
1

6.111 Final Project: FPGA SDR
Colin Chaney

Charles Lindsay

2

Introduction 3

FPGA Implementation Overview 3

Digital Signal Processing Chain (Charles) 4
Overview 4
SDR Input Signal Generation and Testing 4
GNU Radio Development 5
Band Pass Filter Specifications 5
Modules 6

ADC (ADC_Interface.sv) 6
Local Oscillator (Local_Oscillator.sv) 7
Mixer (Mixer.sv) 9
IIR Filter (AM_BP_filter.sv) 10
AM Stage 1 (implemented in top_level.sv) 11
FM Stage 1 (FM_demod_state_1) 11
Peak Detect and Hold (Peak_detect_hold.sv) 12
Audio Condition (AM_audio_condition.sv) 13

Human Interface (Chaney) 13
Overview 13
Displaying a Signal 14

Trigger_Buffer.sv 14
Signal Display Block Diagram Overview 14

Function_Pixel_Logic.sv 15
FFT and Center Frequency Tuning (histogram.sv) 16

A Basic FFT 16
A Basic Frequency Marker 17
Zoom Functionality 18
Displaying the Intermediate Frequency (IF) 19
Waterfall Display 19

User Input 20

Summary 23

Acknowledgments 23

Appendix 24

3

Introduction
Software Defined Radios (SDRs) are special in the fact that they use very few analog
components. In most cases the only analog components are the RF front ends that ensure a
clean analog signal is fed into the ADC of the radio. Where SDRs have an advantage to analog
radios is that they are flexible. A SDR is able to apply any number of signal processing tricks
with the received data and not be locked into a single solution. This can be especially useful in
applications such as satellites, where being able to reconfigure hardware on orbit can be
essential to mission success.

For our project, our aim was to demodulate AM and FM audio while providing an intuitive user
interface. Since we realized that demodulating real RF waves off of the air would be a stretch,
we wanted to focus on getting the demodulation to work with function generators. For our user
interface we wanted to be able to display any waveforms coming from the ADC as well as the
demodulated audio. In addition we wanted to be able to view the frequency spectrum of our
incoming signal, such that we could tune the center frequency much easier and identify radio
signals such as broadcast stations.

4

FPGA Implementation Overview

In the FPGA we have two separate clock domains, both encompassing different parts of the
project. The 100 MHz clock domain focuses on the signal processing of demodulating the audio
while the 65 MHz domain focuses on user interaction through encoders and a VGA display.
Both the raw ADC data and the demodulated audio are sent to the display modules to be
shown. The raw ADC data is also sent to a Fast Fourier Transform (FFT) module, so that users
can view the entire frequency spectrum of the ADC signal.

Integration for this project was hardly an issue since the two clock domains create a pretty
distinct separation between the realms. Charles was able to experiment with DSP filters and not
affect any of the VGA display modules that Colin was working on.

5

Digital Signal Processing Chain (Charles)

Overview

On a high level, the digital signal processing (DSP) chain implemented on the Artix-7 FPGA is
simply an analog superheterodyne receiver. The user inputs a desired frequency to tune to,
which adjusts the radio’s local oscillator frequency in order to mix the received RF signal down
to the intermediate frequency the bandpass filter is centered around. The resulting signal output
from the bandpass filter for AM will be a single carrier frequency mixed with an audio signal. By
performing envelope detection the audio signal can be extracted from the high frequency
carrier. In the case of FM, more complex DSP must take place for good quality signal output,
which usually consists of a phase-locked loop (PLL) digital circuit. In order to reduce complexity
given our short development period, our design demodulates FM via derivative demodulation
and also uses existing AM demodulation modules.

SDR Input Signal Generation and Testing

One or two function generators were used to drive the ADC analog input for all tests and
demonstrations. Analog AM and FM signals ranging from 500 kHz to 5 MHz were output to test
our system over the full frequency range of its intended design. We also output audio signals
from our phones to the function generator in order to play music that could be modulated over
any carrier frequency to simulate an AM broadcast station.

In addition, our radio is designed to operate with an RF front end biased above 0 V, although we
did not have time to design a medium wave antenna and amplifier combination to receive AM
broadcast radio.

GNU Radio Development
To model the complete AM demodulation from input signal generation through envelope
detection, our system was simulated with GNU Radio blocks. This proved extremely useful for
determining the maximum size of data passing through each module in order to help properly
set our gain in our implementation and avoid overflow issues which are extremely difficult to
detect in some cases. In addition, we could easily test FIR and IIR bandpass filter designs
before simulating them on the FPGA which sped up the overall development process.

6

AM demodulation implementation built with GNU Radio.

Band Pass Filter Specifications

All bandpass filters were centered around the intermediate frequency . For FM55 kHzfC = 4
bandpass filters, the ​Carson Bandwidth Rule ​was used to determine the width of the passband
given the maximum frequency deviation and audio frequency . For narrow band FMfΔ f imax
(NFM) and , and for wideband FM (WFM) andf kHz Δ = 5 kHzf imax = 3 f 5 kHzΔ = 7

which is typically used in US FM broadcast stations. The stopband for all filters5 kHzf imax = 1
were determined by the minimum spacing of broadcast stations in the US. The attenuation at
the stop band was limited by the number of IIR filter sections we chose to implement, where
more sections would have provided a steeper filter cutoff.

AM Bandpass
- Passband: +/- 3 kHzfC
- Stopband: +/- 5 kHz (8dB attenuation)fC

https://en.wikipedia.org/wiki/Carson_bandwidth_rule

7

NFM Bandpass
- Passband: +/- 8 kHzfC
- Stopband: +/- 10 kHz (3dB attenuation)fC

WFM Bandpass

- Passband: +/- 90 kHzfC
- Stopband: +/- 110 kHz (3dB attenuation)fC

Modules

ADC ​(ADC_Interface.sv)
The AD9220 ADC we used has a maximum sampling rate of 10 MSPS, which limited the
frequencies we could sample to below the nyquist frequency of 5 MHz. Since we were using a
function generator for hardware testing and only outputting sinusoidal waveforms, we assumed
that aliasing could be ignored as we could control the input spectrum.

An external breakout board for the AD9220 ADC
was connected to the FPGA via two PMOD
connectors. A clock divider was implemented to
synthesize a 10 MHz clock which is connected
directly to the PMOD port driving the ADC clock
pin. The 12 data pins and out of range (OTR) pin
are synchronized with two registers. Initially, the
ADC module was designed to delay for four 100
MHz clock cycles after the rising edge of the
synthesized 10 MHz clock before updating the
module sample output. This includes two cycles to

8

wait for both sync register outputs to reflect the most recent signal on the ADC pin, and two
cycles to wait for the ADC data to become valid per AD9220 timing requirements. As we
frequently observed glitches in the ADC output, we increased the delay to ten 100 MHz clock
cycles and observed no future glitches. The sample output contains a DC bias therefore can be
an unsigned value, but later in the signal chain this DC bias is removed and the processed
signal is centered around 0 V.

Debugging with ILA, where bottom analog waveform is the module output. An example of ADC

glitch with four clock cycle delay

Local Oscillator​ (Local_Oscillator.sv)
Generates a sine wave that, when mixed with the sampled data output from the ADC, shifts the
frequency content a user wants to demodulate into the desired pass band. The desired center
frequency is set by the user through our human interface, and the local oscillator (LO)f c
synthesizes the frequency necessary to mix this signal down to the intermediate frequency (IF)
where and . This is the typical IF used in most broadcast AM55 kHzf IF = 4 − ffLO = f c IF
receivers.

A sine wave lookup table is implemented in a ROM with an 8 bit address that corresponds to the
current phase, where and each address contains a 12 bit value for the amplitudehasep =

2 − 18
2π addr*

at that phase. In order to maintain signal resolution further down the DSP chain, the LO output
must operate at 10 MSPS or greater to match the ADC sampling rate. This limits the lowest
frequency we can tune our radio to since the number of samples per second will decrease as
the LO frequency is decreased since the number samples in our sine wave lookup table isn
constant. This can represented as where is the period of the sine wave being0 MSPSn

T c
≥ 1 T c

generated. Since the lowest frequency allocated to broadcast AM radio is 535 kHz, we chose to
set the lowest frequency our SDR can receive to 500 kHz. This means a minimum ,5 kHzfLO = 4
therefore must be at least 8 bits to maintain an output sample rate of at least 10 MSPS, so wen
use an 8 bit ROM address.

9

The top 8 bits of the 32 bit register value are connected to the ROM address port. Oncehasep
every 100 MHz clock cycle is incremented by which must be less than 32 bits,phase hase_incp

where . Letting parameter , . If we want tohase_inc (2)p = f clk

fLO 32 − 1

α = f clk
(2 −1)32

hase_incp = α * fLO

be able to tune to all possible center frequencies from 0 Hz to 5 MHz with 1 Hz resolution, we
would need to be 23 bits. This means would be 23 bits in the maximum case, so thatf c fLO
limits our to a maximum of 9 bits given and are 32 bits. This results in a largeα hasep hase_incp
loss of precision of the true output frequency of the LO with respect to the user set value,
especially at high frequencies, due to floating point rounding errors when calculating the value
of used in implementation. To implement an accurate LO, was constrained to a 14 bit valueα α
which meant our desired frequency had to be allocated to an 18 bit value now representing the
desired center frequency divided by 20. This is because with a frequency range of 0 Hz to 5f c
MHz, we can only achieve approximately 20 Hz of resolution using an 18 bit value. An error
analysis in MATLAB showed that the error in desired LO frequency versus actual LO frequency
increases linearly with frequency, and at 1 MHz the error is around 10 Hz if is 14 bits whichα
we considered sufficient to ensure no loss of information occurs during the subsequent
bandpass filter stages.

Simulation verifying LO generates signal with desired frequency, that changes once during test

Mixer ​(Mixer.sv)
Multiples two 12 bit values, in this case the sampled data and local oscillator output where

. Although a very simple implementation, this is one of the mostF ample_of fset OI out = s * L out
powerful modules in the signal processing chain and produces very interesting outputs when
viewed in the time domain, as seen on this synthesized ILA used to debug all stages up through
mixing. This contains the desired low frequency signal and also undesired high frequency signal
resulting from mixing, the latter of which must be filtered to obtain the original signal now shifted
to the IF frequency of 455 kHz.

10

Mixer output on synthesized ILA

IIR Filter ​(AM_BP_filter.sv)
This filter module is used in both AM and FM demodulation, and consists of a customizable IIR
filter section where any number of coefficients can be input to create an order IIR filter.N th

An FIR filter was initially considered, but due to the 10 MSPS sampling rate there are only 10
clock cycles in which the summation of all filter values can be calculated as we are limited the
FPGA’s 100 MHz clock. This means we are limited to implementing bandpass filters with either
a maximum of 10 taps if we choose to compute 1 value per clock cycle and sum with 1 register,
or must use a more complicated implementation and much more hardware on the FPGA.

Given the bandpass filter specification for AM, the number of taps required is about 2000,
therefore there were two proposed solutions to implement a FIR. It would be possible to
downsample the IF signal to 1 MHz by first low passing to filter out high frequencies in the IF
and avoid aliasing, and then after downsampling compute the output of a 400 tap FIR filter. By
using four ROMS to hold filter tap coefficients and four BRAMS to hold previous sample values
and operating them in parallel, you could sum 100 filter values separately over 100 clock cycles
and add the four registers containing the final sums in order to compute the filter output just
before the next sample arrived. This would be a fairly complex implementation and use a large
amount of FPGA resources, so an IIR filter was selected as it could be easily implemented with
cascaded sections each only containing 3 to 6 taps each for an AM or FM filter.

Each IIR filter consists of 1 section where , and[n] a y[n] b x[n]y = ∑ k − k + ∑ l − l 0,] k = [N − 1

. The feedback coefficients , or denominator, and feed-forward coefficients 1,]l = [M − 1 ak bl
were generated in MATLAB using the Filter Designer GUI. These signed coefficients are
multiplied by and rounded to the nearest integer to eliminate some floating point precision216

11

errors in implementation. Some nonidealities in filter implementation were still observed, for
example the simulated passband attenuation for AM was approximately 2.5 dB where it was
designed to be 8 dB. This is not an issue since in reality most AM broadcast stations are further
apart than the filter was designed at 10 kHz spacing, since stations tend to be at least 20 kHz
apart in most cities.

When computing the filter output, the x and y sums tended to grow extremely high, so there are
three 100 bit registers used in each IIR filter section. A 3 section IIR bandpass filter was
simulated with a 455 kHz AM signal in order to determine an appropriate number of bits for
these registers to avoid overflow and set proper gains, and determine a maximum filter output
value.

Simulation verifying output of 3 IIR filter sections for the AM bandpass filter do not overflow, and

properly attenuate frequencies outside the pass band. Center_freq varies throughout test.

AM Stage 1 ​(implemented in top_level.sv)
The first stage of the AM filter is implemented in and consists of 3 IIR filter sections inop_level.svt
series to create a bandpass filter centered around the intermediate frequency (IF), where the
input is converted to a signed value. The output of each filter is right shifted to ensure theFI out
value does not overflow when passed into the next section. See the DSP section overview for
filter design specifications.

FM Stage 1 ​(FM_demod_state_1)
Includes both a narrow band (NFM) and wideband FM (WFM) IIR bandpass filter. The filter input
comes directly from converted to a signed value. A push button in our human interfaceFI out
allows each modulation scheme to be selected.

12

Originally a frequency detection method by identifying zero crossings in the filtered signal was
proposed, but due to the low frequency FM deviation relative to the carrier frequency it would be
difficult to identify changes in frequency. For example, a 455 kHz carrier signal with 15 kHz
frequency deviation will see a maximum period deviation corresponding to 7 clock cycles given
our 100 MHz clock, so it would be difficult to achieve good resolution without first mixing the
carrier down to a frequency close to 0 Hz and low pass filtering the signal. Due to the extra
complexity in implementation, a derivative demodulation scheme was chosen to increase
resolution and decrease resources.

The difference of the past two values output from the final bandpass filter section is computed
and output to the peak detection module. An FM signal where is(t) cos(w t k∫s(t))f = A c + (t)s
the audio signal being modulated and is the carrier phase has a derivativewc

. This is essentially an AM signal, which allows the FM− (w s(t)) in(w t k∫s(t))dt
df (t) = A c + k * s c +

signal to be demodulated using the same modules as AM demodulation. This reduces system
complexity greatly with the downside of some noise being introduced as the signal is not a
simple AM signal.

We were able to successfully demodulate FM and output a tone with the correct frequency
using this demodulation method, but several harmonics were present at times in addition to the
modulated frequency and were noticeable when listening to the output tone. A simple averaging
filter may have helped eliminate some of this noise.

Noisy FM signal output to speaker

Peak Detect and Hold​ (Peak_detect_hold.sv)
Demodulates an AM signal via envelope detection. This detects both positive and negative
peaks of the signed input and will flip the sign if necessary to generate an output signal with the
maximum resolution by identifying all extrema of the signal. The input signal will either be a true
AM signal or FM signal derivative, both which update with a new input value at 10 MHz.

13

AM signal with 500 kHz carrier, generated in GNU Radio SDR simulation

The current input and previous input are used to calculate the derivative, and the sign of the
derivative is encoded as a binary value and appended to an array containing only the previous
10 sign values. The sum of the array is constantly computed, and if the sum = 5 then it registers
a peak has been detected. This works for both positive and negative peaks, as there will be an
equal number of positive and negative derivatives surrounding a peak.

Once a peak is detected, an array of the previous 10 input values is searched to find the
minimum or maximum value, which is determined by summing all values in the array. If the sum
is less than zero, the algorithm will find the minimum value and set the output register to the
magnitude of this value which is the value of the peak. This also effectively downsamples the
signal to 0.91 MSPS, as only peaks register as valid output values and points in between are
ignored.

Audio Condition​ (AM_audio_condition.sv)
This module takes the output signal from the peak detect and hold module and generates a 48
kHz, 8 bit audio signal for the DAC module which converts the digital audio signal into an analog
output to drive a speaker.

A clock divider is used to down sample the 0.91 MSPS input to 48 kHz. This 48 kHz signal
contains a DC offset which is estimated by averaging the previous 32 audio values. The final
output ​audio_out ​is computed by removing the DC offset and shifting the zero centered signal
according the input volume. Since ​ds_audio_offset​ is a 34 bit value, the maximum number of bits
the signal must be shifted to avoid overflow during assignment to the 8 bit audio value is 26 bits,
therefore ​audio_level ​must be a 5 bit value.

audio_out ​<=​ ((ds_audio_offset ​-​ avg) ​>>>​ (​'d26​ ​-​ audio_level))

14

Human Interface (Chaney)

Overview
For human interfacing, our SDR has both a VGA monitor output and a laser cut wood piece with
rotary encoders. The VGA monitor works at a resolution of 1024x768 at 60 Hz. The VGA
monitor is able to display the incoming raw signal from the ADC or the demodulated audio. The
VGA monitor can also be used to display the frequency information of our ADC signal, telling us
what types of signals are available to our radio. This frequency spectrum is capped at the
nyquist frequency divided by two, which in this case is 2.5 MHz. On this screen we are able to
see where our current center frequency is set to, making it easy for users to adjust to signals on
the screen. In this frequency display, a user could also zoom to different areas of the spectrum
and gain more clarity. We also tried to implement a waterfall display, but were unsuccessful in
getting it to work as expected.

Displaying a Signal

Trigger_Buffer.sv
To display a signal, we had to
implement a somewhat
complex state machine that
wrote a signal between two
BRAMs. We wouldn’t need a
complex state machine if we
didn’t allow our user to
change the sample rate.
Allowing the user to change
the sampling rate lets users
see signals of varying
frequencies. The general
process of this state machine
is that it writes to one BRAM
while the display grabs data
from the other BRAM. Doing
this allows the display to wait
until a sample of any
frequency captured before
displaying it.

15

Signal Display Block Diagram Overview
RESET: This is the default state when the FPGA is started. In this state we reset all the
addresses to 0, the signal out to 0, and the past signal values to the trigger value (we do this so
that all past values are filled before the trigger is evaluated). We go back to this state whenever
the reset switch is flipped. It automatically transitions to BRAM1_WAIT_FOR_TRIGGER.

BRAM1_WAIT_FOR_TRIGGER: In this stage, we setup the display to read whatever signal
snapshot is saved in BRAM2 (​signal_out ​<=​ data_from_frame2​). We do that by making the
address for BRAM2 dependent on the hcount of the frame (​frame2_addr ​<=​ (hcount_in ​-​ ​'d101​))​.
As you go to the right of the screen you grab later values of the BRAM.​ ​As we wait for the
trigger, we write back to 20 past values. For the trigger to be satisfied, all past 20 values have to
be below the trigger line and the current signal value has to be at or above the trigger line. An
additional constraint is placed where the difference between the current signal and the past
signal can’t be too high​ (​(signal_in ​-​ past_signal) ​<​ ​'d1000​). ​Having this does create issues for
extremely high frequency signals, as you can jump from low to high in a matter of a few cycles.
This was done to prevent noise and was considered a good tradeoff, as high frequency
information is hard to visually comprehend. Once the trigger is met we move to
BRAM1_VERIFY_TRIGGER and setup BRAM1 to be written to.

BRAM1_VERIFY_TRIGGER: In this stage we verify that the trigger is in fact correctly triggered.
We do this by making sure that the signal value stays above the trigger line for ​NEEDED_HIGH
amount of samples. Once this happens we switch to the state BRAM1_WAIT_FOR_FILL.
During this time we write to BRAM1 in normal operation, which will be explained in
BRAM1_WAIT_FOR_FILL.

BRAM1_WAIT_FOR_FILL: In this state we keep writing to BRAM1 until we capture the full
snapshot for our display. To make the sampling period variable we have a counter and the
address to BRAM1 is not changed until the counter reaches the wanted period number. BRAM1
becomes filled when the address gets to 821, as we are displaying less than 821 samples on
the display.

BRAM1_WAIT_FOR_FRAME: Since BRAM1 is full, we can theoretically switch it so that
BRAM1 is what the display is using and BRAM2 is being written to. However, we need to wait
until the frame ends to switch the BRAMs. We know the frame is over when the vcount reaches
767.

Afterward, we repeat the same states as before but for BRAM2 being written to and BRAM1
being what is used for the display. The cycle continues over and over again, sending out the
signal we want to display at any given hcount.

16

Function_Pixel_Logic.sv
When displaying a signal on the monitor, there are three separate components. Those
components are the centerline, the function/signal itself, and the trigger line. The centerline
shows what the length and 0 height scale are, as such it is just a white line across the screen.
We declare the centerline as ​{​12​{​((vcount_in​==​384​) ​&​ (hcount_in​>​100​) ​&​ (hcount_in​<​923​))​}}​,
meaning the 0 height line is at the vcount of 384 and the signal is displayed between an hcount
of 101 to 922. The trigger line is very similar, but we have to scale it’s height the same as we
scale the signal height, which we will discuss later.

From Trigger_Buffer we are able to get whatever signal value we are supposed to display. This
signal value should change based upon the hcount, as dictated in the Trigger_Buffer module.
This means we only need to focus on the height of the function and make sure we are only
displaying within a certain boundary.

We first have to scale the signal height so it is matched with the user input height_adjust. The
concept of height_adjust is that it determined the highest possible pixel height. To make this so,
we multiple our signal in with our height_adjust to form a new 24 bit value. We then bitshift this
new value to the right by 11 bits so that the original height_adjust acts like a decimal multiplier.
We do the exact same scaling for the trigger line so that we can display it. Displaying between
demodulated audio and the raw ADC signal has different offsets. The raw ADC signal will have
a 2.5 volt offset, as driven by the function generator or RF amplifier. The audio signal will have
no offset since any DC bias in removed in the audio conditioning module.

Once we have the scaled heights in pixels, the logic becomes easy. The trigger line is exactly
the same as the centerline, except it’s height is offset by the scaled trigger height
(​{​4​{​((vcount_in​==​(​12'sd384​ ​-​ scaled_trigger_height)) ​&​ (hcount_in​>​100​) ​&​ (hcount_in​<​923​))​}}​).
The trigger line is also blue, as to differentiate it from the centerline. To display the actual
signal/function we first have to make sure it is within the hcount range of the centerline.
Afterward we see if our current vcount is equal to the centerline pixel height minus the scaled
pixel height of the signal. To make the signal thicker we also check if it is one above or one
below. If any of those conditions are met, it makes the pixel on the screen white. All in all, this
results in a signal being shown that starts at the trigger line and continues until it has reached
the end of the sample window

17

White horizontal line: Centerline
Blue horizontal line: Triggerline

FFT and Center Frequency Tuning (histogram.sv)

A Basic FFT
A radio is no good if you aren’t able to see what types of signals you can tune to and know
where you are currently tuned to. To be able to see what types of signals are available, we had
to implement a fast fourier transform (FFT). This would let us see what type of frequencies were
strong in the ADC signal. For actually implementing the FFT we modified the example code
provided on the course website. The example code used a 4096 point FFT, which is fine for our
purposes. Two big differences between our final code and the example code were that we did
not oversample and we used a different clock domain. We wanted to be able to see a large
spectrum, up to 2.5 MHz, which oversampling would ruin. Since our ADC interface is clocked at
100 MHz, our system clock would not be 104 MHz. In turn our ​ADC_data_valid ​was used in
fft_bram​ ​to signify that a ​fsample ​was valid and that ​fhead ​be incremented.

Where most of our most important changes came into play were with the fft magnitude scaling
and the actual histogram pixel generator. In the fft magnitude block, a ​scaling​ factor was used to
differentiate between magnitudes. After playing around with the values I found that
12'b011111111000 ​proved to be the best scaling value and could differentiate between noise and
peaks of data the best.

Full RF Spectrum FFT

Our only initial changes to the histogram module were to move the FFT up the screen, more
towards the middle, and to make the height higher for each individual bin. We accomplished the
first by altering vheight such that it subtracted from a lower number, thus being higher up on the

18

screen ​(​vheight ​=​ ​10'd500​ ​-​ vcount)​. The second was accomplished by making ​hheight ​be right
shifted less, going from 7 to 4 (​hheight ​=​ vdata ​>>​ ​4​;​).

A Basic Frequency Marker
Making these small changes provided all of the effective functionality we needed to be able to
see the frequency components of the signal from our ADC. From there we had to implement a
marker that showed us what our current center frequency was. This would let us be able to tune
the marker to different frequencies and hear different things.

The first step in determining where to put this marker would be to figure out how much
frequency changes from pixel to pixel. Our screen takes up 1024 pixels horizontally, and in that
span we cross half of our nyquist frequency, 2.5 MHz. That means that the frequency per pixel
would be ​'d2500000​ ​>>​ ​10​ ​or around 2,441.

Our initial frequency always starts at 600 KHz. Dividing 600,000 by that number yields an initial
hcount position of 246. Testing this out with a 600 KHz signals shows that this math is indeed
correct.

RF Spectrum FFT

From there all we had to do was adjust the position of this market based upon how our center
frequency changed. Since our center frequency was mod 20, that meant we had to multiply our
center frequency wire by 20 to get the real effective frequency. From there we just had to see if
the difference between the current frequency and the new one was above this “spacer” value. A
hard part about this though was distinguishing from negative and positive changes. For
instance, center_freq - current_freq will be a small number if center_freq is larger, but if it is
smaller instead, the number would overflow and be a large number. That would make a positive
and negative frequency appear to be the same. To combat this we put an upper limit for how
much the frequency could change in a single clock cycle, that being 100 KHz. This made sense
for our system, as it would be impossible for a person to change their center frequency that fast.

The current center frequency and position is adjusted when a large enough discrepancy is seen.
The addition and subtraction works 1 pixel per clock cycles. This means if someone jumped
multiple pixels in one clock cycle, it would take more clock cycles to register that change. This
was okay for the purposes of this project as a human cannot perceive this.

19

Zoom Functionality
Everything up to this point has created a frequency spectrum and allowed us to tune to different
stations. As part of our goals we wanted to be able to zoom in on different parts of the FFT
spectrum. The first part of this was to actually zoom and make the frequency window covered by
the 1024 pixels shorter. This could be accomplished by bit shifting the address of the BRAM that
gives us the FFT values to the right (​vaddr ​=​ (hcount[​9​:​0​] ​>>​ range)​). This would mean that a
single address would last longer, 2 times longer in the case of a single bit shift and 4 times in
the case of two bit shifts. This provided that functionality quite well.

Zoomed FFT

What was more complex was being able to change the window. Bit shifting like this made it so
that we could zoom in on the smaller frequencies easier. To actually look at frequencies in the
middle we had to add an offset (​vaddr ​=​ (hcount[​9​:​0​] ​>>​ range) ​+​ zoom_offset​). What made this
more complex is how it changed the center frequency marker. The center frequency marker
position also had to be bit shifted right with range to make it scale down too. The zoom offset,
however, was separate from this and had to be done before the bit shifting (​display_position ​=
((current_position ​-​ zoom_offset) ​<<​ range)​). The zoom offset also worked in the opposite
direction for the center frequency line, as you move to the right the center frequency would
move left.

Since the ​display_position ​wire could overflow and display when zooming in different domains
where it shouldn’t. We had to better establish the frequency window we were looking at and
make sure the current center frequency was in the window. The minimum on the window would
be determined by the pixel/frequency resolution and what our zoom offset was. The zoom offset
was representative of how far away we were from a 0 frequency in terms of pixels, so the
minimum frequency was just the product of the offset and the pixel/frequency resolution
(​min_frequency_window ​=​ zoom_offset ​*​ spacer​). The max frequency of the window would be the

20

minimum frequency of the window plus the total frequency we span in the screen
(​max_frequency_window ​=​ min_frequency_window ​+​ max_frequency​). This max frequency span of the
screen would be determined by the original max frequency bit shifted by the zoom amount
(​max_frequency ​=​ ​'d2500000​ ​>>​ range;​). For example, if we our zoom factor was ​2'b01 ​the max
frequency span of the window would be 1.25 MHz.

What worked so well with this solution is that we didn’t have to change the calculations for how
the center frequency marker position changed. The relative position of the different zooms and
offset was calculated independent of the position of the marker when there is no zoom and
offset.

Displaying the Intermediate Frequency (IF)
Since our radio is a superheterodyne, there is an IF that we operate at. We wanted to be able to
display this IF on the frequency spectrum if need be. We added a special marker of a different
color to show this when a certain switch it flipped. The original position of this IF doesn't change,
with the hcount being 187. The same type of processing is applied to the IF (​if_position ​=
(​'d187​ ​-​ zoom_offset) ​<<​ range;​).

Waterfall Display
As part of our checklist we wanted to be able to have a waterfall display. We were not able to
implement it fully. The concept of it was that we would set the zoom_offset to a number closer to
the center frequency and set the zoom to the maximum. We would split the screen into 8
sections horizontally and 7 sections vertically. We would take the average of the areas by
having an accumulator and bit shifting it then push the values down as they change. In our
waterfall display we were not able to get the averaged values to work or flow down. We were
able to test our color gradient in real time on the first section of pixels vertically. In the color
gradient, cold colors signified low magnitude and warm colors were high magnitude.

Waterfall Implementation Test

21

User Input
All of the modules have talked about user inputs but not explained how they work. To make the
project feel more like a real radio, we wanted to use knobs. At first we thought about using
potentiometers but decided to use rotary
encoders instead. We put the rotary
encoders on a laser cut piece to make the
display look nice.

The rotary encoders had three different
things they could do. They could turn
clockwise, counter-clockwise, and have their
switch be pressed. There are three pins
important to this, those being clk, dt, and sw.
All of these pins are active low. The simplest
of the three is the switch, which has voltage
go low whenever it is pressed.

Generally we used the switches as a means
of toggling between different modes. One of
the switches, for example, toggled whether we wanted to see the FFT spectrum or if we wanted
to see a signal be displayed. How we did this toggle was by creating a register (​reg​ is_fft ​=​ ​0​)
and storing the past value of the switch (​logic​ past_fft_value​). The top_level.sv would wait to
see the switch go from high to low (​if​(​!​encoder4_sw_db ​&​ past_fft_value) ​begin​), and once that
was done it would increment the register by 1 (​is_fft ​<=​ is_fft ​+​ ​1​;​). This would make the
register 0 if it was 1 before or 1 if the register was 0 before. This created an effective toggle.
These were all of the implemented toggles in top_level.sv:

● Is_fast

○ Fast mode for period and center frequency adjust
● Modulation_select_sw

○ AM or FM demodulation
○ Changed LED color on FPGA so user could see what mode they were on

● Trigger_wanted

○ Adjust signal height or trigger height
● Is_fft

○ Look at FFT spectrum or signal
● Is_audio

○ Look at demodulated audio or raw signal, only works if fft mode is off
● Is_waterfall

○ Look at regular FFT or waterfall display, only works if fft mode is on

22

The clk, and dt pins are a little more complex.
Rotary encoders work through light sources and
optical sensors. The light sources go through a track
that can block light or not block light. The clk and dt
pins have different tracks that cause them to go high
and low at different times. If you turn the encoder
clockwise you will find that the clk pin goes low first
and then the dt pin does low. Once a turn is
completed they both go high. If you turn
counter-clockwise instead the dt pin goes low first.
An important note is that these encoders can be
finicky, so it was really important to synchronize and debounce them to the correct clock.

The general outline of a state machine for these switches is shown below. The idea is that we
wait to see if either clk or dt pulses low first. If clk pulses low first then we increment up. If dt
pulses low first then we increment down. We wait until both signals stabilize and go high before
we wait to increment again.

Several versions of this were implemented in many different modules. I’ll list them all briefly and
talk about how each one is different.

● Control_center_frequency.sv

○ Maximum of ​18'd250_000 ​and a minimum of ​'d25_000​. Fast mode increments at
'd300 ​per tick and regular mode at ​'d25 ​per tick.

● Control_volume.sv

○ Maximum of ​'d26 ​and a minimum of ​'d0 ​and changes at 1 per tick.
○ Has a special variable ​is_max ​to make sure that the volume does not get too loud.

It makes sure the volume is below the bit shift point that would cause the number
to overflow.

● Control_zoom_magnitude.sv

23

○ Maximum of ​'d3 ​and a minimum of ​'d0 ​and changes at 1 per tick.
○ Only works if fft mode is on and waterfall is off.

● Control_zoom_window.sv

○ Three separate state machines that depend on what the value of ​zoom_magnitude
is.

○ Only works if fft mode is on and waterfall is off.
○ Zoom_magnitude == ​2'b00

■ Zoom_pos_out ​is always 0
○ Zoom_magnitude == ​2'b01

■ Maximum of ​'d503 ​and a minimum of ​'d0 ​and changes at ​'d10​ per tick.
○ Zoom_magnitude == ​2'b10

■ Maximum of ​'d779 ​and a minimum of ​'d0 ​and changes at ​'d20​ per tick.
○ Zoom_magnitude == ​2'b11

■ Maximum of ​'d867 ​and a minimum of ​'d0 ​and changes at ​'d30​ per tick.
● Control_period.sv

○ Maximum is ​'d3950 ​and minimum is ​'d0​.
○ If in fast mode it changes at ​'d20 ​per tick and ​'d1 ​per tick if not
○ Only works if fft mode is off.

● Control_height

○ Two separate state machines for whether audio is on or off
○ Audio off

■ Maximum of ​'d390 ​and minimum of ​'d5​.
■ Moves at ​'d10 ​per tick.

○ Audio on
■ Maximum of ​'d520 ​and minimum of ​'d3​.
■ Moves at ​'d20 ​per tick.

○ Only works if fft mode is off and trigger adjust is off.
● Control_trigger_height.sv

○ Two separate state machines for whether audio is on or off
○ Audio off

■ Maximum of ​'d4000 ​and minimum of ​'d5​.
■ Moves at ​'d50 ​per tick.

○ Audio on
■ Maximum of ​'d3970 ​and minimum of ​'d33​.
■ Moves at ​'d20 ​per tick.

○ Only works if fft mode is off and trigger adjust is on

24

Summary
All in all we were able to meet a good number of our goals for the project. Where we fell short
was not being able to get the waterfall display to work or getting the front end properly put
together. These issues might have been resolved a bit better had we started working on the
project seriously earlier.

Getting our bandpass filter to work took much longer than expected, as we were expecting to
implement a simple FIR filter as we had done in previous labs until we realized that given our
tight timing restraints this would not be possible. This definitely proves that it is extremely
important to have a really well thought out design before implementation, or at least allow for a
lot of extra time in case issues like this are encountered. Although we did start later than
planned, we were able to solve major issues such as these as we did allow extra time in our
schedule. It just meant that we weren’t able to get some of the more experimental components
like an RF front end working.

Acknowledgments
We would like to think Gim and Joe for being great lecturers and also mentors throughout the
project! We both put a lot of time into the project and enjoyed working on it, but we wouldn’t
have gotten it off the ground without Joe’s help on the hardware side and also signal processing
advice (we’d both only taken 6.003 / 16.002).

25

Appendix
All code can be found at the Github link ​https://github.com/cmll12/FPGA_SDR
module top_level(
 input clk_100mhz, //10 ns period
 input [15:0] sw, //reset switch
 input btnc, btnu, btnl, btnr, btnd,
 input [5:0] jb, //ADC data in
 input [7:1] ja, //ADC data in
 input [7:0] jc, //Encoders
 input [7:0] jd, //Encoders
 output logic ja_0, //ADC clk pin
 output logic led16_r,
 output logic led16_g,
 output logic led16_b,
 output logic [15:0] led,
 output logic aud_pwm,
 output logic aud_sd,
 output[3:0] vga_r,
 output[3:0] vga_b,
 output[3:0] vga_g,
 output vga_hs,
 output vga_vs
);

 //system reset as sw[15]
 logic rst;
 assign rst = sw[15];

 //Creates both another 100mhz clock and a 65mhz clock.
 //A second 100mhz clock was needed because the original
 //clock is constrained to the clkdivider
 logic clk100mhz;
 logic clk_65mhz;
 clk_wiz_0 clkdivider(.clk_in1(clk_100mhz),
 .clk_out1(clk100mhz),
 .clk_out2(clk_65mhz));

 //A wire for each pin of an an encoder that we used. In
 //total we had 5 encoders with three wires being important

https://github.com/cmll12/FPGA_SDR

26

 //for operation, those being clk, dt, and sw.
 wire encoder1_clk;
 wire encoder1_dt;
 wire encoder1_sw;
 wire encoder2_clk;
 wire encoder2_dt;
 wire encoder2_sw;
 wire encoder3_clk;
 wire encoder3_dt;
 wire encoder3_sw;
 wire encoder4_sw;
 wire encoder5_clk;
 wire encoder5_sw;
 wire encoder5_dt;

 //Each of the signals are synchronized to the 65 mhz clock
 //based upon their PMOD input port. We chose 65 mhz because
 //most modules that need the inputs from these devices run on
 //65 mhz
 synchronize encoder1_clk_synchronize(
 .clk(clk_65mhz),
 .in(jc[0]),
 .out(encoder1_clk));

 synchronize encoder1_dt_synchronize(
 .clk(clk_65mhz),
 .in(jc[1]),
 .out(encoder1_dt));

 synchronize encoder1_sw_synchronize(
 .clk(clk_65mhz),
 .in(jc[5]),
 .out(encoder1_sw));

 synchronize encoder2_clk_synchronize(
 .clk(clk_65mhz),
 .in(jc[2]),
 .out(encoder2_clk));

 synchronize encoder2_dt_synchronize(
 .clk(clk_65mhz),
 .in(jc[3]),
 .out(encoder2_dt));

27

 synchronize encoder2_sw_synchronize(
 .clk(clk_65mhz),
 .in(jc[4]),
 .out(encoder2_sw));

 synchronize encoder3_clk_synchronize(
 .clk(clk_65mhz),
 .in(jc[6]),
 .out(encoder3_clk));

 synchronize encoder3_dt_synchronize(
 .clk(clk_65mhz),
 .in(jc[7]),
 .out(encoder3_dt));

 synchronize encoder3_sw_synchronize(
 .clk(clk_65mhz),
 .in(jd[2]),
 .out(encoder3_sw));

 synchronize encoder4_sw_synchronize(
 .clk(clk_65mhz),
 .in(jd[3]),
 .out(encoder4_sw));

 synchronize encoder5_clk_synchronize(
 .clk(clk_65mhz),
 .in(jd[4]),
 .out(encoder5_clk));

 synchronize encoder5_sw_synchronize(
 .clk(clk_65mhz),
 .in(jd[0]),
 .out(encoder5_sw));

 synchronize encoder5_dt_synchronize(
 .clk(clk_65mhz),
 .in(jd[5]),
 .out(encoder5_dt));

 //After synchronizing the signals we have to
 //debounce them. These wires corespond to the

28

 //debounces signal afterward
 wire encoder1_clk_db;
 wire encoder1_dt_db;
 wire encoder1_sw_db;
 wire encoder2_clk_db;
 wire encoder2_dt_db;
 wire encoder2_sw_db;
 wire encoder3_clk_db;
 wire encoder3_dt_db;
 wire encoder3_sw_db;
 wire encoder4_sw_db;
 wire encoder5_clk_db;
 wire encoder5_sw_db;
 wire encoder5_dt_db;

 //All of the encoder signals are debounced
 debounce encoder1_clk_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder1_clk),
 .clean_out(encoder1_clk_db));

 debounce encoder1_dt_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder1_dt),
 .clean_out(encoder1_dt_db));

 debounce encoder1_sw_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder1_sw),
 .clean_out(encoder1_sw_db));

 debounce encoder2_clk_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder2_clk),
 .clean_out(encoder2_clk_db));

 debounce encoder2_dt_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),

29

 .noisy_in(encoder2_dt),
 .clean_out(encoder2_dt_db));

 debounce encoder2_sw_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder2_sw),
 .clean_out(encoder2_sw_db));

 debounce encoder3_clk_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder3_clk),
 .clean_out(encoder3_clk_db));

 debounce encoder3_dt_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder3_dt),
 .clean_out(encoder3_dt_db));

 debounce encoder3_sw_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder3_sw),
 .clean_out(encoder3_sw_db));

 debounce encoder4_sw_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder4_sw),
 .clean_out(encoder4_sw_db));

 debounce encoder5_clk_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder5_clk),
 .clean_out(encoder5_clk_db));

 debounce encoder5_sw_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder5_sw),

30

 .clean_out(encoder5_sw_db));

 debounce encoder5_dt_debounce(
 .reset_in(rst),
 .clock_in(clk_65mhz),
 .noisy_in(encoder5_dt),
 .clean_out(encoder5_dt_db));

 //This is a general code block used many times.
 //The purpose is to toggle a mode of operation
 //by clicking the switch on an encoder. This one
 //is meant to change whether fast mode is enabled
 reg is_fast = 0;
 //Used to compare against past value of operation.
 logic past_fast_value;
 always_ff @(posedge clk_65mhz) begin
 //This makes sure we go from a high to a low value.
 //The encoders are active low.
 if(!encoder3_sw_db & past_fast_value) begin
 //If this happens then we need to change mode.
 //By adding 1 the bit will either overflow or not,
 //toggling between the modes
 is_fast <= is_fast + 1;
 end
 //Write past value so we can see the transition from
 //high to low.
 past_fast_value <= encoder3_sw_db;
 end

 //Used to select if we are on AM or FM demodulation.
 reg modulation_select_sw = 0;
 logic past_modulation_value;
 always_ff @(posedge clk_65mhz) begin
 if(!encoder5_sw_db & past_modulation_value) begin
 modulation_select_sw <= modulation_select_sw + 1;
 end
 past_modulation_value <= encoder5_sw_db;
 end

 //Used to see if we want to change or trigger height
 //or if we want to change our signal height.
 reg trigger_wanted = 0;
 logic past_trigger_value;

31

 always_ff @(posedge clk_65mhz) begin
 if(!encoder2_sw_db & past_trigger_value) begin
 trigger_wanted <= trigger_wanted + 1;
 end
 past_trigger_value <= encoder2_sw_db;
 end

 //Used to toggle the FFT or signal display
 reg is_fft = 0;
 logic past_fft_value;
 always_ff @(posedge clk_65mhz) begin
 if(!encoder4_sw_db & past_fft_value) begin
 is_fft <= is_fft + 1;
 end
 past_fft_value <= encoder4_sw_db;
 end

 //Used only if we aren't display the FFT. This
 //toggles whether we want to see the raw ADC in
 //signal or if we want to see the demodulated
 //audio signal.
 reg is_audio = 0;
 logic past_audio_value;
 always_ff @(posedge clk_65mhz) begin
 //Relies on previous is_fft values so we don't switch
 //it if we are in the wrong display mode.
 if(!encoder1_sw_db & past_audio_value & !is_fft) begin
 is_audio <= is_audio + 1;
 end
 past_audio_value <= encoder1_sw_db;
 end

 //Used only if we are displaying the FFT. This toggles
 //whether we want to do the narow band waterfall or not.
 //Currently the waterfall doesn't work.
 reg is_waterfall = 0;
 logic past_waterfall_value;
 always_ff @(posedge clk_65mhz) begin
 //Relies on previous is_fft values so we don't switch
 //it if we are in the wrong display mode.
 if(!encoder1_sw_db & past_waterfall_value & is_fft) begin
 is_waterfall <= is_waterfall + 1;
 end

32

 past_waterfall_value <= encoder1_sw_db;
 end

 //LED lights to help show what modulation scheme we are on
 always_comb begin
 //If high, this means we are demodulating FM.
 if(modulation_select_sw) begin
 //If sw[14] is high, it means we are demodulating
 //a wide band FM. Else, it is narrow band FM.
 if(sw[14]) begin
 //Sets color blue
 led16_r <= 0;
 led16_g <= 0;
 led16_b <= 1;
 end else begin
 //Sets color green
 led16_r <= 0;
 led16_g <= 1;
 led16_b <= 0;
 end
 //We are demodulating AM
 end else begin
 //Sets color red
 led16_r <= 1;
 led16_g <= 0;
 led16_b <= 0;
 end
 end

 //Wires for VGA display
 wire [10:0] hcount; // Pixel on current line
 wire [9:0] vcount; // Line number
 wire hsync, vsync, blank; // Signals to output on connector
 reg [11:0] rgb; // Pixel out color

 //Given module that outputs the correct timing for each signal
 xvga xvga1(.vclock_in(clk_65mhz),.hcount_out(hcount),.vcount_out(vcount),
 .hsync_out(hsync),.vsync_out(vsync),.blank_out(blank));

 //Setup speaker output
 assign aud_sd = 1;

 //ADC variables

33

 logic [11:0] sample; //The actual output of the ADC
 logic ADC_data_valid; //Goes high if data is valid
 logic B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12; //Specific raw bits out
 logic ADC_clk_gen; //The clock we send out to get the ADC working
 logic OTR; //Overflow bit

 //Map ADC pins to FPGA PMOD pins
 assign B1 = ja[3];
 assign B2 = ja[5];
 assign B3 = ja[7];
 assign B4 = jb[1];
 assign B5 = jb[3];
 assign B6 = jb[5];
 assign B7 = jb[4];
 assign B8 = jb[2];
 assign B9 = jb[0];
 assign B10 = ja[6];
 assign B11 = ja[4];
 assign B12 = ja[2];
 assign OTR = ja[1];

 assign ja_0 = ADC_clk_gen; //10MHz clock output from ADC interface

 //Variable used for the center frequency
 logic [17:0] center_freq_div_20;

 //Module that adjusts the center frequency based on the knob inputs
 control_center_frequency adjust_frequency(
 .clk(clk_65mhz),
 .right(encoder3_clk_db),
 .left(encoder3_dt_db),
 .reset(rst),
 .center_frequency_out(center_freq_div_20),
 .is_fast(is_fast));

 logic [4:0] sw_audio; //Determine audio level
 logic signed [7:0] DAC_audio_in; //Audio sent to DAC

 //Sets the volume based on the knob inputs and the current DAC value
 control_volume(
 .clk(clk_65mhz),
 .up(encoder5_clk_db),

34

 .down(encoder5_dt_db),
 .reset(rst),
 .DAC_in(DAC_audio_in),
 .volume_out(sw_audio));
 //--

 //Interface with AD9220
 ADC_Interface AD9220 (.clk_100mhz(clk100mhz),.rst(rst),.sample_offset(sample),
 .ADC_data_valid(ADC_data_valid),.ADC_clk(ADC_clk_gen),.B1(B1),.B2(B2),
 .B3(B3),.B4(B4),.B5(B5),.B6(B6),.B7(B7),.B8(B8),.B9(B9),.B10(B10),
 .B11(B11),.B12(B12),.out_of_range(OTR));

 //Local Oscillator
 logic [11:0] LO_out;
 Local_Oscillator LO (.rst(rst), .clk_in(clk100mhz),.center_freq_div_20(center_freq_div_20),
 .LO_out(LO_out));

 //Mixer
 logic [23:0] IF_out;
 Mixer sample_LO_mixer (.in_a(sample),.in_b(LO_out),.p_out(IF_out));

 //convert mixer IF out to signed integer
 logic signed [23:0] IF_signed;
 assign IF_signed = {~IF_out[23],IF_out[22:0]};

 //FM Demodulation Stage 1 (BP filter and derivative)
 logic signed [33:0] FM_stage_1_out;
 logic FM_sample_ready;

 FM_demod_stage_1 FM_stage_1
(.clk(clk100mhz),.rst(rst),.IF_in(IF_signed),.IF_data_valid(ADC_data_valid),

.FM_BP_width(sw[14]),.FM_derivative_out(FM_stage_1_out),.FM_data_valid(FM_sample_read
y));

 //end FM demod stage 1 --

 //AM Demodulation Stage 1 (BP filter)
 //AM Bandpass Filter

 //section 1 --
 //initialize coeffs

35

 parameter N = 3;
 logic signed [17:0] b1 [(N-1):0]; //N b feedforward coeffs [b(N-1)...b0), unpacked array
 logic signed [17:0] a1 [(N-2):0]; //N-1 feedback coeffs [a(N-1)...a1], unpacked array

 assign b1 [(N-1):0] = '{-18'sd65536,18'sd0,18'sd65536}; //b coeff MATLAB: [1,0,-1]
 assign a1 [(N-2):0] = '{18'sd65380,-18'sd125527}; //a coeff MATLAB:

 logic signed [33:0] filt_sec_1_out;
 logic sec_1_ready;

 //triggers on ADC_sample_valid
 AM_BP_Filter #(.N(N)) AM_BP_sec_1 (.clk_in(clk100mhz),.rst(rst),.b(b1),.a(a1),

.sample_ready(ADC_data_valid),.sample(IF_signed),.filt_out(filt_sec_1_out),.filt_valid(sec_1_re
ady));

 //section 2 --
 //same N as section 1

 logic signed [23:0] filt_sec_2_in;
 //divide output from filter section 1 by 2^11 to fit 24 bit input parameter
 assign filt_sec_2_in = (filt_sec_1_out>>>11);

 //initialize coeffs
 logic signed [17:0] b2 [(N-1):0]; //N b feedforward coeffs [b(N-1)...b0), unpacked array
 logic signed [17:0] a2 [(N-2):0]; //N-1 feedback coeffs [a(N-1)...a1], unpacked array

 assign b2 [(N-1):0] = '{-18'sd65536,18'sd0,18'sd65536}; //b coeff MATLAB: [1,0,-1]
 assign a2 [(N-2):0] = '{18'sd65383,-18'sd125680}; //a coeff MATLAB:

 logic signed [33:0] filt_sec_2_out;
 logic sec_2_ready;

 AM_BP_Filter #(.N(N)) AM_BP_sec_2 (.clk_in(clk100mhz),.rst(rst),.b(b2),.a(a2),

.sample_ready(sec_1_ready),.sample(filt_sec_2_in),.filt_out(filt_sec_2_out),.filt_valid(sec_2_rea
dy));

 //section 3 --
 //same N as section 1

 logic signed [23:0] filt_sec_3_in;
 //divide output from filter section 1 by 2^11 to fit 24 bit input parameter

36

 assign filt_sec_3_in = (filt_sec_2_out>>>11);

 //initialize coeffs
 logic signed [17:0] b3 [(N-1):0]; //N b feedforward coeffs [b(N-1)...b0), unpacked array
 logic signed [17:0] a3 [(N-2):0]; //N-1 feedback coeffs [a(N-1)...a1], unpacked array

 assign b3 [(N-1):0] = '{-18'sd65536,18'sd0,18'sd65536}; //b coeff MATLAB: [1,0,-1]
 assign a3 [(N-2):0] = '{18'sd65227,-18'sd125456}; //a coeff MATLAB:

 logic signed [33:0] AM_stage_1_out;
 logic AM_sample_ready;

 AM_BP_Filter #(.N(N)) AM_BP_sec_3 (.clk_in(clk100mhz),.rst(rst),.b(b3),.a(a3),

.sample_ready(sec_2_ready),.sample(filt_sec_3_in),.filt_out(AM_stage_1_out),.filt_valid(AM_sa
mple_ready));

 //end AM demod stage 1 --

 //AM and FM Demodulation stage 2 (peak detect and audio condition)
 //Modulation_select_sw, sw[5], determines which demod to use (0 = AM, 1 = FM)
 logic signed [33:0] peak_detect_sample_in;
 logic peak_detect_sample_ready;
 always_comb begin
 if (!modulation_select_sw) begin
 peak_detect_sample_ready = AM_sample_ready;
 peak_detect_sample_in = AM_stage_1_out;
 end else begin
 peak_detect_sample_ready = FM_sample_ready;
 peak_detect_sample_in = FM_stage_1_out;
 end
 end

 //Peak Detect and Hold
 //magnitude of peak values of signal
 logic [34:0] peak_values;
 logic peak_ready;

 Peak_detect_hold AM_peak_detect
(.clk(clk100mhz),.rst(rst),.sample_ready(peak_detect_sample_ready),

.sample_in(peak_detect_sample_in),.peak_value(peak_values),.sample_ready_out(peak_ready
));

37

 //Audio Condition
 //output to DAC module
 AM_audio_condition condition_AM_for_DAC
(.clk(clk100mhz),.rst(rst),.audio_offset(peak_values>>2),.audio_level(sw_audio),
 .audio_out(DAC_audio_in));

 //ila --------------------
 fm_stage_1_ila ila_fm_stage_1
(.clk(clk100mhz),.probe0(filt_sec_6_out),.probe1(filt_sec_5_out));
 //-----------------------

 //end demod stage 2 --

 //Drive DAC with demodulated audio
 logic pwm_val;
 DAC_stuff (.clk_in(clk100mhz), .rst_in(rst), .level_in({~DAC_audio_in[7],DAC_audio_in[6:0]}),
.pwm_out(pwm_val));
 assign aud_pwm = pwm_val?1'bZ:1'b0;

 //--
 //VGA Stuff

 //The height_adjust is used to see what relative height
 //is wanted when displaying signals
 logic [11:0] height_adjust;
 control_height my_height(
 .clk(clk_65mhz),
 .up(encoder2_clk_db),
 .down(encoder2_dt_db),
 .reset(rst),
 .sw(trigger_wanted),
 .is_audio(is_audio),
 .is_fft(is_fft),
 .height_out(height_adjust));

 //The trigger_adjust is used to set the trigger level
 //of the signals.
 logic [11:0] trigger_adjust;
 control_trigger_height my_trigger(
 .clk(clk_65mhz),

38

 .up(encoder2_clk_db),
 .down(encoder2_dt_db),
 .reset(rst),
 .sw(trigger_wanted),
 .is_audio(is_audio),
 .is_fft(is_fft),
 .height_out(trigger_adjust));

 //This sets the period we wait between taking samples.
 //Having a higher period lets people see lower frequency
 //signals
 logic [11:0] period;
 control_period my_period(
 .clk(clk_65mhz),
 .is_fast(is_fast),
 .right(encoder1_clk_db),
 .left(encoder1_dt_db),
 .reset(rst),
 .is_fft(is_fft),
 .period_out(period));

 //In the case where we want to display a signal, we
 //need to decide between the demodulated audio or the
 //raw ADC signal
 logic [11:0] signal_to_display;
 always_comb begin
 //Sets correct signal based on what the user wants
 //to display
 if(is_audio) begin
 signal_to_display = {DAC_audio_in, 4'b0};
 end else begin
 signal_to_display = sample;
 end
 end

 //The display signal is what actually gets sent to the
 //display. Why this is different is because we want to
 //buffer our signal between two brams. This lets us see
 //signals of varying frequencies.
 logic [11:0] display_signal;
 trigger_buffer my_buffer(.clock_in(clk_65mhz),.reset_in(rst),
 .signal_in(signal_to_display),
 .trigger_height(trigger_adjust),

39

 .hcount_in(hcount),.vcount_in(vcount),
 .period(period),
 .signal_out(display_signal));

 //Based on the display signal, this module gives us what
 //the pixel color should be for any given point on the screen.
 wire [11:0] pixel_function;
 function_pixel_logic plot(.vclock_in(clk_65mhz),.reset_in(rst),
 .height_adjust(height_adjust),
 .signal_in(display_signal),
 .trigger_height(trigger_adjust),
 .hcount_in(hcount),.vcount_in(vcount),
 .is_audio(is_audio),
 .pixel_out(pixel_function));

 //A border on the display is created. This is there to auto
 //adjust the display easier
 wire border = (hcount==0 | hcount==1023 | vcount==0 | vcount==767 |
 hcount == 512 | vcount == 384);

 //Registers for the blanking, horizontal sync, and vertical sync signals.
 //This is here in case there is some pipelining.
 reg b,hs,vs;

 //FFT Stuff
 // INSTANTIATE SAMPLE FRAME BLOCK RAM
 // This 16x4096 bram stores the frame of samples
 // The read port is read by the bram_to_fft module and sent to the fft.
 logic fwe; // Whether or not we want to write to the bram
 logic [11:0] fhead = 0; // Frame head - a pointer to the write point, works as circular buffer
 logic [15:0] fsample; // The sample data from the ADC
 logic [11:0] faddr; // Frame address - The read address, controlled by bram_to_fft
 logic [15:0] fdata; // Frame data - The read data, input into bram_to_fft
 fft_bram bram1 (
 .clka(clk100mhz),
 .wea(fwe),
 .addra(fhead),
 .dina(fsample),
 .clkb(clk100mhz),
 .addrb(faddr),
 .doutb(fdata));

40

 //If the ADC is valid we want to icrement fhead to move to the next
 //position. Will overflow with time.
 always_ff @(posedge clk100mhz) begin
 if (ADC_data_valid) begin
 fhead <= fhead + 1;
 end
 end
 //Write only when we finish a valid sample.
 assign fwe = ADC_data_valid;

 //Switch the input into the bram between the IF and the signal.
 //Used for demonstration purposes.
 always_comb begin
 if(sw[1]) begin
 fsample = IF_out[23:10];
 end else begin
 fsample = {sample, 2'b0};
 end
 end

 //SAMPLE FRAME BRAM READ PORT SETUP
 //For this project, we just need to display the FFT on 60Hz video, so let's only send the frame
of samples
 //once every 60Hz.

 //Synchronize the vsync to 100mhz since it is on 65mhz
 logic vsync_100mhz, vsync_100mhz_pulse;
 synchronize vsync_synchronize(
 .clk(clk100mhz),
 .in(vsync),
 .out(vsync_100mhz));

 //Since vsync goes low when active, we must invert to make it a pulse.
 level_to_pulse vsync_ltp(
 .clk(clk100mhz),
 .level(~vsync_100mhz),
 .pulse(vsync_100mhz_pulse));

 // INSTANTIATE BRAM TO FFT MODULE
 // This module handles the magic of reading sample frames from the BRAM whenever start is
asserted,
 // and sending it to the FFT block design over the AXI-stream interface.
 logic last_missing; // All these are control lines to the FFT block design

41

 logic [31:0] frame_tdata;
 logic frame_tlast, frame_tready, frame_tvalid;
 bram_to_fft bram_to_fft_0(
 .clk(clk100mhz),
 .head(fhead),
 .addr(faddr),
 .data(fdata),
 .start(vsync_100mhz_pulse),
 .last_missing(last_missing),
 .frame_tdata(frame_tdata),
 .frame_tlast(frame_tlast),
 .frame_tready(frame_tready),
 .frame_tvalid(frame_tvalid)
);

 // This is the FFT module, implemented as a block design with a 4096pt, 16bit FFT
 // that outputs in magnitude by doing sqrt(Re^2 + Im^2) on the FFT result.
 // It's fully pipelined, so it streams 4096-wide frames of frequency data as fast as
 // you stream in 4096-wide frames of time-domain samples.
 logic [23:0] magnitude_tdata; // This output bus has the FFT magnitude for the current index
 logic [11:0] magnitude_tuser; // This represents the current index being output, from 0 to 4096
 logic magnitude_tlast, magnitude_tvalid;
 fft_mag fft_mag_i(
 .clk(clk100mhz),
 .event_tlast_missing(last_missing),
 .frame_tdata(frame_tdata),
 .frame_tlast(frame_tlast),
 .frame_tready(frame_tready),
 .frame_tvalid(frame_tvalid),
 .scaling(12'b011111111000),
 .magnitude_tdata(magnitude_tdata),
 .magnitude_tlast(magnitude_tlast),
 .magnitude_tuser(magnitude_tuser),
 .magnitude_tvalid(magnitude_tvalid));

 // Let's only care about the range from index 0 to 1023, which represents frequencies 0 to
omega/2
 // where omega is the nyquist frequency (sample rate / 2)
 logic in_range = ~|magnitude_tuser[11:10]; // When 13 and 12 are 0, we're on indexes 0 to
1023

 // INSTANTIATE HISTOGRAM BLOCK RAM
 // This 16x1024 bram stores the histogram data.

42

 // The write port is written by process_fft.
 // The read port is read by the video outputter or the SD care saver
 // Assign histogram bram read address to histogram module unless saving
 logic [9:0] haddr; // The read port address
 logic [15:0] hdata; // The read port data
 histogram_bram bram2 (
 .clka(clk100mhz),
 .wea(in_range & magnitude_tvalid), // Only save FFT output if in range and output is valid
 .addra(magnitude_tuser[9:0]), // The FFT output index, 0 to 1023
 .dina(magnitude_tdata[15:0]), // The actual FFT magnitude
 .clkb(clk100mhz), // input wire clkb used to be clk_65mhz
 .addrb(haddr), // input wire [9 : 0] addrb
 .doutb(hdata) // output wire [15 : 0] doutb
);

 //This module controls how much we zoom in on the FFT.
 logic [1:0] fft_zoom_mag;
 control_zoom_magnitude my_zoom(
 .clk(clk_65mhz),
 .up(encoder2_clk_db),
 .down(encoder2_dt_db),
 .reset(rst),
 .is_fft(is_fft),
 .is_waterfall(is_waterfall),
 .zoom_out(fft_zoom_mag));

 //This module controls the offset where we are zooming
 //in on. This in effect determine the windows of our zoom.
 logic [9:0] zoom_offset;
 control_zoom_window my_zoom_window(
 .clk(clk_65mhz),
 .up(encoder1_clk_db),
 .down(encoder1_dt_db),
 .reset(rst),
 .is_fft(is_fft),
 .is_waterfall(is_waterfall),
 .zoom_magnitude(fft_zoom_mag),
 .zoom_pos_out(zoom_offset));

 //Module that outputs the pixel for the FFT.
 //Includes other logic for the center frequency line
 //and waterfall display.
 logic [12:0] hist_pixel;

43

 logic [1:0] hist_range;
 histogram fft_histogram(
 .clk(clk_65mhz),
 .rst(rst),
 .hcount(hcount),
 .vcount(vcount),
 .blank(blank),
 .range_in(fft_zoom_mag), // How much to zoom on the first part of the spectrum
 .vaddr(haddr),
 .vdata(hdata),
 .freq(center_freq_div_20),
 .is_if(sw[1]),
 .is_waterfall(is_waterfall),
 .zoom_offset_in(zoom_offset),
 .pixel(hist_pixel));

 // VGA OUTPUT
 always_ff @(posedge clk_65mhz) begin
 //No pipelining so the signals are the same
 hs <= hsync;
 vs <= vsync;
 b <= blank;
 //If we want to display the fft the pixel is
 //whaterver we get from the histogram module
 if(is_fft) begin
 rgb <= hist_pixel;
 end else begin
 //otherwise, if sw[0] is on we want to show
 //our border for display calibration
 if (sw[0]) begin
 rgb <= {12{border}};
 //If not, then we display whatever signal
 end else begin
 rgb <= pixel_function;
 end
 end
 end

 //Assign connector values accordingly.
 assign vga_r = ~b ? rgb[11:8]: 0;
 assign vga_g = ~b ? rgb[7:4] : 0;
 assign vga_b = ~b ? rgb[3:0] : 0;

44

 assign vga_hs = ~hs;
 assign vga_vs = ~vs;
endmodule

module ADC_Interface(
 input clk_100mhz, //10 ns period
 input rst, //system reset
 output logic [11:0] sample_offset, //most recent sample, 0-4095
 output logic ADC_data_valid, //triggered high at 10 MHz, otherwise off
 //ADC I/O
 output logic ADC_clk, //ADC clk pin
 input B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,//bits 1-12 from ADC
 input out_of_range
);

 //format ADC values in array, including out of range bit
 logic [12:0] raw_values;
 assign raw_values[12:0] = {out_of_range, B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12};

 //10 mhz clk (100 ns) with 50% duty cycle with rising edge synced with 100mHz clk
 //rising edge. ADC sample rate = 10 MSPS
 logic clk_10mhz;
 logic [3:0] clk_count;

 assign ADC_clk = clk_10mhz;

 //trigger every time clk_10mhz goes high while creating 50% DC 10mhz clk
 logic trigger;
 always_comb begin
 if (!rst) begin
 if (clk_count <= 4) clk_10mhz = 1;
 else clk_10mhz = 0;
 end else
 clk_10mhz = 0;
 end
 always_ff @(posedge clk_100mhz) begin
 if (!rst) begin
 //reset clk every 10 counts of 100mHz clk, otherwise increment
 if (clk_count == 9) begin
 clk_count <= 0;
 trigger <= 1;
 end else begin
 clk_count <= clk_count + 1;

45

 trigger <= 0;
 end
 end else begin
 clk_count <= 9;
 trigger <=0;
 end //end else
 end //end always_ff

 //sync ADC pins by passing input through 2 registers
 //registers for syncing ADC input data
 logic [12:0] prev_data;
 logic [12:0] sync_data;

 always_ff @(posedge clk_100mhz) begin
 if (rst) begin
 prev_data <= 13'b0;
 sync_data <= 13'b0;
 end else begin
 //sync all 12 input pins with 2 registers
 for (int i=0; i<=12; i=i+1) begin
 prev_data[i] <= raw_values[i];
 sync_data[i] <= prev_data[i];
 end //for
 end //rst else
 end //always_ff

 //updates ouput value once ADC data has become valid
 //AND passes through 2 registers (waits 10 clk periods for
 //data valid, + 2 clk periods for sync registers. So delay_period = 2,
 //which grabs value at 10 ns after last ADC clk high
 //Asserts ADC_data_valid once new data is valid
 parameter delay_period = 'd2;
 logic [3:0] count;
 always_ff @(posedge clk_100mhz) begin
 if (rst) begin
 count <= delay_period + 1; //ensures data won't become valid until after first trigger
 sample_offset[11:0] <= 12'h000;
 ADC_data_valid <= 0;
 end else begin
 if (trigger) begin
 count <= 1;
 end else begin
 //once waited for 2 clk periods...

46

 if (count == delay_period) begin
 //assert data valid
 ADC_data_valid <= 1;
 //ouput ADC synced data if not out of range, otherwise output max value
 sample_offset[11:0] <= !sync_data[12] ? sync_data[11:0] : 12'hFFF;
 end else ADC_data_valid <= 0;
 //just keep counting....should be okay becuase trigger will always reset count before it
overflows
 count <= count + 1;
 end //end trigger else
 end //rst else
 end //end always_ff

Endmodule

module AM_BP_Filter #(parameter N = 8) //N = number of feedforward coeff, max 8
 (
 input clk_in,
 input rst,

 //coeffiecients multiplied by 2^16
 input signed [17:0] b [(N-1):0], //N b feedforward coeffs [b(N-1)...b0), unpacked array
 input signed [17:0] a [(N-2):0], //N-1 feedback coeffs [a(N-1)...a1], unpacked array
 input sample_ready, //ADC data valid
 input signed [23:0] sample, //IF_in

 output logic signed [33:0] filt_out,
 output logic filt_valid //indicate new filter value available
);

 logic signed [23:0] x [7:0]; //store past 8 x values, up to and including x[n]
 logic signed [100:0] y [7:0]; //store past 8 y values up to and inlcuding y[n-1]

 //pointer to x[n] and y[n-1] in x and y arrays
 logic [2:0] index;
 //indicate begin calculating filter ouput
 logic sum_values;

 //used in computing x and y terms for filter output

47

 logic signed [100:0] x_sum;
 logic signed [100:0] y_sum;
 logic [3:0] ii;

 //ensures index overflow does not result in calling x or y at a negative val
 logic [2:0] val_index;
 assign val_index = index - ii;

 always_ff @(posedge clk_in) begin
 if (rst) begin
 //intialize x & y values to all 0
 for (int i=0; i<8; i=i+1) begin
 x[i] <= 0;
 y[i] <= 0;
 //reset x and y sums
 x_sum <= 0;
 y_sum <= 0;
 end
 //reset current value pointer
 index <= 0;
 end else begin
 if (sample_ready) begin
 //update x with most recent sample
 x[index] <= sample[23:0];
 //start computing filter output, reset sums
 sum_values <= 1;
 //reset sum values
 x_sum <= 0;
 y_sum <= 0;
 //increment pointer index
 index <= index+1;
 //start ii at 1, since incrementing index
 //therefore x[n] is at [index-1]
 ii <= 1;
 end else begin //sample ready
 //calculate x and y sums for past N values
 if (sum_values && (ii <= N)) begin
 x_sum <= x_sum + ((x[val_index]*b[ii-1])>>>16);
 //only summing N-2 y terms
 y_sum <= (ii <= (N-1)) ? (y_sum + ((y[val_index]*a[ii-1])>>>16)) : y_sum;
 ii <= ii + 1;
 end else if (sum_values) begin
 //stop summation

48

 sum_values <= 0;
 //compute filt_out
 filt_out <= x_sum - y_sum;
 filt_valid <= 1;
 //store this to be used as previous value of y
 y[index] <= x_sum - y_sum;
 end else begin
 filt_valid <= 0;
 end //sum values
 end //else sample ready

 end //rst else
 end //end always_ff
Endmodule

module AM_audio_condition(
 input clk, //should be 100 MHz for proper sampling
 input rst,
 //signal from peak detect, 10 MSPS
 input [33:0] audio_offset,
 //audio level, set by 3 switches
 input [4:0] audio_level,

 //8 bit audio signal, centered at 0
 output logic signed [7:0] audio_out
);

 //downsample to 48 khz -------
 parameter COUNT_48k = 2082;

 logic [11:0] count;
 logic trigger;
 //down-sampled, amplitude adjusted audio (48kHz). Still contains DC offset and is 24 bits
 logic [33:0] ds_audio_offset;

 //trigger once every COUNT_48k cycles
 assign trigger = (count == COUNT_48k);

 //HP filter trigger
 logic sample_ready;

 always_ff @(posedge clk) begin
 if (rst) count <= 0;

49

 else begin
 //rst count every COUNT_48k periods of 100MHz clock for 48kHz sample rate
 if (trigger) begin
 count <= 0;
 ds_audio_offset <= audio_offset;
 sample_ready <= 1;
 end else begin
 sample_ready <= 0 ;
 count <= count + 1;
 end //else trigger
 end //else rst
 end

 //Moving average to compute audio offset
 //array of past peak detect outputs
 logic [33:0] window [31:0];
 //current index in window
 logic [4:0] index;
 logic [5:0] sum_i; //index for computing sum
 logic [38:0] sum; //sum of values in window
 logic [33:0] avg; //average value of window

 always_ff @(posedge clk) begin
 if (rst) begin
 //initialize all values in window to 0
 for (int i=0; i<32; i=i+1) begin
 window[i] <= 0;
 end
 //reset index
 index <= 0;
 sum_i <= 0;
 sum <= 0;
 end else begin //rst else
 if (sample_ready) begin
 //store current down sampled offset audio
 window[index] <= ds_audio_offset;
 index <= index + 1;
 sum <= 0;
 sum_i <= 0;
 end else begin
 //no sample, still computing avg
 if (sum_i < 32) begin
 sum <= sum + window[sum_i];

50

 sum_i = sum_i + 1;
 end if (sum_i == 32) begin //done computing avg
 sum_i <= 33; //causes system to stay in next else condition until ready to compute
sum again
 avg <= (sum >> 5); //divide sum by 32 (# of window values) to get average
 end else begin
 //Shift level of audio and shrink to 8 bit value
 //uses ds_audio_offset grabbed when sample_ready = 1
 //shifts between 20 and 6 bits (since max audio level = 15)
 audio_out <= ((ds_audio_offset - avg) >>> ('d26 - audio_level));
 end //sum_i < 32
 end //sample_ready else
 end //rst
 end //always_ff

Endmodule

module DAC_stuff(input clk_in, input rst_in, input [7:0] level_in, output logic pwm_out);

//PWM generator for audio generation

 logic [7:0] count;
 assign pwm_out = count<level_in;
 always_ff @(posedge clk_in)begin
 if (rst_in)begin
 count <= 8'b0;
 end else begin
 count <= count+8'b1;
 end
 end

Endmodule

module FM_demod_stage_1(
 input clk,
 input rst,
 //ouput from RF mixer
 input signed [23:0] IF_in,
 //driven by ADC_data_valid
 input IF_data_valid,
 //if 1, use wideband FM, if 0, use narrowband FM
 input FM_BP_width,
 //derivative of band passed FM signal

51

 output logic signed [33:0] FM_derivative_out,
 output logic FM_data_valid
);

 parameter N = 3;
 logic signed [17:0] a1 [(N-2):0]; //N-1 feedback coeffs [a(N-1)...a1], unpacked array
 logic signed [17:0] a2 [(N-2):0]; //N-1 feedback coeffs [a(N-1)...a1], unpacked array
 logic signed [17:0] a3 [(N-2):0]; //N-1 feedback coeffs [a(N-1)...a1], unpacked array
 logic signed [17:0] a4 [(N-2):0]; //N-1 feedback coeffs [a(N-1)...a1], unpacked array

 //select NFM or WFM
 always_comb begin
 if (FM_BP_width) begin
 //FM (Wideband) Bandpass Filter
 a1 [(N-2):0] = '{18'sd61600,-18'sd119464}; //a coeff MATLAB:
 a2 [(N-2):0] = '{18'sd62943,-18'sd125245}; //a coeff MATLAB:
 a3 [(N-2):0] = '{18'sd57240,-18'sd117002}; //a coeff MATLAB:
 a4 [(N-2):0] = '{18'sd58551,-18'sd120066}; //a coeff MATLAB:
 end else begin
 //FM (narrowband) bandpass filter
 a1 [(N-2):0] = '{18'sd64789,-18'sd124533}; //a coeff MATLAB:
 a2 [(N-2):0] = '{18'sd64853,-18'sd125569}; //a coeff MATLAB:
 a3 [(N-2):0] = '{18'sd63792,-18'sd123882}; //a coeff MATLAB:
 a4 [(N-2):0] = '{18'sd63855,-18'sd124342}; //a coeff MATLAB:
 end //if narrow or wide
 end //always_comb

 //section 1 --
 //initialize coeffs
 logic signed [17:0] b1 [(N-1):0]; //N b feedforward coeffs [b(N-1)...b0), unpacked array

 assign b1 [(N-1):0] = '{-18'sd65536,18'sd0,18'sd65536}; //b coeff MATLAB: [1,0,-1]

 logic signed [33:0] filt_sec_1_out;
 logic sec_1_ready;

 AM_BP_Filter #(.N(N)) FM_BP_sec_1 (.clk_in(clk),.rst(rst),.b(b1),.a(a1),

.sample_ready(IF_data_valid),.sample(IF_in),.filt_out(filt_sec_1_out),.filt_valid(sec_1_ready));

 //section 2 --
 logic signed [23:0] filt_sec_2_in;
 //divide output from filter section 1 by 2^5 to fit 24 bit input parameter

52

 assign filt_sec_2_in = (filt_sec_1_out>>>5);

 //initialize coeffs
 logic signed [17:0] b2 [(N-1):0]; //N b feedforward coeffs [b(N-1)...b0), unpacked array

 assign b2 [(N-1):0] = '{-18'sd65536,18'sd0,18'sd65536}; //b coeff MATLAB: [1,0,-1]

 logic signed [33:0] filt_sec_2_out;
 logic sec_2_ready;

 AM_BP_Filter #(.N(N)) FM_BP_sec_2 (.clk_in(clk),.rst(rst),.b(b2),.a(a2),

.sample_ready(sec_1_ready),.sample(filt_sec_2_in),.filt_out(filt_sec_2_out),.filt_valid(sec_2_rea
dy));

 //section 3 --
 logic signed [23:0] filt_sec_3_in;
 //divide output from filter section 1 by 2^5 to fit 24 bit input parameter
 assign filt_sec_3_in = (filt_sec_2_out>>>5);

 //initialize coeffs
 logic signed [17:0] b3 [(N-1):0]; //N b feedforward coeffs [b(N-1)...b0), unpacked array

 assign b3 [(N-1):0] = '{-18'sd65536,18'sd0,18'sd65536}; //b coeff MATLAB: [1,0,-1]

 logic signed [33:0] filt_sec_3_out;
 logic sec_3_ready;

 AM_BP_Filter #(.N(N)) FM_BP_sec_3 (.clk_in(clk),.rst(rst),.b(b3),.a(a3),

.sample_ready(sec_2_ready),.sample(filt_sec_3_in),.filt_out(filt_sec_3_out),.filt_valid(sec_3_rea
dy));

 //section 4 --
 logic signed [23:0] filt_sec_4_in;
 //divide output from filter section 1 by 2^5 to fit 24 bit input parameter
 assign filt_sec_4_in = (filt_sec_3_out>>>5);

 //initialize coeffs
 logic signed [17:0] b4 [(N-1):0]; //N b feedforward coeffs [b(N-1)...b0), unpacked array

 assign b4 [(N-1):0] = '{-18'sd65536,18'sd0,18'sd65536}; //b coeff MATLAB: [1,0,-1]

53

 logic signed [33:0] filt_sec_4_out;
 logic sec_4_ready;

 //triggers on ADC_sample_valid
 AM_BP_Filter #(.N(N)) FM_BP_sec_4 (.clk_in(clk),.rst(rst),.b(b4),.a(a4),

.sample_ready(sec_3_ready),.sample(filt_sec_4_in),.filt_out(filt_sec_4_out),.filt_valid(sec_4_rea
dy));

 //FM signal derivative with respect to time
 //stores previous value from last section in FM bandpass
 logic signed [33:0] past_filt_4_out;
 logic signed [33:0] past_past_filt_4_out;
 logic signed [33:0] past_FM_derivative;
 logic signed [33:0] FM_derivative;

 //Calculates derivative of band passed FM signal to pass into peak detection for smoothing
 //operates at constant sampling freq therefore d(FM_signal)/d(t) = current_val - past_val / t
 //and dividing by time doesn't matter so can ignore (constant)
 always_ff @(posedge clk) begin
 if (rst) begin
 past_filt_4_out <= 0;
 past_past_filt_4_out <=0;
 past_FM_derivative <= 0;
 FM_derivative <= 0;
 FM_derivative_out <=0;
 FM_data_valid <= 0;
 end else begin
 if (sec_4_ready) begin
 past_past_filt_4_out <= past_filt_4_out;
 past_filt_4_out <= filt_sec_4_out;
 //calc derivative and past derivative
 past_FM_derivative <= past_filt_4_out - past_past_filt_4_out;
 FM_derivative <= filt_sec_4_out - past_filt_4_out;
 //current derivative out averaged over past 2
 FM_derivative_out <= (FM_derivative >>> 2) + (past_FM_derivative >>> 2);
 //trigger data valid. Will occur at 10 MHz
 FM_data_valid <= 1;
 end else begin
 //waiting for data so data_valid = 0

54

 FM_data_valid <= 0;
 end
 end //rst else
 end //always_ff
Endmodule

module Local_Oscillator(
 input clk_in,
 input rst,
 input [17:0] center_freq_div_20,
 output logic [11:0] LO_out
);

 //Intermediate freq of radio / 20. typical AM receiver uses 455 kHz
 parameter IF_FREQ_div_20 = 18'd22_750;

 //desired frequency of LO output signal / 20
 logic [17:0] LO_freq_div_20;
 //center_freq should be 18 bit value for approx 20 Hz resolution up to 5 MHz
 assign LO_freq_div_20 = center_freq_div_20 - IF_FREQ_div_20;

 //Parameter to convert desired frequency to phase increments.
 //A = round((2^32 - 1)/f_clk * 2^8)
 parameter A = 13744;
 logic [31:0] phase_inc;
 assign phase_inc = (LO_freq_div_20 * A) >> 4;

 logic [31:0] phase;
 //phase[31:24] = 8 bits range for sine wave look up table in memory
 //returns 12 bit value from memory intialized with sine wave [0,4095]
 sine_wave LO_sine_wave (.clka(clk_in), .addra(phase[31:24]), .douta(LO_out));

 //increment phase on rising edge of 100 MHz clk
 always_ff @(posedge clk_in)begin
 if (rst)begin
 phase <= 32'b0;
 end else begin
 phase <= phase + phase_inc;
 end
 end
Endmodule

module Mixer(

55

 input [11:0] in_a,
 input [11:0] in_b,

 output [23:0] p_out
);

 assign p_out[23:0] = in_a[11:0] * in_b[11:0];

Endmodule

module Peak_detect_hold(
 input clk,
 input rst,

 input sample_ready,
 input signed [33:0] sample_in,

 output logic [34:0] peak_value,
 output logic sample_ready_out
);

 logic signed [33:0] past_val [7:0]; //store past 8 values
 logic deriv [7:0]; //store past 8 derivatives
 logic [2:0] index; //store index in past_val

 //calculates sum of derivatives
 logic [3:0] deriv_sum;
 assign deriv_sum = deriv[7]+deriv[6]+deriv[5]+deriv[4]+deriv[3]+deriv[2]+deriv[1]+deriv[0];

 //calculate sum of values to determine current sign
 logic signed [40:0] val_sum;
 assign val_sum = past_val[7]+past_val[6]+past_val[5]+past_val[4]+past_val[3]+
 past_val[2]+past_val[1]+past_val[0];

 logic signed [33:0] extrema;

 always_ff @(posedge clk) begin
 if (rst) begin
 deriv <= '{0,0,0,0,0,0,0,0};
 past_val <= '{0,0,0,0,0,0,0,0};
 index <= 0;
 end else begin
 if (sample_ready) begin

56

 //store current sample at index in array
 past_val[index] <= sample_in;
 //deriv = 1 if positive, 0 if negative
 if (index >= 1) begin
 deriv[index] <= ((sample_in - past_val[index-1]) >= 0);
 end else begin
 deriv[index] <= ((sample_in - past_val[7]) >= 0);
 end
 //increment index. Will overflow once reaches 7
 index <= index + 1;
 end //sample_ready
 end //rst
 end //always_ff

 logic [3:0] s_index;

 always_ff @(posedge clk) begin
 if (rst) begin
 s_index <= 0;
 extrema <= 0;
 peak_value <= 0;
 sample_ready_out <= 0;
 end else begin
 //peak detected if 5 positives & 5 negative derivatives
 //find and output max or min value, stop if searched all index
 if (deriv_sum == 5 && s_index < 8) begin
 //if > 0, search for peak (max)
 if (val_sum >= 0) begin
 //if value at index is greater than previous, set extrema to that. otherwise set
 //equal to current extrema value
 extrema <= (past_val[s_index] > extrema) ? past_val[s_index] : extrema;
 end else begin //if < 0, look for trough (min). Also multiply value by -1
 extrema <= (past_val[s_index] < extrema) ? past_val[s_index] : extrema;
 end
 //increment search index
 s_index <= s_index + 1;
 end else begin
 //reset search index
 s_index <= 0;
 //reset extrema to 0
 extrema <= 0;
 //reset extrema to past_vals[0] if in positive region, otherwise -past_vals[0]
// if (val_sum >= 0) extrema <= past_val[s_index - 1];

57

// else extrema <= (-'sd1)*past_val[s_index - 1];
 end

 //peak_Value only re-assigned once finishing searching all values, then holds
 //until after next search. Also converts from signed to unsigned variable
 if (s_index == 8) begin
 peak_value <= (extrema >= 0) ? extrema : -'sd1*extrema;
 //assert sample for 1 clk cycle
 sample_ready_out <= 1;
 end else sample_ready_out <= 0;

 end //!rst

 end //always_ff

Endmodule

module trigger_buffer (
 input clock_in,
 input reset_in,
 input [11:0] signal_in,
 input [11:0] trigger_height,
 input [10:0] hcount_in,
 input [9:0] vcount_in,
 input [11:0] period,
 output logic [11:0] signal_out
);

 //States for our state machine
 parameter RESET = 5'b00000;
 parameter BRAM1_WAIT_FOR_TRIGGER = 5'b00001;
 parameter BRAM1_VERIFY_TRIGGER = 5'b00011;
 parameter BRAM1_WAIT_FOR_FILL = 5'b00111;
 parameter BRAM1_WAIT_FOR_FRAME = 5'b01111;
 parameter BRAM2_WAIT_FOR_TRIGGER = 5'b11111;
 parameter BRAM2_VERIFY_TRIGGER = 5'b11101;
 parameter BRAM2_WAIT_FOR_FILL = 5'b11001;
 parameter BRAM2_WAIT_FOR_FRAME = 5'b10001;

 //state variable
 logic [4:0] state;

 //Important wires for interfacing with our first bram

58

 logic [9:0] frame1_addr;
 logic [11:0] data_to_frame1;
 logic [11:0] data_from_frame1;
 logic write_frame1;

 //Creating the first bram with the correct wires.
 frame_bram frame1(.addra(frame1_addr), .clka(clock_in),
 .dina(data_to_frame1), .douta(data_from_frame1), .ena(1),
 .wea(write_frame1));

 //Important wires for interfacing with our second bram
 logic [9:0] frame2_addr;
 logic [11:0] data_to_frame2;
 logic [11:0] data_from_frame2;
 logic write_frame2;

 //Creating the second bram with the correct wires.
 frame_bram frame2(.addra(frame2_addr), .clka(clock_in),
 .dina(data_to_frame2), .douta(data_from_frame2), .ena(1),
 .wea(write_frame2));

 //Registers for out past values. Used for triggering.
 logic [11:0] past_signal;
 logic [11:0] past_signal2;
 logic [11:0] past_signal3;
 logic [11:0] past_signal4;
 logic [11:0] past_signal5;
 logic [11:0] past_signal6;
 logic [11:0] past_signal7;
 logic [11:0] past_signal8;
 logic [11:0] past_signal9;
 logic [11:0] past_signal10;
 logic [11:0] past_signal11;
 logic [11:0] past_signal12;
 logic [11:0] past_signal13;
 logic [11:0] past_signal14;
 logic [11:0] past_signal15;
 logic [11:0] past_signal16;
 logic [11:0] past_signal17;
 logic [11:0] past_signal18;
 logic [11:0] past_signal19;

 //Counter to make sure we don't store too much data.

59

 logic [11:0] counter;

 //Counter to make sure we stay high for a certain
 //amount of time.
 logic [11:0] trigger_counter;

 //Parameter to set how long you have to stay above trigger.
 parameter NEEDED_HIGH = 'd3;

 always_ff @(posedge clock_in) begin
 case(state)
 RESET: begin
 //Reset all variables
 frame1_addr <= 0;
 frame2_addr <= 0;
 write_frame1 <= 0;
 write_frame2 <= 0;
 data_to_frame1 <= 0;
 data_to_frame2 <= 0;
 counter <= 0;
 signal_out <= 0;
 //Past values reset to trigger so that
 //they don't do a false positive.
 past_signal19 <= trigger_height;
 past_signal18 <= trigger_height;
 past_signal17 <= trigger_height;
 past_signal16 <= trigger_height;
 past_signal15 <= trigger_height;
 past_signal14 <= trigger_height;
 past_signal13 <= trigger_height;
 past_signal12 <= trigger_height;
 past_signal11 <= trigger_height;
 past_signal10 <= trigger_height;
 past_signal9 <= trigger_height;
 past_signal8 <= trigger_height;
 past_signal7 <= trigger_height;
 past_signal6 <= trigger_height;
 past_signal5 <= trigger_height;
 past_signal4 <= trigger_height;
 past_signal3 <= trigger_height;
 past_signal2 <= trigger_height;
 past_signal <= trigger_height;
 if (!reset_in) begin

60

 state <= BRAM1_WAIT_FOR_TRIGGER;
 end
 end
 //In this state we wait until the signal
 //goes above trigger
 BRAM1_WAIT_FOR_TRIGGER: begin
 //We set the signal out based on the output from
 //bram 2. That is because bram 2 current holds the
 //captured signal from the last run and we want to
 //keep displaying that until we get a new sample.
 frame2_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame2;
 past_signal19 <= past_signal18;
 past_signal18 <= past_signal17;
 past_signal17 <= past_signal16;
 past_signal16 <= past_signal15;
 past_signal15 <= past_signal14;
 past_signal14 <= past_signal13;
 past_signal13 <= past_signal12;
 past_signal12 <= past_signal11;
 past_signal11 <= past_signal10;
 past_signal10 <= past_signal9;
 past_signal9 <= past_signal8;
 past_signal8 <= past_signal7;
 past_signal7 <= past_signal6;
 past_signal6 <= past_signal5;
 past_signal5 <= past_signal4;
 past_signal4 <= past_signal3;
 past_signal3 <= past_signal2;
 past_signal2 <= past_signal;
 past_signal <= signal_in;
 trigger_counter <= 0;
 //All the past signals need to be below
 //trigger while our current value needs
 //to be at or above trigger level. There
 //is an aditional requirement that the jump
 //above the trigger cannot be too high of a gap.
 //That makes it so that noise cannot set off the
 //trigger.
 if((past_signal < trigger_height) &&
 (past_signal2 < trigger_height) &&
 (past_signal3 < trigger_height) &&
 (past_signal4 < trigger_height) &&

61

 (past_signal5 < trigger_height) &&
 (past_signal6 < trigger_height) &&
 (past_signal7 < trigger_height) &&
 (past_signal8 < trigger_height) &&
 (past_signal9 < trigger_height) &&
 (past_signal10 < trigger_height) &&
 (past_signal11 < trigger_height) &&
 (past_signal12 < trigger_height) &&
 (past_signal13 < trigger_height) &&
 (past_signal14 < trigger_height) &&
 (past_signal15 < trigger_height) &&
 (past_signal16 < trigger_height) &&
 (past_signal17 < trigger_height) &&
 (past_signal18 < trigger_height) &&
 (past_signal19 < trigger_height) &&
 ((signal_in - past_signal) < 'd1000) &&
 (signal_in >= trigger_height)) begin
 //Set the address to 0 for capturing
 frame1_addr <= 0;
 //Set the write high
 write_frame1 <= 1;
 //Set the correct data in.
 data_to_frame1 <= signal_in;
 //Change state
 state <= BRAM1_VERIFY_TRIGGER;
 //Set counters.
 counter <= 0;
 trigger_counter <= 0;
 end
 end
 //Here we wait to see if the trigger actually
 //holds.
 BRAM1_VERIFY_TRIGGER: begin
 //If the signal goes below trigger it doesn't hold.
 //All the wires are reset and go back to waiting for
 //the trigger.
 if(signal_in < trigger_height) begin
 state <= BRAM1_WAIT_FOR_TRIGGER;
 counter <= 0;
 trigger_counter <= 0;
 frame2_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame2;
 frame1_addr <= 0;

62

 write_frame1 <= 0;
 write_frame2 <= 0;
 data_to_frame1 <= 0;
 data_to_frame2 <= 0;
 past_signal19 <= trigger_height;
 past_signal18 <= trigger_height;
 past_signal17 <= trigger_height;
 past_signal16 <= trigger_height;
 past_signal15 <= trigger_height;
 past_signal14 <= trigger_height;
 past_signal13 <= trigger_height;
 past_signal12 <= trigger_height;
 past_signal11 <= trigger_height;
 past_signal10 <= trigger_height;
 past_signal9 <= trigger_height;
 past_signal8 <= trigger_height;
 past_signal7 <= trigger_height;
 past_signal6 <= trigger_height;
 past_signal5 <= trigger_height;
 past_signal4 <= trigger_height;
 past_signal3 <= trigger_height;
 past_signal2 <= trigger_height;
 past_signal <= trigger_height;
 end else begin
 //Keep showing the old bram framw while
 //we verify
 frame2_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame2;
 //Write current signal while we verify
 data_to_frame1 <= signal_in;
 //If the count is above the needed high,
 //we can go to the next state where we wait
 //until the bram fills.
 if(trigger_counter >= NEEDED_HIGH) begin
 state<= BRAM1_WAIT_FOR_FILL;
 end else begin
 //Else we count up.
 trigger_counter <= trigger_counter + 1;
 end
 //Counter in place to make sure that we wait
 //a certain period to put samples into the bram.
 //This lets us see signals of varying frequencies.
 if(counter == period) begin

63

 frame1_addr <= frame1_addr + 1;
 counter <= 0;
 end else begin
 counter <= counter + 1;
 end
 end
 end
 //In this state we wait for the bram to capture all
 //of the data it needs.
 BRAM1_WAIT_FOR_FILL: begin
 //Keep displaying from second bram while we fill
 frame2_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame2;
 //Keep writing signal to bram 1
 data_to_frame1 <= signal_in;
 //If the addr becomes big enough we can move to
 //next state.
 if(frame1_addr == 'd821) begin
 state<= BRAM1_WAIT_FOR_FRAME;
 write_frame1 <= 0;
 end else begin
 //Have the counter to make sure we are sampling
 //at the user given period.
 if(counter == period) begin
 frame1_addr <= frame1_addr + 1;
 counter <= 0;
 end else begin
 counter <= counter + 1;
 end
 end
 end
 //In this state we wait for the fram to end before we switch
 //the brams.
 BRAM1_WAIT_FOR_FRAME: begin
 frame2_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame2;
 //If vcount gets to the last line, we switch the state
 if((vcount_in == 'd767)) begin
 state<= BRAM2_WAIT_FOR_TRIGGER;
 end
 end
 //The state machine from before is the exact same as above,
 //it just switches the role of bram1 and bram2. We would be

64

 //displaying from bram1 while bram2 is being written to.
 BRAM2_WAIT_FOR_TRIGGER: begin
 frame1_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame1;
 past_signal19 <= past_signal18;
 past_signal18 <= past_signal17;
 past_signal17 <= past_signal16;
 past_signal16 <= past_signal15;
 past_signal15 <= past_signal14;
 past_signal14 <= past_signal13;
 past_signal13 <= past_signal12;
 past_signal12 <= past_signal11;
 past_signal11 <= past_signal10;
 past_signal10 <= past_signal9;
 past_signal9 <= past_signal8;
 past_signal8 <= past_signal7;
 past_signal7 <= past_signal6;
 past_signal6 <= past_signal5;
 past_signal5 <= past_signal4;
 past_signal4 <= past_signal3;
 past_signal3 <= past_signal2;
 past_signal2 <= past_signal;
 past_signal <= signal_in;
 if((past_signal < trigger_height) &&
 (past_signal2 < trigger_height) &&
 (past_signal3 < trigger_height) &&
 (past_signal4 < trigger_height) &&
 (past_signal5 < trigger_height) &&
 (past_signal6 < trigger_height) &&
 (past_signal7 < trigger_height) &&
 (past_signal8 < trigger_height) &&
 (past_signal9 < trigger_height) &&
 (past_signal10 < trigger_height) &&
 (past_signal11 < trigger_height) &&
 (past_signal12 < trigger_height) &&
 (past_signal13 < trigger_height) &&
 (past_signal14 < trigger_height) &&
 (past_signal15 < trigger_height) &&
 (past_signal16 < trigger_height) &&
 (past_signal17 < trigger_height) &&
 (past_signal18 < trigger_height) &&
 (past_signal19 < trigger_height) &&
 ((signal_in - past_signal) < 'd1000) &&

65

 (signal_in >= trigger_height)) begin
 frame2_addr <= 0;
 write_frame2 <= 1;
 data_to_frame2 <= signal_in;
 state <= BRAM2_VERIFY_TRIGGER;
 counter <= 0;
 end
 end
 BRAM2_VERIFY_TRIGGER: begin
 if(signal_in < trigger_height) begin
 state <= BRAM2_WAIT_FOR_TRIGGER;
 counter <= 0;
 trigger_counter <= 0;
 frame1_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame2;
 frame2_addr <= 0;
 write_frame1 <= 0;
 write_frame2 <= 0;
 data_to_frame1 <= 0;
 data_to_frame2 <= 0;
 past_signal19 <= trigger_height;
 past_signal18 <= trigger_height;
 past_signal17 <= trigger_height;
 past_signal16 <= trigger_height;
 past_signal15 <= trigger_height;
 past_signal14 <= trigger_height;
 past_signal13 <= trigger_height;
 past_signal12 <= trigger_height;
 past_signal11 <= trigger_height;
 past_signal10 <= trigger_height;
 past_signal9 <= trigger_height;
 past_signal8 <= trigger_height;
 past_signal7 <= trigger_height;
 past_signal6 <= trigger_height;
 past_signal5 <= trigger_height;
 past_signal4 <= trigger_height;
 past_signal3 <= trigger_height;
 past_signal2 <= trigger_height;
 past_signal <= trigger_height;
 end else begin
 frame1_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame1;
 data_to_frame2 <= signal_in;

66

 if(trigger_counter >= NEEDED_HIGH) begin
 state<= BRAM2_WAIT_FOR_FILL;
 end else begin
 trigger_counter <= trigger_counter + 1;
 end
 if(counter == period) begin
 frame2_addr <= frame2_addr + 1;
 counter <= 0;
 end else begin
 counter <= counter + 1;
 end
 end
 end
 BRAM2_WAIT_FOR_FILL: begin
 frame1_addr <= (hcount_in - 'd101);
 signal_out <= data_from_frame1;
 data_to_frame2 <= signal_in;
 if(frame2_addr == 'd821) begin
 state<= BRAM2_WAIT_FOR_FRAME;
 write_frame2 <= 0;
 end else begin
 if(counter == period) begin
 frame2_addr <= frame2_addr + 1;
 counter <= 0;
 end else begin
 counter <= counter + 1;
 end
 end
 end
 BRAM2_WAIT_FOR_FRAME: begin
 frame1_addr <= (hcount_in - 'd100);
 signal_out <= data_from_frame1;
 if((vcount_in == 'd767)) begin
 state<= BRAM1_WAIT_FOR_TRIGGER;
 end
 end
 default: state <= RESET;
 endcase
 end
Endmodule

module function_pixel_logic (
 input vclock_in, // 65MHz clock

67

 input reset_in, // 1 to initialize module
 input [10:0] hcount_in, // horizontal index of current pixel (0..1023)
 input [9:0] vcount_in, // vertical index of current pixel (0..767)
 input [11:0] height_adjust,
 input [11:0] signal_in,
 input [11:0] trigger_height,
 input is_audio,
 output [11:0] pixel_out // pong game's pixel // r=11:8, g=7:4, b=3:0
);

 //The pixel values for our function,
 //centerline, and triggerline
 logic [11:0]pixel_out_centerline;
 logic [11:0]pixel_out_triggerline;
 logic [11:0]pixel_out_function;

 //Raw signe values
 logic signed[23:0] raw_signal_height;
 logic signed[23:0] raw_trigger_height;
 //Scaled down to 12 bits
 logic signed[11:0] scaled_signal_height;
 logic signed[11:0] scaled_trigger_height;

 //Used for the special audio version
 logic signed[11:0] signed_signal;
 assign signed_signal = signal_in;
 logic signed[11:0] signed_height_adjust;
 assign signed_height_adjust = height_adjust;

 //parameters for possible offsets
 parameter OFFSET_25 = 'sd2048;
 parameter OFFSET_20 = 'sd1638;
 parameter OFFSET_15 = 'sd1228;
 parameter OFFSET_AUDIO = 'sd0;

 always_comb begin
 //If it is audio we want to use a different offset
 //and different variables.
 if(is_audio) begin
 //multiply to get the signal up.
 raw_signal_height = (signed_signal - OFFSET_AUDIO) * signed_height_adjust;
 //Divide to normalize the signal.
 scaled_signal_height = raw_signal_height >>> 11;

68

 //same process
 raw_trigger_height = (trigger_height - OFFSET_AUDIO) * signed_height_adjust;
 scaled_trigger_height = raw_trigger_height >>> 11;
 end else begin
 //same process as above but different offset and using
 //original signal and trigger in.
 raw_signal_height = (signal_in - OFFSET_25) * height_adjust;
 scaled_signal_height = raw_signal_height >>> 11;

 raw_trigger_height = (trigger_height - OFFSET_25) * height_adjust;
 scaled_trigger_height = raw_trigger_height >>> 11;
 end
 end

 always_ff @(posedge vclock_in) begin
 //If the hcount is within a specific range, we might
 //have to display our function
 if((hcount_in>104) & (hcount_in<919)) begin
 //Using three pixel height, if our vcount matches the signal height we make
 //the function pixel white.
 if((vcount_in == (12'sd384 - scaled_signal_height))
 || (vcount_in == (12'sd384 - scaled_signal_height + 12'sd1))
 || (vcount_in == (12'sd384 - scaled_signal_height + 12'sd2))) begin
 pixel_out_function <= 12'hfff;
 end else begin
 pixel_out_function <= 12'h0;
 end
 end else begin
 pixel_out_function <= 12'h0;
 end
 end
 //Centerline is constant
 assign pixel_out_centerline = {12{((vcount_in==384) & (hcount_in>100) & (hcount_in<923))}};
 //Triggerline is like centerline but varies depending on the
 //actual trigger out
 assign pixel_out_triggerline = {4{((vcount_in==(12'sd384 - scaled_trigger_height)) &
(hcount_in>100) & (hcount_in<923))}};

 //The pixel we send out is a combination of all of the pixel values.
 assign pixel_out = pixel_out_centerline + pixel_out_function + pixel_out_triggerline;
Endmodule

69

module histogram(
 input logic clk,
 input logic rst,
 input logic [10:0] hcount,
 input logic [9:0] vcount,
 input logic blank,
 input logic [1:0] range_in,
 output logic [9:0] vaddr,
 input logic [15:0] vdata,
 input logic [18:0] freq,
 input logic is_if,
 input [9:0] zoom_offset_in,
 input is_waterfall,
 input vsync_pulse,
 output logic [12:0] pixel
);

 //Range and zoom offset wires
 logic[1:0] range;
 logic[9:0] zoom_offset;

 // 1 bin per pixel, with the selected range
 assign vaddr = (hcount[9:0] >> range) + zoom_offset;

 logic [9:0] hheight; // Height of histogram bar
 assign hheight = vdata >> 4;
 logic [9:0] vheight; // The height of pixel above bottom of screen
 assign vheight = 10'd500 - vcount;
 logic blank1; // blank pipelined 1

 //Pixel wires for different parts of the FFT display
 logic[12:0] pixel_histogram;
 logic[12:0] pixel_waterfall;
 logic[12:0] pixel_marker;

 //Set registers to default values for current frequency
 //and the current position of the center frequency
 //marker.
 reg [22:0] current_freq = 22'd600_000;
 reg [16:0] current_position = 10'd246;

 //Wires for logic in the zooming.
 logic[21:0] max_frequency;

70

 logic[21:0] min_frequency_window;
 logic[21:0] max_frequency_window;
 logic[16:0] display_position;
 logic[11:0] spacer;
 logic[16:0] if_position;
 always_comb begin
 //The max frequency of a zoom is the original max
 //shifted by the range.
 max_frequency = 'd2500000 >> range;
 //The position of the center frequency marker will be shifted
 //by the zoom offset and than shifted to match the zoom
 display_position = ((current_position - zoom_offset) << range);
 //The spacer is a constant value, it is the frequency difference
 //between pixels at no zoom
 spacer = 'd2500000 >> 10;
 //This is the line for the intermediate frequency. It is constant.
 if_position = ('d187 - zoom_offset) << range;
 //The minimum frequency for our window will by the zoom offset multiplied
 //by the spacer
 min_frequency_window = zoom_offset * spacer;
 //The max frequency of the window will the minimum freqency plus the max
 //frequency of the zoom.
 max_frequency_window = min_frequency_window + max_frequency;

 //If we are trying to display the waterfall we want a certain zoom and
 //position, else we do waht the user has input.
 if(is_waterfall) begin
 range <= 'd11;
 zoom_offset <= current_position - 'd60;
 end else begin
 range <= range_in;
 zoom_offset <= zoom_offset_in;
 end
 end

 always_comb begin
 //The pixel of the fft is based on the current vcount (vheight) and
 //the height of the hisogram.
 pixel_histogram = (vheight < hheight) ? 12'hfff : 12'b0;

 //We should display the frequency center market if we are around the
 //correct horizontal area corresponding to that frequency. We also have to
 //make sure the freqency is in range, as the display_position can overflow

71

 if((hcount == display_position || hcount == (display_position + 1) || hcount ==
(display_position - 1))
 && (current_freq < max_frequency_window) && (current_freq > min_frequency_window))
begin
 //Sets the height of the market.
 if((vcount < 'd520) && (vcount > 'd505)) begin
 pixel_marker = 12'hd22;
 end else begin
 pixel_marker = 0;
 end
 end else begin
 //Same for the centerfrequency marker but for the IF frequency.
 //The color for this marker in mint.
 if(is_if) begin
 if((hcount == if_position || hcount == (if_position + 1) || hcount == (if_position - 1))
 && ('d455_000 < max_frequency_window) && ('d455_000 > min_frequency_window))
begin
 if((vcount < 'd520) && (vcount > 'd505)) begin
 pixel_marker = 12'h0fb;
 end else begin
 pixel_marker = 0;
 end
 end else begin
 pixel_marker = 0;
 end
 end else begin
 pixel_marker = 0;
 end
 end
 end

 //State machine for the waterfall displays.
 //The waterfall display currently does not
 //work as expected.
 parameter RESET = 2'b00;
 parameter ADDING = 2'b01;
 parameter TRANSITION = 2'b11;
 logic [1:0]state;

 //The concept for the waterfall is that it would be 8 sections
 //lengthwise and 7 seconts heightwise. Here we have a value
 //for each of those.
 logic[9:0] bin1_section1;

72

 logic[9:0] bin2_section1;
 logic[9:0] bin3_section1;
 logic[9:0] bin4_section1;
 logic[9:0] bin5_section1;
 logic[9:0] bin6_section1;
 logic[9:0] bin7_section1;
 logic[9:0] bin8_section1;

 logic[9:0] bin1_section2;
 logic[9:0] bin2_section2;
 logic[9:0] bin3_section2;
 logic[9:0] bin4_section2;
 logic[9:0] bin5_section2;
 logic[9:0] bin6_section2;
 logic[9:0] bin7_section2;
 logic[9:0] bin8_section2;

 logic[9:0] bin1_section3;
 logic[9:0] bin2_section3;
 logic[9:0] bin3_section3;
 logic[9:0] bin4_section3;
 logic[9:0] bin5_section3;
 logic[9:0] bin6_section3;
 logic[9:0] bin7_section3;
 logic[9:0] bin8_section3;

 logic[9:0] bin1_section4;
 logic[9:0] bin2_section4;
 logic[9:0] bin3_section4;
 logic[9:0] bin4_section4;
 logic[9:0] bin5_section4;
 logic[9:0] bin6_section4;
 logic[9:0] bin7_section4;
 logic[9:0] bin8_section4;

 logic[9:0] bin1_section5;
 logic[9:0] bin2_section5;
 logic[9:0] bin3_section5;
 logic[9:0] bin4_section5;
 logic[9:0] bin5_section5;
 logic[9:0] bin6_section5;
 logic[9:0] bin7_section5;
 logic[9:0] bin8_section5;

73

 logic[9:0] bin1_section6;
 logic[9:0] bin2_section6;
 logic[9:0] bin3_section6;
 logic[9:0] bin4_section6;
 logic[9:0] bin5_section6;
 logic[9:0] bin6_section6;
 logic[9:0] bin7_section6;
 logic[9:0] bin8_section6;

 logic[9:0] bin1_section7;
 logic[9:0] bin2_section7;
 logic[9:0] bin3_section7;
 logic[9:0] bin4_section7;
 logic[9:0] bin5_section7;
 logic[9:0] bin6_section7;
 logic[9:0] bin7_section7;
 logic[9:0] bin8_section7;

 //We had accumulators that take the average of the
 //areas, which we will divide to get the average
 //value
 logic[21:0] bin1_accumulator;
 logic[21:0] bin2_accumulator;
 logic[21:0] bin3_accumulator;
 logic[21:0] bin4_accumulator;
 logic[21:0] bin5_accumulator;
 logic[21:0] bin6_accumulator;
 logic[21:0] bin7_accumulator;
 logic[21:0] bin8_accumulator;

 logic[5:0] counter;
 always @(posedge clk) begin
 //Only do this if waterfall is active
 if(is_waterfall) begin
 case(state)
 RESET: begin
 //Reset everything
 bin1_section1 <= 0;
 bin2_section1 <= 0;
 bin3_section1 <= 0;
 bin4_section1 <= 0;
 bin5_section1 <= 0;

74

 bin6_section1 <= 0;
 bin7_section1 <= 0;
 bin8_section1 <= 0;

 bin1_section2 <= 0;
 bin2_section2 <= 0;
 bin3_section2 <= 0;
 bin4_section2 <= 0;
 bin5_section2 <= 0;
 bin6_section2 <= 0;
 bin7_section2 <= 0;
 bin8_section2 <= 0;

 bin1_section3 <= 0;
 bin2_section3 <= 0;
 bin3_section3 <= 0;
 bin4_section3 <= 0;
 bin5_section3 <= 0;
 bin6_section3 <= 0;
 bin7_section3 <= 0;
 bin8_section3 <= 0;

 bin1_section4 <= 0;
 bin2_section4 <= 0;
 bin3_section4 <= 0;
 bin4_section4 <= 0;
 bin5_section4 <= 0;
 bin6_section4 <= 0;
 bin7_section4 <= 0;
 bin8_section4 <= 0;

 bin1_section5 <= 0;
 bin2_section5 <= 0;
 bin3_section5 <= 0;
 bin4_section5 <= 0;
 bin5_section5 <= 0;
 bin6_section5 <= 0;
 bin7_section5 <= 0;
 bin8_section5 <= 0;

 bin1_section6 <= 0;
 bin2_section6 <= 0;
 bin3_section6 <= 0;

75

 bin4_section6 <= 0;
 bin5_section6 <= 0;
 bin6_section6 <= 0;
 bin7_section6 <= 0;
 bin8_section6 <= 0;

 bin1_section7 <= 0;
 bin2_section7 <= 0;
 bin3_section7 <= 0;
 bin4_section7 <= 0;
 bin5_section7 <= 0;
 bin6_section7 <= 0;
 bin7_section7 <= 0;
 bin8_section7 <= 0;

 bin1_accumulator <= 0;
 bin2_accumulator <= 0;
 bin3_accumulator <= 0;
 bin4_accumulator <= 0;
 bin5_accumulator <= 0;
 bin6_accumulator <= 0;
 bin7_accumulator <= 0;
 bin8_accumulator <= 0;

 counter <= 0;

 state <= ADDING;
 end
 ADDING: begin
 //For one line we add up all the hheights of a certain area.
 //This total will be divided to get the average.
 if(vcount == 'd521) begin
 if((hcount >= 0) && (hcount <= 'd127)) begin
 bin1_accumulator <= bin1_accumulator + hheight;
 end else if ((hcount >= 'd128) && (hcount <= 'd255)) begin
 bin2_accumulator <= bin2_accumulator + hheight;
 end else if ((hcount >= 'd256) && (hcount <= 'd383)) begin
 bin3_accumulator <= bin3_accumulator + hheight;
 end else if ((hcount >= 'd384) && (hcount <= 'd511)) begin
 bin4_accumulator <= bin4_accumulator + hheight;
 end else if ((hcount >= 'd512) && (hcount <= 'd639)) begin
 bin5_accumulator <= bin5_accumulator + hheight;
 end else if ((hcount >= 'd640) && (hcount <= 'd767)) begin

76

 bin6_accumulator <= bin6_accumulator + hheight;
 end else if ((hcount >= 'd768) && (hcount <= 'd895)) begin
 bin7_accumulator <= bin7_accumulator + hheight;
 end else if ((hcount >= 'd896) && (hcount <= 'd1023)) begin
 bin8_accumulator <= bin8_accumulator + hheight;
 end
 end
 //On next like we transistion
 if(vcount == 'd522) begin
 state <= TRANSITION;
 end
 end
 TRANSITION: begin
 //For transition the most recent section is the division
 //of the accumulator and the rest are cascaded down.
 bin1_section1 <= bin1_accumulator >> 7;
 bin2_section1 <= bin2_accumulator >> 7;
 bin3_section1 <= bin3_accumulator >> 7;
 bin4_section1 <= bin4_accumulator >> 7;
 bin5_section1 <= bin5_accumulator >> 7;
 bin6_section1 <= bin6_accumulator >> 7;
 bin7_section1 <= bin7_accumulator >> 7;
 bin8_section1 <= bin8_accumulator >> 7;

 bin1_section2 <= bin1_section1;
 bin2_section2 <= bin2_section1;
 bin3_section2 <= bin3_section1;
 bin4_section2 <= bin4_section1;
 bin5_section2 <= bin5_section1;
 bin6_section2 <= bin6_section1;
 bin7_section2 <= bin7_section1;
 bin8_section2 <= bin8_section1;

 bin1_section3 <= bin1_section2;
 bin2_section3 <= bin2_section2;
 bin3_section3 <= bin3_section2;
 bin4_section3 <= bin4_section2;
 bin5_section3 <= bin5_section2;
 bin6_section3 <= bin6_section2;
 bin7_section3 <= bin7_section2;
 bin8_section3 <= bin8_section2;

 bin1_section4 <= bin1_section3;

77

 bin2_section4 <= bin2_section3;
 bin3_section4 <= bin3_section3;
 bin4_section4 <= bin4_section3;
 bin5_section4 <= bin5_section3;
 bin6_section4 <= bin6_section3;
 bin7_section4 <= bin7_section3;
 bin8_section4 <= bin8_section3;

 bin1_section5 <= bin1_section4;
 bin2_section5 <= bin2_section4;
 bin3_section5 <= bin3_section4;
 bin4_section5 <= bin4_section4;
 bin5_section5 <= bin5_section4;
 bin6_section5 <= bin6_section4;
 bin7_section5 <= bin7_section4;
 bin8_section5 <= bin8_section4;

 bin1_section6 <= bin1_section5;
 bin2_section6 <= bin2_section5;
 bin3_section6 <= bin3_section5;
 bin4_section6 <= bin4_section5;
 bin5_section6 <= bin5_section5;
 bin6_section6 <= bin6_section5;
 bin7_section6 <= bin7_section5;
 bin8_section6 <= bin8_section5;

 bin1_section7 <= bin1_section6;
 bin2_section7 <= bin2_section6;
 bin3_section7 <= bin3_section6;
 bin4_section7 <= bin4_section6;
 bin5_section7 <= bin5_section6;
 bin6_section7 <= bin6_section6;
 bin7_section7 <= bin7_section6;
 bin8_section7 <= bin8_section6;

 bin1_accumulator <= 0;
 bin2_accumulator <= 0;
 bin3_accumulator <= 0;
 bin4_accumulator <= 0;
 bin5_accumulator <= 0;
 bin6_accumulator <= 0;
 bin7_accumulator <= 0;
 bin8_accumulator <= 0;

78

 counter <= 0;
 state <= ADDING;
 end
 default: state <= RESET;
 endcase
 //For display, we have to determine what area the waterfall is in and
 //have the correct bin and section determine the pixel color. In this
 //scheme red colors are supposed to be high magnitude while blue colors
 //are low magnitude.
 if((vcount >= 'd530) && (vcount <= 'd549)) begin
 if((hcount >= 0) && (hcount <= 'd127)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[6:2]}};
 end else if ((hcount >= 'd128) && (hcount <= 'd255)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[6:2]}};
 end else if ((hcount >= 'd256) && (hcount <= 'd383)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[6:2]}};
 end else if ((hcount >= 'd384) && (hcount <= 'd511)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[5:1]}};
 end else if ((hcount >= 'd512) && (hcount <= 'd639)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[6:2]}};
 end else if ((hcount >= 'd640) && (hcount <= 'd767)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[6:2]}};
 end else if ((hcount >= 'd768) && (hcount <= 'd895)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[6:2]}};
 end else if ((hcount >= 'd896) && (hcount <= 'd1023)) begin
 pixel_waterfall <= {{hheight[6:2]}, {4'd0}, {4'hF - hheight[6:2]}};
 end
 end else if((vcount >= 'd550) && (vcount <= 'd569)) begin
 if((hcount >= 0) && (hcount <= 'd127)) begin
 pixel_waterfall <= {{bin1_section2[6:2]}, {4'd0}, {4'hF - bin1_section2[6:2]}};
 end else if ((hcount >= 'd128) && (hcount <= 'd255)) begin
 pixel_waterfall <= {{bin2_section2[6:2]}, {4'd0}, {4'hF - bin2_section2[6:2]}};
 end else if ((hcount >= 'd256) && (hcount <= 'd383)) begin
 pixel_waterfall <= {{bin3_section2[6:2]}, {4'd0}, {4'hF - bin3_section2[6:2]}};
 end else if ((hcount >= 'd384) && (hcount <= 'd511)) begin
 pixel_waterfall <= {{bin4_section2[6:2]}, {4'd0}, {4'hF - bin4_section2[6:2]}};
 end else if ((hcount >= 'd512) && (hcount <= 'd639)) begin
 pixel_waterfall <= {{bin5_section2[6:2]}, {4'd0}, {4'hF - bin5_section2[6:2]}};
 end else if ((hcount >= 'd640) && (hcount <= 'd767)) begin
 pixel_waterfall <= {{bin6_section2[6:2]}, {4'd0}, {4'hF - bin6_section2[6:2]}};
 end else if ((hcount >= 'd768) && (hcount <= 'd895)) begin
 pixel_waterfall <= {{bin7_section2[6:2]}, {4'd0}, {4'hF - bin7_section2[6:2]}};

79

 end else if ((hcount >= 'd896) && (hcount <= 'd1023)) begin
 pixel_waterfall <= {{bin8_section2[6:2]}, {4'd0}, {4'hF - bin8_section2[6:2]}};
 end
 end else if((vcount >= 'd570) && (vcount <= 'd589)) begin
 if((hcount >= 0) && (hcount <= 'd127)) begin
 pixel_waterfall <= {{bin1_section3[6:2]}, {4'd0}, {4'hF - bin1_section3[6:2]}};
 end else if ((hcount >= 'd128) && (hcount <= 'd255)) begin
 pixel_waterfall <= {{bin2_section3[6:2]}, {4'd0}, {4'hF - bin2_section3[6:2]}};
 end else if ((hcount >= 'd256) && (hcount <= 'd383)) begin
 pixel_waterfall <= {{bin3_section3[6:2]}, {4'd0}, {4'hF - bin3_section3[6:2]}};
 end else if ((hcount >= 'd384) && (hcount <= 'd511)) begin
 pixel_waterfall <= {{bin4_section3[6:2]}, {4'd0}, {4'hF - bin4_section3[6:2]}};
 end else if ((hcount >= 'd512) && (hcount <= 'd639)) begin
 pixel_waterfall <= {{bin5_section3[6:2]}, {4'd0}, {4'hF - bin5_section3[6:2]}};
 end else if ((hcount >= 'd640) && (hcount <= 'd767)) begin
 pixel_waterfall <= {{bin6_section3[6:2]}, {4'd0}, {4'hF - bin6_section3[6:2]}};
 end else if ((hcount >= 'd768) && (hcount <= 'd895)) begin
 pixel_waterfall <= {{bin7_section3[6:2]}, {4'd0}, {4'hF - bin7_section3[6:2]}};
 end else if ((hcount >= 'd896) && (hcount <= 'd1023)) begin
 pixel_waterfall <= {{bin8_section3[6:2]}, {4'd0}, {4'hF - bin8_section3[6:2]}};
 end
 end else if((vcount >= 'd590) && (vcount <= 'd609)) begin
 if((hcount >= 0) && (hcount <= 'd127)) begin
 pixel_waterfall <= {{bin1_section4[6:2]}, {4'd0}, {4'hF - bin1_section4[6:2]}};
 end else if ((hcount >= 'd128) && (hcount <= 'd255)) begin
 pixel_waterfall <= {{bin2_section4[6:2]}, {4'd0}, {4'hF - bin2_section4[6:2]}};
 end else if ((hcount >= 'd256) && (hcount <= 'd383)) begin
 pixel_waterfall <= {{bin3_section4[6:2]}, {4'd0}, {4'hF - bin3_section4[6:2]}};
 end else if ((hcount >= 'd384) && (hcount <= 'd511)) begin
 pixel_waterfall <= {{bin4_section4[6:2]}, {4'd0}, {4'hF - bin4_section4[6:2]}};
 end else if ((hcount >= 'd512) && (hcount <= 'd639)) begin
 pixel_waterfall <= {{bin5_section4[6:2]}, {4'd0}, {4'hF - bin5_section4[6:2]}};
 end else if ((hcount >= 'd640) && (hcount <= 'd767)) begin
 pixel_waterfall <= {{bin6_section4[6:2]}, {4'd0}, {4'hF - bin6_section4[6:2]}};
 end else if ((hcount >= 'd768) && (hcount <= 'd895)) begin
 pixel_waterfall <= {{bin7_section4[6:2]}, {4'd0}, {4'hF - bin7_section4[6:2]}};
 end else if ((hcount >= 'd896) && (hcount <= 'd1023)) begin
 pixel_waterfall <= {{bin8_section4[6:2]}, {4'd0}, {4'hF - bin8_section4[6:2]}};
 end
 end else if((vcount >= 'd610) && (vcount <= 'd629)) begin
 if((hcount >= 0) && (hcount <= 'd127)) begin
 pixel_waterfall <= {{bin1_section5[6:2]}, {4'd0}, {4'hF - bin1_section5[6:2]}};
 end else if ((hcount >= 'd128) && (hcount <= 'd255)) begin

80

 pixel_waterfall <= {{bin2_section5[6:2]}, {4'd0}, {4'hF - bin2_section5[6:2]}};
 end else if ((hcount >= 'd256) && (hcount <= 'd383)) begin
 pixel_waterfall <= {{bin3_section5[6:2]}, {4'd0}, {4'hF - bin3_section5[6:2]}};
 end else if ((hcount >= 'd384) && (hcount <= 'd511)) begin
 pixel_waterfall <= {{bin4_section5[6:2]}, {4'd0}, {4'hF - bin4_section5[6:2]}};
 end else if ((hcount >= 'd512) && (hcount <= 'd639)) begin
 pixel_waterfall <= {{bin5_section5[6:2]}, {4'd0}, {4'hF - bin5_section5[6:2]}};
 end else if ((hcount >= 'd640) && (hcount <= 'd767)) begin
 pixel_waterfall <= {{bin6_section5[6:2]}, {4'd0}, {4'hF - bin6_section5[6:2]}};
 end else if ((hcount >= 'd768) && (hcount <= 'd895)) begin
 pixel_waterfall <= {{bin7_section5[6:2]}, {4'd0}, {4'hF - bin7_section5[6:2]}};
 end else if ((hcount >= 'd896) && (hcount <= 'd1023)) begin
 pixel_waterfall <= {{bin8_section5[6:2]}, {4'd0}, {4'hF - bin8_section5[6:2]}};
 end
 end else begin
 pixel_waterfall <= 0;
 end
 end else begin
 pixel_waterfall <= 0;
 end
 end

 always @(posedge clk) begin
 //The pixel we send out is the combination of all the pixels
 //we are written so far.
 pixel <= pixel_histogram + pixel_marker + pixel_waterfall;
 //If we are reset we set the frequency back to its original
 //spot
 if(rst) begin
 current_freq <= 22'd600_000;
 current_position <= 10'd246;
 //Else we check if the frequency is out of range. We make sure it isn't too far
 //off, as if you subtract this way a shift in the opposite direction would overflow.
 end else if(((20*freq - current_freq) >= spacer) && ((20*freq - current_freq) < 'd100_000))
begin
 //Update the position and the current frequency for a signle position. If
 //multiple steps are needed it will take multiple clock cycles.
 current_position <= current_position + 1;
 current_freq = current_freq + spacer;
 end else begin
 //Same as above for the opposite direction.
 if(((current_freq - 20*freq) >= spacer) && ((current_freq - 20*freq) < 'd100_000)) begin
 current_position <= current_position - 1;

81

 current_freq = current_freq - spacer;
 end
 end
 end
Endmodule

module control_height(
 input clk,
 input up,
 input down,
 input reset,
 input sw,
 input is_audio,
 input is_fft,
 output logic [11:0] height_out
);

 //States for the state machines
 parameter RESET = 3'b000;
 parameter IDLE = 3'b001;
 parameter UP_INCREMENT = 3'b011;
 parameter DOWN_INCREMENT = 3'b111;
 parameter WAIT_NORMAL = 3'b101;

 //Two seperate state machines with two different
 //outputs. We do this so that the values don't
 //interfere with each other.
 logic [2:0] state_signal;
 logic [2:0] state_audio;

 logic [11:0] height_out_signal;
 logic [11:0] height_out_audio;

 always_ff @(posedge clk) begin
 //If we aren't displaying audio, we are
 //only adjusting the height of the raw
 //ADC signal.
 if(!is_audio) begin
 case(state_signal)
 RESET: begin
 //Set important variables to 0
 height_out_signal <= 'd100;

82

 state_signal <= IDLE;
 end
 IDLE: begin
 //If reset, then go back to reset state
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //If up goes low we are turning
 //clockwise and need to increment up.
 //Check to make sure fft mode isn't
 //on.
 if(!up && sw && !is_fft) begin
 state_signal <= UP_INCREMENT;
 end else begin
 //If down goes low we are turning
 //counter-clockwise and need to
 //increment down. Check to make
 //sure fft mode isn't on.
 if(!down && sw && !is_fft) begin
 state_signal <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //Make sure we aren't above our highest possible height.
 //raw ADC signal has less height since the signal is stronger.
 if(height_out_signal <= 'd380) begin
 height_out_signal <= height_out + 'd10;
 end
 state_signal <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //Make sure we dont have a 0 height
 if(height_out_signal >= 'd15) begin
 height_out_signal <= height_out - 'd10;

83

 end
 state_signal <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //Wait until our signals both go high
 //signifying we are idle again.
 if(up & down & sw && !is_fft) begin
 state_signal <= IDLE;
 end
 end
 end
 default: state_signal <= RESET;
 endcase
 //State machine for displaying audio. Same as above.
 end else begin
 case(state_audio)
 RESET: begin
 height_out_audio <= 'd300;
 state_audio <= IDLE;
 end
 IDLE: begin
 if(reset) begin
 state_audio <= RESET;
 end else begin
 if(!up && sw && !is_fft) begin
 state_audio <= UP_INCREMENT;
 end else begin
 if(!down && sw && !is_fft) begin
 state_audio <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state_audio <= RESET;
 end else begin
 //Has a higher cap and more movement per turn.
 if(height_out_audio <= 'd500) begin

84

 height_out_audio <= height_out + 'd20;
 end
 state_audio <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state_audio <= RESET;
 end else begin
 if(height_out_audio >= 3) begin
 height_out_audio <= height_out - 'd20;
 end
 state_audio <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state_audio <= RESET;
 end else begin
 if(up & down & sw && !is_fft) begin
 state_audio <= IDLE;
 end
 end
 end
 default: state_audio <= RESET;
 endcase
 end
 end

 //Assign the actual height out based upon which state machine is being used.
 assign height_out = is_audio ? height_out_audio : height_out_signal;
Endmodule

module control_trigger_height(
 input clk,
 input up,
 input down,
 input reset,
 input sw,
 input is_audio,
 input is_fft,
 output logic [11:0] height_out
);

85

 //states for our state machine
 parameter RESET = 3'b000;
 parameter IDLE = 3'b001;
 parameter UP_INCREMENT = 3'b011;
 parameter DOWN_INCREMENT = 3'b111;
 parameter WAIT_NORMAL = 3'b101;

 //Two seperate state machines with two different
 //outputs. We do this so that the values don't
 //interfere with each other.
 logic [2:0] state_signal;
 logic [2:0] state_audio;

 logic [11:0] height_out_signal;
 logic [11:0] height_out_audio;

 always_ff @(posedge clk) begin
 //If we aren't displaying audio, we are
 //only adjusting the trigger of the raw
 //ADC signal.
 if(!is_audio) begin
 case(state_signal)
 RESET: begin
 //Set important variables to 0
 height_out_signal <= 'd1500;
 state_signal <= IDLE;
 end
 IDLE: begin
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //If up goes low we are turning
 //clockwise and need to increment up.
 //Check to make sure fft mode isn't
 //on.
 if(!up && !sw && !is_fft) begin
 state_signal <= UP_INCREMENT;
 end else begin
 //If down goes low we are turning
 //counter-clockwise and need to
 //increment down. Check to make

86

 //sure fft mode isn't on.
 if(!down && !sw && !is_fft) begin
 state_signal <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //Make sure we aren't above our highest possible height.
 //raw ADC signal has less height since the signal is stronger.
 if(height_out_signal <= 'd3950) begin
 height_out_signal <= height_out + 'd50;
 end
 state_signal <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //Make sure we dont have a 0 height
 if(height_out_signal >= 55) begin
 height_out_signal <= height_out - 'd50;
 end
 state_signal <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state_signal <= RESET;
 end else begin
 //Wait until our signals both go high
 //signifying we are idle again.
 if(up & down & !sw && !is_fft) begin
 state_signal <= IDLE;
 end
 end
 end
 default: state_signal <= RESET;
 endcase

87

 //State machine for displaying audio. Same as above.
 end else begin
 case(state_audio)
 RESET: begin
 height_out_audio <= 'd53;
 state_audio <= IDLE;
 end
 IDLE: begin
 if(reset) begin
 state_audio <= RESET;
 end else begin
 if(!up && !sw && !is_fft) begin
 state_audio <= UP_INCREMENT;
 end else begin
 if(!down && !sw && !is_fft) begin
 state_audio <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state_audio <= RESET;
 end else begin
 if(height_out_audio <= 'd3950) begin
 height_out_audio <= height_out + 'd20;
 end
 state_audio <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state_audio <= RESET;
 end else begin
 if(height_out_audio >= 53) begin
 height_out_audio <= height_out - 'd20;
 end
 state_audio <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state_audio <= RESET;

88

 end else begin
 if(up & down & !sw && !is_fft) begin
 state_audio <= IDLE;
 end
 end
 end
 default: state_audio <= RESET;
 endcase
 end
 end

 //Assign the actual height out based upon which state machine is being used.
 assign height_out = is_audio ? height_out_audio : height_out_signal;
endmodule

module control_period(
 input clk,
 input right,
 input left,
 input reset,
 input is_fast,
 input is_fft,
 output logic [11:0] period_out
);

 //States for the state machine
 parameter RESET = 3'b000;
 parameter IDLE = 3'b001;
 parameter RIGHT_INCREMENT = 3'b011;
 parameter LEFT_INCREMENT = 3'b111;
 parameter WAIT_NORMAL = 3'b101;

 //Registers to hold the state
 logic [2:0] state;

 always_ff @(posedge clk) begin
 case(state)
 //Reset the correct variables
 RESET: begin
 period_out <= 'd0;
 state <= IDLE;
 end
 IDLE: begin

89

 //If reset, then go back to reset state
 if(reset) begin
 state <= RESET;
 end else begin
 //If right goes low we are turning
 //clockwise and need to increment up.
 //Check to make sure that fft mode isn't
 //enabled.
 if(!right && !is_fft) begin
 state <= RIGHT_INCREMENT;
 end else begin
 //If left goes low we are turning
 //counter-clockwise and need to
 //increment down. Check to make sure
 //that fft mode isn't enabled
 if(!left && !is_fft) begin
 state <= LEFT_INCREMENT;
 end
 end
 end
 end
 RIGHT_INCREMENT: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //If in fast mode, we will change our center frequency faster
 //per increment.
 if(!is_fast) begin
 //Make sure our period isn't too high
 if(period_out <= 'd3950) begin
 period_out <= period_out + 1;
 end
 end else begin
 //Make sure our period isn't too high
 if(period_out <= 'd3930) begin
 period_out <= period_out + 'd20;
 end
 end
 state <= WAIT_NORMAL;
 end
 end
 LEFT_INCREMENT: begin
 if(reset) begin

90

 state <= RESET;
 end else begin
 //If in fast mode, we will change our center frequency faster
 //per increment.
 if(!is_fast) begin
 //Make sure we don't get a negative period.
 if(period_out >= 1) begin
 period_out <= period_out - 1;
 end
 end else begin
 //Make sure we don't get a negative period.
 if(period_out >= 20) begin
 period_out <= period_out - 'd20;
 end
 end
 state <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //Wait until our signals both go high
 //signifying we are idle again.
 if(left & right && !is_fft) begin
 state <= IDLE;
 end
 end
 end
 default: state <= RESET;
 endcase
 end
Endmodule

module control_center_frequency(
 input clk,
 input right,
 input left,
 input reset,
 input is_fast,
 output logic [17:0] center_frequency_out
);

91

 //States for the state machine
 parameter RESET = 3'b000;
 parameter IDLE = 3'b001;
 parameter RIGHT_INCREMENT = 3'b011;
 parameter LEFT_INCREMENT = 3'b111;
 parameter WAIT_NORMAL = 3'b101;

 //Registers to hold the state
 logic [2:0] state;

 always_ff @(posedge clk) begin
 case(state)
 //Reset the center frequency on reset.
 RESET: begin
 center_frequency_out <= 18'd30_000;
 state <= IDLE;
 end
 IDLE: begin
 //If reset, then go back to reset state
 if(reset) begin
 state <= RESET;
 end else begin
 //If right goes low we are turning
 //clockwise and need to increment up,
 if(!right) begin
 state <= RIGHT_INCREMENT;
 end else begin
 //If left goes low we are turning
 //counter-clockwise and need to
 //increment down.
 if(!left) begin
 state <= LEFT_INCREMENT;
 end
 end
 end
 end
 RIGHT_INCREMENT: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //If in fast mode, we will change our center frequency faster
 //per increment.
 if(is_fast) begin

92

 //Make sure we aren't above our highest possible frequency
 if(center_frequency_out <= 18'd249_699) begin
 center_frequency_out <= center_frequency_out + 'd300;
 end
 end else begin
 //Make sure we aren't above our highest possible frequency
 if(center_frequency_out <= 18'd249_999) begin
 center_frequency_out <= center_frequency_out + 'd25;
 end
 end
 state <= WAIT_NORMAL;
 end
 end
 LEFT_INCREMENT: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //If in fast mode, we will change our center frequency faster
 //per increment.
 if(is_fast) begin
 //Make sure we aren't below our lowest possible frequency
 if(center_frequency_out >= 'd25_300) begin
 center_frequency_out <= center_frequency_out - 'd300;
 end
 end else begin
 //Make sure we aren't below our lowest possible frequency
 if(center_frequency_out >= 'd25_001) begin
 center_frequency_out <= center_frequency_out - 'd25;
 end
 end
 state <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //Wait until our signals both go high
 //signifying we are idle again.
 if(left & right) begin
 state <= IDLE;
 end
 end

93

 end
 default: state <= RESET;
 endcase
 end
Endmodule

module control_volume(
 input clk,
 input up,
 input down,
 input reset,
 input signed [7:0] DAC_in,
 output logic [4:0] volume_out
);

 //States for the state machine
 parameter RESET = 3'b000;
 parameter IDLE = 3'b001;
 parameter UP_INCREMENT = 3'b011;
 parameter DOWN_INCREMENT = 3'b111;
 parameter WAIT_NORMAL = 3'b101;

 //Registers to hold the state
 logic [2:0] state;

 //Variable to tell if we have reached our maximum volume.
 logic is_max;

 always_ff @(posedge clk) begin
 case(state)
 RESET: begin
 //Set important variables to 0
 is_max <= 0;
 volume_out <= 'd0;
 state <= IDLE;
 end
 IDLE: begin
 //If our DAC value is really high, we
 //have gone above our maximum value.
 if(DAC_in > 'sd64) begin
 is_max <= 1;
 end
 //If reset, then go back to reset state

94

 if(reset) begin
 state <= RESET;
 end else begin
 //If up goes low we are turning
 //clockwise and need to increment up,
 if(!up) begin
 state <= UP_INCREMENT;
 end else begin
 //If down goes low we are turning
 //counter-clockwise and need to
 //increment down.
 if(!down) begin
 state <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //Make sure we aren't above our highest possible bit shift
 if(volume_out < 'd26 && !is_max) begin
 volume_out <= volume_out + 1;
 end
 state <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //Make sure we don't do a negative bit shift
 if(volume_out > 'd0) begin
 volume_out <= volume_out - 1;
 end
 is_max <= 0;
 state <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state <= RESET;

95

 end else begin
 //Wait until our signals both go high
 //signifying we are idle again.
 if(up & down) begin
 state <= IDLE;
 end
 end
 end
 default: state <= RESET;
 endcase
 end
Endmodule

module control_zoom_magnitude(
 input clk,
 input up,
 input down,
 input reset,
 input is_fft,
 input is_waterfall,
 output logic [1:0] zoom_out
);

 //States for the state machine
 parameter RESET = 3'b000;
 parameter IDLE = 3'b001;
 parameter UP_INCREMENT = 3'b011;
 parameter DOWN_INCREMENT = 3'b111;
 parameter WAIT_NORMAL = 3'b101;

 //Registers to hold the state
 logic [2:0] state;

 always_ff @(posedge clk) begin
 case(state)
 RESET: begin
 //Reset the correct variables
 zoom_out <= 'd0;
 state <= IDLE;
 end
 IDLE: begin
 //If reset, then go back to reset state
 if(reset) begin

96

 state <= RESET;
 end else begin
 //If up goes low we are turning
 //clockwise and need to increment up.
 //Check to make sure that fft mode is
 //enabled and waterfall isn't.
 if(!up & is_fft & !is_waterfall) begin
 state <= UP_INCREMENT;
 end else begin
 //If down goes low we are turning
 //counter-clockwise and need to
 //increment down. Check to make sure
 //that fft mode is enabled and
 //waterfall isn't
 if(!down & is_fft & !is_waterfall) begin
 state <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //Make sure our zoom isn't at it's max
 if(zoom_out < 'd3) begin
 zoom_out <= zoom_out + 1;
 end
 state <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state <= RESET;
 end else begin
 //Make sure zoom doen'st overflow
 if(zoom_out > 'd0) begin
 zoom_out <= zoom_out - 1;
 end
 state <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin

97

 if(reset) begin
 state <= RESET;
 end else begin
 //Wait until our signals both go high
 //signifying we are idle again.
 if(up & down & is_fft & !is_waterfall) begin
 state <= IDLE;
 end
 end
 end
 default: state <= RESET;
 endcase
 end
Endmodule

module control_zoom_window(
 input clk,
 input up,
 input down,
 input reset,
 input is_fft,
 input is_waterfall,
 input [1:0] zoom_magnitude,
 output logic [9:0] zoom_pos_out
);

 //States for the state machine
 parameter RESET = 3'b000;
 parameter IDLE = 3'b001;
 parameter UP_INCREMENT = 3'b011;
 parameter DOWN_INCREMENT = 3'b111;
 parameter WAIT_NORMAL = 3'b101;

 //Three seperate state machines all for the
 //different zoom levels.
 logic [2:0] state_01;
 logic [9:0] zoom_out_01;

 logic [2:0] state_10;
 logic [9:0] zoom_out_10;

 logic [2:0] state_11;
 logic [9:0] zoom_out_11;

98

 always_ff @(posedge clk) begin
 case(zoom_magnitude)
 //No zoom means we can't alter the offset
 2'b00: zoom_pos_out <= 0;
 2'b01: begin
 case(state_01)
 //Reset Variables
 RESET: begin
 zoom_out_01 <= 'd0 ;
 state_01 <= IDLE;
 end
 IDLE: begin
 //If reset, then go back to reset state
 if(reset) begin
 state_01 <= RESET;
 end else begin
 //If up goes low we are turning
 //clockwise and need to increment up.
 //Check to make sure that fft mode is
 //enabled and waterfall isn't.
 if(!up & is_fft & !is_waterfall) begin
 state_01 <= UP_INCREMENT;
 end else begin
 //If down goes low we are turning
 //counter-clockwise and need to
 //increment down. Check to make sure
 //that fft mode is enabled and
 //waterfall isn't
 if(!down & is_fft & !is_waterfall) begin
 state_01 <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state_01 <= RESET;
 end else begin
 //Make sure we don't past our maximum.
 if(zoom_out_01 < 'd503) begin
 zoom_out_01 <= zoom_out_01 + 'd10;

99

 end
 state_01 <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state_01 <= RESET;
 end else begin
 //Make sure we don't get a negative offset.
 if(zoom_out_01 > 'd9) begin
 zoom_out_01 <= zoom_out_01 - 'd10;
 end
 state_01 <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state_01 <= RESET;
 end else begin
 //Wait until our signals both go high
 //signifying we are idle again.
 if(up & down & is_fft & !is_waterfall) begin
 state_01 <= IDLE;
 end
 end
 end
 default: state_01 <= RESET;
 endcase
 //Set the position out to the current scale.
 zoom_pos_out <= zoom_out_01;
 end
 //Same as above with different limits
 2'b10: begin
 case(state_10)
 RESET: begin
 zoom_out_10 <= 'd0;
 state_10 <= IDLE;
 end
 IDLE: begin
 if(reset) begin
 state_10 <= RESET;
 end else begin
 if(!up & is_fft & !is_waterfall) begin

100

 state_10 <= UP_INCREMENT;
 end else begin
 if(!down & is_fft & !is_waterfall) begin
 state_10 <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state_10 <= RESET;
 end else begin
 if(zoom_out_10 < 'd779) begin
 zoom_out_10 <= zoom_out_10 + 'd20;
 end
 state_10 <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state_10 <= RESET;
 end else begin
 if(zoom_out_10 > 'd19) begin
 zoom_out_10 <= zoom_out_10 - 'd20;
 end
 state_10 <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state_10 <= RESET;
 end else begin
 if(up & down & is_fft & !is_waterfall) begin
 state_10 <= IDLE;
 end
 end
 end
 default: state_10 <= RESET;
 endcase
 zoom_pos_out <= zoom_out_10;
 end
 //Same as above with different limits.
 2'b11: begin

101

 case(state_11)
 RESET: begin
 zoom_out_11 <= 'd0 ;
 state_11 <= IDLE;
 end
 IDLE: begin
 if(reset) begin
 state_11 <= RESET;
 end else begin
 if(!up & is_fft & !is_waterfall) begin
 state_11 <= UP_INCREMENT;
 end else begin
 if(!down & is_fft & !is_waterfall) begin
 state_11 <= DOWN_INCREMENT;
 end
 end
 end
 end
 UP_INCREMENT: begin
 if(reset) begin
 state_11 <= RESET;
 end else begin
 if(zoom_out_11 < 'd867) begin
 zoom_out_11 <= zoom_out_11 + 'd30;
 end
 state_11 <= WAIT_NORMAL;
 end
 end
 DOWN_INCREMENT: begin
 if(reset) begin
 state_11 <= RESET;
 end else begin
 if(zoom_out_11 > 'd29) begin
 zoom_out_11 <= zoom_out_11 - 'd30;
 end
 state_11 <= WAIT_NORMAL;
 end
 end
 WAIT_NORMAL: begin
 if(reset) begin
 state_11 <= RESET;
 end else begin
 if(up & down & is_fft & !is_waterfall) begin

102

 state_11 <= IDLE;
 end
 end
 end
 default: state_11 <= RESET;
 endcase
 zoom_pos_out <= zoom_out_11;
 end
 endcase
 end
endmodule

