

6.111 Final Project:
Freeform Production of

Gorgeous Audio

Rahul Yesantharao and Jacob Pritzker

2

Table of Contents

I. Overview / Motivation: 4

II. Total System Diagram 5

III. Major Modules 5
A. Keyboard (Jacob) 5
B. MIDI Keyboard Interface (Jacob) 6
C. VGA Display (Jacob) 8
D. Song Creation (Jacob) 12
E. Game Logic (Rahul) 13
F. Song Select Module (Rahul) 14
G. Learning Mode (Rahul) 15
H. Microphone Input (Rahul) 16

H.i. FFT Calculation 17
H.ii. FFT Analysis 19

I. Top Level 21
J. Miscellaneous Modules (Menu, Timer, Score Calculation) (Rahul) 22

IV. Trickiest Pieces of the Project 23

V. Lessons Learned / Advice for Future Projects 25

Appendix A: Verilog Code 28
top_level.sv 28
game_controller.sv 45
menu.sv 59
create_song.sv 60
keyboard.sv 62
UART_decoder.sv 71
VGA_helper.sv 81
fft_analyzer.sv 100
fft_sampler.sv 109
timer.sv 112
hann.sv 114
nexys4ddr_audio.xdc 114

Appendix B: Python Scripts 125
create_song_coe.py 125
hann_gen.py 126

3

I. Overview / Motivation:
For our final project, we planned to make a musical system with multiple modes.

In our baseline goal, we aimed to have a keyboard mode, in which a user could play many
octaves’ worth of notes using switches on the Nexys4, with audio coming from the Nexys4’s
audio output port. We also aimed to have a simple game mode, similar to Guitar Hero, in which
a user could select a song, and then LEDs on the Nexys4 would light up, corresponding to notes
in a song that a user would try to match using the switches.

In our expected goal, we wanted to replace the switches on the Nexys4 and audio generation
from the Nexys4 with a MIDI keyboard. This required proper interfacing with the MIDI
keyboard. In addition, we wanted to provide a display system on a lab monitor that would allow
a user to navigate a menu to select between different modes and different songs. Furthermore, we
wanted to include a falling notes display, like in Guitar Hero. Lastly, we wanted to allow for
menu navigation either with buttons on the Nexys4 or with whistling a high vs. low note into a
microphone.

In our stretch goal, we wanted to allow for a singing input mode, where a user would try to sing a
song accurately, rather than play it on a keyboard. In addition, we wanted to implement a
learning mode, in which a user would be walked through a song in order to learn it before being
scored for it. Lastly, we wanted to allow a user to define a song of their choosing for the game
mode, rather than being restricted to our preset options.

We ultimately accomplished all of these goals except the singing mode stretch goal.

To accomplish this, we wrote many major modules for our system, which we describe in depth
below. At a high level, the major modules performed MIDI decoding, output display logic, game
logic, interfacing with memory, and FFT calculations for microphone menu navigation. Due to
FFT requirements and VGA display requirements, our system used three different clock
domains.

The overall system diagram, and then discussion of each piece, can be found below, in Sections
II and III.

4

II. Total System Diagram

III. Major Modules

A. Keyboard (Jacob)
For our baseline goal, we used the bottom 7 switches on the Nexys4 to choose a note, and then
output a PWM signal at the corresponding frequency from the audio output of the Nexys4.
The keyboard module works similarly to the starting code we used in Lab 5A. However, I
wanted to extend this to work for an entire piano’s worth of notes. In order to do so, I first made
a look up table to convert from 7-bit note indices to frequencies (in Hz). I then used the formula
shown in Lab 5A to convert from a frequency to a phase increment:

5

(This example showed how to calculate this for a 440 Hz desired frequency. It is from
http://web.mit.edu/6.111/volume2/www/f2019/index.html​.)
By making the phase increment variable, according to this formula, it allowed me to at any time
switch which note was being played by stepping through the sine wave look up table (from Lab
5A) at different speeds. I used switches 7-9 for volume control.
I used the same code for generating the PWM wave as was used in Lab 5A.
In our final version of the project, we included an option to still use the switches on the Nexys4
instead of the MIDI keyboard. If the top switch (sw[15]) is high, then the input mechanism is the
switches. If it is low, then the input mechanism is the MIDI keyboard.

B. MIDI Keyboard Interface (Jacob)
We wanted to allow for user input via a MIDI keyboard. The keyboard we used has a MIDI
output port, but the Nexys4 does not have a MIDI input port. Therefore, in order to connect them
properly, I needed to build the following circuit to replicate the front-end of a MIDI input port:

diagram from ​https://learn.sparkfun.com/tutorials/midi-tutorial/all
This circuit uses an opto-isolater, meaning the keyboard and the Nexys4 are not electrically
connected. This made voltage regulation simple, even though the keyboard outputs 5V and the
Nexys4 works at 3.3V. I powered the opto-isolater at 3.3V, meaning the output would be in the
range 0V - 3.3V, but because the input side of the opto-isolater is not electrically connected to
the power rails, it was okay to put the 5V output from the keyboard into it. The opto-isolater I
used was the CPC5002.
Once this circuit was in place, the output from it was essentially a UART transmit line. I could
then connect this to an input pin on the Nexys4, and then sample it and interpret it properly.

6

http://web.mit.edu/6.111/volume2/www/f2019/index.html
https://learn.sparkfun.com/tutorials/midi-tutorial/all

Before I did this, however, I needed to establish what messages the keyboard would output.
While it was similar to standard MIDI messages, the keyboard we used slightly modified some
of the MIDI protocols. The only information we cared about was which note was being pressed
at any given time.
By scoping the output from the keyboard, I learned that whenever a note is pressed, the keyboard
sends two bytes: first, a byte indicating a note index, second, the byte 8’h40. Similarly, whenever
a note is released, the keyboard sends two bytes: first, a byte indicating a note index, second, the
byte 8’h00. By contrast, the standard MIDI protocol sends the status (on/off) byte first, then the
note byte, as well as other information. In addition, the actual on/off bytes are different in the
standard MIDI protocol.

Now that I understood the messages that would be sent, I wrote three modules to convert the
UART transmit line signal into the information we needed.

First, I wrote the UART_decoder module, which samples the transmit line and determines the
bytes sent by the MIDI keyboard. This module is a 4-state finite state machine with the following
state diagram:

7

The MIDI protocol sends 31,250 bits per second. It sends a byte as a 10-bit packet, where the
first bit is a low start bit, then it sends the 8 bits for the byte (least significant bit first), then it
sends a high stop bit.

Running the UART_decoder module with a 100 MHz clock, there are 3,200 clock cycles per bit.
Since the UART transmission line sits high when idle, my FSM has an IDLE state, in which it
samples the input transmission line once every 200 clock cycles, trying to catch the falling edge,
indicating a start bit. Once it sees the line go low, it switches to the START_BIT state, in which
it waits 1,600 clock cycles, so that it is then near the middle of that start bit. It then switches to
the SAMPLING_BITS state, in which it repeatedly waits 3,200 clock cycles and samples the
transmission line 8 times, thus grabbing the 8 bits for the byte and filling up the output register.
Then, after doing this 8 times, it switches to the STOP_BIT state, in which it waits another 3,200
clock cycles to get to the middle of the high stop bit, at which point it switches back to the IDLE
state, waiting for the next low start bit.

The UART_decoder module instantiates the MIDI_decoder module, and passes in the output
bytes that it got from the transmission line as input to the MIDI_decoder.

Essentially, the MIDI_decoder’s job is to take the bytes from the UART_decoder module and
output an 88-bit register, with a 1 at every index corresponding to a note currently being played,
and a 0 everywhere else. In order to do so, it checks whether each incoming byte is a status byte
(either the note on or note off byte). If it is not, then it stores the note index contained in that byte
in a register called last_note. If it is a status byte, then it checks the last_note register to see what
note that status of on or off corresponds to, and updates the 88-bit register accordingly.

The UART_decoder module also instantiates the key_press module, which takes the 88-bit
output from the MIDI_decoder and outputs a single 7-bit index corresponding to the note
currently being played. It works by first adding up all 88 bits in the input register. If this sum is
0, it means no note is being played, so it outputs 7’h7F, which is our index for a blank. If this
sum is greater than 1, it outputs 7’h7E, which is our index for an invalid note (since we only
allowed for one note being played at a time). If this sum is 1, then it has a case statement based
on the value of the 88-bit register, outputting the appropriate index of the single note being
played. This output is then passed up to the UART_decoder module, which outputs this 7-bit
index.

C. VGA Display (Jacob)
For the VGA display, I wrote a module called pixel_helper that output the appropriate pixel for
given hcount and vcount values, depending on what mode our system is in.

8

There are 7 different possible types of screens to display, so pixel_helper has a 3-bit input
register called screen, indicating which type of screen to display.

There is:

1) Main Menu
2) Keyboard mode
3) Song Creation mode
4) Basic song menu
5) Custom song menu
6) Learning mode
7) Game mode

Because the display is always from among this set (with a few squares or rectangles on top), I
made a COE file for each of the special images I required, and then generated ROMs to store
these images and their colors in memory.

I needed a keyboard image for keyboard mode, learning mode, and game mode:

(I constructed this image in Paint so that it would have the precise correct number of octaves to
match the MIDI keyboard we used.)

I needed an image for the main menu display:

(This text and text in all other images uses Times New Roman font.)

9

I needed an image for the basic song menu:

I needed an image for the custom song menu:

Lastly, I needed an image for instructions for song creation mode:

I made 5 specialized versions of the blob_image module from Lab 3, one for each of these
images, and instantiated a copy of each in pixel_helper.

In addition to these images, I also needed a selector for menu navigation. For this, I instantiated
the blob module from Lab 3, making a 35 by 35 red blob. Another input to pixel_helper is the
2-bit selection register, which tells it where a user currently is within a menu (all of our menus
have at most 4 options, so 2 bits is enough to specify the location). I then made a look up table
module to convert a position (0, 1, 2, or 3) within a menu into a y-position. By setting the
x-location of this blob to 650 and the y-location determined by the output of the lookup table,
users can navigate the menus and see the red selector move between options.

Furthermore, pixel_helper has a 6-bit register user_note as input, indicating what note is
currently being played by the user. I wanted there to be a corresponding display for this during

10

keyboard, learning, and game modes. I therefore made another instantiation of the blob module,
this time a 10 by 60 green blob. The y-position is always 580 (to be just above the image of the
keyboard, which I placed at y-location 640 to be at the bottom of the screen). For the x-position,
I made a look up table that converted note indices into x-positions, based on the exact location
where each note started and ended in the image display. For a blank note or an invalid note
(multiple notes played at once), the x-location is set to 11’h7FF, thus not showing up on the
screen.

During learning mode, I wanted to display the single note that the user is up to in the song they
are learning. I therefore gave pixel_helper a 6-bit register learning_note as input, and made yet
another instantiation of the blob module, this time a 10 by 160 blue blob. The y position is
always 480 (to be just above the image of the keyboard), and the x-position is set by the output
of the look up table that converts note indices to x-positions.
Lastly, during game mode, I wanted to make a falling notes display, showing 5 notes at once. I
therefore gave pixel_helper a 35 bit register ​notes ​as input, which is a shift register. It contains
the note index of the note that should currently be played in notes[34:28], the note after that in
notes[27:21], then the next note in notes[20:14], then the next note in notes[13:7], and the next
note after that in notes[6:0]. I therefore made 5 more instantiations of the blob module, all 10 by
160 blue blobs.

In order to synchronize the falling notes display with the underlying game, I knew that each note
should last 0.25 seconds. Therefore, I needed each note blob to drop 160 pixels in 0.25 seconds.
Working at a 65 MHz clock, I had each blob increase its y-location by 2 every 203,125 clock
cycles.

I also gave pixel_helper an input called new_note, which goes high when a new note is shifted
into the notes register, and is low otherwise. When this signal is high, the 5 note blobs’
y-locations are reset to 864 (which is -160 since the height of the screen is 1024), 0, 160, 320,
and 480. Then (on the next clock cycle, to make sure the notes register has already updated
properly), the x-locations of these 5 blobs is updated to the 5 locations corresponding to the notes
in the shift register. Since the new_note signal goes high every 0.25 seconds, each note blob falls
at the right speed so that when a new note shifts in, the transfer looks seamless.

Lastly, in order to give the user a sense of the speed of the notes, I included horizontal,
single-pixel thick black lines at y-locations 0, 160, 320, and 480. This was done by just checking
if vcount was one of those values, and if so, outputting 12’h000.

In total, pixel_helper has a case statement depending on what screen display it should have.

11

1) In main menu mode, it outputs the logical AND of the pixels from the main menu image,
and the selector blob.

2) In keyboard mode, it outputs the logical AND of the pixels from the keyboard image, and
the user note blob.

3) In song creation mode, it outputs the pixels from the song creation image.
4) In the basic song menu, it outputs the logical AND of the pixels from the basic song

menu image, and the selector blob.
5) In the custom song menu, it outputs the logical AND of the pixels from the custom song

menu image, and the selector blob.
6) In learning mode, it outputs the logical AND of the pixels from the keyboard image, the

user note blob, and the learning note blob.
7) In game mode, it outputs the pixels from the keyboard image if vcount is at least 640.

Otherwise, it outputs 0 if vcount is 0, 160, 320, or 480 (for the horizontal lines).
Otherwise, it outputs the logical AND of the pixels from the 5 note blobs, as well as the
user note blob.

D. Song Creation (Jacob)
In song creation mode, I needed to sample the user’s input from the keyboard every 0.25
seconds, and then send the appropriate signals to store these input notes in our song BRAM.

The create_song module has an enable input and a 7-bit input value (based on what note the user
is playing). It outputs an 8-bit data value to write to the BRAM, a write_enable signal, and an
address to write to in the BRAM.

Because we want to sample the user’s playing every 0.25 seconds, we wait 25,000,000 clock
cycles in between samplings (due to the 100 MHz clock).

When enable is first asserted, the address value is initialized to 753. This is because address is
always incremented by 1 just before writing to the BRAM, meaning the first location written to
is 754. This ensures that the first 4 notes of a custom song will all be blanks (giving the user time
to get to the correct starting note in game mode), since we initialize the song BRAM to have
blanks at addresses 750, 751, 752, and 753.

Then, when enable is high, a counter is incremented every clock cycle. When it has reached
24,999,999, the user input value is written to the next location in the BRAM (so write_enable is
set high for one clock cycle), and the counter goes back to 0. This continues as long as enable is
high and there is still room left in the BRAM.

12

We allow for 242 notes to be input by the user (and at one note every 0.25 seconds, this
corresponds to 1 minute and a half second for a custom song). When the user has reached the
maximum allowable memory location in the BRAM, create_song never sets write_enable high
again. Since the BRAM is initialized with an END_NOTE special value (indicating to the game
logic that the song is over) in the final address, create_song does not need to add this value.

However, if enable stops being high (a user has left song creation mode), then create_song
immediately (on the next clock cycle) writes the END_NOTE special value to the next address in
the BRAM (so that the game logic will know that the song ends there). After this, as long as
enable is low, write_enable is set low so that the BRAM is not changed.

Due to this setup, if a user again enters song creation mode, they will simply overwrite their
previous custom song.

All of the outputs from the create_song module get passed up to the top_level module, which
instantiates the BRAM. The BRAM is dual port, so the output values from create_song are the
input values for the write port on our song BRAM.

E. Game Logic (Rahul)
The game controller is a large finite state machine that tracks every state of the game, as well as
the user’s score and progress. As input, it takes a pulse indicating whether or not the game is
currently active, the note that user is currently playing (represented by a MIDI index), the current
game type (learn or play), button inputs (for menu navigation), and a 1-bit indicator of whether a
custom song has been created.

The FSM has 6 states, each of which are only used when the game is on. When the game is off,
as indicated by a 0 on the game_on input, the module simply zeros out all the internal state and
waits to be turned on once again. When the game is powered on, it enters the idle state,
STATE_IDLE, and latches all of the relevant input values, such as the current game type
(play/learn). It then progresses to the song selection state (STATE_SONG_SELECT), which
enters into a menu (see menu module below) that allows the user to select which song they wish
to play or learn. Once this has been chosen, the FSM saves the song selection as state, and feeds
a start signal into the song select module (described below). This allows the song select module
to begin feeding a shift register of 5 notes to the game controller, which are used for the actual
gameplay.

The game controller progresses to one of two states, either the play (STATE_PLAY) or learn
(STATE_LEARN) mode. In both of these states, the FSM uses almost the same logic. In the play
state, It uses a counter to sample the user’s input note every tenth of a second, and it compares

13

this to the expected note from the song selection module to determine whether the user is
correctly playing the note. If they are indeed playing the correct note, it increments their score. In
either case, it increments a second score counter which represents the maximum possible score
for the current song. In playing mode, this is the only logic needed, as the song select module
automatically advances the notes every quarter of a second, as described in the song select
module section below. However, in the learn state, the module samples the user’s note
continuously, in order to determine whether or not the user has held the correct note for the
correct length of a quarter of a second. Once they have, it asserts an advance_note signal to
signal to the song select module to shift in the next note. In this way, the user is able to correctly
progress through the song, and thus learn it. In both states, the module has special logic for when
it encounters a sentinel index that represents the end of a song (7’b111_1100). Once it has
encountered this note index, it advances to the next state, SONG_FINISH, which represents the
end of the game.

In STATE_FINISH state, the game gets ready to reset. It zeros out all the values except for the
user’s score and the maximum possible score of the song. These two values are set as outputs
back up to the top level module, where they are used to calculate and display the user’s final
percentage score. It then moves back to STATE_IDLE, to wait for the next game to be played.
This extra state mainly serves to signal to the top level that the game has finished, and to transfer
control of the VGA display back to this upper level. When the module is in STATE_FINISH, it
sends this to the top level through an output register that allows the upper level to revert its
internal state back to its top level menu, and thus restart the system.

The sixth state is STATE_MODE_SELECT, which is not currently used. It is intended for our
third stretch goal, allowing the user to input notes by singing, rather than playing the keyboard.
This mode takes the user to an extra menu that allows for the option to choose whether they will
play keyboard or sing into a mic, but we did not complete implementing this stretch goal.

F. Song Select Module (Rahul)
The Song Select Module represents the interface between the Game Controller and the BRAM
that holds the songs. It takes as input the desired song index as well as a start pulse that indicates
to it when it should begin outputting that song, and whether it is operating in play or learn mode.
In turn, it outputs a shift register that represents the next 5 notes in the song.

In addition to these control signals, the song select module also outputs the current address it
wishes to read from and takes as input the note from that address. We could not directly put the
BRAM into this module, because the song creation module (discussed above) also needs to
interact with it. Thus, we had to place the BRAM itself at a higher level, and route the signals up
to it. However, for the intents of the abstraction presented to the Game Controller (a module that

14

takes the song index and a start signal and outputs the top 5 notes), this does not make a
difference.

When the start signal is asserted it latches the current song index and the game type (play or
learn). It then resets the current address to the beginning of the desired song. We placed every
song in a fixed 250 byte segment of the BRAM, so these addresses were easy to calculate. It then
enters a “startup” state, which is used to quickly load the first five notes of the song in 10 clock
cycles (because the BRAM has a 2 cycle read latency). After performing this load, it moves to
the regular state, which has two different behaviors, depending on whether it is operating in play
or learn mode. In play mode, the module simply uses a counter to advance the address being read
from the BRAM every quarter of a second, as each note represents a quarter of a second of song
length. In learn mode, the module uses an input advance pulse to determine when to advance to
the next note. In both modes, when the module reads a note index that represents the end of the
song, it stops reading from the BRAM and begins shifting in rests. This is important, as the
display may otherwise show random values falling on the screen after the end of the song,
depending on whatever values may come after the song in memory.

One final important output of this module is a pulse that goes high every time a new note is
shifted into the notes shift register. This is used by the pixel_helper module to correctly update
the display with the notes shifting in. The fact that the signal is used by the VGA logic is
important, because VGA is clocked at 65MHz, which is slower than the game’s 100MHz clock.
Thus, although this signal is really a pulse, it goes high for four clock cycles every time it should
represent a new song. This duplication is required so that the slower clock domain is able to still
correctly sample the pulse.

In order to quickly and correctly generate the coe files for the song BRAM, I wrote a Python
script that followed our internal format. I have included this at the end of the writeup in
Appendix B.

G. Learning Mode (Rahul)
The learning mode of the game is part of the game controller and song select modules, as
described above. It requires the addition of extra state, which is described in more detail here.
The learning mode is similar to the playing mode, in that it reads notes from the BRAM and
sends them out to the VGA display modules. However, the mechanism for advancing notes is
different, as it must now wait for user input and advance depending on whether or not the user is
correctly playing notes, rather than keeping an internal timer to continuously advance notes. To
this end, the game controller was augmented with a special state that works similarly to a
debouncer; it tracks the most recently played note, and for how long it has been played. When
the most recently played note is the current note of the song, and its length is equal to the correct

15

note length (a quarter of a second), it advances the song forward to the next note. In order to
allow for this external control on the note advancement, an advance input signal had to be added
to the Song Select module, which in turn had to maintain an internal state of whether it was
operating in play mode (and thus should advance notes on its own), or whether it was operating
in learn mode (and should only advance notes when told to).

This extra functionality was possible to add in because of the clean abstractions chosen for other
aspects of the game. By splitting the game control logic out into a separate FSM, adding the
main learning mode logic was clean, as it represents an extra state in the game controller FSM.
Furthermore, the separation of the song select module to act as an interface to the BRAM made it
relatively clean to account for the fact that learning mode only advances notes when the user
plays the correct note. The game controller took care of tracking all of the user input, and then
only had to present a pulse on note advancement to the song select module, which only had to
use this signal to determine when to advance notes. The modularization allows for clean coding
and separation of functionality.

H. Microphone Input (Rahul)
The microphone input component of this project allows the user to navigate menus by whistling
high or low notes. In order to accomplish the microphone input, I wrote two main modules, the
fft_analyzer and fft_sampler modules. I also used some ancillary modules, such as the timer
described below.

To perform the microphone input, I first had to actually set up an external microphone that
provided an analog audio signal to the Nexys4. I used a small microphone breadboard module
from lab and set up a quick circuit that used a capacitor to couple the signal and overlay it on a
0.5V DC offset, set up by a voltage divider between power (3.3V from the Nexys4) and ground.
The microphone module outputs a 1V peak to peak signal, and the Nexys4 analog input reads on
the range 0 to 1V, so this circuit allowed for maximum sensitivity to the analog waveform. The
circuit is the same as is used in Lab 5A, and I have included an image from the lab below.

16

Microphone Input Circuit, image from Lab 5A

(​http://web.mit.edu/6.111/volume2/www/f2019/handouts/labs/lab5_19a/index.html​)

The fft_analyzer runs on a 104MHz clock, because the Nexys4’s internal ADC module uses 26
clock cycles to take samples. Thus, by clocking at a multiple of 26, I was able to configure the
ADC IP block to exactly output a 1MHz sampled digital signal from the microphone input. The
module consists of two major pieces.

First, it contains an entire pipelined FFT implementation, inspired heavily by the FFT Demo
provided in class. This implementation performs a 4096 sample FFT of the current input audio at
a rate of 60Hz, providing more than enough resolution to correctly identify the user’s whistling
and respond quickly. Second, it contains an FSM that performs all of the functions necessary to
analyze the FFTs taken and determine whether a low or a high note is being whistled.

H.i. FFT Calculation
The first stage of the FFT calculation is an ADC IP block, which takes as input the analog signal
from the vauxp3 and vauxn3 ports from the Nexys4 and outputs a 12-bit 1MHz sampling of the
analog audio.

The second state of the pipeline is an oversampling step, which oversamples the digital audio
sample by 16. In particular, it performs a sliding window summation of every 16 samples, and
divides the resulting waveform by 4, so that it adds 2 bits to the waveform, resulting in 14-bit
samples. This oversample allows the waveform to be downsampled to 62.5KHz, which is much
better for the FFT we are interested in taking. We are differentiating whistling by a human,
which ranges in the low 1000s and high 100s of Hz, so the FFT needs to be granular enough to
clearly distinguish these frequencies. Thus, using a 1MHz sampling rate is useless, as it
represents far too many high frequencies that are not relevant. By downsampling to 62.5 KHz,

17

http://web.mit.edu/6.111/volume2/www/f2019/handouts/labs/lab5_19a/index.html

we only consider frequencies up to 31.25 KHz, which is a tighter range around our relevant
frequencies. This smaller range also allows the FFT to fit within a relatively small window, so
that it does not use up too many resources on the chip (especially when they are not needed). The
average oversampling is used rather than a simple sample in order to introduce less noise through
the sampling process.

The next stage in the FFT pipeline is a BRAM that stores a frame of the most recent 4096 data
samples from the oversampling stage. This allows the stages further down the line to read the
input data when it is convenient, rather than having to read and buffer values when they are
inputted. This BRAM simply has a looping counter that keeps writing in data from the
oversampling stage. Because it is writing in data from the oversampling stage, it has to correctly
synchronize with the oversampling stage and only write in a sample every 16 cycles, when a new
one is ready.

The fourth stage in the FFT processing pipeline is a module to move data from the BRAM to the
FFT IP block. Because the FFT is calculated only once every 60th of a second, it reads from the
data BRAM much less frequently than data is written to it, so this module acts as an interface
between the two. This module is triggered on the 60Hz pulse to send the current 4096-sample
data frame to the FFT. It also uses the frame_tready signal from the FFT module, which indicates
that the FFT IP is ready to receive the next data value, to advance the address it is currently
reading from the BRAM. This module is a simple counter FSM, and simply maintains its current
position in the BRAM and advances this position every time the FFT IP indicates over
frame_tready that the next sample should be sent. One extra piece that I added is a Hann
windowing filter over this BRAM data. I created a 4096 element lookup table that holds Hann
filter coefficients (rounded to 24 bits). I then read the correct element from the LUT and multiply
it against the data value read from the BRAM to correctly filter the outputted data. Because the
FFT takes in only a single finite frame of data, it implicitly treats it as though it is repeated
infinitely. Thus, if the edges do not smoothly match up, the resulting FFT is very noisy. I used
the Hann windowing filter to create a clean and more easily analyzable output FFT (see the
image below for the filter). I have also included the Python script I used to generate this lookup
table in Appendix B.

18

Hann Window of length N, image from Wikipedia

(​https://en.wikipedia.org/wiki/Hann_function​)

The fifth stage in the FFT pipeline is the actual FFT IP block. This is a specially designed FFT
logical block that performs a fully-pipelined 4096 element FFT. I used the IP module from the
FFT Demo provided in class without modification, as a length of 4096 provided enough
granularity in the resulting FFT to distinguish the frequency range I was interested in.

The sixth stage of the FFT is another BRAM that holds the results of the FFT that is calculated
60 times a second. Because the FFT is calculated so infrequently, it is desirable to cache and
hold the results in a BRAM, from which they can be read when needed, rather than having to
immediately begin processing the FFT samples as they arrive. Thus, the final stage of the FFT is
a BRAM that simply takes as input the output of the FFT IP and writes to the BRAM in
sequential order. The BRAM actually only holds the magnitude of the first 1024 of the 4096 total
samples, because this is block represents the range of frequencies that the whistle could range in,
and is enough for the following analysis.

H.ii. FFT Analysis
The FFT analysis runs 60 times a second, processing each FFT after it has completely been
written to the output BRAM. As soon as this happens, the first stage of the analysis is the
fft_sampler module. This module performs a sweep over a subset of the 1024-sample FFT and
determines the index of the largest bucket. It only considers samples between indices 8 and 300,
both of which are parameters that I tuned so that my system was responsive only to the
frequency range of whistling. Within this range, it performs a sweeping window-sum of the
samples, and saves the index of the window that has the largest magnitude. This window sum,
rather than simply choosing the largest sample, helps to filter out any extraneous noise that

19

https://en.wikipedia.org/wiki/Hann_function

randomly shows up, because I noticed after spending time analyzing FFT outputs that the true
frequency content generally has ancillary content in neighboring frequency buckets, whereas
noise is more isolated to a single frequency range. The sample performs this scan using an FSM
that is generally in an idle state, but then moves to a sweep state whenever a start input (based on
the completion of a new FFT in the FFT calculation stage above) pulse is asserted. In the sweep
state, it keeps an accumulating sum and a shift register of values currently in the window,
calculates the sum at each index, and saves the index with the largest sum, as well as the actual
sum. If the actual sum is larger than a threshold value, which I tuned to make sure that the
system was only responsive to intended input and not environmental noise, it returns the index;
otherwise, it returns a value to indicate that there is no current input.

The three tunable parameters of the fft_sampler module are very important for tuning the system
to work for a given input frequency range. Because this project dealt with whistling, I tuned the
set of considered FFT indices to the lower end of the spectrum, 8 to 300. Because the underlying
audio samples are at 62.5KHz and this is a 4096 sample FFT, that represents frequencies from
122Hz to 4.5KHz, which is a reasonable range for human whistling. The third parameter, the
threshold magnitude for the windowed sum, is important to rule out any environmental noise.
The environment always has a reasonable frequency component, and may randomly be large
enough to dominate the input, especially when no noise is currently intended to be inputted to the
system. By increasing the minimum threshold for how large an FFT window must be before it is
considered actual input into the system, I could make it reject more noise and be more sensitive
only to close inputs.

After this, there is a final FSM that keeps track of whether the user is inputting a low or a high
whistle into the microphone. It cannot simply check at each cycle whether the user is inputting
low or high and return this value, because the microphone was noisy enough that this was not a
consistently high value as the user whistled. Thus, even with rising edge detection, the inputted
note would look more like several inputted notes and the user would shoot up or down the menus
without having any fine grained control. Thus, I used a more sophisticated FSM to track user
input.

The high/low detection works as follows. When the system is in the tracking state, if it detects
either a high or a low note for long enough (both the cutoff frequency between high/low and the
minimum required length are tunable parameters), it outputs the correct value as a detected note,
and enters the waiting state. In the waiting state, the system starts a 0.5 second timer, and holds
the previously detected note on the output until this timer expires. By using a timer, the system
makes sure that it represents the users intended input with a clean output signal for a sufficiently
long time and does not provide the user such fine grained control (e.g. 104MHz control) that they
would quickly shoot up or down the menu even with a short whistle. To implement this behavior,

20

the FSM has two states: STATE_TRACKING and STATE_WAITING. It uses a 2-bit state
variable to represent the current state of the detected audio, either high, low, or none. This state
variable is updated as described. Further, it uses a counter variable to count how long the current
note has been held, in order to determine when it has been held long enough to be considered a
valid input.

There are three important tunable parameters in this case. The cutoff frequency between high and
low notes is important to make sure that the system is usable. If the cutoff is too low or too high,
the user will not be able to input both high and low notes and will not be able to navigate the
menus with sound. Thus this threshold must be tuned so that it is easy to whistle both below and
above it. The minimum length of a note to be considered a valid input is important to screen out
noise. Many notes in the valid range may be generated for a cycle or two due to environmental
noise. By making this parameter large enough, it is possible to screen out such noise. Making it
too large, however, makes the system feel unresponsive, as the user will have to hold the note for
a long time. Thus, there is a tradeoff between noise sensitivity and usability with this parameter.
Finally, the third parameter is the length of the timer, which again provides a tradeoff between
usability and sensitivity. If the timer is too short, the system will be too sensitive, and will not be
able to accurately navigate menus. However, if the timer is too short, the system will be too slow
to respond, and will provide a bad experience. Thus, it is important to choose good values for
these parameters.

The overall output of the entire fft_analysis module are two 1-bit signals, hi and lo, indicating
whether a high or low note (respectively) are being inputted into the system. This interface
provides a very clean integration with the top level, as it looks exactly equivalent to the btnu and
btnd buttons on the Nexys4, which provide an alternative means of navigating menus.

I. Top Level
The top level module represents an integration of all of the major components described above. It
essentially just consists of instantiations of all of the major modules, such as the UART decoder,
VGA display, Game Controller, and FFT analyzer. In addition, it also maintains a small FSM to
allow for the top level module to choose between the four main modes of the system: keyboard
mode, song creation mode, learning mode, and playing mode. The FSM has two states, to
represent whether it is currently in the top level menu, or whether it is operating in one of the
chosen modes. There are two other main pieces of logic in the top level module. The first is a
1-bit signal that indicates whether or not a custom song has been created. It starts as 0, and goes
to 1 once a new song is created. This signal is routed to the game_controller module for its user.
In addition, it also contains logic to switch the input mode of the system. Our baseline goal was
to implement the system with switches as input, so we maintained this input option in the final
version of the project. It can be activated by flipping on switch 15, at which point the system will

21

operate through the switches on the Nexys4, rather than the keyboard. This was purely for
demonstration of the baseline goals, and it is expected that most users will prefer to play the
game on the keyboard.

The other main purpose of the top level module is to correctly debounce and synchronize all of
the signals. All of the user inputted signals must be debounced (buttons) and synchronized
(switches) to the main 100MHz clock domain. Furthermore, the system uses 3 clock domains,
65MHz, 100MHz, and 104MHz, so any signals that are passed between these different
boundaries must be synchronized to their new clocks. All of this synchronization logic is
provided in the top level.

Finally, because the song BRAM is written to by the song creation mode and read from by the
Song Select module, we place the actual BRAM itself in the top level because it is the lowest
common ancestor of these two modules in the hierarchy of the project. We route all of the
relevant signals (read and write addresses, write data, write enable) up to the top level to
interface with the song BRAM.

J. Miscellaneous Modules (Menu, Timer, Score Calculation) (Rahul)
Many of the major modules used several helper modules that performed common subtasks in the
larger components of the project. We briefly list a few of these modules here to describe some of
the required functionality.

The Menu Module serves as an interface for all of the menus in the system. It provides an FSM
that tracks the user’s current menu choice based on an input up and down signal. It outputs this
menu choice. It has a programmable upper bound, so that any number of menu items can be
represented and dynamically changed. This module is used for all the menus in the system.

The Timer module provides a countdown timer for the FFT analysis. This countdown timer starts
whenever the start input pulse is asserted, and counts down for a variable length, depending on
the length inputted to it. It latches this length and counts down from it until it expires, and then is
ready to start again with a new length. It perform this countdown with an FSM that has two
states: counting down and idle.

The Score Calculation module provides an approximate decimal division functionality. It takes
as input the user’s score and the maximum possible score they could achieve, and returns their
percentage score, rounded to the nearest integer. It accomplishes this by using two lookup tables
for powers of 10 and 16, and by starting from the largest possible power of 10 (10^2) and
subtracting off ever decreasing multiples of until the score hits zero. In other words, simulates
division through repeated subtraction. It begins this computation every time a start signal is

22

asserted, at which point it latches the current score and maximum score, and performs the
percentage calculation.

IV. Trickiest Pieces of the Project

Jacob
One of the hardest pieces was getting the external circuit connecting the MIDI keyboard to the
Nexys4 working. Originally, I used resistor values that were too low, which caused me to
inadvertently blow out the LED inside the opto-isolator I was using. I spent hours trying to figure
out why the circuit was not working. Gim helped me debug this and helped me choose resistor
values in order to prevent the internal LED from blowing out.

Another difficulty I found was that occasionally, if a key was hit or released very quickly on the
MIDI keyboard, no message would be sent. Therefore, the UART_decoder module would not
register the change in what note(s) were being played. This initially led to some issues, because
if the UART_decoder module thought some note was continually being played, then any other
note played would then register as an invalid note, since then multiple notes were on. In order to
fix this issue, I allowed for a reset of just the 88-bit register that keeps track of which notes are
currently being played, using button btnl on the Nexys4. That way, if this ever happened, I could
press btnl to indicate that no note is being pressed at the moment.

Perhaps the trickiest bug I had was that when we first integrated the game logic with the falling
notes display for game mode, it worked most of the time, but every so often, the display would
glitch, showing notes jumping all over the screen. It was interesting that it was always the case
that a song glitched throughout, from beginning to end, or not at all. This was very difficult to
debug because despite my best efforts, I could not find a pattern regarding when it would glitch
and when it would not. I tried updating the x-locations of the 5 different notes on the display at
different times from one another in order to see if perhaps the issue was with only some of them,
but I could not find anything from that.

Then, I realized that the issue was occurring because of the slower clock speed of pixel_helper
than the game logic. The game logic runs at 100 MHz, while pixel_helper runs at 65 MHz. The
display logic for the falling notes, as explained above, relies crucially on the new_note signal,
which is an input to pixel_helper that goes high when a new note has just been shifted into the
shift register. Even though we were synchronizing this signal for the 65 MHz clock, I realized
that because the game logic clock is faster, a single clock cycle of the 100 MHz clock might be
too fast for the 65 MHz clock to see, depending on the shift between the clocks at the start of
gameplay. This was the root of the bug, and also explains why there seemed to be no pattern to

23

when there was or was not glitching; glitching was determined by the shift between the clocks at
the moment the game was started.

In order to remedy the situation, since the 100 MHz clock is less than twice as fast as the 65
MHz clock, we made the new_note signal go high for 4 clock cycles. As soon as we did this, the
display worked smoothly.

Rahul
One of the trickiest pieces of this project for me was the note representations of the songs, and
how to correctly detect and deal with songs ending. Early on, I played around with the idea of
storing the length of the song in the BRAM, before the notes of the song. This was a pretty
simple idea, and it allowed for the songs to be variably sized. However, the implementation
would be fairly complicated, as the lengths of songs would have to be read into register and held
as state throughout the duration of the song, and passed on to interested modules, like the game
controller and scoring modules. Further, I knew that we would try to complete the song creation
mode, and this would complicate that logic as it would have to track and write in song lengths.
Thus, I came up with a different way to represent the ends of songs. In particular, I assigned a
special sentinel value that was unused by the note indices to represent the ending of a song. This
representation allows for the songs to be played and the end states to be calculated on the fly,
without needing any prior knowledge about the songs. This made it much simpler to track song
state and to transition between songs when they ended. It also made it much easier later on to
keep score, as all I had to do was add an extra counter that always incremented score, rather than
only when the user gets the correct note, and I had the correct maximum score value.

The FFT analysis segment of this project also had many tricky parts. First off, it was difficult to
get the FFT itself correctly functioning

After I had a clean FFT output that could correctly detect the input note, it was even more
challenging to devise a system that would detect the user input in a responsive and smooth
manner. The first issue to tackle was detecting the dominant note being inputted into the
microphone at any given time. The microphone picks up a lot of environmental noise, so it was
not enough to simply sweep through the frequency range and choose the largest bucket. Because
of random noise input, this would sometimes be an invalid bucket index. Instead, after analyzing
many FFT frames, I noticed that any valid input note produced relatively large frequency
components in the immediately neighboring buckets. Thus, I decided to use an averaging
window of size 2 to find the largest bucket, rather than a simple maximum. This choice provided
robustness to noise.

24

After fixing this frequency detection issue, there were still two main issues with user high/low
differentiation. The first is that the detection is happening at 60Hz (the number of times per
second an FFT is taken). Thus, if I naively outputted the detected hi/lo bucket at every sample,
the system would be far too fast for a human to operate it, and any attempt to input a note would
result in the menu pointer quickly advancing through the entire menu. The second issue is that
the FFT itself was still fairly noisy, and so I could not necessarily assume that a user holding a
steady input note would result in a steady high/low detection (if this was the case, I could have
used an edge detector to fix the first issue). Thus, in order to remedy these issues, I used a
timeout based technique. First, I ensured that the user’s note was held for a sufficient number of
cycles. At a fraction of a second, this value was short enough to expect to happen without
intervening noise, and yet long enough to not accidentally misconstrue environmental noise as
user input. Second, I used a timeout clock to insert a 0.5 second delay in between consecutive
user inputs. In this manner, I was able to avoid the issue of updating the detected note too fast
and making the system unusable. Tuning these two lengths was crucial to making the system
responsive to the user and yet robust to noise.

V. Lessons Learned / Advice for Future Projects

Jacob
One lesson I learned that I would like to pass on to future project groups was regarding project
management and scope. Initially, our goals were far too ambitious for a 2 person group, given
the time constraints of the project. Essentially, we initially hoped to have keyboard mode and
game mode, but also allow for user input via singing or via the MIDI keyboard. On top that, to
help with the singing and playback of the singing, we were planning on doing some form of
noise cancellation, in which our system would learn the characteristics of the noise in its
environment and strip those from future recordings for noise-attenuated playback.

Because we saw how ambitious these goals were, we decided very early on to dive into the more
challenging-seeming aspects, so that in case they were not feasible, we had time to focus our
time elsewhere. I went to lab very early on in the project and began playing around with the FFT
demo provided, and saw how much noise there seemed to be, spread throughout the frequency
spectrum. I therefore recognized that picking out features of the noise in that environment may
be very difficult.

I then did some research online to see if people had ever tried to do noise cancellation on an
FPGA. Most of what I found had to do with real-time, active noise cancellation using
beam-forming, which was not our intended goal. I soon recognized that noise cancellation would
have been an entire project on its own, so we ended up removing that from our project, instead
supplementing keyboard and game mode with learning and song creation mode.

25

The advice I would give future groups is to begin exploring some of the more difficult-seeming
yet fundamental pieces of your project early on. This will give you time to assess how difficult
and time-consuming that aspect of your project will be, which will give you a much better
overall sense of how feasible your project is.

One other piece of advice I have for future groups is to integrate earlier than you think you need
to. It always seems that integration should be simple, in that if each piece works, they should just
work together. Due to different clock domains, as well as generating IP sources for slightly
different boards, Rahul and I ended up spending many days just integrating pieces that already
worked individually. While it might be best to integrate as you go as opposed to leaving all
integration for the end, certainly make sure to integrate more than a few days before the project
is due.

Lastly, I strongly recommend trying to get hardware working as early as possible. Hardware can
be deceptively difficult to get working and integrated with the Nexys4, as I learned in trying to
interface properly with the MIDI keyboard. Even something as simple as realizing I needed to
order a cable, which delayed my working on the keyboard interface for a week, could have been
detrimental had I not been working on it early in the project. Therefore, just trying to get some of
these more unknown pieces operational early on can be a huge help.

Rahul
One lesson that I think will be very valuable to future groups is to think carefully about the
abstractions and formats they wish to use in their project before beginning to implement
anything. When I was working on the song selection and game controller logic, I had to create a
good way to represent songs in memory and, in particular, how to deal with variable length
songs. A naive idea is to store the lengths of the song in the BRAM, before the song data itself,
but this implementation turns out to be much more involved and higher latency than the solution
I used, as described in the section above on tricky parts of the project. Thinking about this
abstraction before implementing it was very useful, and made it much more feasible for me to
implement my stretch goal of learning mode afterwards, as this representation was much more
amenable to different modes of song iteration. Similarly, by thinking through the operation of the
system, I was able to write an abstract menu wrapper that we used throughout the system for all
of the menus.

Another general piece of advice that I have for future groups is to begin early and implement the
large components as soon as possible. As the semester progresses, all classes inevitably get much
busier, and it is very easy to overestimate the amount of time you have left. I think the best way
to counter this issue is to find the most complex component of the project and to implement and

26

test it first, so that a large piece of the project is complete early on, rather than tackling smaller,
easier pieces first. This way, you will be able to make significant progress later on in smaller
chunks, rather than leaving a large and complex piece for the end. Along this line of thinking, I
implemented the entire first version of the game controller in the first week of working on the
project, and was able to iteratively refine this implementation in smaller chunks throughout the
following weeks. Similar to this advice, I would also generally suggest that future teams think
through their projects and determine what the most difficult parts will be, so that they are able to
appropriately order their work on it. I think that breaking down the work to be done into a clear
and directly actionable set of objectives ordered by projected difficulty makes the project much
more tractable.

A final piece of advice I have for future teams is to ensure that they begin working with any new
concepts as early as possible. Before this project, I had never worked with the FFT module, and I
had only very limited experience with audio input to the Nexys4 in general. Thus, understanding
and getting these aspects of the system to work was disproportionately difficult. I did not
originally anticipate this, and it took many late nights in the lab to figure out how to get the FFT
to produce valid results that I could use to begin differentiating note inputs. When calibrating for
how long various parts of the projects will take, I would suggest to teams to keep in mind that
new concepts take much longer to learn than expected, and that starting on these parts early is a
good idea.

27

Appendix A: Verilog Code
See our GitHub repo (​https://github.com/rahulyesantharao/FPGA​) to view this code in a more
convenient code viewer. We have also included all of the project source code below, for
completeness.

top_level.sv
///////////////////////////////////////

// Top level module: Integrates all of the components.

module​ ​top_level​(
 input​ clk_100mhz,
 input​ [​15​:​0​] sw,
 input​ btnc, btnu, btnd, btnr, btnl,
 input​ vauxp3,
 input​ vauxn3,
 input​ vn_in,
 input​ vp_in,
 input​ [​7​:​0​] jb,
 ​output​ ​logic​ [​15​:​0​] led,
 ​output​ ​logic​ ca, cb, cc, cd, ce, cf, cg, dp,
 ​output​ ​logic​ [​7​:​0​] an,
 ​output​ ​logic​ aud_pwm,
 ​output​ ​logic​ aud_sd,
 output​[​3​:​0​] vga_r,
 output​[​3​:​0​] vga_b,
 output​[​3​:​0​] vga_g,
 output​ vga_hs,
 output​ vga_vs
);

// setup clocks

wire​ clk_104mhz, clk_65mhz;
clk_wiz_0​ ​clockgen​(
 .​clk_in1​(clk_100mhz),
 .​clk_out1​(clk_104mhz),
 .​clk_out2​(clk_65mhz));

// debounce reset

28

https://github.com/rahulyesantharao/FPGA

logic​ reset;
debounce​ ​btnr_debounce​(.​clk_in​(clk_100mhz), .​noisy_in​(btnr), .​clean_out​(reset));

// synchronize switches

logic​ [​15​:​0​] sync_sw;
synchronize​ ​sw0_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​0​]),
.​sync_out​(sync_sw[​0​]));
synchronize​ ​sw1_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​1​]),
.​sync_out​(sync_sw[​1​]));
synchronize​ ​sw2_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​2​]),
.​sync_out​(sync_sw[​2​]));
synchronize​ ​sw3_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​3​]),
.​sync_out​(sync_sw[​3​]));
synchronize​ ​sw4_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​4​]),
.​sync_out​(sync_sw[​4​]));
synchronize​ ​sw5_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​5​]),
.​sync_out​(sync_sw[​5​]));
synchronize​ ​sw6_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​6​]),
.​sync_out​(sync_sw[​6​]));
synchronize​ ​sw7_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​7​]),
.​sync_out​(sync_sw[​7​]));
synchronize​ ​sw8_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​8​]),
.​sync_out​(sync_sw[​8​]));
synchronize​ ​sw9_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​9​]),
.​sync_out​(sync_sw[​9​]));
synchronize​ ​sw15_sync​(.​clk_in​(clk_100mhz), .​unsync_in​(sw[​15​]),
.​sync_out​(sync_sw[​15​]));
// debounce buttons

logic​ db_btnc, db_btnu, db_btnd, db_btnl;
debounce​ ​btnc_debounce​(.​rst_in​(reset), .​clk_in​(clk_100mhz), .​noisy_in​(btnc),
.​clean_out​(db_btnc));
debounce​ ​btnu_debounce​(.​rst_in​(reset), .​clk_in​(clk_100mhz), .​noisy_in​(btnu),
.​clean_out​(db_btnu));
debounce​ ​btnd_debounce​(.​rst_in​(reset), .​clk_in​(clk_100mhz), .​noisy_in​(btnd),
.​clean_out​(db_btnd));
debounce​ ​btnl_debounce​(.​rst_in​(reset), .​clk_in​(clk_100mhz), .​noisy_in​(btnl),
.​clean_out​(db_btnl));

29

// Instantiate the keyboard module, to allow for system input through the Nexys4

switches.

keyboard​ ​my_keyboard​(.​clk_100mhz​(clk_100mhz), .​sw​(sync_sw[​9​:​0​]), .​vauxp3​(vauxp3),
 .​vauxn3​(vauxn3), .​vn_in​(vn_in), .​vp_in​(vp_in), .​reset​(reset),
.​enable​(sync_sw[​15​]),
 .​aud_pwm​(aud_pwm), .​aud_sd​(aud_sd));

// 7-segment display

wire​ [​31​:​0​] seg_data;
wire​ [​6​:​0​] segments;
assign​ {cg, cf, ce, cd, cb, cc, ca} = segments[​6​:​0​];
display_8hex​ ​seven_seg_display​(.​clk_in​(clk_100mhz), .​data_in​(seg_data),
.​seg_out​(segments),
 .​strobe_out​(an));
assign​ dp = ​1'b1​;

// game controller

localparam​ VGA_IDLE = ​3'd0​;
localparam​ VGA_MODE_SELECT = ​3'd0​;
localparam​ VGA_SONG_SELECT = ​3'd1​;
localparam​ VGA_GAME_PLAY = ​3'd2​;
localparam​ VGA_GAME_FINISH = ​3'd3​;

// edge detectors of up/down buttons

logic​ old_db_btnd;
logic​ rising_btnd;
logic​ old_db_btnu;
logic​ rising_btnu;
logic​ old_db_btnc;
logic​ rising_btnc;

assign​ rising_btnd = db_btnd & !old_db_btnd;
assign​ rising_btnu = db_btnu & !old_db_btnu;
assign​ rising_btnc = db_btnc & !old_db_btnc;

always_ff​ @(​posedge​ clk_100mhz)​begin

30

 ​if​ (reset) ​begin
 old_db_btnd <= ​1'b0​;
 old_db_btnu <= ​1'b0​;
 old_db_btnc <= ​1'b0​;
 ​end​ ​else​ ​begin
 old_db_btnd <= db_btnd;

 old_db_btnu <= db_btnu;

 old_db_btnc <= db_btnc;

 ​end
end

////// TOP LEVEL FSM ///////////////////////////////////////

// forward declaration of FFT signals and game state

logic​ rising_lo;
logic​ rising_hi;
logic​ [​3​:​0​] game_state;

// top level menu

localparam​ TYPE_KEYBOARD = ​2'd0​;
localparam​ TYPE_4 = ​2'd1​;
localparam​ TYPE_LEARN = ​2'd2​;
localparam​ TYPE_PLAY = ​2'd3​;
logic​ [​1​:​0​] current_type_choice;
menu​ #(.​BOTTOM_CHOICE​(TYPE_KEYBOARD))
 ​mode_menu​(.​clk_in​(clk_100mhz), .​rst_in​(reset), .​btn_up​(rising_btnu |
rising_hi), .​btn_down​(rising_btnd | rising_lo), .​choice​(current_type_choice),
.​top_choice​(TYPE_PLAY));

// PARAMETERS

// the state of the game when it is completed

localparam​ GAME_STATE_FINISH = ​4'd5​;
// state parameter values

localparam​ STATE_MENU = ​1'd0​;
localparam​ STATE_TYPE = ​1'd1​; ​// absorbing, for now

// STATE

31

logic​ [​1​:​0​] current_type; ​// the current mode of the system (top level or game
controller)

logic​ state; ​// the state the system is in (main menu or subchoice)
always_ff​ @(​posedge​ clk_100mhz) ​begin
 ​if​(reset) ​begin
 state <= STATE_MENU;

 current_type <= TYPE_PLAY;

 ​end​ ​else​ ​begin
 ​case​(state)
 STATE_MENU: ​begin
 state <= (rising_btnc) ? STATE_TYPE : STATE_MENU; ​// when btnc is
pressed, transition

 current_type <= current_type_choice; ​// just keep tracking
 ​end
 STATE_TYPE: ​begin
 ​// only go back to the top level when the game finishes
 state <= (game_state == GAME_STATE_FINISH) ? STATE_MENU :

STATE_TYPE;

 current_type <= current_type;

 ​end
 ​endcase
 ​end
end

//

// Determine whether a custom song has been created.

logic​ enable; ​// whether or not the system is currently in song creation
assign​ enable = (state == STATE_TYPE && current_type == TYPE_4);
logic​ song_created = ​1'b0​; ​// whether or not a song has been created
always_ff​ @(​posedge​ clk_100mhz) song_created <= enable | song_created;

// game controller signals

logic​ [​2​:​0​] game_vga_mode;
logic​ [​1​:​0​] game_menu_pos;
logic​ [​34​:​0​] game_current_notes;
logic​ [​11​:​0​] game_current_score;
logic​ [​11​:​0​] game_current_max_score;

32

logic​ [​1​:​0​] mode_choice;
logic​ [​1​:​0​] song_choice;
logic​ new_note_shifting_in;
logic​ is_game_on; ​// calculated based on states from the top level FSM
assign​ is_game_on = (state == STATE_TYPE &&
 (current_type == TYPE_PLAY || current_type == TYPE_LEARN)) ? ​1'b1​ : ​1'b0​;

// UART controller - retrieves the note played by the user

logic​ [​6​:​0​] user_note_out_keyboard;
UART_decoder​ ​my_note​(.​jb​(jb), .​clk_100mhz​(clk_100mhz), .​reset​(db_btnl),
.​led​(user_note_out_keyboard));

// The user's input note. When switch 15 is on, it uses the switches, and

otherwise, it uses the keyboard.

logic​ [​6​:​0​] user_note_out;
assign​ user_note_out = sync_sw[​15​] ? sync_sw[​6​:​0​] : user_note_out_keyboard;

// The song creation module

logic​ ram_wea;
logic​ [​9​:​0​] ram_address;
logic​ [​7​:​0​] ram_write_data;
create_song​ ​my_song_creator​ (.​clk_100mhz​(clk_100mhz), .​enable​(enable),
.​note_in​(user_note_out), .​value​(ram_write_data), .​write_enable​(ram_wea),
.​address_out​(ram_address));

// The song BRAM, which interfaces with both create_song and song_select

(indirectly)

logic​ [​7​:​0​] song_read_note;
logic​ [​9​:​0​] song_read_current_addr;
song_rom​ ​my_songs​(.​clka​(clk_100mhz), .​addra​(ram_address), .​dina​(ram_write_data),
.​wea​(ram_wea), .​clkb​(clk_100mhz), .​addrb​(song_read_current_addr),
.​doutb​(song_read_note));

// The game controller.

game_controller​ #(
 .​VGA_IDLE​(VGA_IDLE),
 .​VGA_MODE_SELECT​(VGA_MODE_SELECT),

33

 .​VGA_SONG_SELECT​(VGA_SONG_SELECT),
 .​VGA_GAME_PLAY​(VGA_GAME_PLAY),
 .​VGA_GAME_FINISH​(VGA_GAME_FINISH))
my_game​ (
 .​clk_in​(clk_100mhz),
 .​rst_in​(reset),
 .​game_on​(is_game_on),
 .​btnu​(rising_hi | rising_btnu),
 .​btnd​(rising_lo | rising_btnd),
 .​btnc​(rising_btnc),
 .​keyboard_note​(user_note_out),
 .​mic_note​(​7'b0​),
 .​game_type_in​(current_type),
 .​vga_mode​(game_vga_mode),
 .​menu_select​(game_menu_pos),
 .​current_notes​(game_current_notes),
 .​current_score​(game_current_score),
 .​current_max_score​(game_current_max_score),
 .​game_state_out​(game_state),
 .​mode_choice_out​(mode_choice),
 .​song_choice_out​(song_choice),
 .​shifting_out​(new_note_shifting_in),
 .​song_select_read_note​(song_read_note),
 .​song_select_current_addr​(song_read_current_addr),
 .​custom_song_activated​(song_created)
);

// FFT Analyzer

logic​ fft_hi, fft_lo;
fft_analyzer​ ​fft_in​(
 .​clk_104mhz​(clk_104mhz),
 .​vauxp3​(vauxp3),
 .​vauxn3​(vauxn3),
 .​hi​(fft_hi),
 .​lo​(fft_lo)
);

34

// synchronize fft lo/hi back to main clock

logic​ fft_sync_hi, fft_sync_lo;
synchronize​ ​sync_fft_hi​(
 .​clk_in​(clk_100mhz),
 .​unsync_in​(fft_hi),
 .​sync_out​(fft_sync_hi)
);

synchronize​ ​sync_fft_lo​(
 .​clk_in​(clk_100mhz),
 .​unsync_in​(fft_lo),
 .​sync_out​(fft_sync_lo)
);

// edge detectors of hi/lo buttons

logic​ old_sync_lo;
logic​ old_sync_hi;

assign​ rising_lo = fft_sync_lo & !old_sync_lo;
assign​ rising_hi = fft_sync_hi & !old_sync_hi;

always_ff​ @(​posedge​ clk_100mhz)​begin
 ​if​ (reset) ​begin
 old_sync_lo <= ​1'b0​;
 old_sync_hi <= ​1'b0​;
 ​end​ ​else​ ​begin
 old_sync_lo <= fft_sync_lo;

 old_sync_hi <= fft_sync_hi;

 ​end
end

// VGA mode calculation - combines the game controller VGA mode and top level

state.

// vga states used by pixel_helper

localparam​ MAIN_MENU = ​3'b000​;
localparam​ KEYBOARD_INSTRUCTIONS = ​3'b001​;
localparam​ SONG_INSTRUCTIONS = ​3'b010​;
localparam​ BASIC_SONG_MENU = ​3'b011​;

35

localparam​ GAME_MODE = ​3'b110​;
localparam​ LEARN_MODE = ​3'b101​;

logic​ [​2​:​0​] full_vga_mode; ​// the final VGA mode.
assign​ full_vga_mode = (is_game_on) ?
 game_vga_mode : ((state == STATE_MENU) ?

 MAIN_MENU : ((current_type == TYPE_KEYBOARD) ?

 KEYBOARD_INSTRUCTIONS : SONG_INSTRUCTIONS));

// VGA signals - sync all of the relevant signals above to the 65MHz clock.

logic​ [​6​:​0​] sync65_user_note;
logic​ [​2​:​0​] sync65_full_vga_mode;
logic​ [​1​:​0​] sync65_game_menu_pos;
logic​ [​34​:​0​] sync65_game_current_notes;
logic​ sync65_new_note_shifting_in;
logic​ [​1​:​0​] sync65_current_type_choice;
synchronize3​ ​sync_full_vga_mode​(
 .​clk_in​(clk_65mhz),
 .​unsync_in​(full_vga_mode),
 .​sync_out​(sync65_full_vga_mode)
);

synchronize2​ ​sync_game_menu_pos​(
 .​clk_in​(clk_65mhz),
 .​unsync_in​(game_menu_pos),
 .​sync_out​(sync65_game_menu_pos)
);

synchronize35​ ​sync_game_current_notes​(
 .​clk_in​(clk_65mhz),
 .​unsync_in​(game_current_notes),
 .​sync_out​(sync65_game_current_notes)
);

synchronize​ ​sync_new_note_shifting_in​(
 .​clk_in​(clk_65mhz),
 .​unsync_in​(new_note_shifting_in),
 .​sync_out​(sync65_new_note_shifting_in)
);

synchronize2​ ​sync_current_type_choice​(

36

 .​clk_in​(clk_65mhz),
 .​unsync_in​(current_type_choice),
 .​sync_out​(sync65_current_type_choice)
);

synchronize7​ ​sync_user_note​(
 .​clk_in​(clk_65mhz),
 .​unsync_in​(user_note_out),
 .​sync_out​(sync65_user_note)
);

// VGA output

wire​ [​10​:​0​] hcount; ​// pixel on current line
wire​ [​9​:​0​] vcount; ​// line number
wire​ hsync, vsync;
wire​ [​11​:​0​] pixel;
reg​ [​11​:​0​] rgb;
wire​ blank_ignore;
xvga​ ​xvga1​(.​vclock_in​(clk_65mhz),.​hcount_out​(hcount),.​vcount_out​(vcount),
 .​hsync_out​(hsync),.​vsync_out​(vsync),.​blank_out​(blank_ignore));

wire​ phsync,pvsync,pblank;
//pixel_helper module to get pixel values for VGA display

pixel_helper​ ​ph​(.​clk_65mhz​(clk_65mhz), .​screen​(sync65_full_vga_mode),
.​selection​((sync65_full_vga_mode == BASIC_SONG_MENU) ? sync65_game_menu_pos :
sync65_current_type_choice),

 .​notes​(game_current_notes), .​new_note​(sync65_new_note_shifting_in),
.​learning_note​(sync65_game_current_notes[​34​:​28​]), .​user_note​(sync65_user_note),
 .​hcount_in​(hcount),.​vcount_in​(vcount), .​reset​(reset),
 .​hsync_in​(hsync),.​vsync_in​(vsync),.​blank_in​(blank_ignore),

.​phsync_out​(phsync),.​pvsync_out​(pvsync),.​pblank_out​(pblank),.​pixel_out​(pixel));

reg​ b,hs,vs;
always_ff​ @(​posedge​ clk_65mhz) ​begin
 hs <= phsync;

 vs <= pvsync;

 b <= pblank;

37

 rgb <= pixel;

 ​end

// the following lines are required for the Nexys4 VGA circuit - do not change

 ​assign​ vga_r = ~b ? rgb[​11​:​8​]: ​0​;
 ​assign​ vga_g = ~b ? rgb[​7​:​4​] : ​0​;
 ​assign​ vga_b = ~b ? rgb[​3​:​0​] : ​0​;

 ​assign​ vga_hs = ~hs;
 ​assign​ vga_vs = ~vs;
//////

// Performs the percentage calculation of the score and holds this in disp_score.

logic​ [​11​:​0​] disp_score;
score_calc​ ​my_score_calc​(
.​score​(game_current_score),
 .​max_score​(game_current_max_score),
 .​start​(game_state == GAME_STATE_FINISH),
 .​clk​(clk_100mhz),
 .​disp_score​(disp_score)
);

// segment display - show the current note on the top two digits, and the final

score on the bottom 3 digits.

assign​ seg_data[​31​:​24​] = {​1'b0​, game_current_notes[​34​:​28​]};
assign​ seg_data[​23​:​12​] = ​0​;
assign​ seg_data[​11​:​0​] = disp_score;

// leds - shows the user input note on the top 7 leds and the desired note index

on the bottom 7

assign​ led[​15​:​0​] = (game_vga_mode == GAME_MODE || game_vga_mode == LEARN_MODE) ?
{user_note_out, ​2'b0​, game_current_notes[​34​:​28​]} : ​16'b0​;
endmodule

// Synchronization Modules

// - Modules to synchronize values of varying bitwidths.

38

// 1-bit Synchronizer

module​ ​synchronize​ #(​parameter​ NSYNC=​3​) (
 input​ clk_in,
 input​ unsync_in,
 ​output​ ​reg​ sync_out
);

reg​ [NSYNC-​2​:​0​] sync;
always_ff​ @(​posedge​ clk_in) ​begin
 {sync_out, sync} <= {sync[NSYNC-​2​:​0​], unsync_in};
end

endmodule

// 2-bit Synchronizer

module​ ​synchronize2​ (
 input​ clk_in,
 input​ [​1​:​0​] unsync_in,
 ​output​ ​reg​ [​1​:​0​] sync_out
);

reg​ [​5​:​0​] sync;
always_ff​ @(​posedge​ clk_in) ​begin
 {sync_out[​1​:​0​], sync[​5​:​0​]} <= {sync[​5​:​0​], unsync_in[​1​:​0​]};
end

endmodule

// 3-bit Synchronizer

module​ ​synchronize3​ (
 input​ clk_in,
 input​ [​2​:​0​] unsync_in,
 ​output​ ​reg​ [​2​:​0​] sync_out
);

reg​ [​8​:​0​] sync;
always_ff​ @(​posedge​ clk_in) ​begin
 {sync_out[​2​:​0​], sync[​8​:​0​]} <= {sync[​8​:​0​], unsync_in[​2​:​0​]};
end

endmodule

// 7-bit Synchronizer

39

module​ ​synchronize7​ (
 input​ clk_in,
 input​ [​6​:​0​] unsync_in,
 ​output​ ​reg​ [​6​:​0​] sync_out
);

reg​ [​20​:​0​] sync;
always_ff​ @(​posedge​ clk_in) ​begin
 {sync_out[​6​:​0​], sync[​20​:​0​]} <= {sync[​20​:​0​], unsync_in[​6​:​0​]};
end

endmodule

// 35-bit Synchronizer

module​ ​synchronize35​ (
 input​ clk_in,
 input​ [​34​:​0​] unsync_in,
 ​output​ ​reg​ [​34​:​0​] sync_out
);

reg​ [​104​:​0​] sync;
always_ff​ @(​posedge​ clk_in) ​begin
 {sync_out[​34​:​0​], sync[​104​:​0​]} <= {sync[​104​:​0​], unsync_in[​34​:​0​]};
end

endmodule

// Debounce Module - debounces an input signal, includes synchronization

module​ ​debounce​ (
 input​ rst_in,
 input​ clk_in,
 input​ noisy_in,
 ​output​ ​reg​ clean_out
);

reg​ [​19​:​0​] count;
reg​ new_input;

always_ff​ @(​posedge​ clk_in) ​begin
 ​if​(rst_in) ​begin
 new_input <= noisy_in;

40

 clean_out <= noisy_in;

 count <= ​20'd0​;
 ​end​ ​else​ ​if​(noisy_in != new_input) ​begin
 new_input <= noisy_in;

 count <= ​20'd0​;
 ​end​ ​else​ ​if​(count == ​20'd1_000_000​) ​begin
 clean_out <= new_input;

 ​end​ ​else​ ​begin
 count <= count + ​20'd1​;
 ​end
end

endmodule

// display module for 7-segment display

module​ ​display_8hex​(
input​ clk_in, ​// system clock
input​ [​31​:​0​] data_in, ​// 8 hex numbers, msb first
output​ ​reg​ [​6​:​0​] seg_out, ​// seven segment display output
output​ ​reg​ [​7​:​0​] strobe_out ​// digit strobe
);

localparam​ bits = ​13​;

reg​ [bits:​0​] counter = ​0​; ​// clear on power up
wire​ [​6​:​0​] segments[​15​:​0​]; ​// 16 7 bit memorys
assign​ segments[​0​] = ​7'b100_0000​; ​// inverted logic
assign​ segments[​1​] = ​7'b111_1001​; ​// gfedcba
assign​ segments[​2​] = ​7'b010_0010​;
assign​ segments[​3​] = ​7'b011_0000​;
assign​ segments[​4​] = ​7'b001_1001​;
assign​ segments[​5​] = ​7'b001_0100​;
assign​ segments[​6​] = ​7'b000_0100​;
assign​ segments[​7​] = ​7'b111_1000​;
assign​ segments[​8​] = ​7'b000_0000​;
assign​ segments[​9​] = ​7'b001_1000​;
assign​ segments[​10​] = ​7'b000_1000​;
assign​ segments[​11​] = ​7'b000_0101​;
assign​ segments[​12​] = ​7'b100_0110​;

41

assign​ segments[​13​] = ​7'b010_0001​;
assign​ segments[​14​] = ​7'b000_0110​;
assign​ segments[​15​] = ​7'b000_1110​;

always_ff​ @(​posedge​ clk_in) ​begin
 ​// Here I am using a counter and select 3 bits which provides
 ​// a reasonable refresh rate starting the left most digit
 ​// and moving left.
 counter <= counter + ​1​;
 ​case​ (counter[bits:bits-​2​])
 ​3'b000​: ​begin​ ​// use the MSB 4 bits
 seg_out <= segments[data_in[​31​:​28​]];
 strobe_out <= ​8'b0111_1111​;
 ​end
 ​3'b001​: ​begin
 seg_out <= segments[data_in[​27​:​24​]];
 strobe_out <= ​8'b1011_1111​;
 ​end
 ​3'b010​: ​begin
 seg_out <= segments[data_in[​23​:​20​]];
 strobe_out <= ​8'b1101_1111​;
 ​end
 ​3'b011​: ​begin
 seg_out <= segments[data_in[​19​:​16​]];
 strobe_out <= ​8'b1110_1111​;
 ​end
 ​3'b100​: ​begin
 seg_out <= segments[data_in[​15​:​12​]];
 strobe_out <= ​8'b1111_0111​;
 ​end
 ​3'b101​: ​begin
 seg_out <= segments[data_in[​11​:​8​]];
 strobe_out <= ​8'b1111_1011​;
 ​end
 ​3'b110​: ​begin
 seg_out <= segments[data_in[​7​:​4​]];
 strobe_out <= ​8'b1111_1101​;

42

 ​end
 ​3'b111​: ​begin
 seg_out <= segments[data_in[​3​:​0​]];
 strobe_out <= ​8'b1111_1110​;
 ​end
 ​endcase
end

endmodule

//

// Score Calculation Module - Calculates the score as a percentage to the

// nearest integer. Performs this calculation in an iterative fashion,

// subtracting of multiples of decreasing powers of 10.

module​ ​score_calc​(
 input​ logic​[​11​:​0​] score, ​// the current score
 input​ logic​[​11​:​0​] max_score, ​// the maximum score possible
 ​input​ ​logic​ start, ​// a start pulse to begin the calculation
 ​input​ ​logic​ clk, ​// the input clock
 output​ logic​[​11​:​0​] disp_score ​// a 3-digit decimal output (4 bits per digit)
);

// The scaling factor to get to the nearest integer.

localparam​ ACCURACY = ​7'd100​;

// state

logic​ [​18​:​0​] dividend = ​19'd0​; ​// the score that is currently being divided
logic​ [​11​:​0​] divisor = ​12'd0​; ​// the max-score that is dividing
logic​ [​3​:​0​] pow_index = ​4'd0​; ​// the index of the current place value
logic​ [​11​:​0​] calculated_score = ​12'd0​; ​// the current decimal score

// state transitions

logic​ [​18​:​0​] next_dividend;
logic​ [​11​:​0​] next_divisor;
logic​ [​3​:​0​] next_pow_index;
logic​ [​11​:​0​] next_calculated_score;

// constants (the current place value)

43

logic​ [​9​:​0​] multiplier;
logic​ [​9​:​0​] hex_multiplier;
powers_of_ten​ ​m​(.​ind​(pow_index), .​pow​(multiplier));
powers_of_sixteen​ ​n​(.​ind​(pow_index), .​pow​(hex_multiplier));

always_comb​ ​begin
 ​if​(divisor > ​12'd0​ && dividend >= multiplier * divisor) ​begin
 ​// we are able to add one more to the current place value
 next_dividend = dividend - multiplier * divisor;

 next_divisor = divisor;

 next_pow_index = pow_index;

 next_calculated_score = calculated_score + hex_multiplier;

 ​end​ ​else​ ​begin
 next_dividend = dividend;

 next_calculated_score = calculated_score;

 ​// we must step down to the next place value
 ​// stop once the pow index is done with zeros
 next_pow_index = (pow_index > ​4'd0​) ? pow_index - ​4'd1​ : ​4'd0​;
 next_divisor = (pow_index > ​4'd0​) ? divisor : ​12'd0​;
 ​end
end

// state update and outputs

assign​ disp_score = calculated_score;
always_ff​ @(​posedge​ clk) ​begin
 ​if​(start) ​begin
 ​// latch the current input values and start at highest place value
 dividend <= ACCURACY * score;

 divisor <= max_score;

 pow_index <= ​4'd2​;
 calculated_score <= ​12'd0​;
 ​end​ ​else​ ​begin
 dividend <= next_dividend;

 divisor <= next_divisor;

 pow_index <= next_pow_index;

 calculated_score <= next_calculated_score;

 ​end

44

end

endmodule

// A lookup table for powers of 10.

module​ ​powers_of_ten​(​input​ logic​[​3​:​0​] ind, ​output​ ​logic​ [​9​:​0​] pow);
always_comb​ ​begin
 ​case​(ind)
 ​4'd0​: pow = ​10'd1​;
 ​4'd1​: pow = ​10'd10​;
 ​4'd2​: pow = ​10'd100​;
 ​default​: pow = ​4'd0​;
 ​endcase
end

endmodule

// A lookup table for powers of 16.

module​ ​powers_of_sixteen​(​input​ logic​[​3​:​0​] ind, ​output​ ​logic​ [​9​:​0​] pow);
always_comb​ ​begin
 ​case​(ind)
 ​4'd0​: pow = ​10'd1​;
 ​4'd1​: pow = ​10'd16​;
 ​4'd2​: pow = ​10'd256​;
 ​default​: pow = ​4'd0​;
 ​endcase
end

endmodule

game_controller.sv
`timescale ​1ns​ / ​1ps
///

// Game Controller Module - Runs the entire game, including Learn and Play

// modes.

// - Takes in inputs from the outer level, including button presses

// to interact with menus and the notes played by the user (on keyboard

// and microphone).

// - Outputs the state of the game, including score, current notes, and

// VGA mode, to be displayed by the VGA helper.

45

module​ ​game_controller
(

 ​input​ ​logic​ clk_in, ​// input clock
 ​input​ ​logic​ rst_in, ​// reset signal
 ​input​ ​logic​ game_on, ​// indicates whether the game is currently active
 ​input​ ​logic​ btnu, ​// up button (menu navigation)
 ​input​ ​logic​ btnd, ​// down button (menu navigation)
 ​input​ ​logic​ btnc, ​// center button (select)
 ​input​ ​logic​ [​6​:​0​] keyboard_note, ​// the note being played on the keyboard
 ​input​ ​logic​ [​6​:​0​] mic_note, ​// the note being sung into the mic
 ​input​ ​logic​ [​1​:​0​] game_type_in, ​// the current game type (play or learn)
 ​output​ ​logic​ [​2​:​0​] vga_mode, ​// the current VGA mode, to be fed to
[pixel_helper]

 ​output​ ​logic​ [​1​:​0​] menu_select, ​// the current menu choice, for
[pixel_helper]

 ​output​ ​logic​ [​34​:​0​] current_notes, ​// the current notes being played, for
[pixel_helper]

 ​output​ ​logic​ [​11​:​0​] current_score, ​// the current score
 ​output​ ​logic​ [​11​:​0​] current_max_score, ​// the maximum possible score
 ​output​ ​logic​ shifting_out, ​// a pulse to indicate when a new note is shifted
in

 ​// debug
 ​output​ ​logic​ [​3​:​0​] game_state_out, ​// the internal game state
 ​output​ ​logic​ [​1​:​0​] mode_choice_out, ​// the current mode choice
 ​output​ ​logic​ [​1​:​0​] song_choice_out, ​// the current song choice
 ​// song select
 ​input​ ​logic​ [​7​:​0​] song_select_read_note, ​// the note being read from the song
BRAM

 ​output​ ​logic​ [​9​:​0​] song_select_current_addr, ​// the address to read from the
song BRAM

 ​// custom song bit
 ​input​ ​logic​ custom_song_activated ​// whether or not a custom song exists, for
the song menu

);

// Game FSM states

localparam​ STATE_IDLE = ​4'd0​;
localparam​ STATE_MODE_SELECT = ​4'd1​;

46

localparam​ STATE_SONG_SELECT = ​4'd2​;
localparam​ STATE_PLAY = ​4'd3​;
localparam​ STATE_LEARN = ​4'd4​;
localparam​ STATE_FINISH = ​4'd5​; ​// can reset back to IDLE with btnc

// Game types

localparam​ TYPE_PLAY = ​2'd3​;
localparam​ TYPE_LEARN = ​2'd2​;

// Game modes

localparam​ MODE_BITS = ​2​;
localparam​ MODE_KEYBOARD = ​2'd0​;
localparam​ MODE_MIC = ​2'd1​;

// Song choice

localparam​ SONG_BITS = ​2​;
localparam​ SONG_1 = ​2'd0​;
localparam​ SONG_2 = ​2'd1​;
localparam​ SONG_3 = ​2'd2​;
localparam​ SONG_4 = ​2'd3​;
localparam​ SONG_FINISH = ​7'b111_1100​;

// Scoring

localparam​ SCORE_INTERVAL = ​24'd10_000_000​;
localparam​ NOTE_LENGTH = ​26'd25_000_000​; ​// switch notes every quarter second

// State

logic​ [​3​:​0​] state = STATE_IDLE;
logic​ [​11​:​0​] score = ​12'd0​; ​// player's current score
logic​ [​11​:​0​] max_score = ​12'd0​; ​// maximum possible score at the moment
logic​ [​23​:​0​] score_counter = ​24'd0​; ​// counter to track scoring intervals
logic​ [​1​:​0​] game_type; ​// learn/play
logic​ [MODE_BITS - ​1​:​0​] mode_choice = MODE_KEYBOARD; ​// WIP: for the singing
stretch goal

logic​ [SONG_BITS - ​1​:​0​] song_choice = ​2'd0​; ​// menu choice of which song to
play/learn

logic​ advance_note; ​// indicates that a new note is shifting in

47

// only used in learning mode

logic​ [​6​:​0​] old_input_note; ​// used to track length of current note being played
logic​ [​25​:​0​] old_input_note_counter;

// HELPER MODULES -----------

// mode menu

logic​ [MODE_BITS - ​1​:​0​] current_mode_choice;
menu​ #(.​NUM_BITS​(MODE_BITS), .​BOTTOM_CHOICE​(MODE_KEYBOARD))
 ​mode_menu​(.​clk_in​(clk_in), .​rst_in​(rst_in), .​btn_up​(btnu),
 .​btn_down​(btnd), .​choice​(current_mode_choice), .​top_choice​(MODE_MIC));

// song selection menu

logic​ [SONG_BITS - ​1​:​0​] current_song_choice;
menu​ #(.​NUM_BITS​(SONG_BITS), .​BOTTOM_CHOICE​(SONG_1))
 ​song_menu​(.​clk_in​(clk_in), .​rst_in​(rst_in), .​btn_up​(btnu),
 .​btn_down​(btnd), .​choice​(current_song_choice),
 .​top_choice​((custom_song_activated ? SONG_4 : SONG_3)));

// song select module

logic​ song_start;
logic​ [​34​:​0​] song_notes;

song_select​ ​song_selector​(.​clk_in​(clk_in), .​rst_in​(rst_in), .​start​(song_start),
 .​game_type_in​(game_type), .​song_choice​(song_choice),
.​advance_note​(advance_note),
 .​notes​(song_notes),
.​shifting_out​(shifting_out),.​read_note_in​(song_select_read_note),
 .​current_addr_out​(song_select_current_addr));

// STATE TRANSITIONS --

logic​ [​3​:​0​] next_state;
logic​ [​11​:​0​] next_score;
logic​ [​11​:​0​] next_max_score;
logic​ [​23​:​0​] next_score_counter;
logic​ [MODE_BITS - ​1​:​0​] next_mode_choice;
logic​ [SONG_BITS - ​1​:​0​] next_song_choice;

48

logic​ next_song_start;
logic​ [​1​:​0​] next_game_type;
logic​ next_advance_note;

// only used in learning mode

logic​ [​6​:​0​] next_old_input_note;
logic​ [​25​:​0​] next_old_input_note_counter;

logic​ [​6​:​0​] input_note;
assign​ input_note = (mode_choice == MODE_KEYBOARD) ? keyboard_note : mic_note;
always_comb​ ​begin
 ​if​(game_on) ​begin​ ​// only track states if currently in play/learn mode
 next_game_type = game_type; ​// once the game is on, type is fixed
 next_old_input_note = input_note;

 ​case​(state)
 STATE_IDLE: ​begin
 next_state = STATE_SONG_SELECT;

 ​// hold these values until the next scoring period
 next_score = score;

 next_max_score = max_score;

 ​// just zero these out until they are needed
 next_score_counter = ​24'd0​;
 next_mode_choice = mode_choice;

 next_song_choice = ​2'd0​;
 next_song_start = ​1'b0​;
 next_advance_note = ​1'b0​;
 next_old_input_note_counter = ​26'd0​;
 ​end
 STATE_MODE_SELECT: ​begin​ ​// WIP: used for singing stretch goal
 next_state = (btnc) ? STATE_SONG_SELECT : STATE_MODE_SELECT;

 ​// hold until the next scoring period
 next_score = score;

 next_max_score = max_score;

 next_mode_choice = current_mode_choice; ​// keep changing with
current choice

 next_song_choice = song_choice; ​// don't change
 ​// just zero these out until they are needed

49

 next_score_counter = ​24'd0​;
 next_song_start = ​1'b0​;
 next_advance_note = ​1'b0​;
 next_old_input_note_counter = ​26'd0​;
 ​end
 STATE_SONG_SELECT: ​begin
 next_state = (btnc) ?

 ((game_type == TYPE_PLAY) ? STATE_PLAY : STATE_LEARN) :

STATE_SONG_SELECT;

 ​// reset these values when the game/learning is started
 next_score = (btnc) ? ​12'd0​ : score;
 next_max_score = (btnc) ? ​12'd0​ : max_score;
 next_mode_choice = mode_choice; ​// don't change
 next_song_choice = current_song_choice; ​// keep changing with
current choice

 ​// signal when the song is about to start
 next_song_start = (btnc) ? ​1'b1​ : ​1'b0​;
 ​// just zero these out until they are needed
 next_score_counter = ​24'd0​;
 next_advance_note = ​1'b0​;
 next_old_input_note_counter = ​26'd0​;
 ​end
 STATE_PLAY: ​begin
 ​if​(song_notes[​34​:​28​] == SONG_FINISH) ​begin
 ​// we have reached the end of the song, transition to the
 ​// FINISH state
 next_state = STATE_FINISH;

 next_score = score;

 next_max_score = max_score;

 next_score_counter = ​24'd0​;
 ​end​ ​else​ ​begin
 next_state = STATE_PLAY;

 ​// update the score every SCORE_INTERVAL/10M seconds
 ​if​(score_counter < SCORE_INTERVAL - ​24'd1​) ​begin
 next_score = score;

 next_max_score = max_score;

 next_score_counter = score_counter + ​24'd1​;

50

 ​end​ ​else​ ​begin
 ​// sample and check whether the input note is correct
 next_score = score +

 ((input_note == song_notes[​34​:​28​]) ? ​12'd1​ : ​12'd0​);
 next_max_score = max_score + ​12'd1​;
 next_score_counter = ​24'd0​;
 ​end
 ​end
 ​// maintain these values
 next_mode_choice = mode_choice;

 next_song_choice = song_choice;

 next_song_start = ​1'b0​; ​// don't restart the song once we have
entered game mode

 next_advance_note = ​1'b0​;
 next_old_input_note_counter = ​26'd0​;
 ​end
 STATE_LEARN: ​begin
 ​if​(song_notes[​34​:​28​] == SONG_FINISH) ​begin
 ​// we have reached the end of the song, transition to the
 ​// FINISH state
 next_state = STATE_FINISH;

 next_advance_note = ​1'b0​;
 next_old_input_note_counter = ​26'd0​;
 ​end​ ​else​ ​begin
 next_state = STATE_LEARN;

 ​// advance to the next note if the played note is correct
 ​// and has been held for the appropriate length
 ​if​((input_note == song_notes[​34​:​28​]) && (input_note ==
old_input_note)) ​begin
 next_advance_note = (old_input_note_counter ==

NOTE_LENGTH - ​26'd1​) ?
 ​1'b1​ : ​1'b0​;
 next_old_input_note_counter =

 (old_input_note_counter == NOTE_LENGTH - ​26'd1​) ?
 ​26'd0​ : old_input_note_counter + ​26'd1​;
 ​end​ ​else​ ​begin
 next_advance_note = ​1'b0​;

51

 next_old_input_note_counter = ​26'd0​;
 ​end
 ​end
 ​// maintain these values
 next_score = score; ​// no scoring in learning mode
 next_max_score = max_score;

 next_score_counter = score_counter;

 next_mode_choice = mode_choice;

 next_song_choice = song_choice;

 next_song_start = ​1'b0​; ​// don't restart the song once we have
entered game mode

 ​end
 STATE_FINISH: ​begin
 ​// this state serves to reset state and signal the end to
 ​// top_level
 next_state = STATE_IDLE;

 next_score = score;

 next_max_score = max_score;

 next_score_counter = ​24'd0​;
 next_mode_choice = mode_choice;

 next_song_choice = song_choice;

 next_song_start = ​1'b0​;
 next_advance_note = ​1'b0​;
 next_old_input_note_counter = ​26'd0​;
 ​end
 ​endcase
 ​end​ ​else​ ​begin
 ​// game is turned off, switch back to initial state
 next_state = STATE_IDLE;

 next_score = score;

 next_max_score = max_score;

 next_score_counter = ​24'd0​;
 next_mode_choice = MODE_KEYBOARD;

 next_song_choice = ​2'd0​;
 next_song_start = ​1'b0​;
 next_game_type = game_type_in; ​// latch the game type
 next_advance_note = ​1'b0​;

52

 next_old_input_note = ​7'd0​;
 next_old_input_note_counter = ​26'd0​;
 ​end
end

// OUTPUT & STATE UPDATE -------------------------------------

// VGA helper signals

localparam​ MAIN_MENU = ​3'b000​;
localparam​ KEYBOARD_INSTRUCTIONS = ​3'b001​;
localparam​ SONG_INSTRUCTIONS = ​3'b010​;
localparam​ BASIC_SONG_MENU = ​3'b011​;
localparam​ CUSTOM_SONG_MENU = ​3'b100​;
localparam​ LEARN_MODE = ​3'b101​;
localparam​ GAME_MODE = ​3'b110​;

// a large multiplexer to decide what to display on the screen

assign​ vga_mode = (state == STATE_MODE_SELECT) ? MAIN_MENU :
 ((state == STATE_SONG_SELECT) ? (custom_song_activated ?

CUSTOM_SONG_MENU : BASIC_SONG_MENU) :

 ((state == STATE_PLAY) ? GAME_MODE :

 ((state == STATE_LEARN) ? LEARN_MODE : MAIN_MENU)));

// make most of the state available to top_level

assign​ menu_select = (state == STATE_MODE_SELECT) ? current_mode_choice :
current_song_choice;

assign​ current_notes = song_notes;
assign​ current_score = score;
assign​ current_max_score = max_score;
assign​ game_state_out = state;
assign​ mode_choice_out = mode_choice;
assign​ song_choice_out = song_choice;
always_ff​ @(​posedge​ clk_in) ​begin
 ​if​(rst_in) ​begin​ ​// reset to zeroed out values
 state <= STATE_IDLE;

 score <= ​12'd0​;
 max_score <= ​12'd0​;

53

 score_counter <= ​24'd0​;
 mode_choice <= MODE_KEYBOARD;

 song_choice <= ​2'd0​;
 song_start <= ​1'b0​;
 game_type <= TYPE_PLAY;

 advance_note <= ​1'b0​;
 old_input_note <= ​7'd0​;
 old_input_note_counter <= ​26'd0​;
 ​end​ ​else​ ​begin
 state <= next_state;

 score <= next_score;

 max_score <= next_max_score;

 score_counter <= next_score_counter;

 mode_choice <= next_mode_choice;

 song_choice <= next_song_choice;

 song_start <= next_song_start;

 game_type <= next_game_type;

 advance_note <= next_advance_note;

 old_input_note <= next_old_input_note;

 old_input_note_counter <= next_old_input_note_counter;

 ​end
end

endmodule

///

// Song Select Module - Serves as an interface between the Game Controller

// Module and the song BRAM.

// - Takes as input the song choice and signals to start the song

// and advance notes, as well as the note read from the BRAM

// - Outputs the shift register of active notes and the address to

// read from the BRAM

module​ ​song_select​ (
 ​input​ ​logic​ clk_in, ​// input clock
 ​input​ ​logic​ rst_in, ​// system reset
 ​input​ ​logic​ start, ​// pulse to start outputting song addresses
 ​input​ ​logic​ [​1​:​0​] game_type_in, ​// current game type (play/learn)

54

 ​input​ ​logic​ [​1​:​0​] song_choice, ​// song index
 ​input​ ​logic​ advance_note, ​// pulse to indicate a note advance (only for learn
mode)

 ​input​ ​logic​ [​7​:​0​] read_note_in, ​// the note read from the song BRAM (in
top_level)

 ​output​ ​logic​ [​34​:​0​] notes, ​// the 5-note shift register, [34:28] is the
current note

 ​output​ ​logic​ shifting_out, ​// a pulse to indicate a new note shifting in
 ​output​ ​logic​ [​9​:​0​] current_addr_out ​// the address to read from the song BRAM
);

// Constants ----------------------------------

localparam​ NOTE_LENGTH = ​26'd25_000_000​; ​// switch notes every half second

// Initial values for outputs

localparam​ INIT_NOTES = ​35'd0​;
localparam​ INIT_ADDR = ​10'd0​;

// Game types

localparam​ TYPE_PLAY = ​2'd3​;
localparam​ TYPE_LEARN = ​2'd2​;

// Special note indices

localparam​ END_NOTE = ​7'b111_1100​;
localparam​ REST = ​7'b111_1111​;

// STATE ----------------------------------

logic​ [​34​:​0​] current_notes = INIT_NOTES;
logic​ [​25​:​0​] counter = NOTE_LENGTH - ​26'd1​;
logic​ [​9​:​0​] current_addr = INIT_ADDR; ​// current address in the song BRAM
logic​ [​3​:​0​] start_counter = ​4'd10​; ​// a special register to deal with the startup
routine

logic​ [​1​:​0​] game_type; ​// holds the type for the current song
logic​ shifting; ​// a pulse to indicate a note shifting in
// a shift register to hold the shifting signal (so it can be properly

synchronized to 65MHz).

logic​ [​3​:​0​] shifting_regs = ​4'd0​;

55

logic​ end_notes = ​1'b1​; ​// a special state to fill the register with RESTs at the
end

// BRAM Values -----------------------------------

logic​ [​7​:​0​] read_note;
// if the end of the song has been reached, only shift in rests.

assign​ read_note = end_notes ? REST : read_note_in;

// STATE TRANSITIONS ----------------------

logic​ [​34​:​0​] next_notes;
logic​ [​25​:​0​] next_counter;
logic​ [​9​:​0​] next_addr;
logic​ [​3​:​0​] next_start_counter;
logic​ next_shifting;
logic​ next_end_notes;

always_comb​ ​begin
 ​// Startup routine: Quickly shift the first 5 notes into the register in
 ​// 10 cycles (2-cycle latency in song BRAM)
 ​if​(start_counter < ​4'd10​) ​begin
 ​// Every other cycle, shift in a new note
 next_notes = (start_counter & ​4'b1​ == ​4'b1​) ?
 {current_notes[​27​:​0​], read_note[​6​:​0​]} : current_notes;
 next_end_notes = (start_counter & ​4'b1​ == ​4'b1​) ?
 ((read_note[​6​:​0​] == END_NOTE) ? ​1'b1​ : ​1'b0​) : ​1'b0​;
 next_addr = (start_counter & ​4'b1​ == ​4'b1​) ? current_addr + ​10'd1​ :
current_addr;

 next_shifting = (start_counter & ​4'b1​ == ​4'b1​)? ​1'b1​ : ​1'b0​;
 ​// hold the regular counter and increment the startup counter
 next_counter = ​26'd0​;
 next_start_counter = start_counter + ​4'd1​;
 ​end
 ​else​ ​begin
 ​// Regular Operation
 ​case​(game_type)
 TYPE_PLAY: ​begin​ ​// Play mode, automatically shift a new note every
NOTE_LENGTH/100M seconds

56

 ​if​(counter < NOTE_LENGTH - ​26'd1​) ​begin
 next_notes = current_notes; ​// stay on same notes
 next_end_notes = ​1'b0​;
 next_counter = counter + ​26'd1​;
 next_addr = current_addr;

 next_shifting = ​1'b0​;
 ​end​ ​else​ ​begin
 next_notes = {current_notes[​27​:​0​], read_note[​6​:​0​]}; ​// shift
in new note

 next_end_notes = (read_note[​6​:​0​] == END_NOTE) ? ​1'b1​ : ​1'b0​;
 next_counter = ​26'd0​;
 next_addr = current_addr + ​10'd1​;
 next_shifting = ​1'b1​;
 ​end
 ​end
 TYPE_LEARN: ​begin​ ​// Learn mode, only shift in new notes when
[advance_note] is high

 ​if​(advance_note | current_notes[​34​:​28​] == END_NOTE) ​begin
 next_notes = {current_notes[​27​:​0​], read_note[​6​:​0​]}; ​// shift
in new note

 next_end_notes = (read_note[​6​:​0​] == END_NOTE) ? ​1'b1​ : ​1'b0​;
 next_addr = current_addr + ​10'd1​;
 next_shifting = ​1'b1​;
 ​end​ ​else​ ​begin
 next_notes = current_notes; ​// stay on same notes
 next_end_notes = ​1'b0​;
 next_addr = current_addr;

 next_shifting = ​1'b0​;
 ​end
 next_counter = ​26'd0​; ​// don't use counter
 ​end
 ​endcase
 next_start_counter = (start_counter == ​4'd11​) ? ​4'd0​ : ​4'd10​; ​// 4'd11 is
a sentinel to goto startup

 ​end
end

57

// OUTPUT & STATE UPDATE ------------------

assign​ notes = current_notes;
assign​ shifting_out = shifting;
assign​ current_addr_out = current_addr;
always_ff​ @(​posedge​ clk_in) ​begin
 ​if​(rst_in) ​begin​ ​// reset to initial values
 current_notes <= INIT_NOTES;

 counter <= NOTE_LENGTH - ​26'd1​;
 current_addr <= INIT_ADDR;

 start_counter <= ​4'd10​;
 game_type <= TYPE_PLAY;

 shifting <= ​1'b0​;
 shifting_regs <= ​4'd0​;
 end_notes <= ​1'b1​;
 ​end​ ​else​ ​if​(start) ​begin
 current_notes <= INIT_NOTES;

 counter <= ​26'd0​;
 current_addr <= ​250​ * song_choice;
 start_counter <= ​4'd11​; ​// start sentinel value
 game_type <= game_type_in; ​// latch game type
 shifting <= ​1'b0​;
 shifting_regs <= ​4'd0​;
 end_notes <= ​1'b0​;
 ​end​ ​else​ ​begin
 current_notes <= next_notes;

 counter <= next_counter;

 current_addr <= next_addr;

 start_counter <= next_start_counter;

 game_type <= game_type; ​// only reset on start
 shifting <= |shifting_regs[​3​:​0​]; ​// shift high for 4 cycles, so it can
sync to 65MHz

 end_notes <= next_end_notes | end_notes;

 shifting_regs[​3​:​0​] <= {shifting_regs[​2​:​0​], next_shifting};
 ​end
end

endmodule

58

menu.sv
`timescale ​1ns​ / ​1ps
///

// Menu Module - Provides the state machine for all menus in the system

// In general, the menu deals with 2-bit indices, and continuously

// outputs the current choice.

module​ ​menu
#(

 parameter​ NUM_BITS = ​2​, ​// the number of bits in the choices
 parameter​ BOTTOM_CHOICE = ​2'd0​ ​// the lowest choice number in the menu
)

(

 ​input​ ​logic​ clk_in, ​// input clock
 ​input​ ​logic​ rst_in, ​// system reset
 ​input​ ​logic​ btn_up, ​// up control
 ​input​ ​logic​ btn_down, ​// down control
 ​input​ ​logic​ [​1​:​0​] top_choice, ​// the highest possible choice in the menu
 output​ logic​ [NUM_BITS - ​1​:​0​] choice ​// the current choice in the menu
);

 ​// current selection
 logic​ [NUM_BITS - ​1​:​0​] current_selection = BOTTOM_CHOICE;

 ​// state transition
 logic​ [NUM_BITS - ​1​:​0​] next_selection;
 ​always_comb​ ​begin
 ​case​({btn_up, btn_down})
 ​2'b10​: next_selection = (current_selection > BOTTOM_CHOICE) ?
current_selection - ​1​ : top_choice;
 ​2'b01​: next_selection = (current_selection < top_choice) ?
current_selection + ​1​ : BOTTOM_CHOICE;
 ​default​: next_selection = current_selection; ​// if they hit both
buttons or neither, don't change

 ​endcase
 ​end

 ​// output/state updates
 ​assign​ choice = current_selection;

59

 ​always_ff​ @(​posedge​ clk_in) ​begin
 ​if​(rst_in) ​begin
 current_selection <= BOTTOM_CHOICE;

 ​end​ ​else​ ​begin
 current_selection <= next_selection;

 ​end
 ​end
endmodule

create_song.sv
`timescale ​1ns​ / ​1ps

//create_song module outputs values in order to write to the song BRAM

//it takes in a 100MHz clock, an enable signal, a note_in from the keyboard,

//an 8-bit value to write to the BRAM, a write_enable signal to send to the BRAM,

and an address_out to use in writing to the BRAM

module​ ​create_song​(
 input​ clk_100mhz,
 input​ enable,
 input​ [​6​:​0​] note_in,
 ​output​ ​logic​ [​7​:​0​] value,
 ​output​ ​logic​ write_enable,
 ​output​ ​logic​ [​9​:​0​] address_out
);

 ​//this is the byte that indicates a song has just ended in the song BRAM
 ​parameter​ END_SIGNAL = ​8'b01111100​;

 ​//record a note every 0.25 seconds
 ​parameter​ CYCLES_PER_NOTE = ​25000000​;

 logic​ [​24​:​0​] counter = ​25'b0​;
 logic​ prev_enable;

 ​//first address available in BRAM, last address available
 ​parameter​ START_ADDRESS = ​753​;
 ​parameter​ MAX_ADDRESS = ​997​;

60

 ​//value to indicate if we should write now
 logic​ write_now;
 ​assign​ write_now = (counter == CYCLES_PER_NOTE - ​1​);

 ​//value to indicate if we have maxed out on memory
 logic​ maxed;

 ​//address to write to
 logic​ [​9​:​0​] address;
 ​assign​ maxed = (address == MAX_ADDRESS - ​1​);

 ​assign​ address_out = address;

 ​//check if user is currently playing multiple notes, which is not allowed and
will turn into a blank note in the recording

 logic​ bad_note;
 ​assign​ bad_note = (note_in == ​7'h7E​);

 ​always_ff​ @(​posedge​ clk_100mhz) ​begin

 ​//if we have just enabled song-creation, go to START_ADDRESS, reset
counter, and set write_enable to 0

 ​if​ (enable && ~prev_enable) ​begin

 address <= START_ADDRESS;

 counter <= ​25'b0​;
 write_enable <= ​0​;
 value <= {​1'b0​, note_in};

 ​//if song-creation is enabled, then set write_enable high when counter
has reached CYCLES_PER_NOTE - 1;

 ​//increment counter, or reset to 0 when it has reached CYCLES_PER_NOTE -
1;

 ​//increment address when we should write a new value and we have not
maxed out on memory;

61

 ​//write the value of the note passed in, or a blank (8'h7F) when an
invalid note is passed in

 ​end​ ​else​ ​if​ (enable) ​begin

 write_enable <= maxed ? ​0​ : write_now;
 counter <= write_now ? ​25'b0​ : counter + ​1​;
 address <= (write_now & ~maxed) ? address + ​1​ : address;
 value <= bad_note ? {​8'h7F​} : {​1'b0​, note_in};

 ​//if we have just disabled song-creation, write END_SIGNAL to the next
address

 ​end​ ​else​ ​if​ (prev_enable && ~enable) ​begin

 write_enable <= ​1​;
 address <= address + ​1​;
 value <= END_SIGNAL;

 ​//otherwise, if song-creation is not enabled, set write_enable to 0
 ​end​ ​else​ ​begin

 write_enable <= ​0​;

 ​end

 prev_enable <= enable;

 ​end

endmodule

keyboard.sv
//Sound Generation for Baseline Goal

//keyboard module outputs values for PWM wave based on note and volume selection

from input switches

module​ ​keyboard​(​ input​ clk_100mhz,
 input​ [​9​:​0​] sw,

62

 input​ vauxp3,
 input​ vauxn3,
 input​ vn_in,
 input​ vp_in,
 input​ reset,
 input​ enable,
 ​output​ ​logic​ aud_pwm,
 ​output​ ​logic​ aud_sd
);

 ​parameter​ SAMPLE_COUNT = ​763​;​//(will generate audio at approx 131,072 Hz
sample rate).

 logic​ [​15​:​0​] sample_counter;
 logic​ [​11​:​0​] adc_data;
 logic​ [​11​:​0​] sampled_adc_data;
 logic​ sample_trigger;
 logic​ adc_ready;
 logic​ [​7​:​0​] recorder_data;

 logic​ [​7​:​0​] vol_out;
 logic​ pwm_val; ​//pwm signal (HI/LO)

 ​assign​ aud_sd = ​1​;
 ​assign​ sample_trigger = (sample_counter == SAMPLE_COUNT);

 ​always_ff​ @(​posedge​ clk_100mhz)​begin
 ​if​ (sample_counter == SAMPLE_COUNT)​begin
 sample_counter <= ​16'b0​;
 ​end​ ​else​ ​begin
 sample_counter <= sample_counter + ​16'b1​;
 ​end
 ​if​ (sample_trigger) ​begin
 sampled_adc_data <= {~adc_data[​11​],adc_data[​10​:​0​]}; ​//convert to
signed. incoming data is offset binary

 ​end
 ​end

 ​//get output data

63

 ​recorder​ ​myrec​(.​clk_in​(clk_100mhz),.​rst_in​(​0​),
 .​ready_in​(sample_trigger),
 .​data_out​(recorder_data), .​sw​(sw));

 ​//volume control from switches 7-9
 ​volume_control​ ​vc​ (.​vol_in​(sw[​9​:​7​]),
 .​signal_in​(recorder_data), .​signal_out​(vol_out));

 ​//pwm output

 ​pwm​ (.​clk_in​(clk_100mhz), .​rst_in​(reset),
.​level_in​({~vol_out[​7​],vol_out[​6​:​0​]}), .​pwm_out​(pwm_val));

 ​//only send nonzero output if keyboard is enabled
 ​assign​ aud_pwm = (pwm_val & enable) ? ​1'bZ​ : ​1'b0​;

endmodule

///

//

// Record/playback

//

///

module​ ​recorder​(
 ​input​ ​logic​ clk_in, ​// 100MHz system clock
 ​input​ ​logic​ rst_in, ​// 1 to reset to initial state
 ​input​ ​logic​ ready_in, ​// 1 when data is available
 ​input​ ​logic​ [​9​:​0​] sw,
 ​output​ ​logic​ ​signed​ [​7​:​0​] data_out ​// 8-bit PCM data to headphone
);

 logic​ [​7​:​0​] tone;
 logic​ [​31​:​0​] freq;

64

 ​//look up table for frequency corresponding to desired note
 ​freq_lut​ ​find_freq​ (.​note_index​(sw[​6​:​0​] - ​7'd9​), .​clk_in​(clk_in),
.​freq​(freq));

 ​//generate output sine wave at desired frequency
 ​sine_generator​ ​out_tone​ (.​clk_in​(clk_in), .​rst_in​(rst_in),
 .​step_in​(ready_in), .​freq​(freq), .​sine​(​1'b1​),
.​amp_out​(tone));

 ​always_ff​ @(​posedge​ clk_in)​begin
 data_out <= tone; ​//send tone immediately to output
 ​end

endmodule

//Volume Control

module​ ​volume_control​ (​input​ [​2​:​0​] vol_in, ​input​ ​signed​ [​7​:​0​] signal_in, ​output
logic​ ​signed​[​7​:​0​] signal_out);
 logic​ [​2​:​0​] shift;
 ​assign​ shift = ​3'd7​ - vol_in;
 ​assign​ signal_out = signal_in>>>shift;
endmodule

//PWM generator for audio generation!

module​ ​pwm​ (​input​ clk_in,​ input​ rst_in,​ input​ [​7​:​0​] level_in, ​output​ ​logic
pwm_out);

 logic​ [​7​:​0​] count;
 ​assign​ pwm_out = count<level_in;
 ​always_ff​ @(​posedge​ clk_in)​begin
 ​if​ (rst_in)​begin
 count <= ​8'b0​;
 ​end​ ​else​ ​begin
 count <= count+​8'b1​;
 ​end
 ​end
endmodule

65

//Sine Wave Generator

module​ ​sine_generator​ (​ input​ clk_in,​ input​ rst_in, ​//clock and reset
 input​ step_in, ​//trigger a phase step (rate at which you
run sine generator)

 input​ [​31​:​0​] freq, ​//desired frequency in Hz
 ​input​ ​logic​ sine,
 ​output​ ​logic​ [​31​:​0​] phase_stepping,
 ​output​ ​logic​ [​7​:​0​] amp_out); ​//output phase

 ​parameter​ table_num = ​64​;
 ​parameter​ log_pulse_rate = ​17​;

 logic​ [​31​:​0​] phase_incr;

 ​//calculate phase increment based on desired frequency
 ​assign​ phase_incr = ((freq << (​32​ - log_pulse_rate)) - (freq >>
log_pulse_rate));

 ​assign​ phase_stepping = phase_incr;

 logic​ [​7​:​0​] divider;
 logic​ [​31​:​0​] phase;
 logic​ [​7​:​0​] amp_sine;
 logic​ [​7​:​0​] amp;

 ​assign​ amp = amp_sine;
 ​assign​ amp_out = {~amp[​7​],amp[​6​:​0​]};

 ​//sine lookup table to get next value
 ​sine_lut​ ​lut_1​(.​clk_in​(clk_in), .​phase_in​(phase[​31​:​26​]), .​amp_out​(amp_sine));

 ​//increment phase, thus stepping through sine table
 ​always_ff​ @(​posedge​ clk_in)​begin
 ​if​ (rst_in)​begin

66

 divider <= ​8'b0​;
 phase <= ​32'b0​;
 ​end​ ​else​ ​if​ (step_in)​begin
 phase <= phase+phase_incr;

 ​end
 ​end
endmodule

//frequency look up table, converting note_index to frequency value

module​ ​freq_lut​(​input​ [​6​:​0​] note_index,​ input​ clk_in,​ output​ logic​[​31​:​0​] freq);
 ​always_ff​ @(​posedge​ clk_in) ​begin
 ​case​(note_index)
 ​7'd0​: freq <= ​32'd27​;
 ​7'd1​: freq <= ​32'd29​;
 ​7'd2​: freq <= ​32'd31​;
 ​7'd3​: freq <= ​32'd33​;
 ​7'd4​: freq <= ​32'd35​;
 ​7'd5​: freq <= ​32'd37​;
 ​7'd6​: freq <= ​32'd39​;
 ​7'd7​: freq <= ​32'd41​;
 ​7'd8​: freq <= ​32'd44​;
 ​7'd9​: freq <= ​32'd46​;
 ​7'd10​: freq <= ​32'd49​;
 ​7'd11​: freq <= ​32'd52​;
 ​7'd12​: freq <= ​32'd55​;
 ​7'd13​: freq <= ​32'd58​;
 ​7'd14​: freq <= ​32'd62​;
 ​7'd15​: freq <= ​32'd65​;
 ​7'd16​: freq <= ​32'd69​;
 ​7'd17​: freq <= ​32'd73​;
 ​7'd18​: freq <= ​32'd78​;
 ​7'd19​: freq <= ​32'd82​;
 ​7'd20​: freq <= ​32'd87​;
 ​7'd21​: freq <= ​32'd92​;
 ​7'd22​: freq <= ​32'd98​;
 ​7'd23​: freq <= ​32'd104​;
 ​7'd24​: freq <= ​32'd110​;

67

 ​7'd25​: freq <= ​32'd117​;
 ​7'd26​: freq <= ​32'd123​;
 ​7'd27​: freq <= ​32'd131​;
 ​7'd28​: freq <= ​32'd139​;
 ​7'd29​: freq <= ​32'd147​;
 ​7'd30​: freq <= ​32'd156​;
 ​7'd31​: freq <= ​32'd165​;
 ​7'd32​: freq <= ​32'd175​;
 ​7'd33​: freq <= ​32'd185​;
 ​7'd34​: freq <= ​32'd196​;
 ​7'd35​: freq <= ​32'd208​;
 ​7'd36​: freq <= ​32'd220​;
 ​7'd37​: freq <= ​32'd233​;
 ​7'd38​: freq <= ​32'd247​;
 ​7'd39​: freq <= ​32'd262​;
 ​7'd40​: freq <= ​32'd277​;
 ​7'd41​: freq <= ​32'd294​;
 ​7'd42​: freq <= ​32'd311​;
 ​7'd43​: freq <= ​32'd330​;
 ​7'd44​: freq <= ​32'd349​;
 ​7'd45​: freq <= ​32'd370​;
 ​7'd46​: freq <= ​32'd392​;
 ​7'd47​: freq <= ​32'd415​;
 ​7'd48​: freq <= ​32'd440​;
 ​7'd49​: freq <= ​32'd466​;
 ​7'd50​: freq <= ​32'd494​;
 ​7'd51​: freq <= ​32'd523​;
 ​7'd52​: freq <= ​32'd554​;
 ​7'd53​: freq <= ​32'd587​;
 ​7'd54​: freq <= ​32'd622​;
 ​7'd55​: freq <= ​32'd659​;
 ​7'd56​: freq <= ​32'd698​;
 ​7'd57​: freq <= ​32'd740​;
 ​7'd58​: freq <= ​32'd784​;
 ​7'd59​: freq <= ​32'd831​;
 ​7'd60​: freq <= ​32'd880​;
 ​7'd61​: freq <= ​32'd932​;

68

 ​7'd62​: freq <= ​32'd988​;
 ​7'd63​: freq <= ​32'd1046​;
 ​7'd64​: freq <= ​32'd1109​;
 ​7'd65​: freq <= ​32'd1175​;
 ​7'd66​: freq <= ​32'd1245​;
 ​7'd67​: freq <= ​32'd1319​;
 ​7'd68​: freq <= ​32'd1397​;
 ​7'd69​: freq <= ​32'd1480​;
 ​7'd70​: freq <= ​32'd1568​;
 ​7'd71​: freq <= ​32'd1661​;
 ​7'd72​: freq <= ​32'd1760​;
 ​7'd73​: freq <= ​32'd1865​;
 ​7'd74​: freq <= ​32'd1976​;
 ​7'd75​: freq <= ​32'd2093​;
 ​7'd76​: freq <= ​32'd2217​;
 ​7'd77​: freq <= ​32'd2349​;
 ​7'd78​: freq <= ​32'd2489​;
 ​7'd79​: freq <= ​32'd2637​;
 ​7'd80​: freq <= ​32'd2794​;
 ​7'd81​: freq <= ​32'd2960​;
 ​7'd82​: freq <= ​32'd3136​;
 ​7'd83​: freq <= ​32'd3322​;
 ​7'd84​: freq <= ​32'd3520​;
 ​7'd85​: freq <= ​32'd3729​;
 ​7'd86​: freq <= ​32'd3951​;
 ​7'd87​: freq <= ​32'd4186​;
 ​7'd118​: freq <= ​32'd0​;
 ​default​: freq <= ​32'd0​;
 ​endcase

 ​end
endmodule

//6bit sine lookup, 8bit depth

module​ ​sine_lut​(​input​[​5​:​0​] phase_in,​ input​ clk_in,​ output​ logic​[​7​:​0​] amp_out);
 ​always_ff​ @(​posedge​ clk_in)​begin
 ​case​(phase_in)
 ​6'd0​: amp_out<=​8'd128​;

69

 ​6'd1​: amp_out<=​8'd140​;
 ​6'd2​: amp_out<=​8'd152​;
 ​6'd3​: amp_out<=​8'd165​;
 ​6'd4​: amp_out<=​8'd176​;
 ​6'd5​: amp_out<=​8'd188​;
 ​6'd6​: amp_out<=​8'd198​;
 ​6'd7​: amp_out<=​8'd208​;
 ​6'd8​: amp_out<=​8'd218​;
 ​6'd9​: amp_out<=​8'd226​;
 ​6'd10​: amp_out<=​8'd234​;
 ​6'd11​: amp_out<=​8'd240​;
 ​6'd12​: amp_out<=​8'd245​;
 ​6'd13​: amp_out<=​8'd250​;
 ​6'd14​: amp_out<=​8'd253​;
 ​6'd15​: amp_out<=​8'd254​;
 ​6'd16​: amp_out<=​8'd255​;
 ​6'd17​: amp_out<=​8'd254​;
 ​6'd18​: amp_out<=​8'd253​;
 ​6'd19​: amp_out<=​8'd250​;
 ​6'd20​: amp_out<=​8'd245​;
 ​6'd21​: amp_out<=​8'd240​;
 ​6'd22​: amp_out<=​8'd234​;
 ​6'd23​: amp_out<=​8'd226​;
 ​6'd24​: amp_out<=​8'd218​;
 ​6'd25​: amp_out<=​8'd208​;
 ​6'd26​: amp_out<=​8'd198​;
 ​6'd27​: amp_out<=​8'd188​;
 ​6'd28​: amp_out<=​8'd176​;
 ​6'd29​: amp_out<=​8'd165​;
 ​6'd30​: amp_out<=​8'd152​;
 ​6'd31​: amp_out<=​8'd140​;
 ​6'd32​: amp_out<=​8'd128​;
 ​6'd33​: amp_out<=​8'd115​;
 ​6'd34​: amp_out<=​8'd103​;
 ​6'd35​: amp_out<=​8'd90​;
 ​6'd36​: amp_out<=​8'd79​;
 ​6'd37​: amp_out<=​8'd67​;

70

 ​6'd38​: amp_out<=​8'd57​;
 ​6'd39​: amp_out<=​8'd47​;
 ​6'd40​: amp_out<=​8'd37​;
 ​6'd41​: amp_out<=​8'd29​;
 ​6'd42​: amp_out<=​8'd21​;
 ​6'd43​: amp_out<=​8'd15​;
 ​6'd44​: amp_out<=​8'd10​;
 ​6'd45​: amp_out<=​8'd5​;
 ​6'd46​: amp_out<=​8'd2​;
 ​6'd47​: amp_out<=​8'd1​;
 ​6'd48​: amp_out<=​8'd0​;
 ​6'd49​: amp_out<=​8'd1​;
 ​6'd50​: amp_out<=​8'd2​;
 ​6'd51​: amp_out<=​8'd5​;
 ​6'd52​: amp_out<=​8'd10​;
 ​6'd53​: amp_out<=​8'd15​;
 ​6'd54​: amp_out<=​8'd21​;
 ​6'd55​: amp_out<=​8'd29​;
 ​6'd56​: amp_out<=​8'd37​;
 ​6'd57​: amp_out<=​8'd47​;
 ​6'd58​: amp_out<=​8'd57​;
 ​6'd59​: amp_out<=​8'd67​;
 ​6'd60​: amp_out<=​8'd79​;
 ​6'd61​: amp_out<=​8'd90​;
 ​6'd62​: amp_out<=​8'd103​;
 ​6'd63​: amp_out<=​8'd115​;
 ​endcase
 ​end
endmodule

UART_decoder.sv
`timescale ​1ns​ / ​1ps

//Module to take values from UART transmission line, output note that user is

currently playing

module​ ​UART_decoder​(
 input​ [​7​:​0​] jb, ​//input transmission line on jb[0]

71

 input​ clk_100mhz, ​//100MHz clock
 input​ reset, ​//reset
 ​output​ ​logic​ [​6​:​0​] led ​//output note index, displayed on LEDs
);

 logic​ [​7​:​0​] val_out;
 logic​ valid;
 logic​ [​6​:​0​] note;
 logic​ [​87​:​0​] notes_played; ​//88 bit register, holding a 1 at every index
corresponding to a note being played, 0 otherwise

 ​//instantiation of MIDI_decoder, which takes in bytes from transmission line,
correctly outputs 88-bit notes_played register

 ​MIDI_decoder​ ​my_MIDI​ (.​byte_in​(val_out), .​valid_byte​(valid),
 .​clk_100mhz​(clk_100mhz), .​reset​(reset),
 .​note_out​(note), .​notes_played​(notes_played));

 ​//instantiation of key_press module, which takes in 88-bit notes_played
register, outputs a single note index

 ​key_press​ ​my_key_press​ (.​clk_100mhz​(clk_100mhz), .​np​(notes_played),
 .​note_index​(led));

 logic​ UART_in;
 ​assign​ UART_in = jb[​0​];

 ​parameter​ CLK_CYCLES_PER_SECOND = ​100000000​;
 ​parameter​ CLK_CYCLES_PER_UART_BIT = ​3200​;
 ​parameter​ IDLE_SAMPLE = ​200​;
 ​parameter​ DELAY = ​1600​;

 ​//possible states
 ​parameter​ IDLE = ​2'b00​;
 ​parameter​ START_BIT = ​2'b01​;
 ​parameter​ SAMPLING_BITS = ​2'b11​;
 ​parameter​ STOP_BIT = ​2'b10​;

 logic​ [​1​:​0​] state = IDLE;

72

 logic​ [​11​:​0​] counter = ​12'b0​;
 logic​ [​2​:​0​] index;

 ​always_ff​ @(​posedge​ clk_100mhz) ​begin

 ​if​ (reset) ​begin

 val_out <= ​8'hFF​;
 state <= IDLE;

 counter <= ​12'b0​;

 ​end​ ​else​ ​begin

 ​case​ (state)

 ​//in IDLE state, sample transmission line every 200 clock cycles,
looking for falling edge of a start bit,

 ​//meaning that a new message is coming in;
 ​//if the transmission line has gone low, switch to START_BIT
state

 IDLE: ​begin

 val_out <= val_out;

 counter <= (counter == IDLE_SAMPLE - ​1​) ? ​12'b0​ : counter +
1​;
 state <= ((counter == IDLE_SAMPLE - ​1​) && ~UART_in) ?
START_BIT : IDLE;

 index <= ​3'b0​;
 valid <= ​0​;

 ​end

 ​//in START_BIT state, wait 1600 clock cycles to get to middle of
start bit,

 ​//then switch to SAMPLING_BITS state
 START_BIT: ​begin

73

 val_out <= val_out;

 counter <= (counter == DELAY - ​1​) ? ​12'b0​ : counter + ​1​;
 state <= (counter == DELAY - ​1​) ? SAMPLING_BITS : START_BIT;
 index <= ​3'b0​;
 valid <= ​0​;

 ​end

 ​//in SAMPLING_BITS state, increment index from 0 to 7 in order to
fill up the output register with the byte transmitted;

 ​//wait 3200 clock cycles between samplings of the transmission
line, thus grabbing each bit of the byte in the middle;

 ​//after getting all 8 bits, switch to STOP_BIT state
 SAMPLING_BITS: ​begin

 val_out[index] = (counter == CLK_CYCLES_PER_UART_BIT - ​1​) ?
UART_in : val_out[index];

 counter <= (counter == CLK_CYCLES_PER_UART_BIT - ​1​) ? ​12'b0​ :
counter + ​1​;
 state <= ((counter == CLK_CYCLES_PER_UART_BIT - ​1​) && index
== ​7​) ? STOP_BIT : SAMPLING_BITS;
 index <= (counter == CLK_CYCLES_PER_UART_BIT - ​1​) ? index + ​1
: index;

 valid <= ​0​;

 ​end

 ​//in STOP_BIT state, wait 3200 clock cycles to get to the middle
of the stop bit, then return to IDLE state,

 ​//waiting for the next start bit
 STOP_BIT : ​begin

 val_out <= val_out;

 counter <= (counter == CLK_CYCLES_PER_UART_BIT - ​1​) ? ​12'b0​ :
counter + ​1​;
 state <= (counter == CLK_CYCLES_PER_UART_BIT - ​1​) ? IDLE :
STOP_BIT;

74

 index <= ​3'b0​;
 valid <= (counter == CLK_CYCLES_PER_UART_BIT - ​1​) ? ​1​ : ​0​;

 ​end

 ​endcase

 ​end

 ​end

endmodule

//MIDI_decoder takes in bytes from UART_decoder, outputes 88-bit register

notes_played filled with 1's at indices corresponding to notes

//currently being played, 0's at indices corresponding to notes not currently

being played

module​ ​MIDI_decoder​(
 input​ [​7​:​0​] byte_in,
 input​ valid_byte,
 input​ clk_100mhz,
 input​ reset,
 ​output​ ​logic​ [​6​:​0​] note_out,
 ​output​ ​logic​ valid,
 ​output​ ​logic​ [​87​:​0​] notes_played
);

 ​//bytes sent by keyboard indicating a note on or note off
 ​parameter​ NOTE_ON = ​8'h40​;
 ​parameter​ NOTE_OFF = ​8'h00​;

 logic​ [​6​:​0​] last_note;
 logic​ status;
 logic​ [​6​:​0​] last_note_out;
 ​assign​ status = (byte_in == NOTE_ON) || (byte_in == NOTE_OFF);

 ​always_ff​ @(​posedge​ clk_100mhz) ​begin

75

 ​//upon reset, set all 88 bits to 0
 ​if​ (reset) ​begin

 last_note <= ​7'h7F​;
 note_out <= ​7'h7F​;
 valid <= ​0​;
 notes_played <= ​88'b0​;

 ​end​ ​else​ ​begin

 ​//when we've gotten a valid byte, if it's a status byte (note
on/off), then check what note is in the last_note register,

 ​//and set that note's bit in the 88-bit register according to whether
we just got a note on or note off signal;

 ​//set last_note to the note index output by the keyboard on bytes
that are not status bytes

 ​if​ (valid_byte) ​begin

 last_note <= status ? last_note : byte_in[​6​:​0​];
 note_out <= (byte_in == NOTE_ON) ? last_note : last_note_out;

 valid <= status;

 notes_played[last_note] <= status ? (byte_in == NOTE_ON) :

notes_played[last_note];

 ​//waiting for a valid byte
 ​end​ ​else​ ​begin

 last_note <= last_note;

 note_out <= note_out;

 valid <= ​0​;
 notes_played <= notes_played;

 ​end

 ​end

76

 last_note_out <= note_out;

 ​end

endmodule

//key_press module converts 88-bit register into single 7-bit note index;

//this note_index is 7'h7F if no note is played, 7'h7E if multiple notes are

being played,

//or a specific number 0 through 87 if a single note is being played

module​ ​key_press​(
 input​ clk_100mhz,
 input​ [​87​:​0​] np,
 ​output​ ​logic​ [​6​:​0​] note_index
);

 ​//sum is the number of notes being played
 int​ sum;
 ​assign​ sum = np[​0​] + np[​1​] + np[​2​] + np[​3​] + np[​4​] + np[​5​] + np[​6​] + np[​7​] +
np[​8​] + np[​9​] + np[​10​]
 + np[​11​] + np[​12​] + np[​13​] + np[​14​] + np[​15​] + np[​16​] + np[​17​] +
np[​18​] + np[​19​] + np[​20​] + np[​21​]
 + np[​22​] + np[​23​] + np[​24​] + np[​25​] + np[​26​] + np[​27​] + np[​28​] +
np[​29​] + np[​30​] + np[​31​] + np[​32​]
 + np[​33​] + np[​34​] + np[​35​] + np[​36​] + np[​37​] + np[​38​] + np[​39​] +
np[​40​] + np[​41​] + np[​42​] + np[​43​]
 + np[​44​] + np[​45​] + np[​46​] + np[​47​] + np[​48​] + np[​49​] + np[​50​] +
np[​51​] + np[​52​] + np[​53​] + np[​54​]
 + np[​55​] + np[​56​] + np[​57​] + np[​58​] + np[​59​] + np[​60​] + np[​61​] +
np[​62​] + np[​63​] + np[​64​] + np[​65​]
 + np[​66​] + np[​67​] + np[​68​] + np[​69​] + np[​70​] + np[​71​] + np[​72​] +
np[​73​] + np[​74​] + np[​75​] + np[​76​]
 + np[​77​] + np[​78​] + np[​79​] + np[​80​] + np[​81​] + np[​82​] + np[​83​] +
np[​84​] + np[​85​] + np[​86​] + np[​87​];

 ​always​ @(​posedge​ clk_100mhz) ​begin

77

 ​//no note played: output 7'h7F
 ​if​ (sum == ​0​) ​begin

 note_index <= ​7'h7F​;

 ​//multiple notes being played: output 7'h7E
 ​end​ ​else​ ​if​ (sum > ​1​) ​begin

 note_index <= ​7'h7E​;

 ​//one note being played: case statement to determine which note is being
played, output note_index accordingly

 ​end​ ​else​ ​begin

 ​case​ (np)

 ​88'h0000000000000000000001​ : note_index <= ​7'd0​;
 ​88'h0000000000000000000002​ : note_index <= ​7'd1​;
 ​88'h0000000000000000000004​ : note_index <= ​7'd2​;
 ​88'h0000000000000000000008​ : note_index <= ​7'd3​;
 ​88'h0000000000000000000010​ : note_index <= ​7'd4​;
 ​88'h0000000000000000000020​ : note_index <= ​7'd5​;
 ​88'h0000000000000000000040​ : note_index <= ​7'd6​;
 ​88'h0000000000000000000080​ : note_index <= ​7'd7​;
 ​88'h0000000000000000000100​ : note_index <= ​7'd8​;
 ​88'h0000000000000000000200​ : note_index <= ​7'd9​;
 ​88'h0000000000000000000400​ : note_index <= ​7'd10​;
 ​88'h0000000000000000000800​ : note_index <= ​7'd11​;
 ​88'h0000000000000000001000​ : note_index <= ​7'd12​;
 ​88'h0000000000000000002000​ : note_index <= ​7'd13​;
 ​88'h0000000000000000004000​ : note_index <= ​7'd14​;
 ​88'h0000000000000000008000​ : note_index <= ​7'd15​;
 ​88'h0000000000000000010000​ : note_index <= ​7'd16​;
 ​88'h0000000000000000020000​ : note_index <= ​7'd17​;
 ​88'h0000000000000000040000​ : note_index <= ​7'd18​;
 ​88'h0000000000000000080000​ : note_index <= ​7'd19​;
 ​88'h0000000000000000100000​ : note_index <= ​7'd20​;

78

 ​88'h0000000000000000200000​ : note_index <= ​7'd21​;
 ​88'h0000000000000000400000​ : note_index <= ​7'd22​;
 ​88'h0000000000000000800000​ : note_index <= ​7'd23​;
 ​88'h0000000000000001000000​ : note_index <= ​7'd24​;
 ​88'h0000000000000002000000​ : note_index <= ​7'd25​;
 ​88'h0000000000000004000000​ : note_index <= ​7'd26​;
 ​88'h0000000000000008000000​ : note_index <= ​7'd27​;
 ​88'h0000000000000010000000​ : note_index <= ​7'd28​;
 ​88'h0000000000000020000000​ : note_index <= ​7'd29​;
 ​88'h0000000000000040000000​ : note_index <= ​7'd30​;
 ​88'h0000000000000080000000​ : note_index <= ​7'd31​;
 ​88'h0000000000000100000000​ : note_index <= ​7'd32​;
 ​88'h0000000000000200000000​ : note_index <= ​7'd33​;
 ​88'h0000000000000400000000​ : note_index <= ​7'd34​;
 ​88'h0000000000000800000000​ : note_index <= ​7'd35​;
 ​88'h0000000000001000000000​ : note_index <= ​7'd36​;
 ​88'h0000000000002000000000​ : note_index <= ​7'd37​;
 ​88'h0000000000004000000000​ : note_index <= ​7'd38​;
 ​88'h0000000000008000000000​ : note_index <= ​7'd39​;
 ​88'h0000000000010000000000​ : note_index <= ​7'd40​;
 ​88'h0000000000020000000000​ : note_index <= ​7'd41​;
 ​88'h0000000000040000000000​ : note_index <= ​7'd42​;
 ​88'h0000000000080000000000​ : note_index <= ​7'd43​;
 ​88'h0000000000100000000000​ : note_index <= ​7'd44​;
 ​88'h0000000000200000000000​ : note_index <= ​7'd45​;
 ​88'h0000000000400000000000​ : note_index <= ​7'd46​;
 ​88'h0000000000800000000000​ : note_index <= ​7'd47​;
 ​88'h0000000001000000000000​ : note_index <= ​7'd48​;
 ​88'h0000000002000000000000​ : note_index <= ​7'd49​;
 ​88'h0000000004000000000000​ : note_index <= ​7'd50​;
 ​88'h0000000008000000000000​ : note_index <= ​7'd51​;
 ​88'h0000000010000000000000​ : note_index <= ​7'd52​;
 ​88'h0000000020000000000000​ : note_index <= ​7'd53​;
 ​88'h0000000040000000000000​ : note_index <= ​7'd54​;
 ​88'h0000000080000000000000​ : note_index <= ​7'd55​;
 ​88'h0000000100000000000000​ : note_index <= ​7'd56​;
 ​88'h0000000200000000000000​ : note_index <= ​7'd57​;

79

 ​88'h0000000400000000000000​ : note_index <= ​7'd58​;
 ​88'h0000000800000000000000​ : note_index <= ​7'd59​;
 ​88'h0000001000000000000000​ : note_index <= ​7'd60​;
 ​88'h0000002000000000000000​ : note_index <= ​7'd61​;
 ​88'h0000004000000000000000​ : note_index <= ​7'd62​;
 ​88'h0000008000000000000000​ : note_index <= ​7'd63​;
 ​88'h0000010000000000000000​ : note_index <= ​7'd64​;
 ​88'h0000020000000000000000​ : note_index <= ​7'd65​;
 ​88'h0000040000000000000000​ : note_index <= ​7'd66​;
 ​88'h0000080000000000000000​ : note_index <= ​7'd67​;
 ​88'h0000100000000000000000​ : note_index <= ​7'd68​;
 ​88'h0000200000000000000000​ : note_index <= ​7'd69​;
 ​88'h0000400000000000000000​ : note_index <= ​7'd70​;
 ​88'h0000800000000000000000​ : note_index <= ​7'd71​;
 ​88'h0001000000000000000000​ : note_index <= ​7'd72​;
 ​88'h0002000000000000000000​ : note_index <= ​7'd73​;
 ​88'h0004000000000000000000​ : note_index <= ​7'd74​;
 ​88'h0008000000000000000000​ : note_index <= ​7'd75​;
 ​88'h0010000000000000000000​ : note_index <= ​7'd76​;
 ​88'h0020000000000000000000​ : note_index <= ​7'd77​;
 ​88'h0040000000000000000000​ : note_index <= ​7'd78​;
 ​88'h0080000000000000000000​ : note_index <= ​7'd79​;
 ​88'h0100000000000000000000​ : note_index <= ​7'd80​;
 ​88'h0200000000000000000000​ : note_index <= ​7'd81​;
 ​88'h0400000000000000000000​ : note_index <= ​7'd82​;
 ​88'h0800000000000000000000​ : note_index <= ​7'd83​;
 ​88'h1000000000000000000000​ : note_index <= ​7'd84​;
 ​88'h2000000000000000000000​ : note_index <= ​7'd85​;
 ​88'h4000000000000000000000​ : note_index <= ​7'd86​;
 ​88'h8000000000000000000000​ : note_index <= ​7'd87​;
 ​default​ : note_index <= ​7'hFd​;

 ​endcase

 ​end

 ​end

80

endmodule

VGA_helper.sv
`timescale ​1ns​ / ​1ps

//pixel_helper takes as input the type of screen we are on, the current location

of a menu selector,

//a 65MHz clock, the current 5 notes for the falling display in game mode,

//a new_note signal to indicate that a new note has been shifted into the shift

register,

//a reset signal, the current note for learning mode, the current note being

played by the user,

//and then the standard VGA signals (hcount, vcount, hsync, vsync, and blank);

//it uses this information to generate the proper pixel values, outputting

phsync_out, pvsync_out, pblank_out, and pixel_out

module​ ​pixel_helper​(
 input​ [​2​:​0​] screen, ​//type of screen
 input​ [​1​:​0​] selection, ​//menu selector location
 input​ clk_65mhz, ​//clock
 input​ [​34​:​0​] notes, ​//5 notes to display in game mode
 input​ new_note, ​//pulse to indicate a new note shifted into notes
register

 input​ reset, ​//reset
 input​ [​6​:​0​] learning_note, ​//current learning mode note
 input​ [​6​:​0​] user_note, ​//current note user is playing
 input​ [​10​:​0​] hcount_in, ​// horizontal index of current pixel (0..1023)
 input​ [​9​:​0​] vcount_in, ​// vertical index of current pixel (0..767)
 input​ hsync_in, ​// XVGA horizontal sync signal (active low)
 input​ vsync_in, ​// XVGA vertical sync signal (active low)
 input​ blank_in, ​// XVGA blanking (1 means output black pixel)

 output​ phsync_out, ​// output horizontal sync
 output​ pvsync_out, ​// output vertical sync
 output​ pblank_out, ​// output blanking
 ​output​ ​logic​ [​11​:​0​] pixel_out ​// output pixel // r=11:8, g=7:4, b=3:0

81

);

 ​//different possible screens
 ​parameter​ MAIN_MENU = ​3'b000​;
 ​parameter​ KEYBOARD_INSTRUCTIONS = ​3'b001​;
 ​parameter​ SONG_INSTRUCTIONS = ​3'b010​;
 ​parameter​ BASIC_SONG_MENU = ​3'b011​;
 ​parameter​ CUSTOM_SONG_MENU = ​3'b100​;
 ​parameter​ LEARN_MODE = ​3'b101​;
 ​parameter​ GAME_MODE = ​3'b110​;

 ​assign​ phsync_out = hsync_in;
 ​assign​ pvsync_out = vsync_in;
 ​assign​ pblank_out = blank_in;

 ​//the main menu
 wire​ [​11​:​0​] main_menu_pixel;
 picture_blob_main_menu

 ​main_menu​(.​pixel_clk_in​(clk_65mhz),
.​x_in​(​250​),.​y_in​(​250​),.​hcount_in​(hcount_in),.​vcount_in​(vcount_in),
 .​pixel_out​(main_menu_pixel));

 ​//the keyboard instructions
 wire​ [​11​:​0​] keyboard_inst_pixel;
 picture_blob_keyboard_inst

 ​keyboard_instructions​(.​pixel_clk_in​(clk_65mhz),
.​x_in​(​250​),.​y_in​(​250​),.​hcount_in​(hcount_in),.​vcount_in​(vcount_in),
 .​pixel_out​(keyboard_inst_pixel));

 ​//the song creation instructions
 wire​ [​11​:​0​] song_inst_pixel;
 picture_blob_song_inst

 ​song_instructions​(.​pixel_clk_in​(clk_65mhz),
.​x_in​(​250​),.​y_in​(​250​),.​hcount_in​(hcount_in),.​vcount_in​(vcount_in),
 .​pixel_out​(song_inst_pixel));

 ​//the basic song menu

82

 wire​ [​11​:​0​] song_menu_pixel;
 picture_blob_song_menu_basic

 ​song_menu​(.​pixel_clk_in​(clk_65mhz),
.​x_in​(​250​),.​y_in​(​250​),.​hcount_in​(hcount_in),.​vcount_in​(vcount_in),
 .​pixel_out​(song_menu_pixel));

 ​//the custom song menu
 wire​ [​11​:​0​] song_menu_custom_pixel;
 picture_blob_song_menu_custom

 ​song_menu_custom​(.​pixel_clk_in​(clk_65mhz),
.​x_in​(​250​),.​y_in​(​250​),.​hcount_in​(hcount_in),.​vcount_in​(vcount_in),
 .​pixel_out​(song_menu_custom_pixel));

 ​//the keyboard
 wire​ [​11​:​0​] keyboard_pixel;
 picture_blob_keyboard

 ​keyboard​(.​pixel_clk_in​(clk_65mhz),
.​x_in​(​0​),.​y_in​(​640​),.​hcount_in​(hcount_in),.​vcount_in​(vcount_in),
 .​pixel_out​(keyboard_pixel));

 ​//the menu-navigation selector
 logic​ [​9​:​0​] selector_y;
 ​selector_lut​ ​my_sel_lut​(.​clk_65mhz​(clk_65mhz), .​selector​(selection),
.​y_loc​(selector_y));

 wire​ [​11​:​0​] selector_pixel;
 ​blob​ #(.​WIDTH​(​35​),.​HEIGHT​(​35​),.​COLOR​(​12'hF00​))

selector​(.​x_in​(​650​),.​y_in​(selector_y),.​hcount_in​(hcount_in),.​vcount_in​(vcount_in)
,

 .​pixel_out​(selector_pixel));

 ​//the learning mode note indicator
 logic​ [​10​:​0​] learning_note_x;
 ​keyboard_lut​ ​my_learn_lut​(.​clk_65mhz​(clk_65mhz), .​note_index​(learning_note),
.​x_loc​(learning_note_x));

83

 wire​ [​11​:​0​] learning_note_pixel;
 ​blob​ #(.​WIDTH​(​10​),.​HEIGHT​(​160​),.​COLOR​(​12'h00F​))

learning_note_blob​(.​x_in​(learning_note_x),.​y_in​(​480​),.​hcount_in​(hcount_in),.​vcoun
t_in​(vcount_in),
 .​pixel_out​(learning_note_pixel));

 ​//the user note indicator

 logic​ [​10​:​0​] user_note_x;
 ​keyboard_lut​ ​my_user_lut​(.​clk_65mhz​(clk_65mhz), .​note_index​(user_note),
.​x_loc​(user_note_x));

 wire​ [​11​:​0​] user_note_pixel;
 ​blob​ #(.​WIDTH​(​10​),.​HEIGHT​(​60​),.​COLOR​(​12'h0F0​))

user_note_blob​(.​x_in​(user_note_x),.​y_in​(​580​),.​hcount_in​(hcount_in),.​vcount_in​(vco
unt_in),

 .​pixel_out​(user_note_pixel));

 ​//5 indicator rectangles for notes in falling display during game mode

 wire​ [​11​:​0​] note_1_pixel, note_2_pixel, note_3_pixel, note_4_pixel,
note_5_pixel;

 ​//use look up table of x-positions to find x-locations for 5 notes
 logic​ [​10​:​0​] note_1_x, note_2_x, note_3_x, note_4_x, note_5_x;
 ​keyboard_lut​ ​note_1_lut​(.​clk_65mhz​(clk_65mhz), .​note_index​(notes[​34​:​28​]),
.​x_loc​(note_1_x));
 ​keyboard_lut​ ​note_2_lut​(.​clk_65mhz​(clk_65mhz), .​note_index​(notes[​27​:​21​]),
.​x_loc​(note_2_x));
 ​keyboard_lut​ ​note_3_lut​(.​clk_65mhz​(clk_65mhz), .​note_index​(notes[​20​:​14​]),
.​x_loc​(note_3_x));
 ​keyboard_lut​ ​note_4_lut​(.​clk_65mhz​(clk_65mhz), .​note_index​(notes[​13​:​7​]),
.​x_loc​(note_4_x));
 ​keyboard_lut​ ​note_5_lut​(.​clk_65mhz​(clk_65mhz), .​note_index​(notes[​6​:​0​]),
.​x_loc​(note_5_x));

84

 ​//locations for actual blob objects, only updated when a new note is shifted
in

 logic​ [​10​:​0​] note_1_new_x, note_2_new_x, note_3_new_x, note_4_new_x,
note_5_new_x;

 ​//notes' y-positions
 logic​ [​9​:​0​] note_1_y, note_2_y, note_3_y, note_4_y, note_5_y;

 ​//blob objects for notes in falling display
 ​blob​ #(.​WIDTH​(​10​),.​HEIGHT​(​160​),.​COLOR​(​12'h00F​))

note_1_blob​(.​x_in​(note_1_x),.​y_in​(note_1_y),.​hcount_in​(hcount_in),.​vcount_in​(vcou
nt_in),

 .​pixel_out​(note_1_pixel));

 ​blob​ #(.​WIDTH​(​10​),.​HEIGHT​(​160​),.​COLOR​(​12'h00F​))

note_2_blob​(.​x_in​(note_2_x),.​y_in​(note_2_y),.​hcount_in​(hcount_in),.​vcount_in​(vcou
nt_in),

 .​pixel_out​(note_2_pixel));

 ​blob​ #(.​WIDTH​(​10​),.​HEIGHT​(​160​),.​COLOR​(​12'h00F​))

note_3_blob​(.​x_in​(note_3_x),.​y_in​(note_3_y),.​hcount_in​(hcount_in),.​vcount_in​(vcou
nt_in),

 .​pixel_out​(note_3_pixel));

 ​blob​ #(.​WIDTH​(​10​),.​HEIGHT​(​160​),.​COLOR​(​12'h00F​))

note_4_blob​(.​x_in​(note_4_x),.​y_in​(note_4_y),.​hcount_in​(hcount_in),.​vcount_in​(vcou
nt_in),

 .​pixel_out​(note_4_pixel));

 ​blob​ #(.​WIDTH​(​10​),.​HEIGHT​(​160​),.​COLOR​(​12'h00F​))

note_5_blob​(.​x_in​(note_5_x),.​y_in​(note_5_y),.​hcount_in​(hcount_in),.​vcount_in​(vcou
nt_in),

85

 .​pixel_out​(note_5_pixel));

 ​parameter​ CYCLES_PER_MOVEMENT = ​203125​; ​//number of clock cycles between
downward movement of each note for falling display during game mode

 logic​ [​17​:​0​] counter = ​18'b0​;
 logic​ prev_new_note;

 ​always_ff​ @(​posedge​ clk_65mhz) ​begin

 ​//determine which objects to display depending on screen type
 ​case​(screen)

 MAIN_MENU: pixel_out <= main_menu_pixel &

selector_pixel;

 KEYBOARD_INSTRUCTIONS: pixel_out <= keyboard_pixel &

user_note_pixel;

 SONG_INSTRUCTIONS: pixel_out <= song_inst_pixel;

 BASIC_SONG_MENU: pixel_out <= song_menu_pixel &

selector_pixel;

 CUSTOM_SONG_MENU: pixel_out <= song_menu_custom_pixel &

selector_pixel;

 LEARN_MODE: pixel_out <= keyboard_pixel &

learning_note_pixel & user_note_pixel;

 GAME_MODE: pixel_out <= (vcount_in >= ​640​) ?
keyboard_pixel :

 (vcount_in == ​0​ || vcount_in == ​160​ ||
vcount_in == ​320​ || vcount_in == ​480​) ?
 ​12'h000​: (note_1_pixel & note_2_pixel &
note_3_pixel & note_4_pixel & note_5_pixel & user_note_pixel);

 ​endcase

 ​if​ (reset) ​begin

 counter <= ​18'b0​;

 ​end​ ​else​ ​begin

86

 counter <= (!(screen == GAME_MODE) || counter == CYCLES_PER_MOVEMENT

|| new_note) ? ​18'b0​ : counter + ​1​;

 ​//update x-positions of notes when a new note is shifted in
 note_1_new_x <= (prev_new_note) ? note_1_x : note_1_new_x;

 note_2_new_x <= (prev_new_note) ? note_2_x : note_2_new_x;

 note_3_new_x <= (prev_new_note) ? note_3_x : note_3_new_x;

 note_4_new_x <= (prev_new_note) ? note_4_x : note_4_new_x;

 note_5_new_x <= (prev_new_note) ? note_5_x : note_5_new_x;

 ​//set y-positions to (0, 160, 320, 480, 864=-160) when a new note is
shifted in,

 ​//then increment each by 2 whenever counter reaches
CYCLES_PER_MOVEMENT;

 ​//with a new note shifted in every quarter of a second, this produces
a smooth, synchronized falling display

 note_1_y <= (new_note) ? ​480​ : ((counter == CYCLES_PER_MOVEMENT) ?
note_1_y + ​2​ : note_1_y);
 note_2_y <= (new_note) ? ​320​ : ((counter == CYCLES_PER_MOVEMENT) ?
note_2_y + ​2​ : note_2_y);
 note_3_y <= (new_note) ? ​160​ : ((counter == CYCLES_PER_MOVEMENT) ?
note_3_y + ​2​ : note_3_y);
 note_4_y <= (new_note) ? ​0​ : ((counter == CYCLES_PER_MOVEMENT) ?
note_4_y + ​2​ : note_4_y);
 note_5_y <= (new_note) ? ​864​ : ((counter == CYCLES_PER_MOVEMENT) ?
note_5_y + ​2​ : note_5_y);

 prev_new_note <= new_note;

 ​end

 ​end

endmodule

87

//Look up table for menu navigation; converts current choice within a menu to the

appropriate y-location for the display

module​ ​selector_lut​(
 input​ clk_65mhz,
 input​ [​1​:​0​] selector,
 ​output​ ​logic​ [​9​:​0​] y_loc);

 ​always_ff​ @(​posedge​ clk_65mhz) ​begin
 ​case​(selector)

 ​2'b00​: y_loc <= ​260​;
 ​2'b01​: y_loc <= ​300​;
 ​2'b10​: y_loc <= ​340​;
 ​2'b11​: y_loc <= ​380​;
 ​default​: y_loc <= ​260​;

 ​endcase
 ​end

endmodule

//Look up table converting any note index into the appropriate x-location on the

display to match up with the keyboard image

module​ ​keyboard_lut​(
 input​ clk_65mhz,
 input​ [​6​:​0​] note_index,
 ​output​ ​logic​ [​10​:​0​] x_loc);

 ​always_ff​ @(​posedge​ clk_65mhz) ​begin
 ​case​(note_index)

 ​36​: x_loc <= ​11'hA​;
 ​37​: x_loc <= ​11'h1A​;
 ​38​: x_loc <= ​11'h2A​;
 ​39​: x_loc <= ​11'h38​;
 ​40​: x_loc <= ​11'h49​;
 ​41​: x_loc <= ​11'h5E​;

88

 ​42​: x_loc <= ​11'h6F​;
 ​43​: x_loc <= ​11'h7E​;
 ​44​: x_loc <= ​11'h8D​;
 ​45​: x_loc <= ​11'h9C​;
 ​46​: x_loc <= ​11'hAA​;

 ​47​: x_loc <= ​11'hBA​;
 ​48​: x_loc <= ​11'hCF​;
 ​49​: x_loc <= ​11'hE0​;
 ​50​: x_loc <= ​11'hEF​;
 ​51​: x_loc <= ​11'hFE​;

 ​52​: x_loc <= ​11'h10F​;
 ​53​: x_loc <= ​11'h124​;
 ​54​: x_loc <= ​11'h135​;
 ​55​: x_loc <= ​11'h144​;
 ​56​: x_loc <= ​11'h153​;

 ​57​: x_loc <= ​11'h161​;
 ​58​: x_loc <= ​11'h170​;
 ​59​: x_loc <= ​11'h180​;

 ​60​: x_loc <= ​11'h196​;
 ​61​: x_loc <= ​11'h1A7​;

 ​62​: x_loc <= ​11'h1B6​;
 ​63​: x_loc <= ​11'h1C5​;
 ​64​: x_loc <= ​11'h1D6​;
 ​65​: x_loc <= ​11'h1EB​;
 ​66​: x_loc <= ​11'h1FD​;

 ​67​: x_loc <= ​11'h20D​;
 ​68​: x_loc <= ​11'h21A​;
 ​69​: x_loc <= ​11'h22A​;
 ​70​: x_loc <= ​11'h238​;
 ​71​: x_loc <= ​11'h24C​;

 ​72​: x_loc <= ​11'h262​;
 ​73​: x_loc <= ​11'h274​;
 ​74​: x_loc <= ​11'h27F​;
 ​75​: x_loc <= ​11'h28D​;
 ​76​: x_loc <= ​11'h29E​;

 ​77​: x_loc <= ​11'h2B7​;
 ​78​: x_loc <= ​11'h2C8​;

89

 ​79​: x_loc <= ​11'h2D7​;

 ​80​: x_loc <= ​11'h2E6​;
 ​81​: x_loc <= ​11'h2F3​;

 ​82​: x_loc <= ​11'h300​;
 ​83​: x_loc <= ​11'h312​;
 ​84​: x_loc <= ​11'h32A​;
 ​85​: x_loc <= ​11'h33A​;
 ​86​: x_loc <= ​11'h349​;

 ​87​: x_loc <= ​11'h358​;
 ​88​: x_loc <= ​11'h368​;
 ​89​: x_loc <= ​11'h37A​;
 ​90​: x_loc <= ​11'h38C​;
 ​91​: x_loc <= ​11'h39B​;
 ​92​: x_loc <= ​11'h3AA​;
 ​93​: x_loc <= ​11'h3B9​;
 ​94​: x_loc <= ​11'h3C8​;
 ​95​: x_loc <= ​11'h3D8​;
 ​96​: x_loc <= ​11'h3EB​;
 ​default​: x_loc <= ​11'h7FF​; ​//default off-screen for invalid note
indices

 ​endcase
 ​end

endmodule

//

//

// blob: generate rectangle on screen

//

//

module​ ​blob
 #(​parameter​ WIDTH = ​64​, ​// default width: 64 pixels
 HEIGHT = ​64​, ​// default height: 64 pixels
 COLOR = ​12'hFFF​) ​// default color: white
 (​input​ [​11​:​0​] x_in,hcount_in,

90

 input​ [​10​:​0​] y_in,vcount_in,
 ​output​ ​logic​ [​11​:​0​] pixel_out);

 ​always_comb​ ​begin
 ​if​ ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&
 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 pixel_out = COLOR;

 ​else​ pixel_out = ​12'hFFF​;
 ​end
endmodule

//

//

// picture_blob: display a picture for the main menu

//

//

module​ ​picture_blob_main_menu
 #(​parameter​ WIDTH = ​226​, ​// default picture width
 HEIGHT = ​158​) ​// default picture height
 (​input​ pixel_clk_in,
 input​ [​10​:​0​] x_in,hcount_in,
 input​ [​9​:​0​] y_in,vcount_in,
 ​output​ ​logic​ [​11​:​0​] pixel_out);

 logic​ [​15​:​0​] image_addr;
 logic​ [​7​:​0​] image_bits, red_mapped, green_mapped, blue_mapped;

 ​// calculate rom address and read the location
 ​assign​ image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
 ​main_menu_rom​ ​rom1​(.​clka​(pixel_clk_in), .​addra​(image_addr),
.​douta​(image_bits));

 ​// use color map to create 4 bits R, 4 bits G, 4 bits B
 ​// since the image is greyscale, just replicate the red pixels
 ​// and not bother with the other two color maps.
 ​red_main_menu_rom​ ​rcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(red_mapped));

91

 ​green_main_menu_rom​ ​gcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(green_mapped));
 ​blue_main_menu_rom​ ​bcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(blue_mapped));
 ​// note the one clock cycle delay in pixel!
 ​always​ @ (​posedge​ pixel_clk_in) ​begin
 ​if​ ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&
 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 ​// use MSB 4 bits
 pixel_out <= {red_mapped[​7​:​4​], red_mapped[​7​:​4​], red_mapped[​7​:​4​]}; ​//
greyscale

 ​//pixel_out <= {red_mapped[7:4], 8h'0}; // only red hues
 ​else​ pixel_out <= ​12'hFFF​;
 ​end
endmodule

//

//

// picture_blob: display a picture for the keyboard-playing instructions

//

//

module​ ​picture_blob_keyboard_inst
 #(​parameter​ WIDTH = ​173​, ​// default picture width
 HEIGHT = ​50​) ​// default picture height
 (​input​ pixel_clk_in,
 input​ [​10​:​0​] x_in,hcount_in,
 input​ [​9​:​0​] y_in,vcount_in,
 ​output​ ​logic​ [​11​:​0​] pixel_out);

 logic​ [​13​:​0​] image_addr;
 logic​ [​7​:​0​] image_bits, red_mapped, green_mapped, blue_mapped;

 ​// calculate rom address and read the location
 ​assign​ image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
 ​keyboard_inst_rom​ ​rom1​(.​clka​(pixel_clk_in), .​addra​(image_addr),
.​douta​(image_bits));

92

 ​// use color map to create 4 bits R, 4 bits G, 4 bits B
 ​// since the image is greyscale, just replicate the red pixels
 ​// and not bother with the other two color maps.
 ​red_key_inst_rom​ ​rcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(red_mapped));
 ​green_key_inst_rom​ ​gcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(green_mapped));
 ​blue_key_inst_rom​ ​bcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(blue_mapped));
 ​// note the one clock cycle delay in pixel!
 ​always​ @ (​posedge​ pixel_clk_in) ​begin
 ​if​ ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&
 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 ​// use MSB 4 bits
 pixel_out <= {red_mapped[​7​:​4​], red_mapped[​7​:​4​], red_mapped[​7​:​4​]}; ​//
greyscale

 ​//pixel_out <= {red_mapped[7:4], 8h'0}; // only red hues
 ​else​ pixel_out <= ​12'hFFF​;
 ​end
endmodule

//

//

// picture_blob: display a picture for the song-creation instructions

//

//

module​ ​picture_blob_song_inst
 #(​parameter​ WIDTH = ​217​, ​// default picture width
 HEIGHT = ​56​) ​// default picture height
 (​input​ pixel_clk_in,
 input​ [​10​:​0​] x_in,hcount_in,
 input​ [​9​:​0​] y_in,vcount_in,
 ​output​ ​logic​ [​11​:​0​] pixel_out);

 logic​ [​13​:​0​] image_addr;
 logic​ [​7​:​0​] image_bits, red_mapped, green_mapped, blue_mapped;

93

 ​// calculate rom address and read the location
 ​assign​ image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
 ​song_inst_rom​ ​rom1​(.​clka​(pixel_clk_in), .​addra​(image_addr),
.​douta​(image_bits));

 ​// use color map to create 4 bits R, 4 bits G, 4 bits B
 ​// since the image is greyscale, just replicate the red pixels
 ​// and not bother with the other two color maps.
 ​red_song_inst_rom​ ​rcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(red_mapped));
 ​green_song_inst_rom​ ​gcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(green_mapped));
 ​blue_song_inst_rom​ ​bcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(blue_mapped));
 ​// note the one clock cycle delay in pixel!
 ​always​ @ (​posedge​ pixel_clk_in) ​begin
 ​if​ ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&
 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 ​// use MSB 4 bits
 pixel_out <= {red_mapped[​7​:​4​], red_mapped[​7​:​4​], red_mapped[​7​:​4​]}; ​//
greyscale

 ​//pixel_out <= {red_mapped[7:4], 8h'0}; // only red hues
 ​else​ pixel_out <= ​12'hFFF​;
 ​end
endmodule

//

//

// picture_blob: display a picture for the keyboard

//

//

module​ ​picture_blob_keyboard
 #(​parameter​ WIDTH = ​1026​, ​// default picture width
 HEIGHT = ​128​) ​// default picture height
 (​input​ pixel_clk_in,
 input​ [​10​:​0​] x_in,hcount_in,
 input​ [​9​:​0​] y_in,vcount_in,

94

 ​output​ ​logic​ [​11​:​0​] pixel_out);

 logic​ [​17​:​0​] image_addr;
 logic​ [​7​:​0​] image_bits, red_mapped, green_mapped, blue_mapped;

 ​// calculate rom address and read the location
 ​assign​ image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
 ​keyboard_rom1​ ​rom1​(.​clka​(pixel_clk_in), .​addra​(image_addr),
.​douta​(image_bits));

 ​// use color map to create 4 bits R, 4 bits G, 4 bits B
 ​// since the image is greyscale, just replicate the red pixels
 ​// and not bother with the other two color maps.
 ​red_keyboard_rom​ ​rcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(red_mapped));
 ​green_keyboard_rom​ ​gcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(green_mapped));
 ​blue_keyboard_rom​ ​bcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(blue_mapped));
 ​// note the one clock cycle delay in pixel!
 ​always​ @ (​posedge​ pixel_clk_in) ​begin
 ​if​ ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&
 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 ​// use MSB 4 bits
 pixel_out <= {red_mapped[​7​:​4​], red_mapped[​7​:​4​], red_mapped[​7​:​4​]}; ​//
greyscale

 ​//pixel_out <= {red_mapped[7:4], 8h'0}; // only red hues
 ​else​ pixel_out <= ​12'hFFF​;
 ​end
endmodule

//

//

// picture_blob: display a picture for the basic song menu

//

//

module​ ​picture_blob_song_menu_basic

95

 #(​parameter​ WIDTH = ​330​, ​// default picture width
 HEIGHT = ​123​) ​// default picture height
 (​input​ pixel_clk_in,
 input​ [​10​:​0​] x_in,hcount_in,
 input​ [​9​:​0​] y_in,vcount_in,
 ​output​ ​logic​ [​11​:​0​] pixel_out);

 logic​ [​15​:​0​] image_addr;
 logic​ [​7​:​0​] image_bits, red_mapped, green_mapped, blue_mapped;

 ​// calculate rom address and read the location
 ​assign​ image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
 ​basic_song_menu_rom​ ​rom1​(.​clka​(pixel_clk_in), .​addra​(image_addr),
.​douta​(image_bits));

 ​// use color map to create 4 bits R, 4 bits G, 4 bits B
 ​// since the image is greyscale, just replicate the red pixels
 ​// and not bother with the other two color maps.
 ​red_basic_menu_rom​ ​rcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(red_mapped));
 ​green_basic_menu_rom​ ​gcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(green_mapped));
 ​blue_basic_menu_rom​ ​bcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(blue_mapped));
 ​// note the one clock cycle delay in pixel!
 ​always​ @ (​posedge​ pixel_clk_in) ​begin
 ​if​ ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&
 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 ​// use MSB 4 bits
 pixel_out <= {red_mapped[​7​:​4​], red_mapped[​7​:​4​], red_mapped[​7​:​4​]}; ​//
greyscale

 ​//pixel_out <= {red_mapped[7:4], 8h'0}; // only red hues
 ​else​ pixel_out <= ​12'hFFF​;
 ​end
endmodule

//

96

//

// picture_blob: display a picture for the custom song menu

//

//

module​ ​picture_blob_song_menu_custom
 #(​parameter​ WIDTH = ​329​, ​// default picture width
 HEIGHT = ​157​) ​// default picture height
 (​input​ pixel_clk_in,
 input​ [​10​:​0​] x_in,hcount_in,
 input​ [​9​:​0​] y_in,vcount_in,
 ​output​ ​logic​ [​11​:​0​] pixel_out);

 logic​ [​15​:​0​] image_addr;
 logic​ [​7​:​0​] image_bits, red_mapped, green_mapped, blue_mapped;

 ​// calculate rom address and read the location
 ​assign​ image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
 ​custom_song_menu_rom​ ​rom1​(.​clka​(pixel_clk_in), .​addra​(image_addr),
.​douta​(image_bits));

 ​// use color map to create 4 bits R, 4 bits G, 4 bits B
 ​// since the image is greyscale, just replicate the red pixels
 ​// and not bother with the other two color maps.
 ​red_custom_menu_rom​ ​rcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(red_mapped));
 ​green_custom_menu_rom​ ​gcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(green_mapped));
 ​blue_custom_menu_rom​ ​bcm​ (.​clka​(pixel_clk_in), .​addra​(image_bits),
.​douta​(blue_mapped));
 ​// note the one clock cycle delay in pixel!
 ​always​ @ (​posedge​ pixel_clk_in) ​begin
 ​if​ ((hcount_in >= x_in && hcount_in < (x_in+WIDTH)) &&
 (vcount_in >= y_in && vcount_in < (y_in+HEIGHT)))

 ​// use MSB 4 bits
 pixel_out <= {red_mapped[​7​:​4​], red_mapped[​7​:​4​], red_mapped[​7​:​4​]}; ​//
greyscale

 ​//pixel_out <= {red_mapped[7:4], 8h'0}; // only red hues

97

 ​else​ pixel_out <= ​12'hFFF​;
 ​end
endmodule

///

/

// Update: 8/8/2019 GH

// Create Date: 10/02/2015 02:05:19 AM

// Module Name: xvga

//

// xvga: Generate VGA display signals (1024 x 768 @ 60Hz)

//

// ---- HORIZONTAL ----- ------VERTICAL -----

// Active Active

// Freq Video FP Sync BP Video FP Sync BP

// 640x480, 60Hz 25.175 640 16 96 48 480 11 2 31

// 800x600, 60Hz 40.000 800 40 128 88 600 1 4 23

// 1024x768, 60Hz 65.000 1024 24 136 160 768 3 6 29

// 1280x1024, 60Hz 108.00 1280 48 112 248 768 1 3 38

// 1280x720p 60Hz 75.25 1280 72 80 216 720 3 5 30

// 1920x1080 60Hz 148.5 1920 88 44 148 1080 4 5 36

//

// change the clock frequency, front porches, sync's, and back porches to create

// other screen resolutions

//

module​ ​xvga​(​input​ vclock_in,
 ​output​ ​reg​ [​10​:​0​] hcount_out, ​// pixel number on current line
 ​output​ ​reg​ [​9​:​0​] vcount_out, ​// line number
 ​output​ ​reg​ vsync_out, hsync_out,
 ​output​ ​reg​ blank_out);

 ​parameter​ DISPLAY_WIDTH = ​1024​; ​// display width
 ​parameter​ DISPLAY_HEIGHT = ​768​; ​// number of lines

 ​parameter​ H_FP = ​24​; ​// horizontal front porch
 ​parameter​ H_SYNC_PULSE = ​136​; ​// horizontal sync

98

 ​parameter​ H_BP = ​160​; ​// horizontal back porch

 ​parameter​ V_FP = ​3​; ​// vertical front porch
 ​parameter​ V_SYNC_PULSE = ​6​; ​// vertical sync
 ​parameter​ V_BP = ​29​; ​// vertical back porch

 ​// horizontal: 1344 pixels total
 ​// display 1024 pixels per line
 reg​ hblank,vblank;
 wire​ hsyncon,hsyncoff,hreset,hblankon;
 ​assign​ hblankon = (hcount_out == (DISPLAY_WIDTH -​1​));

 ​assign​ hsyncon = (hcount_out == (DISPLAY_WIDTH + H_FP - ​1​)); ​//1047
 ​assign​ hsyncoff = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE - ​1​));
// 1183

 ​assign​ hreset = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE + H_BP -
1​)); ​//1343

 ​// vertical: 806 lines total
 ​// display 768 lines
 wire​ vsyncon,vsyncoff,vreset,vblankon;
 ​assign​ vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT - ​1​)); ​// 767
 ​assign​ vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP - ​1​)); ​// 771
 ​assign​ vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP +
V_SYNC_PULSE - ​1​)); ​// 777
 ​assign​ vreset = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE
+ V_BP - ​1​)); ​// 805

 ​// sync and blanking
 wire​ next_hblank,next_vblank;
 ​assign​ next_hblank = hreset ? ​0​ : hblankon ? ​1​ : hblank;
 ​assign​ next_vblank = vreset ? ​0​ : vblankon ? ​1​ : vblank;
 ​always_ff​ @(​posedge​ vclock_in) ​begin
 hcount_out <= hreset ? ​0​ : hcount_out + ​1​;
 hblank <= next_hblank;

 hsync_out <= hsyncon ? ​0​ : hsyncoff ? ​1​ : hsync_out; ​// active low

 vcount_out <= hreset ? (vreset ? ​0​ : vcount_out + ​1​) : vcount_out;

99

 vblank <= next_vblank;

 vsync_out <= vsyncon ? ​0​ : vsyncoff ? ​1​ : vsync_out; ​// active low

 blank_out <= next_vblank | (next_hblank & ~hreset);

 ​end

endmodule

fft_analyzer.sv
`timescale ​1ns​ / ​1ps
///

// FFT Sampler Module - Performs an averaging sweep over the FFT input

// and outputs the largest index from the resulting signal.

module​ ​fft_analyzer​(
 ​input​ ​logic​ clk_104mhz, ​// input clock signal, at 104 MHz
 ​input​ ​logic​ vauxp3, ​// inputs from Nexys4 for ADC
 ​input​ ​logic​ vauxn3,
 ​output​ ​logic​ hi, ​// whether or not the FFT represents a high input note
 ​output​ ​logic​ lo ​// whether or not the FFT represents a low input note
);

// How often to take the FFT, equates to 60Hz = 104Mhz/PULSE_COUNT

localparam​ PULSE_COUNT = ​21'd1_733_333​;

// Generate a 60Hz pulse (fft_pulse)

logic​ [​20​:​0​] pulse_counter = ​21'd0​;
logic​ fft_pulse; ​// 60Hz pulse
assign​ fft_pulse = (pulse_counter == PULSE_COUNT - ​21'd1​) ? ​1'b1​ : ​1'b0​;
always_ff​ @(​posedge​ clk_104mhz) ​begin
 pulse_counter <= (pulse_counter == PULSE_COUNT - ​21'd1​) ? ​21'd0​ :
pulse_counter + ​21'd1​;

end

// ADC Conversion of Microphone

wire​ [​15​:​0​] sample_reg;
wire​ eoc, xadc_reset;
mic_adc​ ​mic_adc_0​ (

100

 .​dclk_in​(clk_104mhz), ​// Master clock for DRP and XADC.
 .​di_in​(​0​), ​// DRP input info (0 becuase we don't need to write)
 .​daddr_in​(​6'h13​), ​// The DRP register address for the third analog input
register

 .​den_in​(​1​), ​// DRP enable line high (we want to read)
 .​dwe_in​(​0​), ​// DRP write enable low (never write)
 .​drdy_out​(), ​// DRP ready signal (unused)
 .​do_out​(sample_reg), ​// DRP output from register (the ADC data)
 .​reset_in​(xadc_reset), ​// reset line
 .​vp_in​(​0​), ​// dedicated/built in analog channel on bank 0
 .​vn_in​(​0​), ​// can't use this analog channel b/c of nexys 4 setup
 .​vauxp3​(vauxp3), ​// The third analog auxiliary input channel
 .​vauxn3​(vauxn3), ​// Choose this one b/c it's on JXADC header 1
 .​channel_out​(), ​// Not useful in sngle channel mode
 .​eoc_out​(eoc), ​// Pulses high on end of ADC conversion
 .​alarm_out​(), ​// Not useful
 .​eos_out​(), ​// End of sequence pulse, not useful
 .​busy_out​() ​// High when conversion is in progress. unused.
);

assign​ xadc_reset = ​1'b0​;

// Oversample this data, sums 16 input samples at a time and outputs them divided

by 4

wire​ [​13​:​0​] osample16;
wire​ done_osample16;
oversample16​ ​oversampler​(
 .​clk​(clk_104mhz),
 .​sample​(sample_reg[​15​:​4​]),
 .​eoc​(eoc),
 .​oversample​(osample16),
 .​done​(done_osample16));

// Create the frame BRAM that frames of digital audio are written to

wire​ fwe;
reg​ [​11​:​0​] fhead = ​0​; ​// Frame head - a pointer to the write point, works as
circular buffer

101

wire​ [​15​:​0​] fsample; ​// The sample data from the XADC, oversampled 15x
wire​ [​11​:​0​] faddr; ​// Frame address - The read address, controlled by
bram_to_fft

wire​ [​15​:​0​] fdata; ​// Frame data - The read data, input into bram_to_fft
frame_bram​ ​bram1​ (
 .​clka​(clk_104mhz),
 .​wea​(fwe),
 .​addra​(fhead),
 .​dina​(fsample),
 .​clkb​(clk_104mhz),
 .​addrb​(faddr),
 .​doutb​(fdata));
always​ @(​posedge​ clk_104mhz) ​if​ (done_osample16) fhead <= fhead + ​1​; ​// Move the
pointer every oversample

assign​ fsample = {osample16, ​2'b0​}; ​// Pad the oversample with zeros to pretend
it's 16 bits

assign​ fwe = done_osample16; ​// Write only when we finish an oversample (every
104*16 clock cycles)

// Read frame data at a chosen rate and send it to FFT

wire​ last_missing; ​// All these are control lines to the FFT block design
wire​ [​31​:​0​] frame_tdata;
wire​ frame_tlast, frame_tready, frame_tvalid;
bram_to_fft​ ​bram_to_fft_0​ (
 .​clk​(clk_104mhz),
 .​head​(fhead),
 .​addr​(faddr),
 .​data​(fdata),
 .​start​(fft_pulse),
 .​last_missing​(last_missing),
 .​frame_tdata​(frame_tdata),
 .​frame_tlast​(frame_tlast),
 .​frame_tready​(frame_tready),
 .​frame_tvalid​(frame_tvalid)
);

// Perform the FFT!

102

wire​ [​23​:​0​] magnitude_tdata; ​// This output bus has the FFT magnitude for the
current index

wire​ [​11​:​0​] magnitude_tuser; ​// This represents the current index being output,
from 0 to 4096

wire​ magnitude_tlast, magnitude_tvalid;
fft_mag​ ​fft_mag_i​(
 .​clk​(clk_104mhz),
 .​event_tlast_missing​(last_missing),
 .​frame_tdata​(frame_tdata),
 .​frame_tlast​(frame_tlast),
 .​frame_tready​(frame_tready),
 .​frame_tvalid​(frame_tvalid),
 .​scaling​(​12'b1100_0001_1101​),
 .​magnitude_tdata​(magnitude_tdata),
 .​magnitude_tlast​(magnitude_tlast),
 .​magnitude_tuser​(magnitude_tuser),
 .​magnitude_tvalid​(magnitude_tvalid));

// Write the FFT to BRAM

wire​ in_range = ~|magnitude_tuser[​11​:​10​]; ​// When 13 and 12 are 0, we're on
indexes 0 to 1023

wire​ [​9​:​0​] haddr; ​// The read port address
wire​ [​15​:​0​] hdata; ​// The read port data
fft_bram​ ​bram2​ (
 .​clka​(clk_104mhz),
 .​wea​(in_range & magnitude_tvalid), ​// Only save FFT output if in range and
output is valid

 .​addra​(magnitude_tuser[​9​:​0​]), ​// The FFT output index, 0 to 1023
 .​dina​(magnitude_tdata[​15​:​0​]), ​// The actual FFT magnitude
 .​clkb​(clk_104mhz), ​// input wire clkb used to be clk_65mhz
 .​addrb​(haddr), ​// input wire [9 : 0] addrb
 .​doutb​(hdata) ​// output wire [15 : 0] doutb
);

// Read from the FFT BRAM (2) and find the largest bucket. We can use this to

// determine whether a high or low note is being inputted.

wire​ [​10​:​0​] cur_big_index;

103

wire​ index_calc;
wire​ ignore;
fft_sampler​ ​sampler​(
 .​clk​(clk_104mhz),
 .​start​((magnitude_tuser[​9​:​0​] == ​10'd1023​)),
 .​cur_fft​(hdata),
 .​read_addr​(haddr),
 .​read_enable​(ignore),
 .​largest_bucket​(cur_big_index),
 .​done​(index_calc));

// FFT sensitivity timer - the speed at which we sense input notes is

// rate-limited by the timer. The timer serves as a time-out between input

// notes.

// This design stops the input data from being processed at 100Mhz, much

// faster than humans can respond.

logic​ timer_start, timer_done;
timer​ ​fft_timer​ (
 .​clk_104mhz​(clk_104mhz),
 .​start_timer​(timer_start),
 .​value​(​4'd1​),
 .​expired​(timer_done)
);

// State machine to process and analyze input notes

// PARAMETERS ------------------

// States

localparam​ STATE_TRACKING = ​1'b1​;
localparam​ STATE_WAITING = ​1'b0​;
// Parameters to tune FFT sensitivity

localparam​ HILO_THRESHOLD = ​11'h45​; ​// The bucket that demarcates a high vs. low
note

localparam​ HILO_CYCLE_COUNT = ​7'd45​; ​// How long a note has to be held before
being acknowledged, in 60Hz

// Noise state (hi, lo, or none)

104

localparam​ HI_NOISE = ​2'b10​;
localparam​ LO_NOISE = ​2'b01​;
localparam​ NO_NOISE = ​2'b00​;

// STATE --------------------

logic​ state = STATE_TRACKING;
logic​ [​1​:​0​] noise_state = NO_NOISE;
logic​ [​6​:​0​] hilo_cycles=​7'd0​;

// STATE TRANSITIONS ------------------

logic​ next_state;
logic​ [​1​:​0​] next_noise_state;
logic​ [​6​:​0​] next_hilo_cycles;
always_comb​ ​begin
 ​case​(state)
 STATE_WAITING: ​begin​ ​// time-out, waiting for timer to expire
 next_state = timer_done ? STATE_TRACKING : STATE_WAITING;

 next_noise_state = noise_state; ​// just hold the values steady
 next_hilo_cycles = ​7'd0​;
 ​end
 STATE_TRACKING: ​begin
 ​if​(hilo_cycles == HILO_CYCLE_COUNT) ​begin​ ​// found a new note, set timer
and output

 next_state = STATE_WAITING;

 next_noise_state = noise_state;

 next_hilo_cycles = ​7'd0​;
 ​end​ ​else​ ​begin
 ​if​(index_calc) ​begin​ ​// only update each time the fft is recalculated
 next_state = STATE_TRACKING;

 next_noise_state = (cur_big_index == ​11'd0​) ? NO_NOISE :
 ((cur_big_index > HILO_THRESHOLD)? HI_NOISE : LO_NOISE);

 next_hilo_cycles = (noise_state == next_noise_state) ?

hilo_cycles + ​7'd1​ : ​7'd0​;
 ​end​ ​else​ ​begin​ ​// wait for the next FFT input (60Hz)
 next_state = state;

 next_noise_state = noise_state;

 next_hilo_cycles = hilo_cycles;

105

 ​end
 ​end
 ​end
 ​endcase
end

// STATE UPDATES -------------------

assign​ timer_start = (hilo_cycles == HILO_CYCLE_COUNT) ? ​1'b1​ : ​1'b0​; ​// start
timeout if we have a new note

assign​ hi = (state == STATE_WAITING) ? noise_state[​1​] : ​1'b0​; ​// only output when
counting

assign​ lo = (state == STATE_WAITING) ? noise_state[​0​] : ​1'b0​;
always_ff​ @(​posedge​ clk_104mhz) ​begin
 state <= next_state;

 noise_state <= next_noise_state;

 hilo_cycles <= next_hilo_cycles;

end

endmodule

///

// FFT Oversampler - Oversamples the FFT at 16x (sliding window sum with width

// 16), and then divides by 4 to keep small bit sizes.

module​ ​oversample16​(
 ​input​ ​wire​ clk, ​// input clock
 ​input​ ​wire​ [​11​:​0​] sample, ​// current sample of the FFT
 ​input​ ​wire​ eoc, ​// indicates whether a valid value is on the input
 ​output​ ​reg​ [​13​:​0​] oversample, ​// the output oversampled window value
 ​output​ ​reg​ done ​// whether the current accumulated value is calculated.
);

// STATE

reg​ [​3​:​0​] counter = ​0​;
reg​ [​15​:​0​] accumulator = ​0​;

// STATE TRANSITIONS

always​ @(​posedge​ clk) ​begin
 done <= ​0​;
 ​if​ (eoc) ​begin

106

 ​// Conversion has ended and we can read a new sample
 ​if​ (&counter) ​begin​ ​// If counter is full (16 accumulated)
 ​// Get final total, divide by 4 with (very limited) rounding.
 oversample <= (accumulator + sample + ​2'b10​) >> ​2​;
 done <= ​1​;
 ​// Reset accumulator
 accumulator <= ​0​;
 ​end
 ​else​ ​begin
 ​// Else add to accumulator as usual
 accumulator <= accumulator + sample;

 done <= ​0​;
 ​end
 counter <= counter + ​1​;
 ​end
end

endmodule

///

// BRAM to FFT - Handles the transfer of the data fram from the BRAM

// to the FFT, at the appropriate speed and addresses. Performs a Hann

// filter on the frame being outputted in order to clean up the

// resulting FFT.

module​ ​bram_to_fft​(
 ​input​ ​wire​ clk, ​// input clock
 ​input​ ​wire​ [​11​:​0​] head, ​// the head of the new frame
 ​output​ ​reg​ [​11​:​0​] addr, ​// the address to be read from the BRAM
 ​input​ ​wire​ [​15​:​0​] data, ​// the data being read
 ​input​ ​wire​ start, ​// a pulse to begin sending data through
 ​input​ ​wire​ last_missing, ​// a signal from the FFT module to align properly
 ​output​ ​reg​ [​31​:​0​] frame_tdata, ​// the output data for the FFT
 ​output​ ​reg​ frame_tlast, ​// signal to indicate the final note of the frame
 ​input​ ​wire​ frame_tready, ​// whether the FFT module is ready for the next
sample

 ​output​ ​reg​ frame_tvalid ​// a signal that the next sample is ready
);

107

// Get a signed version of the sample by subtracting half the max

wire​ ​signed​ [​15​:​0​] data_signed = {​1'b0​, data} - (​1​ << ​15​);

// SENDING LOGIC

// Once our oversampling is done,

// Start at the frame bram head and send all 4096 buckets of bram.

// Hopefully every time this happens, the FFT core is ready

reg​ sending = ​0​;
reg​ [​11​:​0​] send_count = ​0​;

// windowing coefficient

wire​ [​23​:​0​] hann_coeff; ​// Hann coefficient, read from the LUT
hann​ ​my_hann​(.​n​(send_count), .​coeff​(hann_coeff));

wire​ ​signed​ [​40​:​0​] windowed_data; ​// A scaled version of the data using the Hann
window

assign​ windowed_data = hann_coeff * data_signed;

always​ @(​posedge​ clk) ​begin
 frame_tvalid <= ​0​; ​// Normally do not send
 frame_tlast <= ​0​; ​// Normally not the end of a frame
 ​if​ (!sending) ​begin
 ​if​ (start) ​begin​ ​// When a new sample shifts in
 addr <= head; ​// Start reading at the new head
 send_count <= ​0​; ​// Reset send_count
 sending <= ​1​; ​// Advance to next state
 ​end
 ​end
 ​else​ ​begin
 ​if​ (last_missing) ​begin
 ​// If core thought the frame ended
 sending <= ​0​; ​// reset to state 0
 ​end
 ​else​ ​begin
 frame_tdata <= {​16'b0​, (windowed_data >> ​24​)}; ​// outputs the scaled
data value

 frame_tvalid <= ​1​; ​// Signal to fft a sample is ready

108

 ​if​ (frame_tready) ​begin​ ​// If the fft module was ready
 addr <= addr + ​1​; ​// Switch to read next sample
 send_count <= send_count + ​1​; ​// increment send_count
 ​end
 ​if​ (&send_count) ​begin
 ​// We're at last sample
 frame_tlast <= ​1​; ​// Tell the core
 ​if​ (frame_tready) sending <= ​0​; ​// Reset to state 0
 ​end
 ​end
 ​end
end

endmodule

fft_sampler.sv
`timescale ​1ns​ / ​1ps
///

// FFT Sampler Module - Performs an averaging sweep over the FFT input

// and outputs the largest index from the resulting signal.

// - Takes in the FFT coefficient as input

// - Outputs the largest bucket (and a signal to indicate completion of the

// calculation)

module​ ​fft_sampler​(
 ​input​ ​logic​ clk, ​// input clock signal
 ​input​ ​logic​ start, ​// start system pulse
 ​input​ ​logic​ [​15​:​0​] cur_fft, ​// current FFT magnitude
 ​output​ ​logic​ [​9​:​0​] read_addr, ​// address to read FFT magnitude from (in FFT
BRAM)

 ​output​ ​logic​ read_enable, ​// read enable signal to FFT BRAM
 ​output​ ​logic​ [​10​:​0​] largest_bucket, ​// the index of the largest FFT coefficient
 ​output​ ​logic​ done ​// pulse to indicate that processing is complete
);

// PARAMETERS ----------------------------

localparam​ IDLE = ​2'd0​;
localparam​ SWEEPING = ​2'd1​;

109

// Sweep Indices (audible range in input FFT)

localparam​ SWEEP_START = ​11'd8​;
localparam​ SWEEP_END = ​11'd300​; ​// used to be 400

// FFT Tuning Parameters

localparam​ NUM_BUCKETS = ​11'd1024​; ​// The total number of buckets in the FFT
localparam​ WINDOW_LEN = ​2​; ​// size of window for averaging filter
localparam​ SUM_LOW_THRESHOLD = ​21'd100​; ​// Minimum FFT sum magnitude

// STATE ---------------------------------

logic​ [​1​:​0​] state = IDLE;
logic​ [​10​:​0​] counter = ​11'd0​;
logic​ [​15​:​0​] window [WINDOW_LEN-​1​:​0​];
logic​ [​20​:​0​] sum = ​21'd0​;
logic​ [​20​:​0​] largest_sum = ​21'd0​;
logic​ [​10​:​0​] largest_index = ​11'd0​;
logic​ done_state = ​1'b0​;

// STATE TRANSITIONS --------------------------

logic​ [​1​:​0​] next_state;
logic​ [​10​:​0​] next_counter;
logic​ [​20​:​0​] next_sum;
logic​ [​20​:​0​] next_largest_sum;
logic​ [​10​:​0​] next_largest_index;
logic​ next_done_state;

always_comb​ ​begin
 ​case​(state)
 IDLE: ​begin​ ​// stay in IDLE state
 next_state = IDLE;

 next_counter = SWEEP_START;

 next_sum = ​21'd0​;
 next_largest_sum = largest_sum;

 next_largest_index = largest_index; ​// just hold values
 next_done_state = ​1'b0​;
 ​end
 SWEEPING: ​begin

110

 ​// if the sweep is complete, switch back to IDLE
 ​if​(counter == SWEEP_END) ​begin
 next_state = IDLE;

 next_counter = SWEEP_START;

 next_done_state = ​1'b1​;
 ​end​ ​else​ ​begin
 next_state = SWEEPING;

 next_counter = counter + ​11'd1​;
 next_done_state = ​1'b0​;
 ​end

 ​// sum and largest sum update
 next_sum = sum - window[WINDOW_LEN-​1​] + cur_fft;
 ​// next_sum holds the sum of the window ending on counter:
 ​// - (counter- WINDOW_LEN, counter]
 next_largest_sum = (next_sum > largest_sum) ? next_sum : largest_sum;

 next_largest_index = (next_sum > largest_sum) ? counter :

largest_index;

 ​end
 ​default​: ​begin​ ​// just go to IDLE
 next_state = IDLE;

 next_counter = SWEEP_START;

 next_sum = ​21'd0​;
 next_largest_sum = largest_sum;

 next_largest_index = largest_index;

 next_done_state = ​1'b0​;
 ​end
 ​endcase
end

// OUTPUT/STATE UPDATES --------------------------------

assign​ read_addr = counter[​9​:​0​]; ​// the current FFT index we are considering
assign​ read_enable = (state == SWEEPING); ​// whether or not to read from the BRAM
assign​ largest_bucket = (largest_sum > SUM_LOW_THRESHOLD) ? largest_index :
11'd0​;
assign​ done = done_state;
always_ff​ @(​posedge​ clk) ​begin

111

 ​if​(start) ​begin​ ​// reset to initial values and enter SWEEPING mode
 state <= SWEEPING;

 ​// zero the starting points
 counter <= SWEEP_START;

 sum <= ​21'd0​;
 largest_sum <= ​21'd0​;
 largest_index <= ​11'd0​; ​// not a valid index
 ​// zero the window
 window[​1​] <= ​16'd0​;
 window[​0​] <= ​16'd0​;
 done_state <= ​1'b0​;
 ​end​ ​else​ ​begin
 state <= next_state;

 counter <= next_counter;

 sum <= next_sum;

 largest_sum <= next_largest_sum;

 largest_index <= next_largest_index;

 ​// slide the window over
 window[​1​] <= window[​0​];
 window[​0​] <= cur_fft;
 done_state <= next_done_state;

 ​end
end

endmodule

timer.sv
`timescale ​1ns​ / ​1ps
///

/

// Timer Module - Starts on a pulse, and counts down an input length

module​ ​timer​ #(​parameter​ COUNTER_HI=​26'd52_000_000​) (
 input​ clk_104mhz, ​// input clock, at 104 MHz
 input​ start_timer, ​// a pulse to start the countdown
 input​ [​3​:​0​] value, ​// how long to countdown for
 ​output​ ​logic​ expired, ​// a pulse indicating whether the timer has expired
 output​ [​3​:​0​] countdown_out ​// the current countdown position
);

112

 ​// fields to convert the input clock to a 2 hz signal
 ​localparam​ COUNTER_LO = ​26'd0​;
 logic​ one_hz_enable;
 logic​ [​25​:​0​] counter;

 ​// fields perform the countdown
 ​localparam​ IDLE = ​1'b0​;
 ​localparam​ COUNTING = ​1'b1​;
 logic​ [​3​:​0​] countdown;
 logic​ state;

 ​assign​ countdown_out = countdown;
 ​always_ff​ @(​posedge​ clk_104mhz) ​begin
 ​if​(start_timer) ​begin
 ​// reset
 counter <= COUNTER_LO;

 one_hz_enable <= ​1'b0​;
 expired <= ​1'b0​;
 ​// will latch onto value when [start_timer] is asserted,
 ​// and only reread this value when [start_timer] is next asserted
 countdown <= value;

 state <= COUNTING;

 ​end​ ​else​ ​begin
 ​// one hz signal state updates
 ​if​(counter < COUNTER_HI - ​26'd1​) one_hz_enable <= ​1'b0​;
 ​else​ one_hz_enable <= ​1'b1​;

 ​if​(counter == COUNTER_HI - ​26'd1​) counter <= COUNTER_LO;
 ​else​ counter <= counter + ​26'd1​;

 ​// countdown logic
 ​case​(state)
 IDLE: ​begin
 expired <= ​1'b0​;
 countdown <= ​4'b0​;
 state <= IDLE;

 ​end

113

 COUNTING: ​begin
 ​if​(countdown == ​4'b0​) ​begin​ ​// handle the 0 value edge case
 countdown <= ​4'b0​;
 expired <= ​1'b1​;
 state <= IDLE;

 ​end
 ​else​ ​begin
 countdown <= (one_hz_enable) ? countdown - ​4'b1​ : countdown;
 ​// check here to avoid a one cycle delay between countdown
and output

 expired <= (one_hz_enable) ? ((countdown == ​4'b1​) ? ​1'b1​ :
1'b0​) : expired;
 state <= (one_hz_enable) ? ((countdown == ​4'b1​) ? IDLE :
COUNTING) : state;

 ​end
 ​end

 ​default​: state <= IDLE; ​// revert from invalid state to IDLE
 ​endcase
 ​end
 ​end
endmodule

hann.sv
See the GitHub repo (​https://github.com/rahulyesantharao/FPGA/blob/master/hann.sv​) for this
document, as it is extremely large (4096 element lookup table). To see how it is generated, see
hann_gen.py in Appendix B.

nexys4ddr_audio.xdc
all inputs/outputs changed to lowercase; arrays start with zero. 2019-08-25

system clock renamed to clk_100mhz

ja, jb, jc, jd renamed to 0-7

xa port renamed 0-3

This file is a general .xdc for the Nexys4 DDR Rev. C

To use it in a project:

- uncomment the lines corresponding to used pins

- rename the used ports (in each line, after get_ports) according to the top

level signal names in the project

Clock signal

114

https://github.com/rahulyesantharao/FPGA/blob/master/hann.sv

set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports {

clk_100mhz }]; #IO_L12P_T1_MRCC_35 Sch=clk100mhz

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports

{clk_100mhz}];

##Switches

set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 } [get_ports { sw[0]

}]; #IO_L24N_T3_RS0_15 Sch=sw[0]

set_property -dict { PACKAGE_PIN L16 IOSTANDARD LVCMOS33 } [get_ports { sw[1]

}]; #IO_L3N_T0_DQS_EMCCLK_14 Sch=sw[1]

set_property -dict { PACKAGE_PIN M13 IOSTANDARD LVCMOS33 } [get_ports { sw[2]

}]; #IO_L6N_T0_D08_VREF_14 Sch=sw[2]

set_property -dict { PACKAGE_PIN R15 IOSTANDARD LVCMOS33 } [get_ports { sw[3]

}]; #IO_L13N_T2_MRCC_14 Sch=sw[3]

set_property -dict { PACKAGE_PIN R17 IOSTANDARD LVCMOS33 } [get_ports { sw[4]

}]; #IO_L12N_T1_MRCC_14 Sch=sw[4]

set_property -dict { PACKAGE_PIN T18 IOSTANDARD LVCMOS33 } [get_ports { sw[5]

}]; #IO_L7N_T1_D10_14 Sch=sw[5]

set_property -dict { PACKAGE_PIN U18 IOSTANDARD LVCMOS33 } [get_ports { sw[6]

}]; #IO_L17N_T2_A13_D29_14 Sch=sw[6]

set_property -dict { PACKAGE_PIN R13 IOSTANDARD LVCMOS33 } [get_ports { sw[7]

}]; #IO_L5N_T0_D07_14 Sch=sw[7]

set_property -dict { PACKAGE_PIN T8 IOSTANDARD LVCMOS18 } [get_ports { sw[8]

}]; #IO_L24N_T3_34 Sch=sw[8]

set_property -dict { PACKAGE_PIN U8 IOSTANDARD LVCMOS18 } [get_ports { sw[9]

}]; #IO_25_34 Sch=sw[9]

set_property -dict { PACKAGE_PIN R16 IOSTANDARD LVCMOS33 } [get_ports { sw[10]

}]; #IO_L15P_T2_DQS_RDWR_B_14 Sch=sw[10]

set_property -dict { PACKAGE_PIN T13 IOSTANDARD LVCMOS33 } [get_ports { sw[11]

}]; #IO_L23P_T3_A03_D19_14 Sch=sw[11]

set_property -dict { PACKAGE_PIN H6 IOSTANDARD LVCMOS33 } [get_ports { sw[12]

}]; #IO_L24P_T3_35 Sch=sw[12]

set_property -dict { PACKAGE_PIN U12 IOSTANDARD LVCMOS33 } [get_ports { sw[13]

}]; #IO_L20P_T3_A08_D24_14 Sch=sw[13]

set_property -dict { PACKAGE_PIN U11 IOSTANDARD LVCMOS33 } [get_ports { sw[14]

}]; #IO_L19N_T3_A09_D25_VREF_14 Sch=sw[14]

set_property -dict { PACKAGE_PIN V10 IOSTANDARD LVCMOS33 } [get_ports { sw[15]

}]; #IO_L21P_T3_DQS_14 Sch=sw[15]

LEDs

115

set_property -dict { PACKAGE_PIN H17 IOSTANDARD LVCMOS33 } [get_ports { led[0]

}]; #IO_L18P_T2_A24_15 Sch=led[0]

set_property -dict { PACKAGE_PIN K15 IOSTANDARD LVCMOS33 } [get_ports { led[1]

}]; #IO_L24P_T3_RS1_15 Sch=led[1]

set_property -dict { PACKAGE_PIN J13 IOSTANDARD LVCMOS33 } [get_ports { led[2]

}]; #IO_L17N_T2_A25_15 Sch=led[2]

set_property -dict { PACKAGE_PIN N14 IOSTANDARD LVCMOS33 } [get_ports { led[3]

}]; #IO_L8P_T1_D11_14 Sch=led[3]

set_property -dict { PACKAGE_PIN R18 IOSTANDARD LVCMOS33 } [get_ports { led[4]

}]; #IO_L7P_T1_D09_14 Sch=led[4]

set_property -dict { PACKAGE_PIN V17 IOSTANDARD LVCMOS33 } [get_ports { led[5]

}]; #IO_L18N_T2_A11_D27_14 Sch=led[5]

set_property -dict { PACKAGE_PIN U17 IOSTANDARD LVCMOS33 } [get_ports { led[6]

}]; #IO_L17P_T2_A14_D30_14 Sch=led[6]

set_property -dict { PACKAGE_PIN U16 IOSTANDARD LVCMOS33 } [get_ports { led[7]

}]; #IO_L18P_T2_A12_D28_14 Sch=led[7]

set_property -dict { PACKAGE_PIN V16 IOSTANDARD LVCMOS33 } [get_ports { led[8]

}]; #IO_L16N_T2_A15_D31_14 Sch=led[8]

set_property -dict { PACKAGE_PIN T15 IOSTANDARD LVCMOS33 } [get_ports { led[9]

}]; #IO_L14N_T2_SRCC_14 Sch=led[9]

set_property -dict { PACKAGE_PIN U14 IOSTANDARD LVCMOS33 } [get_ports { led[10]

}]; #IO_L22P_T3_A05_D21_14 Sch=led[10]

set_property -dict { PACKAGE_PIN T16 IOSTANDARD LVCMOS33 } [get_ports { led[11]

}]; #IO_L15N_T2_DQS_DOUT_CSO_B_14 Sch=led[11]

set_property -dict { PACKAGE_PIN V15 IOSTANDARD LVCMOS33 } [get_ports { led[12]

}]; #IO_L16P_T2_CSI_B_14 Sch=led[12]

set_property -dict { PACKAGE_PIN V14 IOSTANDARD LVCMOS33 } [get_ports { led[13]

}]; #IO_L22N_T3_A04_D20_14 Sch=led[13]

set_property -dict { PACKAGE_PIN V12 IOSTANDARD LVCMOS33 } [get_ports { led[14]

}]; #IO_L20N_T3_A07_D23_14 Sch=led[14]

set_property -dict { PACKAGE_PIN V11 IOSTANDARD LVCMOS33 } [get_ports { led[15]

}]; #IO_L21N_T3_DQS_A06_D22_14 Sch=led[15]

set_property -dict { PACKAGE_PIN R12 IOSTANDARD LVCMOS33 } [get_ports { led16_b

}]; #IO_L5P_T0_D06_14 Sch=led16_b

set_property -dict { PACKAGE_PIN M16 IOSTANDARD LVCMOS33 } [get_ports { led16_g

}]; #IO_L10P_T1_D14_14 Sch=led16_g

set_property -dict { PACKAGE_PIN N15 IOSTANDARD LVCMOS33 } [get_ports { led16_r

}]; #IO_L11P_T1_SRCC_14 Sch=led16_r

set_property -dict { PACKAGE_PIN G14 IOSTANDARD LVCMOS33 } [get_ports { led17_b

}]; #IO_L15N_T2_DQS_ADV_B_15 Sch=led17_b

set_property -dict { PACKAGE_PIN R11 IOSTANDARD LVCMOS33 } [get_ports { led17_g

}]; #IO_0_14 Sch=led17_g

set_property -dict { PACKAGE_PIN N16 IOSTANDARD LVCMOS33 } [get_ports { led17_r

}]; #IO_L11N_T1_SRCC_14 Sch=led17_r

116

##7 segment display

set_property -dict { PACKAGE_PIN T10 IOSTANDARD LVCMOS33 } [get_ports { ca }];

#IO_L24N_T3_A00_D16_14 Sch=ca

set_property -dict { PACKAGE_PIN R10 IOSTANDARD LVCMOS33 } [get_ports { cb }];

#IO_25_14 Sch=cb

set_property -dict { PACKAGE_PIN K16 IOSTANDARD LVCMOS33 } [get_ports { cc }];

#IO_25_15 Sch=cc

set_property -dict { PACKAGE_PIN K13 IOSTANDARD LVCMOS33 } [get_ports { cd }];

#IO_L17P_T2_A26_15 Sch=cd

set_property -dict { PACKAGE_PIN P15 IOSTANDARD LVCMOS33 } [get_ports { ce }];

#IO_L13P_T2_MRCC_14 Sch=ce

set_property -dict { PACKAGE_PIN T11 IOSTANDARD LVCMOS33 } [get_ports { cf }];

#IO_L19P_T3_A10_D26_14 Sch=cf

set_property -dict { PACKAGE_PIN L18 IOSTANDARD LVCMOS33 } [get_ports { cg }];

#IO_L4P_T0_D04_14 Sch=cg

set_property -dict { PACKAGE_PIN H15 IOSTANDARD LVCMOS33 } [get_ports { dp }];

#IO_L19N_T3_A21_VREF_15 Sch=dp

set_property -dict { PACKAGE_PIN J17 IOSTANDARD LVCMOS33 } [get_ports { an[0]

}]; #IO_L23P_T3_FOE_B_15 Sch=an[0]

set_property -dict { PACKAGE_PIN J18 IOSTANDARD LVCMOS33 } [get_ports { an[1]

}]; #IO_L23N_T3_FWE_B_15 Sch=an[1]

set_property -dict { PACKAGE_PIN T9 IOSTANDARD LVCMOS33 } [get_ports { an[2]

}]; #IO_L24P_T3_A01_D17_14 Sch=an[2]

set_property -dict { PACKAGE_PIN J14 IOSTANDARD LVCMOS33 } [get_ports { an[3]

}]; #IO_L19P_T3_A22_15 Sch=an[3]

set_property -dict { PACKAGE_PIN P14 IOSTANDARD LVCMOS33 } [get_ports { an[4]

}]; #IO_L8N_T1_D12_14 Sch=an[4]

set_property -dict { PACKAGE_PIN T14 IOSTANDARD LVCMOS33 } [get_ports { an[5]

}]; #IO_L14P_T2_SRCC_14 Sch=an[5]

set_property -dict { PACKAGE_PIN K2 IOSTANDARD LVCMOS33 } [get_ports { an[6]

}]; #IO_L23P_T3_35 Sch=an[6]

set_property -dict { PACKAGE_PIN U13 IOSTANDARD LVCMOS33 } [get_ports { an[7]

}]; #IO_L23N_T3_A02_D18_14 Sch=an[7]

##Buttons

#set_property -dict { PACKAGE_PIN C12 IOSTANDARD LVCMOS33 } [get_ports {

cpu_resetn }]; #IO_L3P_T0_DQS_AD1P_15 Sch=cpu_resetn

117

set_property -dict { PACKAGE_PIN N17 IOSTANDARD LVCMOS33 } [get_ports { btnc

}]; #IO_L9P_T1_DQS_14 Sch=btnc

set_property -dict { PACKAGE_PIN M18 IOSTANDARD LVCMOS33 } [get_ports { btnu

}]; #IO_L4N_T0_D05_14 Sch=btnu

set_property -dict { PACKAGE_PIN P17 IOSTANDARD LVCMOS33 } [get_ports { btnl

}]; #IO_L12P_T1_MRCC_14 Sch=btnl

set_property -dict { PACKAGE_PIN M17 IOSTANDARD LVCMOS33 } [get_ports { btnr

}]; #IO_L10N_T1_D15_14 Sch=btnr

set_property -dict { PACKAGE_PIN P18 IOSTANDARD LVCMOS33 } [get_ports { btnd

}]; #IO_L9N_T1_DQS_D13_14 Sch=btnd

##Pmod Headers

##Pmod Header JA

#set_property -dict { PACKAGE_PIN C17 IOSTANDARD LVCMOS33 } [get_ports { ja[0]

}]; #IO_L20N_T3_A19_15 Sch=ja[1]

#set_property -dict { PACKAGE_PIN D18 IOSTANDARD LVCMOS33 } [get_ports { ja[1]

}]; #IO_L21N_T3_DQS_A18_15 Sch=ja[2]

#set_property -dict { PACKAGE_PIN E18 IOSTANDARD LVCMOS33 } [get_ports { ja[2]

}]; #IO_L21P_T3_DQS_15 Sch=ja[3]

#set_property -dict { PACKAGE_PIN G17 IOSTANDARD LVCMOS33 } [get_ports { ja[3]

}]; #IO_L18N_T2_A23_15 Sch=ja[4]

#set_property -dict { PACKAGE_PIN D17 IOSTANDARD LVCMOS33 } [get_ports { ja[4]

}]; #IO_L16N_T2_A27_15 Sch=ja[7]

#set_property -dict { PACKAGE_PIN E17 IOSTANDARD LVCMOS33 } [get_ports { ja[5]

}]; #IO_L16P_T2_A28_15 Sch=ja[8]

#set_property -dict { PACKAGE_PIN F18 IOSTANDARD LVCMOS33 } [get_ports { ja[6]

}]; #IO_L22N_T3_A16_15 Sch=ja[9]

#set_property -dict { PACKAGE_PIN G18 IOSTANDARD LVCMOS33 } [get_ports { ja[7]

}]; #IO_L22P_T3_A17_15 Sch=ja[10]

##Pmod Header JB

set_property -dict { PACKAGE_PIN D14 IOSTANDARD LVCMOS33 } [get_ports { jb[0]

}]; #IO_L1P_T0_AD0P_15 Sch=jb[1]

set_property -dict { PACKAGE_PIN F16 IOSTANDARD LVCMOS33 } [get_ports { jb[1]

}]; #IO_L14N_T2_SRCC_15 Sch=jb[2]

set_property -dict { PACKAGE_PIN G16 IOSTANDARD LVCMOS33 } [get_ports { jb[2]

}]; #IO_L13N_T2_MRCC_15 Sch=jb[3]

set_property -dict { PACKAGE_PIN H14 IOSTANDARD LVCMOS33 } [get_ports { jbclk

}]; #IO_L15P_T2_DQS_15 Sch=jb[4]

118

set_property -dict { PACKAGE_PIN E16 IOSTANDARD LVCMOS33 } [get_ports { jb[4]

}]; #IO_L11N_T1_SRCC_15 Sch=jb[7]

set_property -dict { PACKAGE_PIN F13 IOSTANDARD LVCMOS33 } [get_ports { jb[5]

}]; #IO_L5P_T0_AD9P_15 Sch=jb[8]

set_property -dict { PACKAGE_PIN G13 IOSTANDARD LVCMOS33 } [get_ports { jb[6]

}]; #IO_0_15 Sch=jb[9]

set_property -dict { PACKAGE_PIN H16 IOSTANDARD LVCMOS33 } [get_ports { jb[7]

}]; #IO_L13P_T2_MRCC_15 Sch=jb[10]

##Pmod Header JC

#set_property -dict { PACKAGE_PIN K1 IOSTANDARD LVCMOS33 } [get_ports { jc[0]

}]; #IO_L23N_T3_35 Sch=jc[1]

#set_property -dict { PACKAGE_PIN F6 IOSTANDARD LVCMOS33 } [get_ports { jc[1]

}]; #IO_L19N_T3_VREF_35 Sch=jc[2]

#set_property -dict { PACKAGE_PIN J2 IOSTANDARD LVCMOS33 } [get_ports { jc[2]

}]; #IO_L22N_T3_35 Sch=jc[3]

#set_property -dict { PACKAGE_PIN G6 IOSTANDARD LVCMOS33 } [get_ports { jc[3]

}]; #IO_L19P_T3_35 Sch=jc[4]

#set_property -dict { PACKAGE_PIN E7 IOSTANDARD LVCMOS33 } [get_ports { jc[4]

}]; #IO_L6P_T0_35 Sch=jc[7]

#set_property -dict { PACKAGE_PIN J3 IOSTANDARD LVCMOS33 } [get_ports { jc[5]

}]; #IO_L22P_T3_35 Sch=jc[8]

#set_property -dict { PACKAGE_PIN J4 IOSTANDARD LVCMOS33 } [get_ports { jc[6]

}]; #IO_L21P_T3_DQS_35 Sch=jc[9]

#set_property -dict { PACKAGE_PIN E6 IOSTANDARD LVCMOS33 } [get_ports { jc[7]

}]; #IO_L5P_T0_AD13P_35 Sch=jc[10]

##Pmod Header JD

#set_property -dict { PACKAGE_PIN H4 IOSTANDARD LVCMOS33 } [get_ports { jd[0]

}]; #IO_L21N_T3_DQS_35 Sch=jd[1]

#set_property -dict { PACKAGE_PIN H1 IOSTANDARD LVCMOS33 } [get_ports { jd[1]

}]; #IO_L17P_T2_35 Sch=jd[2]

#set_property -dict { PACKAGE_PIN G1 IOSTANDARD LVCMOS33 } [get_ports { jd[2]

}]; #IO_L17N_T2_35 Sch=jd[3]

#set_property -dict { PACKAGE_PIN G3 IOSTANDARD LVCMOS33 } [get_ports { jd[3]

}]; #IO_L20N_T3_35 Sch=jd[4]

#set_property -dict { PACKAGE_PIN H2 IOSTANDARD LVCMOS33 } [get_ports { jd[4]

}]; #IO_L15P_T2_DQS_35 Sch=jd[7]

#set_property -dict { PACKAGE_PIN G4 IOSTANDARD LVCMOS33 } [get_ports { jd[5]

}]; #IO_L20P_T3_35 Sch=jd[8]

119

#set_property -dict { PACKAGE_PIN G2 IOSTANDARD LVCMOS33 } [get_ports { jd[6]

}]; #IO_L15N_T2_DQS_35 Sch=jd[9]

#set_property -dict { PACKAGE_PIN F3 IOSTANDARD LVCMOS33 } [get_ports { jd[7]

}]; #IO_L13N_T2_MRCC_35 Sch=jd[10]

#Pmod Header JXADC

#Bank = 15, Pin name = IO_L9P_T1_DQS_AD3P_15, Sch name =

XADC1_P -> XA1_P

#set_property PACKAGE_PIN A13 [get_ports {vauxp3}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxp3}];

#Bank = 15, Pin name = IO_L8P_T1_AD10P_15, Sch name =

XADC2_P -> XA2_P

#set_property PACKAGE_PIN A15 [get_ports {vauxp10}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxp10}]

#Bank = 15, Pin name = IO_L7P_T1_AD2P_15, Sch name =

XADC3_P -> XA3_P

#set_property PACKAGE_PIN B16 [get_ports {vauxp2}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxp2}]

#Bank = 15, Pin name = IO_L10P_T1_AD11P_15, Sch name =

XADC4_P -> XA4_P

#set_property PACKAGE_PIN B18 [get_ports {vauxp11}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxp11}]

#Bank = 15, Pin name = IO_L9N_T1_DQS_AD3N_15, Sch name =

XADC1_N -> XA1_N

#set_property PACKAGE_PIN A14 [get_ports {vauxn3}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxn3}];

#Bank = 15, Pin name = IO_L8N_T1_AD10N_15, Sch name =

XADC2_N -> XA2_N

#set_property PACKAGE_PIN A16 [get_ports {vauxn10}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxn10}]

#Bank = 15, Pin name = IO_L7N_T1_AD2N_15, Sch name =

XADC3_N -> XA3_N

#set_property PACKAGE_PIN B17 [get_ports {vauxn2}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxn2}]

#Bank = 15, Pin name = IO_L10N_T1_AD11N_15, Sch name =

XADC4_N -> XA4_N

#set_property PACKAGE_PIN A18 [get_ports {vauxn11}] set_property

IOSTANDARD LVCMOS33 [get_ports {vauxn11}]

##Pmod Header JXADC

set_property -dict { PACKAGE_PIN A14 IOSTANDARD LVCMOS33 } [get_ports {

vauxn3 }]; #IO_L9N_T1_DQS_AD3N_15 Sch=xa_n[1]

120

set_property -dict { PACKAGE_PIN A13 IOSTANDARD LVCMOS33 } [get_ports {

vauxp3 }]; #IO_L9P_T1_DQS_AD3P_15 Sch=xa_p[1]

#set_property -dict { PACKAGE_PIN A16 IOSTANDARD LVDS } [get_ports {

xa_n[1] }]; #IO_L8N_T1_AD10N_15 Sch=xa_n[2]

#set_property -dict { PACKAGE_PIN A15 IOSTANDARD LVDS } [get_ports {

xa_p[1] }]; #IO_L8P_T1_AD10P_15 Sch=xa_p[2]

#set_property -dict { PACKAGE_PIN B17 IOSTANDARD LVDS } [get_ports {

xa_n[2] }]; #IO_L7N_T1_AD2N_15 Sch=xa_n[3]

#set_property -dict { PACKAGE_PIN B16 IOSTANDARD LVDS } [get_ports {

xa_p[2] }]; #IO_L7P_T1_AD2P_15 Sch=xa_p[3]

#set_property -dict { PACKAGE_PIN A18 IOSTANDARD LVDS } [get_ports {

xa_n[3] }]; #IO_L10N_T1_AD11N_15 Sch=xa_n[4]

#set_property -dict { PACKAGE_PIN B18 IOSTANDARD LVDS } [get_ports {

xa_p[3] }]; #IO_L10P_T1_AD11P_15 Sch=xa_p[4]

##VGA Connector

set_property -dict { PACKAGE_PIN A3 IOSTANDARD LVCMOS33 } [get_ports {

vga_r[0] }]; #IO_L8N_T1_AD14N_35 Sch=vga_r[0]

set_property -dict { PACKAGE_PIN B4 IOSTANDARD LVCMOS33 } [get_ports {

vga_r[1] }]; #IO_L7N_T1_AD6N_35 Sch=vga_r[1]

set_property -dict { PACKAGE_PIN C5 IOSTANDARD LVCMOS33 } [get_ports {

vga_r[2] }]; #IO_L1N_T0_AD4N_35 Sch=vga_r[2]

set_property -dict { PACKAGE_PIN A4 IOSTANDARD LVCMOS33 } [get_ports {

vga_r[3] }]; #IO_L8P_T1_AD14P_35 Sch=vga_r[3]

set_property -dict { PACKAGE_PIN C6 IOSTANDARD LVCMOS33 } [get_ports {

vga_g[0] }]; #IO_L1P_T0_AD4P_35 Sch=vga_g[0]

set_property -dict { PACKAGE_PIN A5 IOSTANDARD LVCMOS33 } [get_ports {

vga_g[1] }]; #IO_L3N_T0_DQS_AD5N_35 Sch=vga_g[1]

set_property -dict { PACKAGE_PIN B6 IOSTANDARD LVCMOS33 } [get_ports {

vga_g[2] }]; #IO_L2N_T0_AD12N_35 Sch=vga_g[2]

set_property -dict { PACKAGE_PIN A6 IOSTANDARD LVCMOS33 } [get_ports {

vga_g[3] }]; #IO_L3P_T0_DQS_AD5P_35 Sch=vga_g[3]

set_property -dict { PACKAGE_PIN B7 IOSTANDARD LVCMOS33 } [get_ports {

vga_b[0] }]; #IO_L2P_T0_AD12P_35 Sch=vga_b[0]

set_property -dict { PACKAGE_PIN C7 IOSTANDARD LVCMOS33 } [get_ports {

vga_b[1] }]; #IO_L4N_T0_35 Sch=vga_b[1]

set_property -dict { PACKAGE_PIN D7 IOSTANDARD LVCMOS33 } [get_ports {

vga_b[2] }]; #IO_L6N_T0_VREF_35 Sch=vga_b[2]

set_property -dict { PACKAGE_PIN D8 IOSTANDARD LVCMOS33 } [get_ports {

vga_b[3] }]; #IO_L4P_T0_35 Sch=vga_b[3]

121

set_property -dict { PACKAGE_PIN B11 IOSTANDARD LVCMOS33 } [get_ports { vga_hs

}]; #IO_L4P_T0_15 Sch=vga_hs

set_property -dict { PACKAGE_PIN B12 IOSTANDARD LVCMOS33 } [get_ports { vga_vs

}]; #IO_L3N_T0_DQS_AD1N_15 Sch=vga_vs

##Micro SD Connector

#set_property -dict { PACKAGE_PIN E2 IOSTANDARD LVCMOS33 } [get_ports {

sd_reset }]; #IO_L14P_T2_SRCC_35 Sch=sd_reset

#set_property -dict { PACKAGE_PIN A1 IOSTANDARD LVCMOS33 } [get_ports { sd_cd

}]; #IO_L9N_T1_DQS_AD7N_35 Sch=sd_cd

#set_property -dict { PACKAGE_PIN B1 IOSTANDARD LVCMOS33 } [get_ports { sd_sck

}]; #IO_L9P_T1_DQS_AD7P_35 Sch=sd_sck

#set_property -dict { PACKAGE_PIN C1 IOSTANDARD LVCMOS33 } [get_ports { sd_cmd

}]; #IO_L16N_T2_35 Sch=sd_cmd

#set_property -dict { PACKAGE_PIN C2 IOSTANDARD LVCMOS33 } [get_ports {

sd_dat[0] }]; #IO_L16P_T2_35 Sch=sd_dat[0]

#set_property -dict { PACKAGE_PIN E1 IOSTANDARD LVCMOS33 } [get_ports {

sd_dat[1] }]; #IO_L18N_T2_35 Sch=sd_dat[1]

#set_property -dict { PACKAGE_PIN F1 IOSTANDARD LVCMOS33 } [get_ports {

sd_dat[2] }]; #IO_L18P_T2_35 Sch=sd_dat[2]

#set_property -dict { PACKAGE_PIN D2 IOSTANDARD LVCMOS33 } [get_ports {

sd_dat[3] }]; #IO_L14N_T2_SRCC_35 Sch=sd_dat[3]

##Accelerometer

#set_property -dict { PACKAGE_PIN E15 IOSTANDARD LVCMOS33 } [get_ports {

acl_miso }]; #IO_L11P_T1_SRCC_15 Sch=acl_miso

#set_property -dict { PACKAGE_PIN F14 IOSTANDARD LVCMOS33 } [get_ports {

acl_mosi }]; #IO_L5N_T0_AD9N_15 Sch=acl_mosi

#set_property -dict { PACKAGE_PIN F15 IOSTANDARD LVCMOS33 } [get_ports {

acl_sclk }]; #IO_L14P_T2_SRCC_15 Sch=acl_sclk

#set_property -dict { PACKAGE_PIN D15 IOSTANDARD LVCMOS33 } [get_ports {

acl_csn }]; #IO_L12P_T1_MRCC_15 Sch=acl_csn

#set_property -dict { PACKAGE_PIN B13 IOSTANDARD LVCMOS33 } [get_ports {

acl_int[1] }]; #IO_L2P_T0_AD8P_15 Sch=acl_int[1]

#set_property -dict { PACKAGE_PIN C16 IOSTANDARD LVCMOS33 } [get_ports {

acl_int[2] }]; #IO_L20P_T3_A20_15 Sch=acl_int[2]

##Temperature Sensor

#set_property -dict { PACKAGE_PIN C14 IOSTANDARD LVCMOS33 } [get_ports {

tmp_scl }]; #IO_L1N_T0_AD0N_15 Sch=tmp_scl

122

#set_property -dict { PACKAGE_PIN C15 IOSTANDARD LVCMOS33 } [get_ports {

tmp_sda }]; #IO_L12N_T1_MRCC_15 Sch=tmp_sda

#set_property -dict { PACKAGE_PIN D13 IOSTANDARD LVCMOS33 } [get_ports {

tmp_int }]; #IO_L6N_T0_VREF_15 Sch=tmp_int

#set_property -dict { PACKAGE_PIN B14 IOSTANDARD LVCMOS33 } [get_ports { tmp_ct

}]; #IO_L2N_T0_AD8N_15 Sch=tmp_ct

##Omnidirectional Microphone

#set_property -dict { PACKAGE_PIN J5 IOSTANDARD LVCMOS33 } [get_ports { m_clk

}]; #IO_25_35 Sch=m_clk

#set_property -dict { PACKAGE_PIN H5 IOSTANDARD LVCMOS33 } [get_ports { m_data

}]; #IO_L24N_T3_35 Sch=m_data

#set_property -dict { PACKAGE_PIN F5 IOSTANDARD LVCMOS33 } [get_ports {

m_lrsel }]; #IO_0_35 Sch=m_lrsel

##PWM Audio Amplifier

set_property -dict { PACKAGE_PIN A11 IOSTANDARD LVCMOS33 } [get_ports { aud_pwm

}]; #IO_L4N_T0_15 Sch=aud_pwm

set_property -dict { PACKAGE_PIN D12 IOSTANDARD LVCMOS33 } [get_ports { aud_sd

}]; #IO_L6P_T0_15 Sch=aud_sd

##USB-RS232 Interface

#set_property -dict { PACKAGE_PIN C4 IOSTANDARD LVCMOS33 } [get_ports {

uart_txd_in }]; #IO_L7P_T1_AD6P_35 Sch=uart_txd_in

#set_property -dict { PACKAGE_PIN D4 IOSTANDARD LVCMOS33 } [get_ports {

uart_rxd_ouT }]; #IO_L11N_T1_SRCC_35 Sch=uart_rxd_out

#set_property -dict { PACKAGE_PIN D3 IOSTANDARD LVCMOS33 } [get_ports {

uart_cts }]; #IO_L12N_T1_MRCC_35 Sch=uart_cts

#set_property -dict { PACKAGE_PIN E5 IOSTANDARD LVCMOS33 } [get_ports {

uart_rts }]; #IO_L5N_T0_AD13N_35 Sch=uart_rts

##USB HID (PS/2)

#set_property -dict { PACKAGE_PIN F4 IOSTANDARD LVCMOS33 } [get_ports {

ps2_clk }]; #IO_L13P_T2_MRCC_35 Sch=ps2_clk

#set_property -dict { PACKAGE_PIN B2 IOSTANDARD LVCMOS33 } [get_ports {

ps2_data }]; #IO_L10N_T1_AD15N_35 Sch=ps2_data

##SMSC Ethernet PHY

123

#set_property -dict { PACKAGE_PIN C9 IOSTANDARD LVCMOS33 } [get_ports {

eth_mdc }]; #IO_L11P_T1_SRCC_16 Sch=eth_mdc

#set_property -dict { PACKAGE_PIN A9 IOSTANDARD LVCMOS33 } [get_ports {

eth_mdio }]; #IO_L14N_T2_SRCC_16 Sch=eth_mdio

#set_property -dict { PACKAGE_PIN B3 IOSTANDARD LVCMOS33 } [get_ports {

eth_rstn }]; #IO_L10P_T1_AD15P_35 Sch=eth_rstn

#set_property -dict { PACKAGE_PIN D9 IOSTANDARD LVCMOS33 } [get_ports {

eth_crsdv }]; #IO_L6N_T0_VREF_16 Sch=eth_crsdv

#set_property -dict { PACKAGE_PIN C10 IOSTANDARD LVCMOS33 } [get_ports {

eth_rxerr }]; #IO_L13N_T2_MRCC_16 Sch=eth_rxerr

#set_property -dict { PACKAGE_PIN C11 IOSTANDARD LVCMOS33 } [get_ports {

eth_rxd[0] }]; #IO_L13P_T2_MRCC_16 Sch=eth_rxd[0]

#set_property -dict { PACKAGE_PIN D10 IOSTANDARD LVCMOS33 } [get_ports {

eth_rxd[1] }]; #IO_L19N_T3_VREF_16 Sch=eth_rxd[1]

#set_property -dict { PACKAGE_PIN B9 IOSTANDARD LVCMOS33 } [get_ports {

eth_txen }]; #IO_L11N_T1_SRCC_16 Sch=eth_txen

#set_property -dict { PACKAGE_PIN A10 IOSTANDARD LVCMOS33 } [get_ports {

eth_txd[0] }]; #IO_L14P_T2_SRCC_16 Sch=eth_txd[0]

#set_property -dict { PACKAGE_PIN A8 IOSTANDARD LVCMOS33 } [get_ports {

eth_txd[1] }]; #IO_L12N_T1_MRCC_16 Sch=eth_txd[1]

#set_property -dict { PACKAGE_PIN D5 IOSTANDARD LVCMOS33 } [get_ports {

eth_refclk }]; #IO_L11P_T1_SRCC_35 Sch=eth_refclk

#set_property -dict { PACKAGE_PIN B8 IOSTANDARD LVCMOS33 } [get_ports {

eth_intn }]; #IO_L12P_T1_MRCC_16 Sch=eth_intn

##Quad SPI Flash

#set_property -dict { PACKAGE_PIN K17 IOSTANDARD LVCMOS33 } [get_ports {

qspi_dq[0] }]; #IO_L1P_T0_D00_MOSI_14 Sch=qspi_dq[0]

#set_property -dict { PACKAGE_PIN K18 IOSTANDARD LVCMOS33 } [get_ports {

qspi_dq[1] }]; #IO_L1N_T0_D01_DIN_14 Sch=qspi_dq[1]

#set_property -dict { PACKAGE_PIN L14 IOSTANDARD LVCMOS33 } [get_ports {

qspi_dq[2] }]; #IO_L2P_T0_D02_14 Sch=qspi_dq[2]

#set_property -dict { PACKAGE_PIN M14 IOSTANDARD LVCMOS33 } [get_ports {

qspi_dq[3] }]; #IO_L2N_T0_D03_14 Sch=qspi_dq[3]

#set_property -dict { PACKAGE_PIN L13 IOSTANDARD LVCMOS33 } [get_ports {

qspi_csn }]; #IO_L6P_T0_FCS_B_14 Sch=qspi_csn

124

Appendix B: Python Scripts
create_song_coe.py
import​ random

songs = [

 [​127​, ​127​, ​127​, ​127​, ​76​, ​76​, ​74​, ​74​, ​72​, ​72​, ​74​, ​74​, ​76​, ​127​, ​76​, ​127​, ​76​,
76​, ​127​, ​127​, ​74​, ​127​, ​74​, ​127​, ​74​, ​74​, ​127​, ​127​, ​76​, ​127​, ​79​, ​127​, ​79​, ​79​, ​127​,
127​, ​76​, ​76​, ​74​, ​74​, ​72​, ​72​, ​74​, ​74​, ​76​, ​127​, ​76​, ​127​, ​76​, ​127​, ​76​, ​127​, ​74​, ​127​,
74​, ​127​, ​76​, ​76​, ​74​, ​74​, ​72​, ​72​, ​127​, ​127​],
 [​127​, ​127​, ​127​, ​127​, ​76​, ​76​, ​71​, ​72​, ​74​, ​74​, ​72​, ​71​, ​69​, ​127​, ​69​, ​72​, ​76​,
127​, ​74​, ​72​, ​71​, ​71​, ​127​, ​72​, ​74​, ​74​, ​76​, ​76​, ​72​, ​72​, ​69​, ​127​, ​69​, ​69​, ​127​, ​127​,
127​, ​74​, ​74​, ​77​, ​81​, ​81​, ​79​, ​77​, ​76​, ​76​, ​127​, ​72​, ​76​, ​76​, ​74​, ​72​, ​71​, ​71​, ​71​, ​72​,
74​, ​74​, ​76​, ​76​, ​72​, ​72​, ​69​, ​127​, ​69​, ​69​, ​127​, ​127​],
 [​127​, ​127​, ​127​, ​127​, ​72​, ​72​, ​127​, ​72​, ​72​, ​127​, ​72​, ​72​, ​72​, ​127​, ​127​, ​127​,
127​, ​127​, ​72​, ​71​, ​71​, ​69​, ​71​, ​71​, ​72​, ​74​, ​74​, ​74​, ​76​, ​76​, ​127​, ​76​, ​76​, ​127​, ​76​,
76​, ​76​, ​127​, ​127​, ​127​, ​127​, ​127​, ​76​, ​74​, ​74​, ​72​, ​74​, ​74​, ​76​, ​77​, ​77​, ​127​, ​79​, ​79​,
79​, ​127​, ​127​, ​127​, ​72​, ​72​, ​72​, ​127​, ​127​, ​127​, ​127​, ​127​, ​81​, ​79​, ​79​, ​77​, ​76​, ​76​,
76​, ​74​, ​74​, ​74​, ​72​, ​72​, ​72​, ​127​, ​127​, ​127​]
]

MAX_LEN = ​250
END_SONG = ​0b​1111100
PADDING = ​127

with​ ​open​(​'../6.111-fp/final_songs.coe'​, ​'w'​) ​as​ f:
 f.write(​'memory_initialization_radix=2;​\n​'​)
 f.write(​'memory_initialization_vector=​\n​'​)
 ​for​ song ​in​ songs:
 songlen = ​len​(song)
 padding = MAX_LEN - songlen - ​1
 ​assert​(padding > ​0​)
 ​# write song
 ​for​ i ​in​ ​range​(songlen):
 f.write(​'​{:08b}​,​\n​'​.format(song[i]))
 ​# write song end signal
 f.write(​'​{:08b}​,​\n​'​.format(END_SONG))
 ​# pad

125

 ​for​ i ​in​ ​range​(padding):
 f.write(​'​{:08b}​,​\n​'​.format(PADDING))
 ​# empty space for custom
 ​for​ i ​in​ ​range​(MAX_LEN-​1​):
 f.write(​'​{:08b}​,​\n​'​.format(PADDING))
 f.write(​'​{:08b}​;'​.format(END_SONG))

hann_gen.py
import​ math

n_bits = ​12
out_bits = ​24

L = (​2​**n_bits)
N = L-​1​ ​# n in [0,N]

def​ ​hann​(​n​):
 ​assert​(​0​ <= n <= N)
 c = math.sin(math.pi * n / N)

 ​print​((​2​**out_bits) * c**​2​)
 ​return​ ​int​((​2​ ** out_bits) * c**​2​)

tab=​" "
if​ ​__name__​ == ​'__main__'​:
 ​with​ ​open​(​'hann.sv'​, ​'w'​) ​as​ f:
 f.write(​'​{}​module hann(input logic [​{}​:0] n, output logic [​{}​:0]
coeff);​\n​'​.format(​0​*tab, n_bits-​1​, out_bits-​1​))
 f.write(​'​{}​always_comb begin​\n​'​.format(​1​*tab))
 f.write(​'​{}​case(n)​\n​'​.format(​2​*tab))
 ​for​ n ​in​ ​range​(L):
 f.write(​"​{}{}​'d​{}​: coeff = ​{}​'d​{}​;​\n​"​.format(​3​*tab, n_bits, n,
out_bits, hann(n)))

 f.write(​'​{}​endcase​\n​'​.format(​2​*tab))
 f.write(​'​{}​end​\n​'​.format(​1​*tab))
 f.write(​'​{}​endmodule​\n​'​.format(​0​*tab))

126

