0_address),

 .word(word), .data(ram0_data),
 .adv(ram0_adv_ld), .clk_en(ram0_cen_b),

 .chip_en(ram0_ce_b), .write_en(ram0_we_b),
 .bwrite_en(ram0_bwe_b), .highZ(highZ));

assign ram0_oe_b=1'b0;

// Video Input

31

 assign tv_in_fifo_read = 1'b1;
 assign tv_in_fifo_clock = 1'b0;
 assign tv_in_iso = 1'b1;
 assign tv_in_reset_b = ~rst;
 // tv_in_ycrcb, tv_in_data_valid, nalyzer4_clock = tv_in_clock
 // tv_in_aef, tv_in_hff, and tv_in_aff are inputs

wire write_tv_prom;

// Half speed ADV7185 output clock buffer
IBUFG buf_half (.O(tv_clk), .I(tv_in_line_clock2));

assign led = {refclk, out_clk, f, rst, ram0_clk, tv_in_i2c_clock,

 tv_in_i2c_data, sysclk}; //tv_in_ycrcb[9:2];

wire ir1,ir0;
wire [8:0] in_x_c, in_y_c, in_x_cam, in_y_cam;
wire [35:0] data_in_c, data_in_cam;

// Instantiate the module
tvInControl2 tv2 (.in_clk(tv_clk), .clk(sysclk), .rst(rst),

 .lum_in(tv_in_ycrcb[19:12]),
 .chrom_in(tv_in_ycrcb[9:2]), .in_ready(ir0),
 .in_done(in_done), .in_x(in_x_cam),
 .in_y(in_y_cam), .data_in(data_in_cam), .ovf(ovf),
 .newFrame(f));

assign analyzer2_clock = sysclk;

colorbar cbar1 (.clk(sysclk), .rst(rst), .in_ready(ir1),

 .in_x(in_x_c), .in_y(in_y_c), .data_in(data_in_c));

assign in_x = ~button1 ? in_x_c : in_x_cam;
assign in_y = ~button1 ? in_y_c : in_y_cam;
assign data_in = ~button1 ? data_in_c : data_in_cam;
assign in_ready = button3 & (~button1 ? ir1 : ir0);

assign analyzer4_clock = tv_in_clock;

wire ack;
wire sending;
wire [3:0] tv_addr;
wire [3:0] rom_addr;
wire [7:0] tv_dout;

assign write_tv_prom = (~sending && (~button_left | ~button_right));

TV_i2c tv_prg (.rst(rst | write_tv_prom), .clk(sysclk),

 .i2c_data(tv_in_i2c_data),
 .i2c_clock(tv_in_i2c_clock), .isAcked(ack),
 .sending(sending), .byteAddr(tv_addr), .dout(tv_dout)
);

32

// Left button programs saturation and right button programs contrast
 // from switch[7:0] value

assign rom_addr = ~button_left ? 8'd5 : (~button_right ? 8'd8 :
 8'd15) ;

initRAM tv_prg_prom(.clka(sysclk), .clkb(sysclk), .dina(switch),

 .addra(rom_addr), .wea(write_tv_prom),
 .addrb(tv_addr), .doutb(tv_dout));

wire [7:0] lum;
wire [7:0] lum0,lum1,lum2,lum3,lum4,lum5,lum6,lum7,lum8;
reg [7:0] Cr, Cb;
wire [7:0] cr, cb;
reg [10:0] x,y;
wire [10:0] xx,yy;
reg h_sync, v_sync, blank;
wire hs,vs,bl;
wire hbl, vbl;
wire [7:0] vout;

read_ram2 final_out (.clk(out_clk), .sysclk(sysclk), .rst(rst),

 .new_out(new_out), .rx(read_x), .ry(read_y),
 .out_ready(out_ready), .inx(out_x), .word(word),

 .h_sync(hs), .v_sync(vs), .blank(bl), .Cr(cr),
 .Cb(cb), .lum0(lum0), .lum1(lum1), .lum2(lum2),
 .lum3(lum3), .lum4(lum4), .lum5(lum5),
 .lum6(lum6), .lum7(lum7), .lum8(lum8),
 .out_x(xx), .out_y(yy));

assign analyzer4_data = {8'b0, refclk, out_clk, ram0_clk, h_sync,

 v_sync, out_ready, new_out, 1'b0};
assign analyzer1_data = {8'b0, word[17:10]};
assign analyzer2_data = {8'b0, lum4};
assign analyzer3_data = {8'b0, lum0};

reg [7:0] lum_real;
wire [7:0] lum_edge;

reg [7:0] l0,l1,l2,l3,l4,l5,l6,l7,l8;

always @(posedge refclk)begin

rstcnt<= rst ? 9'b0 : (rstcnt>=9'b111111111) ? 9'b111111111 :
 rstcnt+1;

end

always @(posedge out_clk) begin

f0<=f;
// Switch the buffer select on a frame rising edge
h_sync<=~hs;
v_sync<=~vs;
blank<=~bl;

33

l0<=lum0;
l1<=lum1;
l2<=lum2;
l3<=lum3;
l4<=lum4;
l5<=lum5;
l6<=lum6;
l7<=lum7;
l8<=lum8;
x<=xx;
y<=yy;
Cr<=cr;
Cb<=cb;
lum_real <= ~button_enter ? lum : ~button_up ? lum_edge : l4;

end

// Choose a new frame output at 60 Hz (both edges of frame signal)
assign nf = f & ~f0;

wire [23:0] rgb_out;

sharpen_3 sharp1 (.clk_in(out_clk), .lum0(l0),.lum1(l1), .lum2(l2),

 .lum3(l3), .lum4(l4), .lum5(l5), .lum6(l6),
 .lum7(l7), .lum8(l8), .y_out(lum));

edge_filt edge1 (.clk_in(out_clk),

 .y_in({l0,l1,l2,l3,l4,l5,l6,l7,l8}),
 .y_out(lum_edge));

ycbcr_2_rgb tl (.clk_in(out_clk), .y_in(lum_real), .cb_in(Cb),

 .cr_in(Cr), .rgb_out(rgb_out));

assign vga_out_blue = rgb_out[7:0];
assign vga_out_red = rgb_out[23:16];
assign vga_out_green = rgb_out[15:8];
assign vga_out_hsync = h_sync;
assign vga_out_vsync = v_sync;
assign vga_out_sync_b = 1'b1;
assign vga_out_blank_b = blank;
assign vga_out_pixel_clock = out_clk;
wire [23:0] rgb;

endmodule

///
// Engineer: j.abel
//
// Module Name: average_finder
// Description: Estimates the average luminance of a frame
//
///

34

module average_finder(

input clk_in, // VGA clock
input rst_in, // global reset
input new_frame, // signal indicating start of frame
input pixel_active, // indicates whether pixel in frame or

blanking interval
input [7:0] data_in, //pixel y_value
output reg [7:0] y_av //average value
);

reg [22:0] y_sum = 0; //cumulative sum
reg [6:0] sample_clock = 0;
reg sample_active;
reg frame_reset;

always @ (*) begin
// Sampling - pixel value is not added to y_sum at regularly spaced

 // intervals, such that 64 samples are taken every 75 pixels
sample_active = ((sample_clock == 7'd3) ||

(sample_clock == 7'd10) ||
(sample_clock == 7'd17) ||
(sample_clock == 7'd24) ||
(sample_clock == 7'd31) ||
(sample_clock == 7'd37) ||
(sample_clock == 7'd44) ||
(sample_clock == 7'd51) ||
(sample_clock == 7'd58) ||
(sample_clock == 7'd65) ||
(sample_clock == 7'd72)) ?
0 : 1;

end

always @ (posedge clk_in) begin
// reset
 frame_reset <= new_frame;

if (rst_in) begin
y_sum <= 0;
sample_clock <= 0;
y_av <= 0;

end else begin
sample_clock <= (sample_clock > 7'd74) ? 7'd0 :

 (pixel_active) ? sample_clock + 1:
 sample_clock;

y_sum <= (frame_reset) ? 0: (^data_in === 1'bX) ? 0:
 (sample_active && pixel_active) ? y_sum +

 data_in[7:4] : y_sum;
y_av <= (frame_reset) ? y_sum >> 14: y_av;

end
end

endmodule

35

///
// Engineer: j.abel
//
// Module Name: avg_value
// Description: assign character addresses for frame average brightness
// display in overlay
///

module avg_value(
 input clk_in,
 input [7:0] y_avg,
 output reg [4:0] char_tens, //address of characters
 output reg [4:0] char_ones
);

 //character addresses
 parameter ZERO = 15;
 parameter ONE = 8;
 parameter TWO = 14;
 parameter THREE = 13;
 parameter FOUR = 4;
 parameter FIVE = 3;
 parameter SIX = 11;
 parameter SEVEN = 10;
 parameter EIGHT = 2;
 parameter NINE = 7;

 //reg to convert average to a percentage
 reg [14:0] percent_big;
 reg [7:0] percent;
 //unclipped digits of percentage
 wire [3:0] hundreds, tens_raw, ones_raw;
 //clipped digits of percentage
 reg [3:0] tens, ones;

 //converts percentage to a binary-coded decimal
 num2bcd conv (percent, hundreds, tens_raw, ones_raw);

 always @ (*) begin
 //percentage calculation (of 255 - max brightness of a pixel)
 percent = percent_big >> 8;
 //output clipping
 tens = (hundreds > 0) ? 4'd9 : tens_raw;
 ones = (hundreds > 0) ? 4'd9 : ones_raw;
 //character assignment
 case (tens)
 0: char_tens = ZERO;
 1: char_tens = ONE;
 2: char_tens = TWO;
 3: char_tens = THREE;
 4: char_tens = FOUR;
 5: char_tens = FIVE;

36

 6: char_tens = SIX;
 7: char_tens = SEVEN;
 8: char_tens = EIGHT;
 9: char_tens = NINE;
 endcase
 case (ones)
 0: char_ones = ZERO;
 1: char_ones = ONE;
 2: char_ones = TWO;
 3: char_ones = THREE;
 4: char_ones = FOUR;
 5: char_ones = FIVE;
 6: char_ones = SIX;
 7: char_ones = SEVEN;
 8: char_ones = EIGHT;
 9: char_ones = NINE;
 endcase
 end

 always @ (posedge clk_in) begin
 //allows percentage to be converted with discrete arithmetic
 percent_big <= y_avg * 100;
 end

endmodule

///
// Engineer: j. abel
//
// Module Name: num2bcd
// Description: converts a number to a binary-coded decimal - submodule of
// avg_value
///

module num2bcd(
 input [7:0] percent,
 output reg [3:0] hundreds,
 output reg [3:0] tens_raw,
 output reg [3:0] ones_raw
);

 integer i;
 always @ (*) begin
 hundreds = 4'd0;
 tens_raw = 4'd0;
 ones_raw = 4'd0;
 //iterative algorithm to convert to BCD (shift, add 3)
 for (i=7; i>=0; i = i-1) begin
 if (tens_raw >= 5)
 tens_raw = tens_raw + 3;

37

 if (ones_raw >= 5)
 ones_raw = ones_raw + 3;

 hundreds[0] = tens_raw[3];
 tens_raw = tens_raw << 1;
 tens_raw[0] = ones_raw[3];
 ones_raw = ones_raw << 1;
 ones_raw[0] = percent[i];
 end
 end

endmodule

///
// Engineer: jt. mcguire
//
// Module Name: colorbar
// Description: generates colorbars for testing
//
///

module colorbar(clk, rst, in_ready, in_x, in_y, data_in);

 input clk, rst;
 output reg in_ready;
 output [8:0] in_x,in_y;
 output reg [35:0] data_in;

 //pixel location
 reg [8:0] hcount;
 reg [8:0] vcount;

 //replicates camera timing
 reg [2:0] cnt;

 assign in_x = hcount;
 assign in_y = vcount;

 always @(posedge clk) begin

if(rst)begin
//reset
hcount<=9'b0;
vcount<=9'b0;
data_in<=36'b0;
cnt<=3'b0;
in_ready<=1'b0;

end else begin
cnt<=cnt+1;
//color bar generation
if(cnt==3'b0)begin

in_ready<=1'b1;
if(hcount<70)begin

38

hcount<=hcount+1;
data_in<={8'hff, 10'b0, 8'hff, 10'b0};
vcount<=vcount;

end else if(hcount<130)begin
hcount<=hcount+1;
data_in<={8'h5f, 10'haa, 8'h5f, 10'haa};
vcount<=vcount;

end else if(hcount<200)begin
hcount<=hcount+1;
data_in<={8'h2f, 10'h36, 8'h2f, 10'h36};
vcount<=vcount;

end else if(hcount<311)begin
hcount<=hcount+1;
vcount<=vcount;
data_in<={8'h01, 10'h01, 8'h01, 10'h01};

end else begin
hcount<=9'b0;
data_in<=data_in;
if(vcount>=479)begin

vcount<=9'b0;
end else begin

vcount<=vcount+1;
end

end
end else begin

//holds values otherwise
hcount<=hcount;
data_in<=data_in;
vcount<=vcount;
in_ready<=1'b0;

end
end

 end

endmodule

///
// Engineer: j. abel
//
// Module Name: convolution
// Description: Applies convolution filters to kernels of pixels
//
///

module convolution(
 input clk_in,
 input [71:0] y_kern_in, //3x3 kernel of adjacent 8 bit pixels

//Size changed to [199:0] for a 5x5 kernel
 input [7:0] y_avg, //Average value
 input [2:0] conv_state,

39

 input [2:0] lvl_state, //Filter states from FSM
 input is_edge, //Detects whether pixel on edge of frame
 output reg [7:0] y_out //Single pixel out
);

 parameter SOBEL = 3'd1;
 parameter NOISE = 3'd2;
 parameter SHARP = 3'd3;
 parameter SUN = 3'd4;

 // Filter Outputs
 wire [7:0] y_sobel, y_med, y_sharp, y_sun;

 //For edge dilation
 wire current_edge;
 reg old_edge;

 //Filter module calls
 edge_filt edge1(.clk_in(clk_in), .y_in(y_kern_in), .y_avg(y_avg),
 .old_edge(old_edge), .y_out(y_sobel),
 .current_edge(current_edge));
 median_filt med1(.clk_in(clk_in), .y_in(y_kern_in), .y_out(y_med));
 sharpen_filt sharp1(.clk_in(clk_in), .y_in(y_kern_in),
 .y_out(y_sharp));
 sun_filt sun1(.clk_in(clk_in), .y_in(y_kern_in), .lvl_state(lvl_state),
 .y_avg(y_avg), .y_out(y_sun));

 always @ (*) begin
 //filter selection
 y_out = (is_edge) ? y_kern_in[29:24]:
 (conv_state == SOBEL && ~is_edge) ? y_sobel:
 (conv_state == NOISE && ~is_edge) ? y_med:
 (conv_state == SHARP && ~is_edge) ? y_sharp:
 (conv_state == SUN && ~is_edge) ? y_sun:
 y_kern_in[29:24];
 end

 always @ (posedge clk_in) begin
 old_edge <= current_edge;
 end

 endmodule

///
// Engineer: course staff
//
// Module Name: debounce
// Description: debounces incoming button signals
//
///

module debounce(

40

 input clk_in,
 input noisy_in,
 output wire clean_out
);

 reg [19:0] count;
 reg output_reg;
 reg old;

 assign clean_out = output_reg;

 always @ (posedge clk_in) begin
 if(count == 16'd50000) begin
 output_reg <= old;
 count <= 20'b0;
 end else if(noisy_in == old) begin
 count <= count + 1;
 end else begin
 count <= 20'b0;
 old <= noisy_in;
 end
 end

endmodule

///
// Engineer: j. abel
//
// Module Name: edge_filt
// Description: Sobel edge detection filter
//
///

module edge_filt(
 input clk_in,
 input [71:0] y_in, //3x3 pixel kernel
 input [5:0] y_avg, //average frame brightness
 input old_edge, //indicates whether previous pixel was a

//Sobel edge
 output reg [5:0] y_out,
 output reg current_edge //indicates that current pixel is an edge
);

 parameter THRESHOLD = 8'd160; //threshold for edge detection
 parameter EDGE_COLOR_TSH = 8'd160; //threshold frame brightness to

 //determine edge display color
 parameter BLACK = 8'd16;
 parameter WHITE = 8'd235;

 //Sums of positive and negative values in Sobel kernel
 wire [9:0] g_x_pos;
 wire [9:0] g_x_neg;

41

 wire [9:0] g_y_pos;
 wire [9:0] g_y_neg;
 reg [7:0] edge_color;

 //Sobel convolution - arithmetic
 assign g_x_pos = y_in[55:48] + y_in[7:0] + (y_in[31:24]<<1);
 assign g_x_neg = y_in[71:64] + y_in[23:16] + (y_in[47:40]<<1);
 assign g_y_pos = y_in[23:16] + y_in[7:0] + (y_in[15:8]<<1);
 assign g_y_neg = y_in[71:64] + y_in[55:48] + (y_in[63:56]<<1);

 //Edge color assignment
 always @ (*) begin
 edge_color = (y_avg > EDGE_COLOR_TSH) ? BLACK : WHITE;
 end

 always @ (posedge clk_in) begin
 //edge detection from sums
 current_edge <= (((g_x_pos >= g_x_neg) &&

((g_x_pos-g_x_neg) >= THRESHOLD)) ||
 ((g_x_neg >= g_x_pos) &&

((g_x_neg-g_x_pos) >= THRESHOLD)) ||
 ((g_y_pos >= g_y_neg) &&

((g_y_pos-g_y_neg) >= THRESHOLD)) ||
 ((g_y_neg >= g_y_pos) &&

((g_y_neg-g_y_pos) >= THRESHOLD))) ?
 1 : 0;
 //output assignment
 y_out <= (current_edge || old_edge) ? edge_color : y_in[29:24];
 end

endmodule

///
// Engineer: j. abel
//
// Module Name: filt_sel
// Description: FSM for selecting image processing filters
//
///

module filt_sel(
 input clk_in,
 input l_btn,
 input r_btn,
 input u_btn,
 input d_btn,
 input reset,
 output reg [2:0] adj_state, //controls adjustment filter
 output reg [2:0] conv_state, //controls convolution filters
 output reg overlay //activates overlay
);

42

 // Button rising edge detection
 reg l_old; reg r_old; reg u_old; reg d_old;
 wire l_edge; wire r_edge; wire u_edge; wire d_edge;

 assign l_edge = l_btn & !l_old;
 assign r_edge = r_btn & !r_old;
 assign u_edge = u_btn & !u_old;
 assign d_edge = d_btn & !d_old;

 always @ (posedge clk_in) begin
 // Reset
 if (reset) begin;
 adj_state <= 3'd0;
 conv_state <= 3'd0;
 overlay <= 0; end
 // Filter selection FSM
 else begin
 adj_state <= (l_edge) ? adj_state - 1: (r_edge) ? adj_state + 1:
 adj_state;
 conv_state <= (u_edge) ? conv_state + 1: (conv_state == 3'd5) ?
 3'd0 : conv_state;
 overlay <= (d_edge) ? ~overlay: overlay; end
 l_old <= l_btn;
 r_old <= r_btn;
 u_old <= u_btn;
 d_old <= d_btn;
 end

endmodule

///
// Engineer: j. abel
//
// Module Name: font_reader
// Description: reads font character from BRAM
//
///

module font_reader(
 input clk_in,
 input [10:0] hcount, //pixel location
 input [9:0] vcount,
 input [10:0] x_loc, //location of corner of digit
 input [9:0] y_loc,
 input [4:0] char_in, //shortened address of character
 output wire is_text //indicates whether current pixel is text
);

 //size parameters
 parameter HEIGHT = 36;
 parameter WIDTH = 32;

43

 //actual memory address
 reg[14:0] address;
 reg in_box;
 wire pixel_out;

 //BRAM reader
 font_bram font(.clka(clk_in), .addra(address), .douta(pixel_out));
 //prevents erroneous pixel assignment outside a box defining a digit
 assign is_text = (in_box) ? pixel_out : 0;

 always @ (*) begin
 //determines whether current pixel in digit box
 in_box = ((hcount >= x_loc && hcount < (x_loc+WIDTH)) &&
 (vcount >= y_loc && vcount < (y_loc+HEIGHT))) ?
 1 : 0;
 //converts shortened address to actual address
 address = (in_box) ? ((hcount-x_loc) + (vcount-y_loc)*WIDTH)
 + (HEIGHT*WIDTH*char_in): 0;
 end

endmodule

///
// Engineer: j.abel
//
// Module Name: level_adjustment
// Description: pixel level adjustment using linearized gamma correction
//
///

module level_adjustment(
 input clk_in,
 input [7:0] y_in,
 input [2:0] adj_mode,
 input [7:0] y_avg,
 output reg [7:0] y_out
);

 reg [7:0] y_reg;
 wire [10:0] y_mult; //prevents overflow when multiplying
 reg [1:0] auto_mode; //mode of automatic level adjustment

 // brightness levels
 parameter BRIGHT3 = 3'd3;
 parameter BRIGHT2 = 3'd2;
 parameter BRIGHT1 = 3'd1;
 parameter ZERO = 3'd0;
 parameter DARK1 = 3'd7;
 parameter DARK2 = 3'd6;
 parameter DARK3 = 3'd5;
 parameter AUTO = 3'd4;

44

 // automatic levels and thresholds
 parameter A_DARK = 2'b01;
 parameter A_OK = 2'b00;
 parameter A_LIGHT = 2'b10;
 parameter THR_DARK = 8'd72;
 parameter THR_LIGHT = 8'd168;

 assign y_mult = y_in;

 always @ (*) begin
 // automatic mode assignment
 auto_mode = (y_avg > THR_LIGHT) ? A_DARK :
 (y_avg < THR_DARK) ? A_LIGHT : A_OK;
 end

 always @ (posedge clk_in) begin
 // automatic level adjustment
 if (adj_mode == AUTO) begin
 case (auto_mode)
 A_LIGHT: begin
 y_out <= (y_in >= 8'd191) ? 8'd235 :
 ((y_mult*5)>>2)-4; end
 A_DARK: begin
 y_out <= (y_in < 8'd61) ? 8'd16 :
 ((y_mult*5)>>2)-59; end
 default: y_out <= y_in;
 endcase
 end else begin
 // manual level adjustment - based on linear remapping
 case (adj_mode)
 BRIGHT3: begin
 y_out <= (y_in >= 8'd125) ? 8'd235 : (y_mult*2)-16;
 end
 BRIGHT2: begin
 y_out <= (y_in >= 8'd162) ? 8'd235 : ((y_mult*3)>>1)-8;
 end
 BRIGHT1: begin
 y_out <= (y_in >= 8'd191) ? 8'd235 : ((y_mult*5)>>2)-4;
 end
 DARK1: begin
 y_out <= (y_in < 8'd61) ? 8'd16 : ((y_mult*5)>>2)-59;
 end
 DARK2: begin
 y_out <= (y_in < 8'd90) ? 8'd16 : ((y_mult*3)>>1)-118;
 end
 DARK3: begin
 y_out <= (y_in < 8'd126) ? 8'd16 : (y_mult*2)-235;
 end
 default: y_out <= y_in;
 endcase
 end
 end

45

endmodule

///
// Engineer: j. abel
//
// Module Name: median_filt
// Description: Finds median value of 3x3 convolution kernel
//
///

module median_filt(
 input clk_in,
 input [71:0] y_in,
 output reg [5:0] y_out
);

 //pixels
 wire[7:0] p_1 = y_in[71:64];
 wire[7:0] p_2 = y_in[63:56];
 wire[7:0] p_3 = y_in[55:48];
 wire[7:0] p_4 = y_in[47:40];
 wire[7:0] p_5 = y_in[39:32];
 wire[7:0] p_6 = y_in[31:24];
 wire[7:0] p_7 = y_in[23:16];
 wire[7:0] p_8 = y_in[15:8];
 wire[7:0] p_9 = y_in[7:0];

 //intermediate stage outputs in sorting matrix
 wire[7:0] q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9;
 wire[7:0] r_1, r_2, r_3;

 //junk outputs (needed for correct number of submodule arguments)
 wire[7:0] junk_1, junk_2 ,junk_3, junk_4,
 junk_5, junk_6, junk_7, junk_8;

 //submodule calls - stage 1
 three_median p_a (.clk_in(clk_in), .a_1(p_1), .a_2(p_2), .a_3(p_3),
 .min(q_7), .med(q_4), .max(q_1));
 three_median p_b (.clk_in(clk_in), .a_1(p_4), .a_2(p_5), .a_3(p_6),
 .min(q_8), .med(q_5), .max(q_2));
 three_median p_c (.clk_in(clk_in), .a_1(p_7), .a_2(p_8), .a_3(p_9),
 .min(q_9), .med(q_6), .max(q_3));
 //submodule calls - stage 2
 three_median q_a (.clk_in(clk_in), .a_1(q_1), .a_2(q_2), .a_3(q_3),
 .min(r_1), .med(junk_1), .max(junk_2));
 three_median q_b (.clk_in(clk_in), .a_1(q_4), .a_2(q_5), .a_3(q_6),
 .min(junk_3), .med(r_2), .max(junk_4));
 three_median q_c (.clk_in(clk_in), .a_1(q_7), .a_2(q_8), .a_3(q_9),
 .min(junk_5), .med(junk_6), .max(r_3));
 //submodule calls - stage 3

46

 three_median fin (.clk_in(clk_in), .a_1(r_1), .a_2(r_2), .a_3(r_3),
 .min(junk_7), .med(y_out), .max(junk_8));
 end

endmodule

///
// Engineer: j. abel
//
// Module Name: three_median
// Description: Finds min, med, and max of 3 values - submodule of
// median_filt
///

module three_median(
 Input clk_in,
 input [7:0] a_1,
 input [7:0] a_2,
 input [7:0] a_3,
 output reg [7:0] min,
 output reg [7:0] med,
 output reg [7:0] max
);

 always @ (posedge clk_in) begin
 max <= ((a_3 >= a_1) && (a_3 >= a_2)) ? a_3 :
 ((a_2 >= a_1) && (a_2 >= a_3)) ? a_2 : a_1;
 min <= ((a_1 <= a_3) && (a_1 <= a_2)) ? a_1 :
 ((a_2 <= a_1) && (a_2 <= a_3)) ? a_2 : a_3;
 med <= (((a_1 == max) && (a_2 == min)) ||
 ((a_2 == max) && (a_1 == min))) ? a_3 :
 (((a_2 == max) && (a_3 == min)) ||
 ((a_3 == max) && (a_2 == min))) ? a_1 : a_2;
 end

endmodule

///
// Engineer: j. abel
//
// Module Name: overlay
// Description: controls display of text-based overlay
//
///

module overlay(
 input clk_in,
 input [9:0] hcount, //horizontal pixel position
 input [9:0] vcount, //vertical pixel position
 input [2:0] adj_state, //filter states
 input [2:0] conv_state,
 input overlay, //overlay active flag

47

 input [7:0] y_avg, //average frame brightness
 output wire is_text //states whether current pixel text or not
);

 //convolution filter names
 parameter SOBEL = 3'd1;
 parameter NOISE = 3'd2;
 parameter SHARP = 3'd3;
 parameter SUN_F = 3'd4;

 //adjustment filter level names
 parameter BRIGHT3 = 3'd3;
 parameter BRIGHT2 = 3'd2;
 parameter BRIGHT1 = 3'd1;
 parameter DARK1 = 3'd7;
 parameter DARK2 = 3'd6;
 parameter DARK3 = 3'd5;
 parameter AUTO = 3'd4;

 //character memory addresses
 parameter A = 0;
 parameter E = 1;
 parameter MINUS = 5;
 parameter N = 6;
 parameter ONE = 8;
 parameter PLUS = 9;
 parameter SUN = 12;
 parameter THREE = 13;
 parameter TWO = 14;
 parameter ZERO = 15;
 parameter S = 16;
 parameter BLANK = 17;

 //digit indices
 parameter AVG1 = 1;
 parameter AVG2 = 2;
 parameter CONV = 3;
 parameter SIGN = 4;
 parameter LEVL = 5;

 //digit locations
 parameter X_AVG1 = 10'd30;
 parameter X_AVG2 = 10'd75;
 parameter X_CONV = 10'd475;
 parameter X_SIGN = 10'd530;
 parameter X_LEVL = 10'd575;
 parameter Y_LOC = 9'd20;
 parameter WIDTH = 32;

 //address of character assignment for each digit
 reg [4:0] char_conv, char_sign, char_levl;
 wire [4:0] char_avg1, char_avg2;

48

 reg [2:0] digit; //digit at current pixel location
 reg [4:0] char_in; //address of character at current digit
 wire [8:0] y_loc = Y_LOC;
 reg [9:0] x_loc; //top left corner location of current digit
 wire is_pxl;

 assign is_text = is_pxl && overlay; //overlay activation flag
 //calculate characters for average value (as percentage)
 avg_value(.clk_in(clk_in), .y_avg(y_avg), .char_tens(char_avg1),
 .char_ones(char_avg2));

 //gets font for pixel in current digit
 font_reader get_txt(clk_in, hcount, vcount, x_loc, y_loc, char_in,
 is_pxl);

 always @ (*) begin

 //current digit selection - based on pixel location
 digit = (hcount >= X_AVG1 && hcount <= X_AVG1 + WIDTH) ? AVG1:
 (hcount >= X_AVG2 && hcount <= X_AVG2 + WIDTH) ? AVG2:
 (hcount >= X_CONV && hcount <= X_CONV + WIDTH) ? CONV:
 (hcount >= X_SIGN && hcount <= X_SIGN + WIDTH) ? SIGN:
 (hcount >= X_LEVL && hcount <= X_LEVL + WIDTH) ? LEVL: 0;
 //location and character assignment - based on current digit
 case (digit)
 AVG1: begin; x_loc = X_AVG1; char_in = char_avg1; end
 AVG2: begin; x_loc = X_AVG2; char_in = char_avg2; end
 CONV: begin; x_loc = X_CONV; char_in = char_conv; end
 SIGN: begin; x_loc = X_SIGN; char_in = char_sign; end
 LEVL: begin; x_loc = X_LEVL; char_in = char_levl; end
 default: begin; x_loc = 0; char_in = BLANK; end
 Endcase
 //level adjustment character selection
 case (adj_state)
 BRIGHT3: begin char_sign = PLUS; char_levl = THREE; end
 BRIGHT2: begin char_sign = PLUS; char_levl = TWO; end
 BRIGHT1: begin char_sign = PLUS; char_levl = ONE; end
 DARK1: begin char_sign = MINUS; char_levl = ONE; end
 DARK2: begin char_sign = MINUS; char_levl = TWO; end
 DARK3: begin char_sign = MINUS; char_levl = THREE; end
 AUTO: begin char_sign = BLANK; char_levl = A; end
 default: begin char_sign = BLANK; char_levl = ZERO; end
 endcase
 //convolution filter character selection
 case (conv_state)
 SOBEL: begin char_conv = E; end
 NOISE: begin char_conv = N; end
 SHARP: begin char_conv = S; end
 SUN_F: begin char_conv = SUN; end
 default: begin char_conv = BLANK; end
 endcase
 end

49

endmodule

///
// Engineer: jt. mcguire
//
// Module Name: ram_manager2
// Description: controls flow of data in/out of ZBT ram
//
///

module ram_manager2(clk, rst, out_ready, read_x, read_y, out_x, new_out,

in_ready, in_done, in_x, in_y, data_in, addr, word,
data, adv, clk_en, chip_en, write_en, bwrite_en, highZ);

input clk, rst;
input out_ready, in_ready;
output reg in_done;

input [35:0] data_in;
input [8:0] in_x, in_y, read_x, read_y;
output[8:0] out_x;
output reg [18:0] addr;
output reg [35:0] word;
inout [35:0] data;
output adv, clk_en, chip_en;
output write_en;
output [3:0] bwrite_en;
output new_out;

 output highZ;

 parameter FRAME_WIDTH=312;

 reg [17:0] mul, x_plus;
 reg [35:0] data_latch_in;

 assign chip_en = 1'b0;
 assign clk_en = 1'b0;
 assign adv = 1'b0;
 assign data = (highZ==1'b1) ? {36{1'bz}} : data_latch_in;

 reg [5:0] or_shift, id_shift;
 reg [2:0] flag0;
 reg [53:0] x0r;
 reg [8:0] inx0;
 reg [8:0] y;
 reg flag;

 assign highZ = ~id_shift[3];
 assign write_en = ~(id_shift[1] & ~flag0[0]);
 assign bwrite_en = {write_en,write_en,write_en,write_en};

50

 assign new_out = (~flag0[2] & or_shift[4]);
 assign out_x = x0r[44:36];

 always @(posedge clk) begin

// RESET BEHAVIOR
if(rst)begin

x0r[53:0]<=54'h0;
or_shift[5:0]<=6'b0;
id_shift[5:0]<=6'b0;
addr<=19'b0;
in_done<=1'b0;
mul<=18'b0;
y<=9'b0;
inx0<=9'b0;
x_plus<=18'b0;
word<=36'b0;
data_latch_in<=36'b0;
flag0<=3'b0;

end else begin
id_shift[5:1]<=id_shift[4:0];
id_shift[0]<=in_done;

flag0[2:1]<=flag0[1:0];
flag0[0]<=flag;

x0r[8:0]<=read_x;
x0r[53:9]<=x0r[44:0];

or_shift[5:1]<=or_shift[4:0];
or_shift[0]<=out_ready;

inx0<=in_x;

mul<=y*FRAME_WIDTH;
x_plus<=(or_shift[0]) ? x0r[8:0] : inx0;
flag<=((x0r[8:0]>=FRAME_WIDTH) || (inx0>=FRAME_WIDTH));
addr <= x_plus + mul;

// Relatch Y on out_ready or in_ready
y<=out_ready ? read_y : (in_ready ? in_y : y);
in_done<=~out_ready&in_ready;

// I/O latch assignment
Data_latch_in <= (~out_ready&in_ready) ? data_in :
 data_latch_in;
word<= (~flag0[2] & or_shift[4]) ? data : word;

end
 end

endmodule

51

///
// Engineer: jt. mcguire
//
// Module Name: **read_ram**
// Description: reads frame from ZBT memory, upscales to 1280x1024
//
///

module read_ram(clk, rst, new_out,

rx, ry, out_ready, inx, word,
h_sync, v_sync, blank, h_blank, v_blank,
Cr, Cb, v_count_out,
lum1, lum2, lum3, lum4, lum5,
out_x, out_y);

// 1280 x 1024 @ 60 Hz with 108 MHz pixel clock
// RAM access speed: 108/4 = 27 MHz
// HORIZ: 1688 total, 48 after, 112 sync, 248 before
// VERT: 1066 total, 1 after, 3 sync, 38 before

// System signals
input clk, rst, new_out;
// Luminance output lines (each one is 5 adjacent 8-bit pixels)
output reg [39:0] lum1;
output reg [39:0] lum2;
output reg [39:0] lum3;
output reg [39:0] lum4;
output reg [39:0] lum5;
// Color output signals
output reg [7:0] Cr, Cb;
// VGA control signals
output h_sync, v_sync, blank;
output [10:0] out_x, out_y;
// DZBT RAM control and receive lines
output reg out_ready;
input [35:0] word;
output reg [8:0] rx, ry;
output [7:0] v_count_out;
input [8:0] inx;

output h_blank, v_blank;

// Line buffer index
reg [2:0] ind;

// Counts for horiz and vertical output
reg [11:0] h_count;
reg [9:0] v_count, v_count0;

parameter LINE_WIDTH=312;
parameter HEIGHT=480;

52

// Line buffer outputs
wire [35:0] out1,out2,out3,out4,out5;

// Line buffer read address
wire [8:0] x_out;

// Line buffer write enables
reg we1, we2, we3, we4, we5;

// Output lum value registers
reg [15:0] val11, val21, val31, val41;
reg [15:0] val12, val22, val32, val42;
reg [15:0] val13, val23, val33, val43;

// Output color value shift registers
// Less depth because only need center
reg [9:0] cr23, cr22, cr21, cr33, cr32, cr31;
reg [9:0] cb23, cb22, cb21, cb33, cb32, cb31;

// Registers for old h_count[0] and h_count[1]
reg hc0_0;
reg hc1_0;

// Registers for shifting following signals
// h_sync, v_sync, h_blank, v_blank, half line, zero value line
reg [3:0] hs0, vs0, hbl0, vbl0, hl0, vz0;

// Fill line buffer with zeros if reading out of bounds lines
wire [35:0] win;
//assign win = vz0[2] ? 36'b0 : word;
assign win = word;

// Line buffers for saving memory output
LineBuf buf1 (.addra(inx), .addrb(x_out), .clka(clk),
.clkb(clk), .dina(win), .doutb(out1), .wea(we1));

LineBuf buf2 (.addra(inx), .addrb(x_out), .clka(clk),
.clkb(clk), .dina(win), .doutb(out2), .wea(we2));

LineBuf buf3 (.addra(inx), .addrb(x_out), .clka(clk),
.clkb(clk), .dina(win), .doutb(out3), .wea(we3));

LineBuf buf4 (.addra(inx), .addrb(x_out), .clka(clk),
.clkb(clk), .dina(win), .doutb(out4), .wea(we4));

LineBuf buf5 (.addra(inx), .addrb(x_out), .clka(clk),
.clkb(clk), .dina(win), .doutb(out5), .wea(we5));

// Wires to calulate half pixel and half line values

 wire [7:0] avg13,avg23,avg33, a13_12,a23_22,a33_32,
 avg12,avg22,avg32, a12_11,a22_21,a32_31;

53

wire [7:0] a12_22_0, a12_22_1, a13_23_0, a13_23_1;
wire [7:0] a22_32_0, a22_32_1, a23_33_0, a23_33_1;
wire [7:0] a32_42_0, a32_42_1, a33_43_0, a33_43_1;
wire [7:0] sq1, sq2, sq3, sq4, sq5, sq6, sq7, sq8, sq9, sq10, sq11,

 sq12;

// Function to compute the average of two values
function automatic [7:0] avg;

input [7:0] v1, v2;
reg [8:0] sum;
begin

sum=v1+v2;
avg=sum[8:1];

end
endfunction

// Calculate half pixel and half line values for upscaling by two
assign avg13=avg(val13[15:8],val13[7:0]);

 assign a13_12=avg(val13[7:0],val12[15:8]);
 assign avg12=avg(val12[15:8],val12[7:0]);
 assign a12_11=avg(val12[7:0],val11[15:8]);

assign avg23=avg(val23[15:8],val23[7:0]);
 assign a23_22=avg(val23[7:0],val22[15:8]);
 assign avg22=avg(val22[15:8],val22[7:0]);
 assign a22_21=avg(val22[7:0],val21[15:8]);

assign avg33=avg(val33[15:8],val33[7:0]);
 assign a33_32=avg(val33[7:0],val32[15:8]);
 assign avg32=avg(val32[15:8],val32[7:0]);
 assign a32_31=avg(val32[7:0],val31[15:8]);

assign a12_22_0=avg(val12[15:8],val22[15:8]);

 assign a22_32_0=avg(val22[15:8],val32[15:8]);
 assign a32_42_0=avg(val32[15:8],val42[15:8]);

assign a12_22_1=avg(val12[7:0],val22[7:0]);
 assign a22_32_1=avg(val22[7:0],val32[7:0]);
 assign a32_42_1=avg(val32[7:0],val42[7:0]);

assign a13_23_0=avg(val13[15:8],val23[15:8]);
 assign a23_33_0=avg(val23[15:8],val33[15:8]);
 assign a33_43_0=avg(val33[15:8],val43[15:8]);

assign a13_23_1=avg(val13[7:0],val23[7:0]);
 assign a23_33_1=avg(val23[7:0],val33[7:0]);
 assign a33_43_1=avg(val33[7:0],val43[7:0]);

assign sq1=avg(avg13,avg23); assign sq2=avg(a13_12,a23_22);

 assign sq3=avg(avg12,avg22); assign sq4=avg(a12_11,a22_21);
assign sq5=avg(avg23,avg33); assign sq6=avg(a23_22,a33_32);

 assign sq7=avg(avg22,avg32); assign sq8=avg(a22_21,a32_31);
assign sq9=avg(avg(val43[15:8], val43[7:0]),avg33);

 assign sq10=avg(avg(val43[7:0], val42[15:8]),a33_32);
assign sq11=avg(avg(val42[15:8],val42[7:0]),avg32);

 assign sq12=avg(avg(val42[7:0],val41[15:8]),a32_31);

54

// Wires to calulate half pixel and hlaf line colors
wire [7:0] cr_23_1, cr_23_22, cr_22_0, cr_a22, cr_23_33_1, cr_sq6,

 cr_22_32_0, cr_sq7;
wire [7:0] cb_23_1, cb_23_22, cb_22_0, cb_a22, cb_23_33_1, cb_sq6,

 cb_22_32_0, cb_sq7;

// Calculate the color values for center four target pixels in all

 // cases
assign cr_23_1 = {cr23[4:0], 3'b0};
assign cr_23_22 = avg({cr23[4:0], 3'b0}, {cr22[9:5],3'b0});
assign cr_22_0 = {cr22[9:5], 3'b0};
assign cr_a22 = avg({cr22[9:5], 3'b0}, {cr22[4:0], 3'b0});
assign cr_23_33_1 = avg({cr23[4:0], 3'b0}, {cr33[4:0], 3'b0});
assign cr_sq6 = avg(cr_23_22, avg({cr33[4:0], 3'b0}, {cr32[9:5],

 3'b0}));
assign cr_22_32_0 = avg({cr22[9:5], 3'b0}, {cr32[9:5], 3'b0});
assign cr_sq7 = avg(cr_a22, avg({cr32[4:0], 3'b0}, {cr32[9:5],

 3'b0}));

assign cb_23_1 = {cb23[4:0], 3'b0};
assign cb_23_22 = avg({cb23[4:0], 3'b0}, {cb22[9:5],3'b0});
assign cb_22_0 = {cb22[9:5], 3'b0};
assign cb_a22 = avg({cb22[9:5], 3'b0}, {cb22[4:0], 3'b0});
assign cb_23_33_1 = avg({cb23[4:0], 3'b0}, {cb33[4:0], 3'b0});
assign cb_sq6 = avg(cb_23_22, avg({cb33[4:0], 3'b0}, {cb32[9:5],

 3'b0}));
assign cb_22_32_0 = avg({cb22[9:5], 3'b0}, {cb32[9:5], 3'b0});
assign cb_sq7 = avg(cb_a22, avg({cb32[4:0], 3'b0}, {cb32[9:5],

 3'b0}));

// Wires for instantaneous sync, blank, and half-pixel/half-line

 // controls
wire vs,hs,bl,hp,op,hl,hlx;
reg hz0;

// Vertical sync when v_count in range+2 (because of 2 line delay in

 // buffers)
assign vs = (v_count>=515 && v_count<=516);
// Horizantal sync when h_count in range for normal and half lines
assign hs = (h_count>=3016 && h_count<3128) || (h_count>=1328 &&

 h_count<1440);
// Horizantal blank when h_count exceeds limits for zero and half

 // lines
assign hbl = (h_count>=2968 || (h_count>=1280 && h_count<1688));
// Line outside bounds detection
assign vzero = (v_count>=480);
// V blank signal when v_count in range+2 (2 line delay)
assign vbl = (v_count>=514 || v_count<=2);
// Half pixel detection from 1 cycle delay hcount[0]
assign hp = hc0_0 & ~hbl0[0] & ~vbl0[0];
// Odd pixel detection from 1 delay hcount[0]

55

assign op = hc1_0 & ~hbl0[0] & ~vbl0[0];
// Half line instantaneous detection
assign hlx = (h_count>=1687);
// Actual half line signal (properly delayed)
assign hl = hl0[0] & ~hbl0[0] & ~vbl0[0];

// Actual output sync and blank signals from delayed lines
assign h_sync = hs0[2];
assign v_sync = vs0[2];
assign blank = hbl0[2] | vbl0[2];
assign h_blank = hbl0[2];
assign v_blank = vbl0[2];

assign v_count_out = v_count[9:2];

always @* begin

// Assign write enable signals to proper write buffer (5th
 // line)

we1 = (ind==3'd0) & inx<LINE_WIDTH;
we2 = (ind==3'd1) & inx<LINE_WIDTH;
we3 = (ind==3'd2) & inx<LINE_WIDTH;
we4 = (ind==3'd3) & inx<LINE_WIDTH;
we5 = (ind==3'd4) & inx<LINE_WIDTH;

// Assign value lines based on circular buffer structure
// val1X is oldest (highest line) >>>> val4X is newest

 // (lowest line)
// Also yank out corresponding color signals for center two

 // rows
if(hbl0[0] | hz0)begin

val11 = 16'b0;
val21 = 16'b0;
val31 = 16'b0;
val41 = 16'b0;
cr21 = 10'b0;
cb21 = 10'b0;
cr31 = 10'b0;
cb31 = 10'b0;

end else if(ind==3'd0)begin
val11 = {out2[35:28] , out2[17:10]};
val21 = {out3[35:28] , out3[17:10]};
val31 = {out4[35:28] , out4[17:10]};
val41 = {out5[35:28] , out5[17:10]};
cr21 = {out3[27:23] , out3[9:5]};
cb21 = {out3[22:18] , out3[4:0]};
cr31 = {out4[27:23] , out4[9:5]};
cb31 = {out4[22:18] , out4[4:0]};

end else if(ind==3'd1)begin
val11 = {out3[35:28] , out3[17:10]};
val21 = {out4[35:28] , out4[17:10]};
val31 = {out5[35:28] , out5[17:10]};
val41 = {out1[35:28] , out1[17:10]};

56

cr21 = {out4[27:23] , out4[9:5]};
cb21 = {out4[22:18] , out4[4:0]};
cr31 = {out5[27:23] , out5[9:5]};
cb31 = {out5[22:18] , out5[4:0]};

end else if(ind==3'd2)begin
val11 = {out4[35:28] , out4[17:10]};
val21 = {out5[35:28] , out5[17:10]};
val31 = {out1[35:28] , out1[17:10]};
val41 = {out2[35:28] , out2[17:10]};
cr21 = {out5[27:23] , out5[9:5]};
cb21 = {out5[22:18] , out5[4:0]};
cr31 = {out1[27:23] , out1[9:5]};
cb31 = {out1[22:18] , out1[4:0]};

end else if(ind==3'd3)begin
val11 = {out5[35:28] , out5[17:10]};
val21 = {out1[35:28] , out1[17:10]};
val31 = {out2[35:28] , out2[17:10]};
val41 = {out3[35:28] , out3[17:10]};
cr21 = {out1[27:23] , out1[9:5]};
cb21 = {out1[22:18] , out1[4:0]};
cr31 = {out2[27:23] , out2[9:5]};
cb31 = {out2[22:18] , out2[4:0]};

end else if(ind==3'd4)begin
val11 = {out1[35:28] , out1[17:10]};
val21 = {out2[35:28] , out2[17:10]};
val31 = {out3[35:28] , out3[17:10]};
val41 = {out4[35:28] , out4[17:10]};
cr21 = {out2[27:23] , out2[9:5]};
cb21 = {out2[22:18] , out2[4:0]};
cr31 = {out3[27:23] , out3[9:5]};
cb31 = {out3[22:18] , out3[4:0]};

end else begin
val11 = 16'b0;
val21 = 16'b0;
val31 = 16'b0;
val41 = 16'b0;
cr21 = 10'b0;
cb21 = 10'b0;
cr31 = 10'b0;
cb31 = 10'b0;

end

//cr_23_1, cr_23_22, cr_22_0, cr_a22, cr_23_33_1, cr_sq6,

 // cr_22_32_0, cr_sq7;

// Select the proper output values based on the target frame
case ({op,hp,hl})

3'b000: begin
lum1={val13[15:8], avg13, val13[7:0],

 a13_12, val12[15:8]};
lum2={a13_23_0, sq1, a13_23_1, sq2,

 a12_22_0};

57

lum3={val23[15:8], avg23, val23[7:0],

 a23_22, val22[15:8]};
lum4={a23_33_0, sq5, a23_33_1, sq6,

 a22_32_0};
lum5={val33[15:8], avg33, val33[7:0],

 a33_32, val32[15:8]};
Cr=cr_23_1; Cb=cb_23_1;

 end
3'b001: begin

lum1={a13_23_0, sq1, a13_23_1, sq2,
 a12_22_0};

lum2={val23[15:8], avg23, val23[7:0],
 a23_22, val22[15:8]};

lum3={a23_33_0, sq5, a23_33_1, sq6,
 a22_32_0};

lum4={val33[15:8], avg33, val33[7:0],
 a33_32, val32[15:8]};

lum5={a33_43_0, sq9, a33_43_1, sq10,
 a32_42_0};

Cr=cr_23_33_1; Cb=cb_23_33_1;
 end

3'b010: begin
lum1={avg13, val13[7:0], a13_12,

 val12[15:8], avg12};
lum2={sq1, a13_23_1, sq2, a12_22_0,

 sq3};
lum3={avg23, val23[7:0], a23_22,

 val22[15:8], avg22};
lum4={sq5, a23_33_1, sq6, a22_32_0,

 sq7};
lum5={avg33, val33[7:0], a33_32,

 val32[15:8], avg32};
Cr=cr_23_22; Cb=cb_23_22;

 end
3'b011: begin

lum1={sq1, a13_23_1, sq2, a12_22_0,
 sq3};

lum2={avg23, val23[7:0], a23_22,
 val22[15:8], avg22};

lum3={sq5, a23_33_1, sq6, a22_32_0,
 sq7};

lum4={avg33, val33[7:0], a33_32,
 val32[15:8], avg32};

lum5={sq9, a33_43_1, sq10, a32_42_0,
 sq11};

Cr=cr_sq6; Cb=cb_sq6;
 end

3'b100: begin
lum1={val13[7:0], a13_12, val12[15:8],

 avg12, val12[7:0]};
lum2={a13_23_1, sq2, a12_22_0, sq3,

 a12_22_1};

58

lum3={val23[7:0], a23_22, val22[15:8],

 avg22, val22[7:0]};
lum4={a23_33_1, sq6, a22_32_0, sq7,

 a22_32_1};
lum5={val33[7:0], a33_32, val32[15:8],

 avg32, val32[7:0]};
Cr=cr_22_0; Cb=cb_22_0;

 end
3'b101: begin

lum1={a13_23_1, sq2, a12_22_0, sq3,
 a12_22_1};

lum2={val23[7:0], a23_22, val22[15:8],
 avg22, val22[7:0]};

lum3={a23_33_1, sq6, a22_32_0, sq7,
 a22_32_1};

lum4={val33[7:0], a33_32, val32[15:8],
 avg32, val32[7:0]};

lum5={a33_43_1, sq10, a32_42_0, sq11,
 a32_42_1};

Cr=cr_22_32_0; Cb=cb_22_32_0;
 end

3'b110: begin
lum1={a13_12, val12[15:8], avg12,

 val12[7:0], a12_11};
lum2={sq2, a12_22_0, sq3, a12_22_1,

 sq4};
lum3={a23_22, val22[15:8], avg22,

 val22[7:0], a22_21};
lum4={sq6, a22_32_0, sq7, a22_32_1,

 sq8};
lum5={a33_32, val32[15:8], avg32,

 val32[7:0], a32_31};
Cr=cr_a22; Cb=cb_a22;

 end
3'b111: begin

lum1={sq2, a12_22_0, sq3, a12_22_1,
 sq4};

lum2={a23_22, val22[15:8], avg22,
 val22[7:0], a22_21};

lum3={sq6, a22_32_0, sq7, a22_32_1,
 sq8};

lum4={a33_32, val32[15:8], avg32,
 val32[7:0], a32_31};

lum5={sq10, a32_42_0, sq11, a32_42_1,
 sq12};

Cr=cr_sq7; Cb=cb_sq7;
 end

endcase

end

// Define an h_count with 1 line subtracted away

59

wire [11:0] h_count_sub;
assign h_count_sub = (h_count-12'd1688);

// Assign the proper output address as 1/4th of half line
// corrected h_count value

// Rescales h_count to range 0-312
assign x_out = (h_count>=1688) ? h_count_sub[10:2] : h_count[10:2];

assign out_x = ((h_count>=1688) ? h_count_sub : h_count) - 11'd9;
assign out_y = (v_count0<3) ? 11'b0 : {v_count0-10'd3,

 (h_count>1600)};

// System clock edged behavior
always @(posedge clk) begin

// Zero behavior
if(rst)begin

// Zero the hcount shift regs
hc0_0<=1'b0;
hc1_0<=1'b0;
hz0<=1'b0;
// Zero the count registers
rx<=9'b0;
ry<=9'b0;
ind<=3'b0;
h_count<=12'b0;
v_count<=10'b0;
// Set luminance shift values to zero
val12<=16'b0;
val22<=16'b0;
val32<=16'b0;
val42<=16'b0;
val13<=16'b0;
val23<=16'b0;
val33<=16'b0;
val43<=16'b0;
// Set color shift values to zero
cr22<=10'b0;
cb22<=10'b0;
cr32<=10'b0;
cb32<=10'b0;
cr23<=10'b0;
cb23<=10'b0;
cr33<=10'b0;
cb33<=10'b0;
// Set the Hsync, Vsync, zero detect, and blank shift
//regs to zero
vz0[2:0]<=3'b0;
hs0[2:0]<=3'b0;
vs0[2:0]<=3'b0;
hbl0[2:0]<=3'b0;
vbl0[2:0]<=3'b0;
hl0[2:0]<=3'b0;
v_count0<=10'b0;

60

end else begin
// Shift back h_count[0] and [1] to match line buf output

 // delay
hc0_0<=h_count[0];
hc1_0<=h_count[1];
v_count0<=v_count;

// Shift back output signals to match line buf output

 // delay
hs0[0]<=hs;
vs0[0]<=vs;
hbl0[0]<=hbl;
vbl0[0]<=vbl;
hl0[0]<=hlx;
vz0[0]<=vzero;
hz0<=(x_out>9'd311);
// Shift zero detection back to match ZBT RAM output
vz0[2:1]<=vz0[1:0];
// Trigger the ZBT RAM read on every eighth h_count when
// in bounds
Out_ready <= (h_count[2:0]==3'b0) &&

 (h_count[11:3]<LINE_WIDTH); // & ~vzero
// Assign ZBT RAM address lines
rx<=h_count[11:3];
ry<=v_count;

// Received a frame refresh signal
if(v_count>533)begin

// Zero everything and the index
h_count<=12'b0;
v_count<=10'b0;
ind<=3'b0;

// H count exceeded two-line output count
end else if(h_count>=3375)begin

// Zero h count
h_count<=12'b0;
// Increment v count
v_count<=v_count+1;
// Increment index and wrap if needed
ind<= (ind>=4) ? 3'b0 : ind+1;

end else begin
// Increment h_count
h_count<=h_count+1;
// Recap v_count
v_count<=v_count;
// Recap the line buffer index
ind<=ind;

end

if(hc1_0 & ~h_count[1])begin

// Shift h,v,blank,hl back

61

hs0[3:1]<=hs0[2:0];
vs0[3:1]<=vs0[2:0];
hbl0[3:1]<=hbl0[2:0];
vbl0[3:1]<=vbl0[2:0];
hl0[3:1]<=hl0[2:0];
// Shift zeros if h blanking detected, otherwise
// choose values
val12<=val11;
val22<=val21;
val32<=val31;
val42<=val41;
val13<=val12;
val23<=val22;
val33<=val32;
val43<=val42;
// Shift colors back (0 if h blanking detected)
cr22<=cr21;
cb22<=cb21;
cr32<=cr31;
cb32<=cb31;
cr23<=cr22;
cb23<=cb22;
cr33<=cr32;
cb33<=cb32;

end

// 1280 x 1024 @ 60 Hz with 108 MHz pixel clock
// RAM access speed: 108/4 = 27 MHz
// HORIZ: 1688 total, 48 after, 112 sync, 248 before
// VERT: 1066 total, 1 after, 3 sync, 38 before

end
end

endmodule

///
// Engineer: jt.mcguire
//
// Module Name: read_ram2
// Description: simplification of above module, outputs 640x480 frame with
// no upscaling
///

module read_ram2(clk, sysclk, rst, new_out,

rx, ry, out_ready, inx, word,
h_sync, v_sync, blank,
Cr, Cb, lum0, lum1, lum2, lum3, lum4, lum5, lum6, lum7, lum8,
out_x, out_y);

input clk, sysclk, rst;

input new_out;

62

input [8:0] inx;
input [35:0] word;

output h_sync, v_sync, blank;
output [9:0] out_x, out_y;
output reg [7:0] Cr, Cb, lum0, lum1, lum2, lum3, lum4, lum5, lum6,

lum7, lum8;

output [8:0] rx;
output reg [8:0] ry;
output out_ready;

reg [9:0] h_count, v_count;

// Visible area640 25.422045680238
// Front porch 16 0.63555114200596
// Sync pulse 96 3.8133068520357
// Back porch 48 1.9066534260179
// Whole line 800 31.777557100298

//Visible area 480 15.253227408143
//Front porch 10 0.31777557100298
//Sync pulse2 0.063555114200596
//Back porch33 1.0486593843098
//Whole frame 525 16.683217477656

assign h_sync = (h_count>655) && (h_count<=751);
assign v_sync = (v_count>489) && (v_count<=491);
assign blank = h_count>=640 || v_count>=480;

wire [8:0] oldh;
wire [35:0] buf_out1, buf_out2, buf_out3, buf_out4;
reg we1, we2, we3, we4;

wire [35:0] word_in;
assign word_in = inx<480 ? word : 35'b0;

LineBuf buf1 (.addra(inx), .addrb(oldh), .clka(clk), .clkb(clk),
.dina(word_in), .doutb(buf_out1), .wea(we1));

LineBuf buf2 (.addra(inx), .addrb(oldh), .clka(clk), .clkb(clk),
.dina(word_in), .doutb(buf_out2), .wea(we2));

LineBuf buf3 (.addra(inx), .addrb(oldh), .clka(clk), .clkb(clk),
.dina(word_in), .doutb(buf_out3), .wea(we3));

LineBuf buf4 (.addra(inx), .addrb(oldh), .clka(clk), .clkb(clk),
.dina(word_in), .doutb(buf_out4), .wea(we4));

reg [1:0] ind;
reg we10,we20,we30,we40;
reg [35:0] word0,word00,word1,word10,word2,word20;

63

reg out_r, out_r0, out_r00;
assign rx = h_count[9:1];
always @* begin

if(v_count==524)begin
ry=9'd1;
out_r = (h_count[9:1]<312) & ~h_count[0];

end else if(v_count==523)begin
ry=9'd0;
out_r = (h_count[9:1]<312) & ~h_count[0];

end else if(v_count<480)begin
ry=v_count+9'd2;
out_r = (h_count[9:1]<312) & ~h_count[0];

end else begin
ry=9'd0;
out_r = 1'b0;

end

case (ind)

2'b00: begin
word0=buf_out1;
word1=buf_out2;
word2=buf_out3;
we40=(inx<312);
we30=1'b0;
we20=1'b0;
we10=1'b0;
end

2'b01:begin
word0=buf_out2;
word1=buf_out3;
word2=buf_out4;
we40=1'b0;
we30=1'b0;
we20=1'b0;
we10=(inx<312);
end

2'b10:begin
word0=buf_out3;
word1=buf_out4;
word2=buf_out1;
we40=1'b0;
we30=1'b0;
we20=(inx<312);
we10=1'b0;
end

2'b11:begin
word0=buf_out4;
word1=buf_out1;
word2=buf_out2;
we40=1'b0;
we30=(inx<312);

64

we20=1'b0;
we10=1'b0;
end

endcase
end

assign out_ready = out_r0&~out_r00;

always @(posedge sysclk)begin

out_r0<=out_r;
out_r00<=out_r0;
we4<=we40;
we3<=we30;
we2<=we20;
we1<=we10;

end

// Assign the read adcdress to the output brams
assign oldh = h_count<624 ? h_count[9:1] : 9'b0;

always @(posedge clk)begin

if(rst)begin
h_count<=10'b0;
v_count<=10'b0;
ind<=2'b0;

end else begin
word00<=h_count[0] ? word0 : word00;
word10<=h_count[0] ? word1 : word10;
word20<=h_count[0] ? word2 : word20;
if(h_count>=799)begin

h_count<=10'b0;
ind<=ind+1;
if(v_count>=524)begin

v_count<=10'b0;
end else begin

v_count<=v_count+1;
end

end else begin
h_count<=h_count+1;
v_count<=v_count;
ind<=ind;

end

if(v_count>=2 && v_count<=481 && h_count>=2 &&

 h_count<=626)begin
if(~h_count[0])begin

lum0<=word00[35:28];
lum1<=word00[17:10];
lum2<=word0[35:28];
lum3<=word10[35:28];
lum4<=word10[17:10];
lum5<=word1[35:28];

65

lum6<=word20[35:28];
lum7<=word20[17:10];
lum8<=word2[35:28];
Cr<={word10[9:5],3'b0};
Cb<={word10[4:0],3'b0};

end else begin
lum0<=word00[17:10];
lum1<=word0[35:28];
lum2<=word0[17:10];
lum3<=word10[17:10];
lum4<=word1[35:28];
lum5<=word1[17:10];
lum6<=word20[17:10];
lum7<=word2[35:28];
lum8<=word2[17:10];
Cr<={word1[27:23],3'b0};
Cb<={word1[22:18],3'b0};

end
end else begin

lum0<=8'b0;
lum1<=8'b0;
lum2<=8'b0;
lum3<=8'b0;
lum4<=8'b0;
lum5<=8'b0;
lum6<=8'b0;
lum7<=8'b0;
lum8<=8'b0;
Cr<=8'b0;
Cb<=8'b0;

end
end

end

endmodule

///
// Engineer: j.abel
//
// Module Name: sharpen_filt
// Description: 3x3 sharpening filter
//
///

module sharpen_filt(
 input clk_in,
 input [71:0] y_in,
 output reg [7:0] y_out
);

 parameter BLACK = 8'd16;
 parameter WHITE = 8'd235;

66

 // positive and negative sums in kernel
 reg [9:0] y_pos;
 reg [9:0] y_neg;

 always @(*) begin
 //output assignment with clipping
 y_out = (y_neg > y_pos) ? BLACK : ((y_pos-y_neg) > WHITE) ? WHITE

 : y_pos - y_neg;
 end

 always @ (posedge clk_in) begin

 // convolution arithmetic
 y_pos <= y_in[39:32]*3;
 y_neg <= (y_in[63:56]+y_in[47:40]+y_in[31:24]+y_in[15:8])>>1;
 end

endmodule

///
// Engineer: j.abel
//
// Module Name: ** sharpen_filt_5 **
// Description: 5x5 sharpening filter (unsharp mask) - not implemented
//
///

module sharpen_filt(
 input clk_in,
 input [199:0] y_in, //5x5 convolution kernel
 output reg [7:0] y_out
);

 parameter BLACK = 8'd16;
 parameter WHITE = 8'd235;

 // positive and negative sums in kernel
 reg [16:0] y_pos;
 reg [16:0] y_neg;

 // pixel assignment
 wire [7:0] y_1 = y_in[199:192];
 wire [7:0] y_2 = y_in[191:184];
 wire [7:0] y_3 = y_in[183:176];
 wire [7:0] y_4 = y_in[175:168];
 wire [7:0] y_5 = y_in[167:160];
 wire [7:0] y_6 = y_in[159:152];
 wire [7:0] y_7 = y_in[151:144];
 wire [7:0] y_8 = y_in[143:136];
 wire [7:0] y_9 = y_in[135:128];
 wire [7:0] y_10 = y_in[127:120];
 wire [7:0] y_11 = y_in[119:112];

67

 wire [7:0] y_12 = y_in[111:104];
 wire [7:0] y_13 = y_in[103:96];
 wire [7:0] y_14 = y_in[95:88];
 wire [7:0] y_15 = y_in[87:80];
 wire [7:0] y_16 = y_in[79:72];
 wire [7:0] y_17 = y_in[71:64];
 wire [7:0] y_18 = y_in[63:56];
 wire [7:0] y_19 = y_in[55:48];
 wire [7:0] y_20 = y_in[47:40];
 wire [7:0] y_21 = y_in[39:32];
 wire [7:0] y_22 = y_in[31:24];
 wire [7:0] y_23 = y_in[23:16];
 wire [7:0] y_24 = y_in[15:8];
 wire [7:0] y_25 = y_in[7:0];

 always @ (*) begin
 //clipped output assignment
 y_out = (y_neg > y_pos) ? BLACK : ((y_pos-y_neg) > WHITE) ? WHITE :

 y_pos-y_neg;
 end

 always @ (posedge clk_in) begin
 //convolution filter
 y_neg <= (y_1 + y_5 + y_21 + y_25 +

 + (y_2 + y_4 + y_6 + y_10 + y_16 + y_20 + y_22 + y_24)*4
 + (y_7 + y_9 + y_17 + y_19)*16

 + (y_3 + y_11 + y_15 + y_23)*6
 + (y_8 + y_12 + y_14 + y_18)*24) >> 8;
 y_pos <= (y_13 * 476) >> 8;
 end

endmodule

///
// Engineer: j.abel
//
// Module Name: sun_filt
// Description: sun blocking filter
//
///

module sun_filt(
 input clk_in,
 input [71:0] y_in, //3x3 kernel - change to [199:0] for 5x5
 input [2:0] lvl_state, //state of level adjustment filter
 input [7:0] y_avg,
 output reg [7:0] y_out
);

 parameter BLACK = 8'd16;

 //pixel assignment

68

 wire [7:0] y_1 = y_in[71:64];
 wire [7:0] y_2 = y_in[63:56];
 wire [7:0] y_3 = y_in[55:48];
 wire [7:0] y_4 = y_in[47:40];
 wire [7:0] y_5 = y_in[39:32];
 wire [7:0] y_6 = y_in[31:24];
 wire [7:0] y_7 = y_in[23:16];
 wire [7:0] y_8 = y_in[15:8];
 wire [7:0] y_9 = y_in[7:0];

 wire [8:0] s; //outputs of threshold operation
 wire [3:0] count; //number of pixels above the threshold

 //thresholding operations for each pixel
 thresholder t1 (.y_in(y_1), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[0]));
 thresholder t2 (.y_in(y_2), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[1]));
 thresholder t3 (.y_in(y_3), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[2]));
 thresholder t4 (.y_in(y_4), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[3]));
 thresholder t5 (.y_in(y_5), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[4]));
 thresholder t6 (.y_in(y_6), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[5]));
 thresholder t7 (.y_in(y_7), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[6]));
 thresholder t8 (.y_in(y_8), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[7]));
 thresholder t9 (.y_in(y_9), .lvl_state(lvl_state), .y_avg(y_avg),
 .p_out(s[8]));

 //count darkened pixels, assign output
 assign count = s[0]+s[1]+s[2]+s[3]+s[4]+s[5]+s[6]+s[7]+s[8];
 assign y_out = (count >= 5) ? BLACK : y_5;

endmodule

///
// Engineer: j.abel
//
// Module Name: thresholder
// Description: determines whether pixel above threshold - submodule of
// sun_filt
///

module thresholder(
 input [7:0] y_in,
 [2:0] lvl_state,
 [7:0] y_avg,

69

 output reg p_out
);

 //level adjustment filter states (only those that make pixels brighter)
 parameter BRIGHT3 = 3'd3;
 parameter BRIGHT2 = 3'd2;
 parameter BRIGHT1 = 3'd1;
 parameter AUTO = 3'd4;

 always @ (*) begin
 case (lvl_state)
 //thresholding with automatic level adjustment
 AUTO: begin p_out = ((y_in >= 8'd191 && y_avg < 8'd72) ||
 (y_in >= 8'd234 && y_avg >= 8'd72)) ?
 1 : 0; end
 //thresholding with manual level adjustment
 BRIGHT3: begin p_out = (y_in >= 8'd125) ? 1 :0; end
 BRIGHT2: begin p_out = (y_in >= 8'd162) ? 1 :0; end
 BRIGHT1: begin p_out = (y_in >= 8'd191) ? 1 :0; end
 default: begin p_out = (y_in >= 8'd234) ? 1 :0; end
 endcase
 end

endmodule

///
// Engineer: jt.mcguire
//
// Module Name: TV_i2c
// Description: I2C controller to control the ADV7185 video decoder
//
///

module TV_i2c(

rst, clk,
i2c_data, i2c_clock,
isAcked, sending,
byteAddr, dout);

 parameter CNT = 10000;
 parameter DAT_TRIG = CNT/4;
 parameter CLK_HIGH = CNT/2;
 parameter TOTAL_BYTES = 9; // MUST BE A MULTIPLE OF 3

 inout i2c_data;
 inout i2c_clock;
 input clk, rst;
 output reg isAcked;
 output sending;
 input [7:0] dout;
 output reg [3:0] byteAddr;

70

 reg dat, clock;

 reg [13:0] count;

 assign i2c_data = dat ? 1'bZ : 1'b0;
 assign i2c_clock = clock ? 1'b1 : 1'b0;

 reg start, stop;
 reg ack;
 reg [2:0] bitAddr;
 reg datTrig, clkHigh, clkLow;

 assign sending = ~(byteAddr>=TOTAL_BYTES && stop && dat && clock);

 // System clock triggered behavior
 always @(posedge clk) begin

if(rst)begin
// Zero all triggers and counts
datTrig<=1'b0;
clkHigh<=1'b0;
clkLow<=1'b0;
count<=14'b0;

end else begin
// Data trigger happens first
if(count==DAT_TRIG)begin

// Pulse data trigger line
datTrig<=1'b1;
clkLow<=1'b0;
clkHigh<=1'b0;
count<=count+1;

// Clock pulled low after data triggered
end else if(count==CLK_HIGH)begin

// Pulse the clock low line
clkLow<=1'b0;
datTrig<=1'b0;
clkHigh<=1'b1;
count<=count+1;

// Clock pulled high, shifts data in on slave
end else if(count>=CNT)begin

// Pulse the clock high line
clkHigh<=1'b0;
datTrig<=1'b0;
clkLow<=1'b1;
count<=14'b0;

// Increment the counter and end the pulses
end else begin

clkHigh<=1'b0;
clkLow<=1'b0;
datTrig<=1'b0;
count<=count+1;

end
end

71

 end

 reg hold;
 reg [1:0] dead;
 wire complete;
 wire div3;
 assign complete = (byteAddr>(TOTAL_BYTES-1));
 assign div3 = (byteAddr==4'd3 || byteAddr==4'd6 || byteAddr==4'd9 ||

byteAddr==4'd12 || byteAddr==4'd15);
 wire all_trig;
 BUFG buf2 (.I(clkHigh | clkLow | datTrig | (rst&clk)), .O(all_trig));

 // Triggered behavior
 always @(posedge all_trig) begin

if(rst)begin
bitAddr<=3'b111;
byteAddr<=4'b0;
ack<=1'b0;
isAcked<=1'b0;
stop<=1'b0;
clock<=1'b1;
dat<=1'b1;
start<=1'b1;
hold<=1'b1;
dead<=2'b0;

end else if(start)begin
bitAddr<=3'b111;
byteAddr<=byteAddr;
ack<=1'b0;
isAcked<=1'b0;
stop<=1'b0;
clock<=~clkLow;
dat<=datTrig ? 1'b0 : dat;
start<=~clkLow;
hold<=1'b1;
dead<=2'b0;

// CLOCK CHANGE BEHAVIOR
end else if(clkHigh | clkLow)begin

dat<=dat;
clock<=stop ? 1'b1 : clkHigh;
// Recap anything else
bitAddr<=bitAddr;
byteAddr<=byteAddr;
ack<=ack;
isAcked<=(clkHigh & ack) ? i2c_data : isAcked;
stop<=stop;
start<=start;
hold<=1'b0;
dead<=dead;

// DATA TRIGGER BEHAVIOR

72

end else begin

// Recap clock
clock<=clock;
isAcked<=isAcked;
if(bitAddr==3'b0)begin

byteAddr<=byteAddr+1;
// Next bit address is 7
bitAddr<=3'b111;
// Indicate an ack bit is next
ack<=1'b1;
// Pull data high (lets slave communicate)
dat<=1'b1;
stop<=stop;
hold<=hold;
start<=start;

// Ack bit next
end else if(ack)begin

// Zero the ack and bit address
bitAddr<=3'b111;
ack<=1'b0;
// Recap all else
byteAddr<=byteAddr;
if(complete | div3)begin

stop<=1'b1;
dat<=1'b0;

end else begin
stop<=1'b0;
// Set data to next ROM value
dat<=dout[bitAddr];

end
hold<=hold;
start<=start;

end else begin
// Stop indicated
if(hold)begin

bitAddr<=3'b111;
dat<=dout[bitAddr];
stop<=stop;
hold<=hold;
start<=start;

end else if(stop)begin
bitAddr<=bitAddr;
dat<=(dead<=2'b10) | complete;
if(dead==2'b11 && ~complete)begin

stop<=1'b0;
hold<=1'b1;
start<=1'b1;
dead<=2'b0;

end else begin
dead<=dead+1;
stop<=1'b1;
hold<=1'b0;

73

start<=1'b0;

end
end else begin

// Increment bit address
bitAddr<=bitAddr-1;
// Set data to next ROM value
dat<=dout[bitAddr-1];
stop<=stop;
hold<=hold;
start<=start;

end
// Recap or reassign all else
byteAddr<=byteAddr;
ack<=1'b0;

end
end

 end

endmodule

///
// Engineer: jt.mcguire
//
// Module Name: tvInControl2
// Description: receives NTSC data from ADV7185, extracts oizel information
//
///

module tvInControl2(in_clk, clk, rst, lum_in, chrom_in,
in_ready, in_done, in_x, in_y, data_in, ovf, newFrame);

// NOTES:
// Assuming 16 bit CCIR656 4:2:2 input at clock rate LLC2
// This clock rate is 13.5 MHz
// System clock rate is about 160 MHz
// field_ord should be connected to a physical switch

parameter LAST_X = 623;

// Luminance, chrominance inputs (8 bits each)
input [7:0] lum_in, chrom_in;
// Clocking and reset
input in_clk, clk, rst;
// Output ready-to-store signal
output reg in_ready;
// Store complete signal
input in_done;
// clk synced x and y outputs
output [8:0] in_x, in_y;
// clk synced data output
output reg [35:0] data_in;
// Overflow indicator

74

output reg ovf;
output newFrame;

// Input shift registers
reg [7:0] lum_in0, lum_in1, lum_in2, Cb0, Cr0, Cb2;
// Sums of successive color signals
wire [8:0] Cb_sum, Cr_sum;
// New input flag
reg newIn;
// Input state storage
reg state;
// Pixel x and y values
reg [8:0] y;
reg [9:0] x;
// F,V,active
reg F,V,V0,active,active0;

assign newFrame = F;

// 625 line video, but last line will be truncated because
// it is not even, so 624 lines of output (0-623)

// Sum of last and current color values
assign Cb_sum = Cb0 + Cb2;
assign Cr_sum = Cr0 + chrom_in;

// in_clk synced logic
always @(posedge in_clk) begin

// Luminance shift registers
lum_in2<=lum_in;
lum_in1<=lum_in2;
lum_in0<=lum_in1;
// Chrominance shift registers
if(x==(LAST_X-1))begin

Cb2<=Cr0;
end else begin

Cb2<=chrom_in;
end
Cr0<=Cb2;
Cb0<=Cr0;

// Data code detected on three clk old lines
if(lum_in0==8'h00 && Cb0==8'hFF)begin

// Save F, V, active signals
F<=lum_in1[6];
V<=lum_in1[5];
active<=~lum_in1[4];

end else begin
// Recapture
F<=F;
V<=V;
active<=active;

75

end

// Delay
active0<=active;
V0<=V;
// F high, y to 1; F low, y to 0
// Falling edge on active signal
if(rst) begin

x<=10'b0; y<=9'b0; newIn<=1'b0;
end else if(V0 && !V)begin

if(F)begin
y<=9'b1;

end else begin
y<=9'b0;

end
x<=10'b0; newIn<=1'b0;

end else if(!active && active0)begin
// Zero x
x<=10'b0;
y<=y+2;
newIn<=1'b0;

// Active signal high
end else if(active)begin

// Increment x, recap y
x<=x+1; y<=y;
newIn <= ~x[0] && (x<=LAST_X) && ~V;

end else begin
// Zero x, recap y
x<=10'b0; y<=y; newIn<=1'b0;

end
end

// clk synced edge detector on trigger
reg newIn0;

// Reassign output
assign in_x = x[9:1];
assign in_y = y;

// clk synced logic
always @(posedge clk) begin

if(rst)begin
// Zero everything
newIn0<=1'b0;
in_ready<=1'b0;
ovf<=1'b0;
data_in<=36'b0;

end else begin
// Old value saves
newIn0<=newIn;

// Positive edge on newIn

76

if(newIn && !newIn0)begin

// in_ready register still high
if(in_ready)begin

// Overflow detected
ovf<=1'b1;

end else begin
// No overflow
ovf<=1'b0;

end
// Raise the input ready line
in_ready<=1'b1;
// Latch out two pixels of info
data_in<={ lum_in0, Cr0[7:3], Cb0[7:3], lum_in1,

Cr_sum[8:4], Cb_sum[8:4] };
end else begin

// Recapture output and overflow
data_in<=data_in;
ovf<=ovf;
// Input save completed
if(in_done)begin

// Zero the ready register
in_ready<=1'b0;

end else begin
// Recapture the ready register
in_ready<=in_ready;

end
end

end
end

endmodule

///
// Engineer: j.abel
//
// Module Name: ycbcr_2_rgb
// Description: convert pixel from YCbCr to RGB color space
//
///

module ycbcr_2_rgb(
 input clk_in,
 input [7:0] y_in,
 input [7:0] cb_in,
 input [7:0] cr_in,
 output wire [23:0] rgb_out
);

 //intermediate signed variables
 wire signed [17:0] y_8, cb_8, cr_8;

77

 reg signed [9:0] r_s, g_s, b_s;
 reg [7:0] red, green, blue;

 //input recentering
 assign y_8 = y_in-16;
 assign cb_8 = cb_in-128;
 assign cr_8 = cr_in-128;
 assign rgb_out = {red, green, blue};

 always @ (*) begin
 //clipped assignment
 red = (r_s[9] == 1) ? 8'd0 :
 ((r_s[8] == 1) && (r_s[9] == 0)) ? 8'd255 : r_s[7:0];
 green = (g_s[9] == 1) ? 8'd0 :
 ((g_s[8] == 1) && (g_s[9] == 0)) ? 8'd255 : g_s[7:0];
 blue = (b_s[9] == 1) ? 8'd0 :
 ((b_s[8] == 1) && (b_s[9] == 0)) ? 8'd255 : b_s[7:0];
 end

 always @ (posedge clk_in) begin
 //matrix multiplication
 r_s <= ((298*y_8)+(409*cr_8))>>8;
 g_s <= ((298*y_8)-(100*cb_8)-(208*cr_8))>>8;
 b_s <= ((298*y_8)+(516*cb_8))>>8;
 end

endmodule

78

