Stereoscopic Observation
System (SOS)

6.111 Fall 2019

Jeana Choi, Leilani Trautman, Ryan Mansilla

Table of Contents

1 Background

2 Overview

5 Project Goals

4 System Block Diagram
5 Subsystems

5.1 Camera Setup/Display

5.2 Object Detection
5.3 Camera Calibration

5.4 Distance Calculation

5.5 Servo
5.6 Display

6 Testing & Debugging

7 Challenges

8 Design Decisions

9 Reflections

10 Conclusion

11 Acknowledgements
Appendix A - Verilog Code
Appendix B - Non-Verilog Code
Appendix C - CAD Files

1 Background

You wish to gather information about your environment, particularly the location of a
target and its distance away from you. Perhaps it is for animal tracking, securing your
home, or miscellaneous projectiles. Believe it or not, this is possible with two cameras
rotating on a servo!

To implement our system, we will have two calibrated cameras attached rigidly to a servo
that sweeps the room. Both cameras will be sending image data to the FPGA. We then
process this image data by converting from RGB to HSV, threshold based on Hue, and
erode the resulting image to get rid of noise. This binary image is then passed to the object
detector to detect the coordinates of a target of a known shape and color. If the target is
detected, we will use projective geometry to locate its coordinates relative to the camera
and calculate its distance from the cameras. Lastly, we will have a visual representation
through the VGA display of the two camera feeds and the resulting top and side views of
the environment.

2 Overview

We have two calibrated cameras rotating on a servo, scanning the environment. Once a
target of a known color and shape comes into the field of view for both cameras, we can
detect the center of the target. With this, we can project two 3D vectors from each 2D
image plane to a point on a plane we have calibrated to. Then, we can find the shortest
distance between these two skew lines and take its midpoint - this is our world coordinate
of the target. Finally, we can use the coordinates of the target to calculate the distance.

To imitate a practical stereoscopic system, we wish to have a tracking mechanism by rigidly
attaching a laser to the mounted cameras. Once we know the location and velocity of the
ball, we can use the servo to rotate the cameras and follow the target's predicted
trajectory. We display the camera data on a VGA display, where we show the centroid
detection in real time and also the top and side views of our world environment.

5 Project Goals

Commitment:
> Centroid of green ball displayed on screen
> Servo spinning on one axis

> Calibration of camera (including serial images to laptop)

Goal;

> Distance to ball displayed on screen
o Stationary ball centroid detection and distance calculation
o Moving ball centroid detection and distance calculation

> Detect balls of different colors (not at the same time)

> Showing vector from each camera to ball on the VGA display

Stretch:
> Two balls detected with centroid displayed on screen
> Distance between two balls displayed on screen

> Following a single ball with 2-axes of motion from servo

4 System Block Diagram

Inputs FPGA Top Level Module
clock signal Qutputs
—_—>
sent to all
imoshies reset signal
camera images & camera .| BRAM (one for display VGA display data
"I modules "1 each camera) module .

A distance =
image -
. servo position
switches i dc:e?::?or .| distance servo commands =
Lal L Ll
i calculator modules
modules centroid

5 Subsystems

5.1 Camera Setup/Display - Leilani

> Modules: camera wrapper.sv, top level.sv, camera read.sv

clk_B5mhz | camera_wrapper | —»output_pixels

jo r—®»valid_pixel

it p_clock_in pixel_data_out ick

. VSYNC_in . .)

j2 : pixel_valid_out pclk_in
href_in

il p_data_in fram&_dnne_nutu—1_p frame:_done out

To begin, we started off with the camera code provided by Joe. We modified it to remove
unnecessary remnants of the pong game code from Lab 3. We then wrapped up much of
the code from the original top_level file that read in the camera data and putitinto a

5

camera_wrapper module which we then instantiated twice - once for each of the cameras.
The wrapper mainly deals with taking the inputs from the GPIO pins connected to the
camera and passing them into top_level under the correct variable names. The
camera_wrapper also instantiates an instance of the camera_read module that contains
the state machine to read the pixels from the incoming frame. The main task with reading
in the camera data is dealing with the camera’s timing then moving the pixel data into a
BRAM for each camera. This pixel data is then passed into the object_detection module for
RGB to HSV conversion, hue thresholding, erosion and dilation.

5.2 Object Detection - Ryan

> Modules: object detection.sv, rgh2hsv.sv, hue_thresholding.sv, erosion.sv,
dilation.sv, localizer.sv

clk

dilate [15:0] centroid_x|
erode [15:0] centroid_y
[1:0] thresholds [11:0] pixel_out
[22:0] pixel_in object_detection [24:0] x_acc
hcount [24:0] y_acc
veount [24:0] bit-count
inBounds

rgb2hsv.sv

To create data that can be easily used by the FPGA for calculating information (in this case,
calculating the centroids of objects), we had to create modules that would process the RGB
pixels that the cameras put out. The first step in processing involved converting the RGB
pixels to HSV, which simplifies the process for binarizing the RGB pixels. By converting to
HSV, you can easily select for certain colors based on the hue value (the “H” in HSV).

hue_thresholding.sv

We thresholded values for certain hue values to select for colors of our choosing (green
and blue) with switches, so that objects of a single color can be detected while ignoring the
background image. Unfortunately even if one were to choose good threshold values, a
significant amount of noise remains. For this reason we employed a module that would
erode the binarized values.

Hue thresholding for green light

erosion.sv

The erosion module takes in the output from the hue thresholding module and saves those
values in a 320x1 register. Once enough of this register has been filled, the kernel (in the
form of the AND of 7 contiguous values in the register) gives the output.

dilation.sv

A dilation module was then used to increase the number of pixels with a value of one,
under the assumption that the erosion module would convert to many values to zero.
However, upon testing, it was found that the dilation module did not serve its purpose well;
in fact it usually increased the noise of the image, therefore we excluded it from our image
processing pipelining. It only remains in the final iteration of the project as an option to
view.

localizer.sv

Finally, to localize the centroid of the object, we have a module that takes in the output of
the erosion module, which is the output of the kernel function. As the output of the erosion
function continues to feed in this module, hcount and vcount, the coordinate of the pixels
in the VGA display, are added to accumulators for the x- and y-axis, provided the erosion
module’s output was high. When hcount and vcount indicate that a whole frame of an
image has been received by the module, it sends a signal to two divider IP modules to start
division and resets the accumulators. The output of these dividers are the calculated x and
y coordinates of the centroid.

Image as a result of erosion (see the noise). Top left corner of the yellow square represents
the centroid’s coordinates.

5.5 (Camera Calibration - Jeana

> Modules: serial tx.sv, top level.sv

The distance calculation is split into multiple steps, mainly into:
e Sending and Saving Camera Snapshot
e Camera Calibration for Intrinsic Parameters
e Camera Calibration for Extrinsic Parameters
e Distance Calculator Module
e Find projective lines from each camera to the object’s center

e Calculate coordinates of where the lines come closest together

First, if we want to know the location of a camera or the size of an object in the real world,
we need to retrieve the camera parameters, which are generally represented as a 3x4
camera matrix P. In order to estimate the intrinsic and extrinsic camera parameters, we
need to have 3D world coordinates and their corresponding 2D image coordinates.

We can achieve these by introducing the pinhole camera model:

wxyl]=[XYZI][R,t]K

Where:
e (X,Y,Z)arethe world coordinates of the point we are looking at
(x,y) : 2D image coordinates of the 3D point in pixels
w: scaling factor
K: camera intrinsic matrix (explain that it gives us the focal length, optical center in
pixels)
R: rotation matrix representing 3D rotation of the camera
t: translation of camera relative to the world coordinate system

Essentially, we can solve for (X, Y, Z) for each camera, which will give us two 3D vectors
mapping from the camera’s image plane to the checkerboard plane (the instance of the
checkerboard that we used to tune our extrinsic parameters).

We calibrated each camera using Zhang's Calibration method, which is implemented in
MatLab's Single Camera Calibration App. This application takes in images from the camera
containing a fixed flat pattern, the most common being a checkerboard, in various
orientations and calculates the intrinsic and extrinsic parameters.

Sending and Saving Camera Snapshot

In order to save the checkerboard calibration images, we save an entire frame of video
then send the pixels over serial. We then have a Python script that converts the pixels to an
image file.

Shown above: a snapshot of the checkerboard taken simultaneously by both cameras. These two images were used to
retrieve the extrinsic parameters R and t.

To create each image file, we have to take a couple steps:

First, we take a ‘snapshot’ on the camera, or essentially disable the wea pin when we flip a
switch (sw[7]). Then, we have a state machine that reads from the BRAM pixel by pixel and

9
e ——

sends R, G, then B to our laptop through serial transmission. The receiving computer has a
Python script that receives and reformats the data into a Numpy array, making sure that
the values are bit shifted by 4 (since we are taking the 4 MSB of color). Lastly, we save this
array into an image file using Pillow (a Python package).

®"°® Camera Calibrator - Image
CALIBRATION
ip! = Il Dlstortion: .
K Radial Distortion: Cempute: @, zoom In
@ O B8 & @ g L D € @
O 2 Coefficients 7 Skew &, Zoom Out
New Open Save Add . . . Optimization Calibrate Default Export Camera Help
Session Session Session v Images v 3 Coefficients [Tangential Distortion Options ﬂ Pan Layout Parameters v |
FILE OPTIONS | OPTIMIZATION | CALIBRATE | Z00M LAYOUT EXPORT RESOURCES | e

Data Browser ® Image l [Reprojection Errors = |

k_left_final16.png

035

o
k|
=
a
<
5
1
ul 15
015
g
= o1
005 |
0

0 6 10 15 20 25 30 35
Images

15
k_left_final16.png

k_right_final16.png

3
k_right_finall.png

-
k_left_finall.png

[Extrinsics 7 |

5
k_right_final15.png
200

=
o8

100

¥ (millimeters)

6
k_left_final15.png

a
8

1000 QEXC
- c

~N

7 5
k_right_final14.png 500 S T, 20
Z (millimeters) = 200
O 00 milimete
8 = G — =% ' e
k_left_final14.png Show undistorted Show pattern-centric view

Calibration results using MATLAB's Single Camera Calibrator App. The checkerboard pattern is detected in every image
and compiles them to compute intrinsic and extrinsic parameters. This calibration sets the real world origin to the
origin of the checkerboard.

OFF-FPGA Calculations

Intrinsic Parameters

The intrinsic camera matrix, most commonly denoted by K, tells us the underlying camera
properties such as focal length and the optical center. We use the same K for both cameras
since they are essentially identical. In order to retrieve a more accurate intrinsic camera
matrix, we need to upload at least 10 images of the checkerboard in varying orientations.
In our project, we used 16 images.

Extrinsic Parameters

The extrinsic parameters are given as R and t, the rotation and translation matrices. These
tell us how to map each camera’s image plane to the instance of the checkerboard in the
real world, which is where the real world origin is located.

10

Calculating Camera Matrix

We can rearrange the pinhole camera model fromw [xy 1]=[XY Z 1][Rt]'Kto [XY Z 1] =
W P'[xy 1], where P =[R t]"K and P" is its pseudoinverse. Since these are all precalculated,
we can solve for P" and hardcode them onto the FPGA.

5.4 Distance Calculation - Jeana

> Modules: distance.sv, my_division.sv, my_sqrt.sv

Ik_i
¢ __|n signed [31:0] world_x
rst_in e
[24:0]x1 signed [31:0] world_y
[24:0] x2
[24:0]v1 Distance signed [31:0] world_z
24:0] y2
{—h- signed [31:0] distance
[9:0] servo_angle E—

The distance calculation is split into multiple steps, mainly into:
e Sending and Saving Camera Snapshot
e Camera Calibration for Intrinsic Parameters
e Camera Calibration for Extrinsic Parameters
e Distance Calculator Module
o Find projective lines from each camera to the object’s center

o Calculate coordinates of where the lines come closest together

We are looking to solve the two 3D world vectors, then find the midpoint of the line closest
to them. One simplification we can make is that we know exactly what plane the
checkerboard is in. Even if the checkerboard is out of the field of view, the calibration we
made with a specific instance of the checkerboard determines the world origin. Although
the checkerboard pattern itself is 2D, we set up the board so that it is perpendicular to the

floor. As a result, the Z value in the checkerboard plane is a known constant value.

11

We need to note of the coordinate axes we are using - currently, we are following the same
coordinate system in our 2D images as the checkerboard setup. Once we have a set

coordinate system in the real world, it is easier to debug later when we check for signs.

Calculating 3D World Vectors

We can calculate the world vectors projecting from the image plane to the checkerboard
plane for each camera. This is our (X, Y, Z) for each camera when solving the camera
model equation.

Solving for the 3D Coordinates of Target

After we solve the 3D world vectors, we can find the shortest distance between these two
skew lines by using parametric equations.

As we increase the parametric variable t, we can solve for the t such that the points on both
lines are closest to one another.

Then, we can average the coordinates of those two coordinates to get our midpoint, or the
real world coordinates of our target.

u= [Xworldl 0] - C1

V= [Xyona 0] - G,

12

_(C=C) v

2
ju=v|

tcpa -

. . Cl+tcepaxu+C2+t cpa*v
midpoint =t 5 _cpa*v)

Where u, v are unit vectors and t,, is the point in time where u and v are closest to each
other. We take this point in time and find the midpoint of that shortest line, as shown
above.

Solving for Distance from Origin

Once we solve for the real world coordinates, we can easily find the distance from the
origin by calculating the magnitude between the two points (0, 0, 0) and (X, Y, Z), which is:

D= X’ +Y*+27°

On-FPGA Calculations

Since we wanted these distances to update in real time based on our current centroid
inputs (x1,y1) and (x2,y2), we decided to pipeline all the computations. This ended up
becoming 14 stages, since we needed to separate all the multiplications in order to avoid
timing problems. We decided to use 32 bit fixed point numbers for the majority of the
module, although we did use floating points for the occasional division or square root.

Fixed Point Numbers

| used 32 bit fixed point numbers for the majority of my variables (where the MSB
corresponds to sign, the next 15 represent integers, and the 16 LSB represent the decimal
portion of the number. Using fixed points is a lot more trivial to use for addition and
subtraction than floating points, since we can just use the ‘+' and ‘=" operations. For
multiplication, | assigned the product of two 32 fixed point numbers to a temporary 64 bit
signed floating point. Then, | used an always_comb block to only keep the inner 32 bits of
the product. For division, | used my my_division module, where | decided to convert a 32
bit fixed point to a floating point, performed division using the IP Catalog Modules, then
converted the quotient back to a fixed point. | did the same for computing square roots,
where | created a new module my_sqrt.sv to convert the fixed point to a floating point,
then perform square root, then convert the result back to a fixed point.

13

5.5 Servo - Leilani

> Modules: servo.sv, servo_wrapper.sv, fsm.sv
The code for controlling the servo is organized similarly to the code for reading in camera
data in that they both employ wrappers to clean up the code. The servo_wrapper is
declared at top_level and within the wrapper, a 50MHz clock is made in order to
communicate with the servo and the sweeping motion of the servo is set.

Servo_Wwra pped

— | Clk

cli rst servo_controller senvo————® s

position

5.6 Display - Ryan

> Modules: top_level.sv

vclock_in

[10:0] hcount_in

[9:0] vcount_in phsync_out
hsync_in pvsync_out
VSyne_in display_select pblank_out
blank in [11:0] pixel_out
[3:0] processing clk_200mhz
[11:0] pixel_in

14

The data from our calculations are ultimately expressed in the VGA display for an easier
understanding of the object’s location and characteristics.

The top_level module instantiates the display_select module, determines what gets
displayed and where, three times, once for the left camera, another time for the right
camera, and the third time for the top and side views of the object’s position relative to the
camera and checkerboard origin. The object detection module is then used to give the
eroded binarized image and the location of the centroid for the two cameras.

The distance module is also instantiated, so that the distance of the object from the origin
checkerboard can be displayed via the position of the blobs in the top and side view
regions on the display. Essentially, the detected object is the sky blue square and it moves
along the respective axes in both the side and top view (according to the object’s relative
position to the origin and cameras).

The left view represents the side view, where the white square represents the camera and the pink represents the
origin. The right view represents the top view, where the yellow square represents the origin and the white squares
represent the cameras.

6 Testing & Debugging

Camera Setup

First, we tested the camera display with one camera using Joe’s code. We also uploaded the
ESP8266 code from Joe with slight modifications to the camera RGB settings in order to
make it easier to detect green objects, which was our initial goal. Next, we tested the
camera display with two cameras bit by bit as we moved code into the camera_wrapper.
Finally, we integrated the object detection modules with the two camera display. Previously

15

the object detection had been tested on a static ROM so the integration with the cameras
allowed for refining the hue thresholding on our real-world setting with our LEDs and balls.

Object Detection

Before writing any Verilog code, it was important to understand how the existing
VGA display code worked and how it could be used. Once it made sense, we started writing
the object detection module and tested it using three different kinds of images:

1. Black and white image (to avoid binarization, work on erosion/dilation first)

2. Color image of M&Ms to filter out the green M&M and perform the entire object
detection pipeline on a still image

3. Once hue thresholding was perfected, we tested the module on real-time camera
feed and began work on the centroid detection portion.

Camera Calibration

To get started on sending the pixels over serial transmission, | first used the code we had
from Lab 2. Then, | tried sending only the 4 red bits padded with zeros over serial - with
this, | debugged most of my bugs in my state machine. Then, | sent the RGB separately for a
total of 320*240*3 transmissions. | decided to use this method since serial can only receive
1 byte of data at a time, so | wanted to consistently send 4 bits of color for simplicity. Lastly,
once we integrated the two cameras, | readjusted my state machine to be able to send
images from both cameras, not just one.

Distance Calculation

Our first step for debugging and testing our distance calculation was to run all my
equations on a new MATLAB script. This is separate from the Single Camera Calibration
App, since | am using the program to check my matrix operations. The first test | did was to
confirm that if | chose the pixels in both cameras corresponding to the checkerboard’s
origin and computed all the math, that the resulting distance should be near zero
coordinates should be near (0,0,0) as well. Once | confirmed those calculations, | then
measured a foot away from the real world origin and again, solved for distance with
manual centroid inputs (since it was not completed yet at the time).

These two tests were what | used to debug my code when | converted everything from
MATLAB to Verilog. Since | was pipelining 14 stages, | decided to create a testbench and
painstakingly debug at each stage. | caught many errors this way, some of which being:

16

variable misassignments, incorrect signed bit shifts (>>> not >>), severe multiplication
overflow (which | took care of by scaling down the numbers by 27). The distance module
ended up being over 600 lines of code, and having a testbench + working MATLAB script
definitely helped a lot. | compared each stage in MATLAB to in Verilog, which helped me
spot the bug more quickly. Below is a screenshot of the testbench | was debugging from.

distance.sv * « distance tb behav.wefg® x top level.sv x| distance tbh.sv x| object detection.swv x 200

QM| [||~ [| M | =2 | o o

1695, 1511353
1701 69ceed’ode

uared _distance[6§3:0] 145898,250974202

& distance|31:0] 381.9662933344961

Display

First, we displayed only the fixed objects in side view and top view: both cameras and the
origin. We also decided to have the top view background be contrasting from the side view
background so that the difference was more clear. Then, we added one degree of freedom
in the side view and top view.

7 Challenges

Serial transmission of pixels

One challenge we ran into was early into the project, where we realized that we had to
transmit the pixels serially to our computer in order to calibrate the camera. We forgot to
take that into account when we were making our goals and plans, and due to many
misinterpretations of the function of both the serial receiver and transmitter, implementing
this took much longer than expected. For example, the camera image would not generate
correctly when we tried to send two bytes of data at once (RGB padded with zeros). For the

17
e ——

python receiver we were using, we found out that the receiver actually spends an arbitrary
amount of time between each stop bit and next start bit, causing the receiver to not get all
pixels that were needed to regenerate the image.

Integration

Integration was a challenge because we had different, complex modules that we needed to
work together. We worked together by having different branches on Github and merging
them to make sure we could identify what changes needed to be made. There was also
sometimes a problem with integrating different modules because of problems with IP
modules. We sometimes had to regenerate the IP modules manually in Vivado when
merging. In addition, to see what was wrong with the integration, after resolving the merge
conflicts we simply had to generate the bitstream and see if the system had the desired
functionality. The more and more components we had made the bitstream take longer and
longer which caused long debugging sessions.

Object detection

Binarization: To achieve binarization, we use hue thresholding to assign a range of
colors to one and others to zero. We had to be precise when choosing hue boundaries to
make sure the right part of the camera image (e.g., the ball), is displayed. Unfortunately,
even after hue thresholding, other objects of seemingly dissimilar color were detected by
the camera as well. To address this problem, we stuck with green and blue as the colors
our system could detect.

Erosion: Initially we thought of using a 3x3 kernel to erode the image’s noise.
However, after some contemplation, we decided that delay required to use such a kernel
would not be worth the decline in potential quality. We therefore decided on using a one
dimensional kernel. We began with a 3x1 kernel and increased the length to see if noise
could be reduced even further. We found that a 7x1 kernel was effective for our purposes.

Dilation: It was found that the switch system created for debugging was a problem.
Dilation had already been achieved, but confusion regarding the switches prevented us
from knowing so until much later. Some flickering noise showed up as a result of the
module’s output - this was a problem so we decided that we did not need it. Also, we were
only trying to find the centroid, so dilation is not that relevant.

Centroid: Calculating the centroid proved to be very difficult. For the first iterations
of the module, the square that represented the module on the VGA display stayed at 0,0
for some reason. We were not sure if the problem had to do with overloading or a lack of
appropriate calculations. Eventually, we found the issue was with the lack of use of hcount
and vcount in the module, as well as faulty pipelining in the top level module. In addition,

18

we struggled with the divider modules that were provided, for we were unfamiliar with the
signals that they put out.

Distance Calculation

Figuring out the math behind the distance calculation was definitely challenging. There
were many points of confusion, but it first took me a while to fully understand the pinhole
camera model and how we can utilize projective geometry to pinpoint where the object
was (without using the Fundamental matrix, which is used in most of the epipolar geometry
resources | found). After that, | was stuck for a while since | could not think of a way to solve
for the closest point between the two 3D lines or even understand how to compute these
3D lines. | also thought that the origin would have to be between the two cameras for the
longest time. It turned out that the MATLAB app actually set the checkerboard as the real
world origin - however, there was not any documentation on this so it took many tests to
figure that out.

Another big challenge was converting all these calculations from MATLAB (from the script |
wrote, located at the very bottom of this report) to Verilog, since | had to deal with both
very small and large numbers. | first decided to use floating points, but then got frustrated
by the tediousness and also expensive IP modules. After a couple stages, | decided to start
over and use fixed points instead, which worked out in the end. However, it was very
painstaking to look through every stage and try to debug what could have gone wrong.

8 Design Decisions

> Two cameras vs. ultrasonic sensors

Upon reflection and consultation with the staff, we decided to use dual cameras rather
than an array of ultrasonic sensors because we thought that the ultrasonic sensors would
be too noisy and not precise enough. Additionally, we thought it would be interesting to

implement image processing concepts such as HSV thresholding, erosion, and dilation.
> Known object of known shape and color (green ball)

Originally, our goal was to use colored golf balls as our objects of interest to detect the
centroid and calculate the distance. We planned to use golf balls because they are spherical

and of a known radius. However, as we refined our distance calculation technique, we

19

realized that we didn't need to account for the radius of the object and simply knowing the
centroid was sufficient so any object that could be easily detected was sufficient. As we
tested our HSV thresholding module, we found that if we thresholded based solely on hue,
we could not detect the golf balls. Thus, we decided to switch the object of interest to
colored LEDs which would be easier to pick up with our thresholding and were especially
useful because using LEDs helped decrease the difference in testing based on time of day

because the value was less important.
> Using servo to expand field of view

We decided to mount our stereoscopic cameras on a dual-axis servo system. Our original
idea was to be able to use the servo to increase the field of view of the system so that if the
object of interest appeared in one of the cameras’ field of view the servo would rotate the
system such that the object of interest would appear in both the cameras’ fields of view.
We also wanted to use the servo for our stretch goal of tracking the object of interest and

following it.
> Object detection

The most significant design decision regarding the image processing portion was
the creation of an intermediate top level module (object_detection) that would bundle all
the image processing modules into one package. This module allowed us to easily input the
data from the image processing modules and use them in other modules. Additionally, the
intermediate top_level made pipelining its submodules quite easy. Having a top level to

encompass all the submodules.

Each submodule in object_detection.sv included features with specific aims as well.
The hue thresholding module employed the use of switches that determine what
thresholds we use. Based on those switches, we compare the value of our pixel in HSV to
the threshold we have. Based on the thresholds, outputs a 1 or 0 (1 if in the threshold, 0
otherwise). For the erosion and dilation modules, we decided to take advantage of the fact
that the camera feeds in only one pixel at a time to the FPGA by only having really small
registers that save the bare minimum need to conduct the process needed. We also chose
to work with one dimensional kernels to minimize delay and reduce the memory needed.
The centroid detection module was created with many outputs to make extracting data

much easier at the top level.

20

> Fixing ‘jitter-ness’ of centroid detection

Since we are updating the centroid in real time, it was not a very stable value and that led
to a worse visual representation and also a less accurate distance. We solved this problem
by averaging every 16 values of the x and y coordinates of the centroid before sending

them as inputs to the display and the distance calculation.
> Calibrating Closer to Cameras

In the interest of time and less high quality cameras, we decided to move our checkerboard
from ~6 feet away to ~4 feet away. We decided to make this design decision because
having a far calibration means that when we are projecting our lines to that plane, there is
a much greater chance of having large errors. Also, this method also gave more accurate

intrinsic matrices for fewer pictures.
> Simplifying our Real World Domain

We decided to simplify our real world coordinates by keeping the real world origin at where
the checkerboard's origin was. We also solved extrinsic and intrinsic parameters for when
the checkerboard was perpendicular to the ground such that the z stayed constant for the
checkerboard plane. By simplifying this, we now have a fixed plane and can project points
onto that plane. Since we have our 2D to 3D back projection, we can solve the 3D vectors

that will help us find the distance of the target.

9 Reflections

Two Camera Integration

The main task for integrating the camera into the other parts of this project was to take the
code given to us by Joe and to make it work for two cameras. Joe’s starter code helped this
process go smoothly. From there, integrating the camera data from the BRAM to feed into
the other modules was not too bad. It was perhaps a little cumbersome to have to declare
most modules twice in order to feed in the camera feeds separately but the modularity of
other modules, such as display_select, made this process easier.

Servo

Writing the servo code for the pulse width modulation was slow going at first especially
because the details on our specific servos were not easily accessible and we could not find
a data sheet correlating the pulse widths to a change in angle for our servo. We eventually

21

used a module that translated a position (not necessarily an angle) into a pulse width for
our servo and we integrated this module by writing a servo_wrapper module that would
send commands to sweep the servo from left to right, which was one of our commitment
goals. In general, we met our technical goal of getting the servo to move left and right but it
would be interesting to use the servo to complete the tracking goal. We wrote an FSM for
the servo that was meant to stop the servo once it had the object of interest in view of both
cameras but we ended up not using it in our final edition of the project.

Object detection

Most of the image processing was relatively simple to achieve, such as the hue
thresholding, erosion, and dilation modules. However, as mentioned earlier, we hit many
snares in writing a module that could calculate the centroid of an object, such as pipelining
the correct values and the use of hcount and vcount.

Display

Building a display for the user to take advantage of was not too difficult. Thanks to the
many hours of testing done for the object detection modules, we were very well acquainted
with how the VGA display functions. The neat organization of the cameras at the top level
made integrating the cameras to the display a very smooth process as well..

Camera Calibration

The calibration took longer than expected. The first problem we ran into was actually
transferring the images from the cameras to my laptop, since | needed to upload them into
the MATLAB script to retrieve the calibration parameters. | believe that was more complex
than initially thought, and my solution was a FSM with 10 states where we sent R, G, and B
separately and padded with four zeros. Another difficult aspect about the calibration was
to fully understand the math behind these parameters. It took me a while to connect that
the Rotation and Translation matrices are only mapping towards one specific instance of
the checkerboard, which would set our real world origin. Once | got through that obstacle,
the rest of the calibration was smooth sailing.

Distance Calculation

The distance calculation was definitely the complexity factor in this project. It took a while
to figure out how exactly the projections worked when mapping from 2D to 3D and vice
versa. | eventually figured out with Victor’'s help that we are essentially mapping from the
detected centroid in the 2D image to the plane of the checkerboard instance defined by
our extrinsic parameters. With these two points, we can form two 3D vectors and therefore
find approximately where the target lies. One strange aspect was the scaling -- it was off by
a large factor. When we go back to this project in January 2020, | plan to investigate this
error further. | suspect, however, that it is a multiplication overflow problem since most of
my errors in the distance module have been related to overflow.

22

10 Conclusion

Overall, we reached both our commitment and expected goals. We managed to detect
targets of multiple colors through the two cameras on the servo, display the target’s
distance on the hex display, and display the object’s relative distance in the environment
through the side and top views.

Some aspects we wish to expand on in the future are to improve thresholding within object
detection, integrate the servo FSM, add a tracking mechanism, and incorporate the two
axes of the servo. Our team plans on continuing this project over IAP 2020 by taking
6.5186: FPGA Digital Design Competition.

11 Acknowledgements

We would like to acknowledge the following for their mentorship in this project:

- Victor Tom for his assistance in the camera calibration and projective geometry
behind the distance calculation

23

Diana Wofk for her extensive help on debugging our project and always supporting
us!

Joe Steinmeyer for his extremely timely responses to any question we had

Gim Hom for his assistance in the final stretch of our project

Mike Wang for his mentorship for our project in our final stretch

Appendix A - Verilog Code
Leilani:

Camera_wrapper.sv

module camera_wrapper(
input clk_65mhz,
input jo,
input j1,
input j2,
input [7:0] ju,
output logic [15:0] output_pixels,
output logic valid_pixel,
output logic jclk,
output logic pclk_in,

output logic frame_done_out

logic xclk;

logic[1:0] xclk_count;

logic pclk_buff; //, pclk_in;
logic vsync_buff, vsync_in;
logic href_buff, href_in;
logic[7:0] pixel_buff, pixel_in;

assign xclk = (xclk_count >2'b01);

assign jclk = xclk;

always_ff @(posedge clk_65mhz) begin
xclk_count <= xclk_count + 2'b01;
pclk_buff <= j0;
pclk_in <= pclk_buff;
vsync_buff <=j1;
vsync_in <= vsync_buff;
href_buff <=j2;
href_in <= href_buff;
pixel_buff <= ju;
pixel_in <= pixel_buff;

end

camera_read my_camera(.p_clock_in(pclk_in),
.vsync_in(vsync_in),
.href_in(href_in),
.p_data_in(pixel_in),
.pixel_data_out(output_pixels),
.pixel_valid_out(valid_pixel),

frame_done_out(frame_done_out));

endmodule //camera_wrapper

Top_level.sv

“timescale 1ns / 1ps

module top_level(

input clk_100mhz,
input[15:0] sw,

24

input btnc, btnu, btnl, btnr, btnd,
input [7:0] ja,

input [2:0] jb,

input [7:0] jc,

input [2:0] jd,

output jbclk,

output jdclk,

output logic jdfour,

output[3:0] vga_r,

output[3:0] vga_b,

output[3:0] vga_g,

output vga_hs,

output vga_vs,

output led16_b, led16_g, led16_r,
output led17_b, led17_g, led17_r,
output[15:0] led,

output ca, cb, cc, cd, ce, cf, cg, dp, // segments a-g, dp
output[7:0] an // Display location 0-7
)

logic clk_65mhz;

// create 65mhz system clock, happens to match 1024 x 768 XVGA timing

clk_wiz_lab3 clkdivider(.clk_in1(clk_100mhz), .clk_out1(clk_65mhz));

logic [31:0] selector;
logic [24:0] center_x;
logic [24:0] center_x2;
logic [24:0] center_x3;
logic [24:0] center_y;
logic [24:0] center_y2;

25

logic [24:0] center_y3;
logic [24:0] x_acc;

logic [24:0] x_acc2;
logic [24:0] x_acc3;
logic [24:0] y_acg;

logic [24:0] y_acc2;
logic [24:0] y_acc3;
logic [24:0] bit_count;
logic [24:0] bit_count2;
logic [24:0] bit_count3;

//1//Display Initialization////1/

wire [10:0] hcount; // pixel on current line

wire [9:0] vcount; // line number

wire hsync, vsync, blank;

wire [11:0] pixel;

wire [11:0] pixel2;

wire [11:0] pixel3;

reg [11:0] rgb;

xvga xvgal(.vclock_in(clk_65mhz),.hcount_out(hcount),.vcount_out(vcount),

.hsync_out(hsync),.vsync_out(vsync),.blank_out(blank));

// btnc button is user reset
wire reset;

debounce db1(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnc),.clean_out(reset));

[111111111111117 DISTANCE /7/111111111111111111111111111111
logic signed [31:0] distance;
logic signed [31:0] world_x;
logic signed [31:0] world_y;

26

logic signed [31:0] world_z;

logic [4:0] jitter_counter = 5'd0;

logic [28:0] jitter_accumulator_x1 = 29'd0;
logic [28:0] jitter_accumulator_y1 = 29'd0;
logic [28:0] jitter_accumulator_x2 = 29'd0;
logic [28:0] jitter_accumulator_y2 = 29'd0;

logic [24:0] nice_centroid_x1;
logic [24:0] nice_centroid_y1;
logic [24:0] nice_centroid_x2;

logic [24:0] nice_centroid_y2;

always_ff@(posedge clk_65mhz)begin
if(jitter_counter == 15)begin
nice_centroid_x1 <= jitter_accumulator_x1 >> 4;

nice_centroid_y1 <= jitter_accumulator_y1 >> 4;

nice_centroid_x2 <= jitter_accumulator_x2 >> 4;

nice_centroid_y2 <= jitter_accumulator_y2 >> 4;
jitter_counter <= 0;
jitter_accumulator_x1 <= 0;
jitter_accumulator_y1 <= 0;
jitter_accumulator_x2 <= 0;
jitter_accumulator_y2 <= 0;

end else begin

jitter_counter <= jitter_counter + 1;

jitter_accumulator_x1 <= jitter_accumulator_x1 + center_x;

28

jitter_accumulator_y1 <= jitter_accumulator_y1 + center_y;

jitter_accumulator_x2 <= jitter_accumulator_x2 + center_x2;

jitter_accumulator_y2 <= jitter_accumulator_y2 + center_y2;

end

end

// logic [15:0] filtered_distance;
/l always_ff@(posedge clk_65mhz)begin
// if(distance[31:16] < 16'hB00)begin

// filtered_distance <= distance[31:16];
// end
// end

distance my_distance(
// inputs
.clk_in(clk_65mhz),
.rst_in(reset),

i .start(trigger),
X1(nice_centroid_x1),
.y1(nice_centroid_y1),
X2(nice_centroid_x2),
.y2(nice_centroid_y2),

// .servo_angle(servo_angle),
// outputs
.distance(distance),
.world_x(world_x),
.world_y(world_y),
.world_z(world_z)

)

logic [31:0] selected;

// always_ff@(posedge clk_65mhz)begin
// if(sw[2])begin

// selected <= {world_x[31:0]};

// end else if(sw[1])begin

// selected <= {world_y[31:0]};

// end else if(sw[0])begin

// selected <= {world_z[31:0]};

/1 end else begin

// selected <= {distance[31:16], 16'b0};
// end
// end

assign selected = {distance[31:16], 16'b0}; // change this later

/1l assign selected = {nice_centroid_x1[7:0], nice_centroid_y1[7:0], nice_centroid_x2[7:0],
nice_centroid_y2[7:0]};

/1 logic [31:0] sel_set;

/1 logic [26:0] counter_boi = 27'b0;

/1 always_ff @(posedge clk_65mhz) begin

// if (counter_boi == 27'd100000000) begin
// sel_set <= selected;

// counter_boi <= 27'b0;

// end else counter_boi <= counter_boi + 27'd1;

// end

seven_seg_controller my_controller(
.clk_in(clk_65mhz),.rst_in(reset),
val_in(selected),
.cat_out({cg, cf, ce, cd, cc, cb, ca}),

.an_out(an)

M HTTCANMERA T

logic [11:0] cam1;

logic pclk_in;

logic [11:0] frame_buff_out;
logic [15:0] output_pixels;
logic [15:0] old_output_pixels;
logic [12:0] processed_pixels;
logic valid_pixel;

logic frame_done_out;

logic she_valid;

assign she_valid = valid_pixel & ~sw[7];

logic [16:0] pixel_addr_in;
logic [16:0] pixel_addr_out;

blk_mem_gen_0 jojos_bram(.addra(pixel_addr_in), //take a pic based on switch and
.clka(pclk_in),
.dina(processed_pixels),
.wea(she_valid),
.addrb(pixel_addr_out),
.clkb(clk_65mhz),
.doutb(frame_buff_out));

always_ff @(posedge pclk_in)begin
if (frame_done_out)begin
pixel_addr_in <= 17'b0;

end else if (valid_pixel)begin

30

31

pixel_addr_in <= pixel_addr_in +1;
end

end

always_ff @(posedge clk_65mhz) begin
old_output_pixels <= output_pixels;
processed_pixels = {output_pixels[15:12],output_pixels[10:7],output_pixels[4:1]};

end

assign pixel_addr_out = hcount+vcount*32'd320;
//assign cam1 = ((hcount<320) && (vcount<240))?frame_buff_out:12'h000;

assign cam1 = frame_buff_out;

camera_wrapper my_wrap(
.clk_65mhz(clk_65mhz),
JOGd[01), .j1Gd[11), j2(d[2]), //WAS JB
Jju(jc), //WAS JA
.output_pixels(output_pixels),
.valid_pixel(valid_pixel),
Jjelk(jdclk),
.pclk_in(pclk_in),

.frame_done_out(frame_done_out));

M T TCANERA /T

logic [11:0] cam2;

logic pclk_in2;

logic [11:0] frame_buff_out2;
logic [15:0] output_pixels2;
logic [15:0] old_output_pixels2;

logic [12:0] processed_pixels2;
logic valid_pixel2;

logic frame_done_out2;

logic she_valid2;

assign she_valid2 = valid_pixel2 & ~sw[7];

logic [16:0] pixel_addr_in2;
logic [16:0] pixel_addr_out2;

blk_mem_gen_1 leileis_bram(.addra(pixel_addr_in2), //take a pic based on switch and
.clka(pclk_in2),
.dina(processed_pixels2),
.wea(she_valid2),
.addrb(pixel_addr_out2),
.clkb(clk_65mhz),
.doutb(frame_buff_out2));

always_ff @(posedge pclk_in2)begin
if (frame_done_out2)begin
pixel_addr_in2 <= 17'b0;
end else if (valid_pixel2)begin
pixel_addr_in2 <= pixel_addr_in2 +1;
end

end

always_ff @(posedge clk_65mhz) begin
old_output_pixels2 <= output_pixels2;
processed_pixels2 = {output_pixels2[15:12],output_pixels2[10:7],output_pixels2[4:1]};

end

32

assign pixel_addr_out2 = hcount+vcount*32'd320;

assign cam2 = frame_buff_out2;

camera_wrapper my_wrap2(
.clk_65mhz(clk_65mhz),
JOGbI0D), j1(b[1]), j2(b[2]),
Ju(ja),
.output_pixels(output_pixels2),
.valid_pixel(valid_pixel2),
Jjelk(jbclk),
.pclk_in(pclk_in2),

.frame_done_out(frame_done_out2));

/11111111end CAMERA_2///1111111

////Camera 1 and 2 fusion on display

logic [11:0] cam;

wire phsync,pvsync,pblank;

logic clk_200mhz;
logic clk_200mhz2;
logic clk_200mhz3;
logic inbound1;
logic inbound2;

assign inbound1 = hcount > 11'd20 && hcount < 11'd340 && vcount < 10'd240;

33

/1

/1

assign inbound2 = hcount > 11'd340 && hcount < 11'd660 && vcount < 10'd240;

display_select ds(.vclock_in(clk_65mhz),
.selectors(sw[15:14]),
.processing(sw[13:10]),

.pixel_in(cam1),

.inBounds(inbound1),
.hcount_in(hcount),
.vcount_in(vcount),
.hsync_in(hsync),
.vsync_in(vsync),
.blank_in(blank),
.world_x(world_x),
.world_y(world_y),
.world_z(world_z),
.distance(distance[31:16]),
.phsync_out(phsync),
.pvsync_out(pvsync),
.pblank_out(pblank),
.pixel_out(pixel),
.clk_200mhz(clk_200mhz),
.center_x(center_x),
.center_y(center_y),
.X_acc(x_acoc),
.y_acc(y_acq),

.bit_count(bit_count));

display_select ds2(.vclock_in(clk_65mhz),
.selectors(sw[15:14]),

.processing(sw[13:10]),

34

.pixel_in(cam2),
.inBounds(inbound?2),
.hcount_in(hcount),
.vcount_in(vcount),
.hsync_in(hsync),
.vsync_in(vsync),
.blank_in(blank),
.world_x(world_x),
.world_y(world_y),
.world_z(world_z),
.distance(distance[31:16]),
.phsync_out(phsync),
.pvsync_out(pvsync),
.pblank_out(pblank),
.pixel_out(pixel2),
.clk_200mhz(clk_200mhz2),
.center_x(center_x2),
.center_y(center_y2),
.X_acc(x_acc?),
.y_acc(y_acc2),

.bit_count(bit_count?));

logic cam3; //not a real camera

display_select ds3(
.vclock_in(clk_65mhz), // 65MHz clock
.hcount_in(hcount), // horizontal index of current pixel (0..1023)
.vcount_in(vcount), // vertical index of current pixel (0..767)
.hsync_in(hsync), /1 XVGA horizontal sync signal (active low)
.vsync_in(vsync), /1 XVGA vertical sync signal (active low)
.blank_in(blank), // XVGA blanking (1 means output black pixel
.world_x(world_x),

.world_y(world_y),

55

.world_z(world_z),
.distance(distance[31:16]),

// .selectors(sw[15:14]), // selects between normal or processed image
.processing(sw[13:10]), // selects which kind of process is being done
.pixel_in(cam3),

.inBounds(vcount >= 10'd240),

.phsync_out(phsync), // pong game's horizontal sync
.pvsync_out(pvsync), // pong game's vertical sync
.pblank_out(pblank), // pong game's blanking
.pixel_out(pixel3), // pong game's pixel // r=11:8, g=7:4, b=3:0
.clk_200mhz(clk_200mhz3),

.center_x(center_x3), ///testing centroid_x
.center_y(center_y3),

.x_acc(x_accl3),

.y_acc(y_acc3),

.bit_count(bit_count3));

wire border = (hcount==0 | hcount==1023 | vcount==0 | vcount==767 |

hcount == 512 | vcount == 384);

reg b,hs,vs;
always_ff @(posedge clk_65mhz) begin
if (sw[1:0] == 2'b01) begin
/1 1 pixel outline of visible area (white)
hs <= hsync;
VS <= VSyNng;
b <= blank;
rgb <= {12{border}};
end else if (sw[1:0] == 2'b10) begin
// color bars
hs <= hsync;

VS <= Vsyng;

/1

57

b <= blank;
rgb <= {{4{hcount[8]}}, {4{hcount[71}}, {4{hcount[6]}}} ;
end else begin
// default: pong
hs <= phsync;
VS <= pVsyngc;
b <= pblank;
//rgb <= pixel;
if (hcount<320) && (vcount<240)) cam <= pixel; //left camera display
else if (hcount > 320) && (vcount<240) && (hcount < 641)) cam <= pixel2; //right camera display
else if (hcount<320) && (vcount>240) && (vcount<480)) cam <= pixel; //eroded left camera
else if (vcount>240 && (vcount<480)) cam <= pixel3; //the blobs
else cam <= 12'h000;
rgb <= cam;

end

end

// the following lines are required for the Nexys4 VGA circuit - do not change
assign vga_r =~b ? rgb[11:8]: 0;
assign vga_g=~b ?rgb[7:4]:0;
assign vga_b = ~b ? rgb[3:0] : O;

assign vga_hs = ~hs;

assign vga_vs = ~vs;

servo_wrapper myservo(.clk(clk_200mhz), .js(jdfour));

endmodule

I 117

/1

/1 display-select: wrapper for object detection

38

/1
T T

module display_select (
input vclock_in, // 65MHz clock
input [10:0] hcount_in, // horizontal index of current pixel (0..1023)
input [9:0] vcount_in, // vertical index of current pixel (0..767)
input hsync_in, /1 XVGA horizontal sync signal (active low)
input vsync_in, /1 XVGA vertical sync signal (active low)
input blank_in, // XVGA blanking (1 means output black pixel)

/" input [1:0] selectors, // selects between normal or processed image
input [3:0] processing, // selects which kind of process is being done
input [11:0] pixel_in,
input inBounds,
input signed [31:0] world_x,
input signed [31:0] world_y,
input signed [31:0] world_z,
input [15:0] distance,
output logic phsync_out, // pong game's horizontal sync
output logic pvsync_out, // pong game's vertical sync
output logic pblank_out, // pong game's blanking
output logic [11:0] pixel_out, // pong game's pixel // r=11:8, g=7:4, b=3:0
output logic clk_200mhz,

output [24:0] center_x, ///testing centroid_x
output [24:0] center_y,

output logic [24:0] x_acc,

output logic [24:0] y_acc,

output logic [24:0] bit_count

);

//centroid stuff
logic [11:0] centroid;

logic [11:0] pixel_outta;

logic [24:0] centroid_x;

logic [24:0] centroid_y;

logic [24:0] valid_center_x;

logic [24:0] valid_center_y;

assign center_x = centroid_x;
assign center_y = centroid_y;

//end centroid stuff

//changing pixel to make it useful for ob det//////

logic [23:0] pixxel_in;
assign pixxel_in = {pixel_in[11:8], 4'b0, pixel_in[7:4], 4'b0, pixel_in[3:0], 4'b0};

always_comb begin
if(centroid_x > 25'd319)begin
valid_center_x = centroid_x;
end
if(centroid_y > 25'd239)begin
valid_center_y = centroid_y;
end

end

/////object_detection///
/1 logic [11:0] process_pixel;

39

object_detection ob_det(.clk(vclock_in),

/1

/1
/1

.hcount(hcount_in),
.vcount(vcount_in),
.inBounds(inBounds),
.dilate(processing[1]),
.erode(processing[0]),
.thresholds(processing[3:2]),
.pixel_in(pixxel_in),
.centroid_x(centroid_x),
.centroid_y(centroid_y),
.pixel_out(process_pixel),
.pixel_out(pixel_outta),
.Xx_acc(x_ace),
.y_acc(y_acq),

.bit_count(bit_count));

assign phsync_out = hsync_in;
assign pvsync_out = vsync_in;

assign pblank_out = blank_in;

picture_blob dulcecito(.pixel_clk_in(vclock_in),
x_in(11'd200),
.hcount_in(hcount_in),
.y_in(10'd200),
.vcount_in(vcount_in),
.pixel_in(pixel_in),
.original(selectors[1]),
.processed(selectors[0]),
.process_selects(processing),

/! .pixel_out(pixel_outta),

40

.clk_260mhz(clk_200mhz));

/1 logic [24:0] centroid_x_in;
/1 logic [24:0] centroid_y_in;

blob #(.WIDTH(16),.HEIGHT(16),.COLOR(12'hFF0)) // yellow!

the_centroid(.pixel_clk_in(vclock_in),
.hcount_in(hcount_in),
.vcount_in(vcount_in),
.centroid_x(centroid_x),

.centroid_y(centroid_y),

// .centroid_x(centroid_x_in),
// .centroid_y(centroid_y_in),
// .original(selectors[1]),
// .processed(selectors[0]),
/1 .process_selects(processing),

.pixel_out(centroid));

/1 SIDE VIEW
// z bounds from camera: [-2083, 0]
/1 -y bounds from camera: 185 ->0
logic [15:0] side_ball_x;

/1 logic signed [31:0] side_ball_y;

/1 logic signed [31:0] top_ball_x;
logic [15:0] top_ball_y;

/1 assign side_ball_x = (-world_z[30:16]*320) >>>11; // change denom
/1 assign side_ball_y = (240*300 - world_y[31:16]*240) >>>9;

41

42

// TOP VIEW
// x bounds from camera: 24, 292, 0

// z bounds from camera: -2083, -2075, 0 --> [2083,0

assign top_ball_x = (world_x[31:16] * 320 + 320*300) >>>9;
assign top_ball_y = (-world_z[31:16] * 240) >>> 11;

always_ff@(posedge vclock_in)begin
top_ball_y <= ((distance - 16'nh600)) * 240 >> 6;
side_ball_x <= ((distance - 16'h600) << 2);

end

//linteresting math to map distance module values to pixels//////

logic [11:0] side_view;

blob #(.WIDTH(320), .HEIGHT(240), .COLOR(12'h00F))
side_v(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

.centroid_x(25'd0), .centroid_y(25'd240), .pixel_out(side_view));

logic [11:0] top_view;
blob #(.WIDTH(320), .HEIGHT(240), .COLOR(12'h0F0))
top_v(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

.centroid_x(25'd320), .centroid_y(25'd240), .pixel_out(top_view));

logic [11:0] side_or;
blob #(.\WIDTH(12), .HEIGHT(12), .COLOR(12'hFF0))
side_origin(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

.centroid_x(25'd300), .centroid_y(25'd360), .pixel_out(side_or));

logic [11:0] side_cam;
blob #(.WIDTH(8), .HEIGHT(8), .COLOR(12'hF00))

side_camera(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

.centroid_x(25'd0), .centroid_y(25'd387), .pixel_out(side_cam));

logic [11:0] side_obj;
blob #(.WIDTH(16), .HEIGHT(16), .COLOR(12'h0F0))
side_object(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),
// .centroid_x(side_ball_x[24:0]), .centroid_y(side_ball_y[24:0] + 25'd240), .pixel_out(side_obj));
.centroid_x({9'b0, side_ball_x}), .centroid_y(25'd120 + 25'd240), .pixel_out(side_obj));

logic [11:0] top_or;
blob #(.WIDTH(12), .HEIGHT(12), .COLOR(12'hF00))
top_origin(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

.centroid_x(25'd480), .centroid_y(25'd250), .pixel_out(top_or));

logic [11:0] top_cam1;
blob #(.WIDTH(8), .HEIGHT(8), .COLOR(12'nhFOF))
top_camL(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

.centroid_x(25'd510), .centroid_y(25'd458), .pixel_out(top_cam1));

logic [11:0] top_cam2;
blob #(.WIDTH(8), .HEIGHT(8), .COLOR(12'nhFOF))
top_camR(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

.centroid_x(25'd537), .centroid_y(25'd459), .pixel_out(top_cam?2));

logic [11:0] top_obj;
blob #(\WIDTH(16), .HEIGHT(16), .COLOR(12'nh00F))
top_object(.pixel_clk_in(vclock_in), .hcount_in(hcount_in), .vcount_in(vcount_in),

/I centroid_x(top_ball_x[24:0]+ 25'd320), .centroid_y(top_ball_y[24:0] + 25'd240),
.pixel_out(top_obj));

.centroid_x(25'd160 + 25'd320), .centroid_y({9'b0, top_ball_y} + 25'd240), .pixel_out(top_obj));

/1 always_ff @(posedge vclock_in) begin

43

44

// if (selectors == 2'b10) begin

// if (hcount_in >= centroid_x_in && hcount_in <= centroid_x_in + 25'd16)

// && (vcount_in >= centroid_y_in && vcount_in <= centroid_y_in + 25'd16)) begin
// pixel_outta <= 12'd0;

/1 end else pixel_outta <= process_pixel;

// centroid_x_in <= centroid_x;

// centroid_y_in <= centroid_y;

// end else if (selectors == 2'b01) begin

// if (hcount_in >= centroid_x_in && hcount_in <= centroid_x_in + 25'd16)

// && (vcount_in >= centroid_y_in && vcount_in <= centroid_y_in + 25'd16)) begin
// pixel_outta <= 12'd0;

// end else pixel_outta <= pixel_in;

// centroid_x_in <= centroid_x - 25'd20;

// centroid_y_in <= centroid_y - 25'd20;

/' end

// end

assign pixel_out = centroid + pixel_outta + side_cam +

side_or + side_obj + top_or + top_cam1 + top_cam2 + top_obj + top_view + side_view;

endmodule

T 11111
/1

// picture_blob: displays the image manipu40.88lated

/1
111

45

module picture_blob
#(parameter WIDTH =320, // default picture width
HEIGHT = 240) // default picture height
(input pixel_clk_in,
input [10:0] x_in,hcount_in,
input [9:0] y_in,vcount_in,
input [11:0] pixel_in,
//input original, //selection of original or processed image
/' input processed,
input [3:0] process_selects, // allows us to see erosion and dilation, and to choose hue thresholds
//output logic [11:0] pixel_out,
output logic clk_260mhz);

clk_wiz_0 clkmulti(.clk_in1(pixel_clk_in), .clk_out1(clk_260mhz));

endmodule

/1111111BLOB//111111

module blob

#(parameter WIDTH = 64, // default width: 64 pixels
HEIGHT = 64, // default height: 64 pixels
COLOR = 12'hFFF) // default color: white

(input pixel_clk_in,

input [10:0] hcount_in,

input [9:0] vcount_in,

input [24:0] centroid_x,

input [24:0] centroid_y,

46

//input original, //selection of original or processed image
// input processed,

/linput [3:0] process_selects, // allows us to see erosion and dilation, and to choose hue
thresholds

output logic [11:0] pixel_out);

logic clk_200mhz;
clk_wiz_0 clkmulti(.clk_in1(pixel_clk_in), .clk_out1(clk_200mhz));

always_ff @(posedge pixel_clk_in) begin
if (hcount_in >= centroid_x && hcount_in < (centroid_x+WIDTH)) &&
(vcount_in >= centroid_y && vcount_in < (centroid_y+HEIGHT))) begin
pixel_out <= COLOR;
end else begin
pixel_out <= 0;
end

end

endmodule

/111///TENDBLOB///1111

I
/1

// Pushbutton Debounce Module (video version - 24 bits)

/1
M1

module debounce (input reset_in, clock_in, noisy_in,

output reg clean_out);

reg [19:0] count;

reg new_input;

always_ff @(posedge clock_in)
if (reset_in) begin
new_input <= noisy_in;
clean_out <= noisy_in;
count <=0; end
else if (noisy_in != new_input) begin new_input<=noisy_in; count <= 0; end
else if (count == 650000) clean_out <= new_input;

else count <= count+1;

endmodule

I D111
// Update: 8/8/2019 GH

/1 Create Date: 10/02/2015 02:05:19 AM

// Module Name: xvga

/1

// xvga: Generate VGA display signals (1024 x 768 @ 60Hz)

/1

/1 ---- HORIZONTAL ----- ------ VERTICAL -----
/1 Active Active
/1 Freq Video FP Sync BP Video FP Sync BP

// 640x480,60Hz 25.175 640 16 96 48 480 11 2 31

/1 800x600, 60Hz 40.000 800 40 128 88 600 1 4 23

/1 1024x768, 60Hz 65.000 1024 24 136 160 768 3 6 29
/1 1280x1024, 60Hz 108.00 1280 48 112 248 768 1 3 38
/l 1280x720p 60Hz 75.25 1280 72 80 216 720 3 5 30
/1 1920x1080 60Hz 148.5 1920 88 44 148 1080 4 5 36

47

48

/1
/1 change the clock frequency, front porches, sync's, and back porches to create
/1 other screen resolutions

T T

module xvga(input vclock_in,
output reg [10:0] hcount_out, // pixel number on current line
output reg [9:0] vcount_out, //line number
output reg vsync_out, hsync_out,

output reg blank_out);

parameter DISPLAY_WIDTH =1024; // display width
parameter DISPLAY_HEIGHT = 768; // number of lines
parameter H_FP = 24; // horizontal front porch

parameter H_SYNC_PULSE = 136; // horizontal sync

parameter H_BP = 160; // horizontal back porch
parameter V_FP =3; // vertical front porch
parameter V_SYNC_PULSE = 6; // vertical sync
parameter V_BP =29; // vertical back porch

// horizontal: 1344 pixels total

// display 1024 pixels per line

reg hblank,vblank;

wire hsyncon,hsyncoff,hreset,hblankon;

assign hblankon = (hcount_out == (DISPLAY_WIDTH -1));

assign hsyncon = (hcount_out == (DISPLAY_WIDTH + H_FP - 1)); //1047

assign hsyncoff = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE - 1)); // 1183
assign hreset = (hcount_out == (DISPLAY_WIDTH + H_FP + H_SYNC_PULSE + H_BP - 1)); //1343

// vertical: 806 lines total

// display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;

assign vblankon = hreset & (vcount_out == (DISPLAY_HEIGHT - 1)); // 767

assign vsyncon = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP - 1)); // 771

assign vsyncoff = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE - 1)); // 777

assign vreset = hreset & (vcount_out == (DISPLAY_HEIGHT + V_FP + V_SYNC_PULSE + V_BP - 1)); //
805

// sync and blanking

wire next_hblank,next_vblank;

assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;

assign next_vblank = vreset 7 0 : vblankon ? 1 : vblank;

always_ff @(posedge vclock_in) begin
hcount_out <= hreset ? 0 : hcount_out + 1;
hblank <= next_hblank;
hsync_out <= hsyncon ? 0 : hsyncoff ? 1 : hsync_out; // active low
vcount_out <= hreset ? (vreset ? 0 : vcount_out + 1) : vcount_out;
vblank <= next_vblank;
vsync_out <=vsyncon ? 0 : vsyncoff ? 1 : vsync_out; // active low
blank_out <= next_vblank | (next_hblank & ~hreset);

end

endmodule

Camera_read.sv
module camera_read(
input p_clock_in,
input vsync_in,
input href_in,
input [7:0] p_data_in,
output logic [15:0] pixel_data_out,
output logic pixel_valid_out,

output logic frame_done_out

logic [1:0] FSM_state = 0;

logic pixel_half = 0;

localparam WAIT_FRAME_START = 0;
localparam ROW_CAPTURE = 1;

always_ff@(posedge p_clock_in)
begin

case(FSM_state)

WAIT_FRAME_START: begin //wait for VSYNC
FSM_state <= (lvsync_in) ? ROW_CAPTURE : WAIT_FRAME_START;
frame_done_out <= 0;
pixel_half <= 0;

end

ROW_CAPTURE: begin
FSM_state <= vsync_in ? WAIT_FRAME_START : ROW_CAPTURE;
frame_done_out <=vsync_in?1:0;
pixel_valid_out <= (href_in && pixel_half)? 1 : 0;
if (href_in) begin
pixel_half <= ~ pixel_half;
if (pixel_half) pixel_data_out[7:0] <= p_data_in;
else pixel_data_out[15:8] <= p_data_in;
end
end
endcase

end

endmodule

50

Servo_controller.sv
/-k
servo controller
Based on code from Mojo tutorial

https://embeddedmicro.com/tutorials/mojo/servos

Takes an 8-bit position as an input

Output a single pwm signal with period of ~20ms

Pulse width = 1ms -> 2ms full scale. 1.5ms is center position
*/
module servo_controller (

input clk,

input rst,

input [7:0] position,

output servo

)

reg pwm_qg, pwm_d;
reg [19:0] ctr_q, ctr_d;
assign servo = pwm_g;
//position (0-255) maps to 50,000-100,000 (which corresponds to 1ms-2ms @ 50MHz)
//this is approximately (position+165)<<8
//The servo output is set by comparing the position input with the value of the counter (ctr_q)
always @(*) begin
ctr_d=ctr_q+1'b1;
if (position +9'd165 > ctr_q[19:8]) begin
pwm_d = 1'b1;
end else begin
pwm_d = 1'b0;

end

51

end

always @(posedge clk) begin
if (rst) begin
ctr_g <= 1'b0;
end else begin
ctr_g <= ctr_d;
end
pwm_q <= pwm_d;
end

endmodule

Servo_wrapper.sv

“timescale 1ns / 1ps
1111111177
/1

// Updated 8/10/2019 Lab 3

// Updated 8/12/2018 V2.lab5c

/1 Create Date: 10/1/2015 V1.0

// Design Name:

// Module Name: labkit

//
111111177

module servo_wrapper(
input clk, //200mhz
output logic js //outputting the serial here

)

/1 logic clk_65mhz;

// create 65mhz system clock, happens to match 1024 x 768 XVGA timing

53

/' clk_wiz_lab3 clkdivider(.clk_in1(clk_100mhz), .clk_out1(clk_65mhz));

logic [7:0] myang = 8'd255;

logic clk_50mhz = 1'b0;

logic [2:0] county = 3'b0;
always_ff @(posedge clk) begin
if (county == 3'd4) begin
county <= 1'b0;
clk_50mhz <= 1'b1;
end else begin
county <= county + 4'd1;
clk_50mhz <= 1'b0;

end

end

/1 clk_wiz_0 clkmulti(.clk_in1(clk_100mhz), .clk_out1(clk_50mhz));

//code to make servo sweep
logic [27:0] hz_count = 28'b0;
logic mydir = 0; //direction of the servo, O is left, 1 is right
always_ff @(posedge clk) begin
if (hz_count == 28'd100000000) begin
hz_count <= 28'b0;

if (myang >= 8'd250) mydir <= 0;
else if (myang <= 8'd5) mydir <= 1;

if (mydir == 0) myang <= myang-28'd5;

else if (mydir == 1) myang <= myang +28'd5;
end else begin

hz_count <= hz_count+28'd1;
end

end

servo_controller mysc(.clk(clk_50mhz),
.rst(1'b0),
.position(myang),

.servo(js));

/1 servo my_servo(.clk(clk_100mhz), .angle(myang),
// always_ff @(posedge clk_65mhz) begin
// end

endmodule

Fsm.sv

module fsm(input clk,
input rst,
input btnleft,
input btnright,
input btncalc,
output logic servo_dir,

output logic servo_stop);

//define the possible states
logic [1:0] IDLE = 2'b00;

logic [1:0] LEFTMOVE = 2'b01;
logic [1:0] RIGHTMOVE = 2'b10;

.servo_pulse(jc[0]));

54

logic [1:0] CALC =2'b11;
logic [1:0] state = 2'b00;

always_ff @(posedge clk) begin

if (rst) state <= IDLE;

else begin

case (state)

IDLE: begin

if (btnleft == 1'b1) state <= LEFTMOVE;
else if (btnright == 1'b1) state <= RIGHTMOVE;
else if (btncalc == 1'b1) state <= CALC;
servo_stop <= 1'b1;

end

LEFTMOVE: begin
//do stuff to actually move the servo left
servo_stop <= 1'b0;

servo_dir <= 1'b0;

if (btnleft == 1'b0 && btnright == 1'b0) state <= IDLE;
else if (btnright == 1'b1) state <= RIGHTMOVE;

end

RIGHTMOVE: begin
//do stuff to actually move the servo right
servo_stop <= 1'b0;

servo_dir <= 1'b1;

if (btnright == 1'b0 && btnleft == 1'b0) state <= IDLE;
else if (btnleft == 1'b1) state <= LEFTMOVE;

end

55

56

CALC: begin
//make sure the servo is stopped
servo_stop <= 1'b1;
//display the centroid
//display the distance
if (rst == 1'b1) state <= IDLE;

end
default begin
state <= IDLE;
end
endcase

end
end //end of always block

endmodule //end of fsm

Jeana:

Serial_tx.sv

module serial_tx(input clk_in,
input rst_in,
input trigger_in,

input [7:0] val_in,
output logic done,

output logic data_out);
parameter DIVISOR =564; // to account for 65 mhz clock 1/baud rate * clock rate
logic [9:0] shift_buffer; //10 bits...interesting
logic [31:0] count;

logic [3:0] count_bits;

always_ff @(posedge clk_in)begin

if(rst_in)begin
count <= 32'd0; //reset count
shift_buffer <= 10'b1111111111; // reset to 1
done <=0;
count_bits <= 0;
end else begin
if(trigger_in)begin

shift_buffer <= {1'b1, val_in, 1'b0}; // prepend val_in with 0 and append with 1, store in
shift_buffer

count <= DIVISOR,;

count_bits <= 0;

done <=0;

end else begin

if(count_bits == 11)begin
count_bits <=0;
done <=1;

end else if(count==DIVISOR)begin // if count == DIVISOR
done <=0;
count <= 32'd0; //reset count
data_out <= shift_buffer[0]; // send least significant bit first
shift_buffer <= {1'b1, shift_buffer[9:11}; // shift to right, pad the unused bits as HIGH
count_bits <= count_bits + 1;

end else begin
done <=0;
count <= count + 1; // else keep counting

end

end
end
end

endmodule //serial_tx

Serial transmission state machine (in an alternative version of top_level.sv):

57

58

117111111777 SERIAL SENDING /7111111111111 1111111111117

logic send_serial;
logic trigger_in = 0;
logic done;

logic [7:0] rgb_input;

logic out1;

debounce
send_debounce(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnl),.clean_out(send_serial));

serial_tx my_tx(.clk_in(clk_65mhz), .rst_in(reset), .trigger_in(trigger_in),

val_in(rgb_input), .done(done), .data_out(out1));

logic send_serial2;
logic trigger_in2 = 0;
logic done2;

logic [7:0] rgb_input2;

logic out2;

debounce
send_debounce2(.reset_in(reset),.clock_in(clk_65mhz),.noisy_in(btnr),.clean_out(send_serial2));

serial_tx my_tx2(.clk_in(clk_65mhz), .rst_in(reset), .trigger_in(trigger_in2),

val_in(rgb_input2), .done(done?2), .data_out(out2));

/1 Serial FSM for Camera 1
parameter IDLE = 10'b1000000000;
parameter WAITT = 10'b0100000000;
parameter SEND_RED = 10'b0010000000;
parameter WAIT2= 10'b0001000000;
parameter SEND_GREEN = 10'b0000100000;

parameter WAIT3 = 10'b0000010000;
parameter SEND_BLUE = 10'b0000001000;
parameter PASS1 = 10'b0000000100;
parameter PASS2 = 10'b0000000010;
parameter PASS3 = 10'b0000000001;
parameter LEFT = 2'b10;

parameter RIGHT = 2'b01;

parameter PIXELS = 'd76800; // 240 * 320 pixels

logic [9:0] state = IDLE;

logic [1:0] camera;

always_ff@(posedge clk_65mhz)begin
if(reset)begin
state <= IDLE;
end else begin
if(camera == LEFT)begin
jdtx <= out1;
end else if(camera == RIGHT)begin
jdtx <= out2;
end
if(sw[15]) begin
pixel_addr_out <= hcount+vcount*32'd320;
pixel_addr_out2 <= hcount+vcount*32'd320;
end else begin
case (state)
IDLE: begin
if(send_serial)begin
trigger_in <=0;
pixel_addr_out <= 0;

camera <= LEFT;

59

state <= PASS1;

end

if(send_serial2)begin
trigger_in2 <= 0;
pixel_addr_out2 <= 0;
camera <= RIGHT;
state <= PASS1;

end

end

PASS1: begin
if(camera == LEFT)begin
trigger_in <=0;
end else if(camera == RIGHT)begin
trigger_in2 <= 0;

end

state <= WAIT1;

end

WAIT1: begin
if(camera == LEFT)begin
trigger_in <=1,
rgb_input <= {4'b0000, frame_buff_out[11:8]};
end else if(camera == RIGHT)begin
trigger_in2 <=1,
rgb_input2 <= {4'b0000, frame_buff_out2[11:8]};
end
state <= SEND_RED;

end

SEND_RED: begin
if(camera == LEFT)begin
trigger_in <=0;
if(pixel_addr_out == PIXELS)begin
state <= IDLE;
pixel_addr_out <= 0;
camera <=0;
end else if(done & ~send_serial)begin
state <= PASS2;
end
end else if(camera == RIGHT)begin
trigger_in2 <= 0;
if(pixel_addr_out2 == PIXELS)begin
state <= IDLE;
pixel_addr_out2 <= 0;
camera <= 0;
end else if(done2 & ~send_serial2)begin
state <= PASS2;
end
end

end

PASS2: begin
if(camera == LEFT)begin
trigger_in <=0;
end else if(camera == RIGHT)begin
trigger_in2 <= 0;

end

state <= WAIT2;

end

61

WAIT2: begin
if(camera == LEFT)begin
trigger_in <=1,
rgb_input <= {4'b0, frame_buff_out[7:4]};
end else if(camera == RIGHT)begin
trigger_in2 <=1,
rgb_input2 <= {4'b0, frame_buff_out2[7:4]};

end

state <= SEND_GREEN;

end

SEND_GREEN: begin
if(camera == LEFT)begin
trigger_in <=0;
if(pixel_addr_out == PIXELS)begin
state <= IDLE;
pixel_addr_out <= 0;
camera <= 0;
end else if(done & ~send_serial)begin
state <= PASS3;
end
end else if(camera == RIGHT)begin
trigger_in2 <= 0;
if(pixel_addr_out2 == PIXELS)begin
state <= IDLE;
pixel_addr_out2 <= 0;
camera <=0;
end else if(done2 & ~send_serial2)begin
State <= PASS3;

end

end

end

PASS3: begin
if(camera == LEFT)begin
trigger_in <=0;
end else if(camera == RIGHT)begin
trigger_in2 <= 0;

end

state <= WAIT3;

end

WAIT3: begin
if(camera == LEFT)begin
trigger_in <=1;
rgb_input <= {4'b0, frame_buff_out[3:0]};
end else if(camera == RIGHT)begin
trigger_in2 <=1,
rgb_input2 <= {4'b0, frame_buff_out2[3:0]};

end

state <= SEND_BLUE;

end

SEND_BLUE: begin
if(camera == LEFT)begin
trigger_in <=0;
if(pixel_addr_out == PIXELS)begin
state <= IDLE;
pixel_addr_out <= 0;

camera <= 0;

63

end else if(done & ~send_serial)begin
pixel_addr_out <= pixel_addr_out + 1;
state <= PASS1;
end
end else if(camera == RIGHT)begin
trigger_in2 <=0;
if(pixel_addr_out2 == PIXELS)begin
state <= IDLE;
pixel_addr_out2 <= 0;
camera <= 0;
end else if(done2 & ~send_serial2)begin
pixel_addr_out2 <= pixel_addr_out2 + 1;
state <= PASST1;
end
end
end
endcase
end
end

end

Distance.sv
module distance(
input clk_in,
input rst_in,
input [24:0] x1, // make these 25 bits
input [24:0] y1,
input [24:0] x2,
input [24:0] y2,
// input [9:0] servo_angle,

output logic signed [31:0] distance,

64

65

output logic signed [31:0] world_x,
output logic signed [31:0] world_y,
output logic signed [31:0] world_z
);

/1111 LOGIC to convert 25 bit unsigned int to 32 bit fixed point
logic signed [31:0] converted_x1;

logic signed [31:0] converted_y1;

logic signed [31:0] converted_x2;

logic signed [31:0] converted_y2;

assign converted_x1 = {x1[15:0], 16'b0};

assign converted_y1 = {y1[15:0], 16'b0};

assign converted_x2 = {x2[15:0], 16'b0};

assign converted_y2 = {y2[15:0], 16'b0};

// 16 bits to decimal: 2216 = 65536

/* LEFT CAMERA */

//inverted camera 1 matrix

parameter signed P1_inv11 = {16'b0, 16'00000_0001_1111_1000%; // 0.0077
parameter signed P1_inv12 = {16'b0, 16'b0000_0000_0000_0000}; //'d64;
parameter signed P1_inv13 ={16'bO0, 16'b0};

parameter signed P1_inv21 = {1'b0, 15'b0, 16'b00000000000001101};//-'d59;
parameter signed P1_inv22 = {1'b0, 15'b0, 16'b0000000111101011}; //'d2007;
parameter signed P1_inv23 ={1'b0, 15'b0, 16'b0};

parameter signed P1_inv31 ={1'b1, 15'b111111111111110, 16'b0100100011110101};
parameter signed P1_inv32 ={1'b1, 15'b111111111111110, 16'b1110111101000001};
parameter signed P1_inv33 ={1'b0, 15'b0, 16'b0000000010000011};

//real world coords of camera 1

parameter signed C1_1 ={1'b0, 15'b101001111, 16'b0};//'d292;

66

parameter signed C1_2 = {1'b0, 15'b1100001, 16'b0};//'d73;
parameter signed C1_3 = {1'b1, 15'b111100101000101, 16'b1111_1111_1111_1111};//-'d2075;

/* RIGHT CAMERA */

/linverted camera 2 matrix

parameter signed P2_inv11 = {1'b0, 15'b0, 16'b0000000111101011};//32'd1970;

parameter signed P2_inv12 ={1'b1, 15'b111111111111111, 16'b1111_1111_1111_0010},
parameter signed P2_inv13 = 32'b0;

parameter signed P2_inv21 = {1'b0, 15'b0, 16'b00000000000001101};

parameter signed P2_inv22 = {1'b0, 15'b0, 16'p0000000111101011};

parameter signed P2_inv23 = 32'd0;

parameter signed P2_inv31 ={1'b1, 15'b111111111111111, 16'b1010111001010101},
parameter signed P2_inv32 ={1'b1, 15'b111111111111111, 16'b0000101001000011};
parameter signed P2_inv33 = {1'b0, 15'b0, 16'b0000000010010110};

//real world coords for camera 2

parameter signed C2_1 ={1'b0, 15'b10110010, 16'b0};//32'd24;

parameter signed C2_2 ={1'b0, 15'b10010001, 16'b0};

parameter signed C2_3 ={1'b1, 15'b111100100110111, 16'b1111_1111_1111_1111};//-32'd2083;

// STAGE 1
logic signed [31:0] s1_world1_x1;
logic signed [31:0] s1_world1_x2;
logic signed [31:0] s1_world1_x3;

logic signed [31:0] s1_world1_y1;
logic signed [31:0] s1_world1_y2;
logic signed [31:0] s1_world1_y3;

logic signed [31:0] s1_scaling_1 ;
logic signed [31:0] s1_scaling_2;
logic signed [31:0] s1_scaling_3;

logic signed [31:0] s2_world1_x1;
logic signed [31:0] s2_world1_x2;
logic signed [31:0] s2_world1_x3;

logic signed [31:0] s2_world1_y1;
logic signed [31:0] s2_world1_y2;
logic signed [31:0] s2_world1_y3;

logic signed [31:0] s2_scaling_1;
logic signed [31:0] s2_scaling_2;
logic signed [31:0] s2_scaling_3;

logic signed [63:0] s1_world1_x1_temp;
logic signed [63:0] s1_world1_x2_temp;

logic signed [63:0] s1_world1_y1_temp;
logic signed [63:0] s1_world1_y2_temp;

logic signed [63:0] s1_scaling_1_temp;
logic signed [63:0] s1_scaling_2_temp;

logic signed [63:0] s2_world1_x1_temp;
logic signed [63:0] s2_world1_x2_temp;

logic signed [63:0] s2_world1_y1_temp;
logic signed [63:0] s2_world1_y2_temp;

67

logic signed [63:0] s2_scaling_1_temp;
logic signed [63:0] s2_scaling_2_temp;

T 1111111111111
/1 STAGE 2:

// Camera 1 world vector

logic signed [31:0] world1_x;

logic signed [31:0] world1_y;

logic signed [31:0] scaling1 =1;

//Camera 2 world vector

logic signed [31:0] world2_x;

logic signed [31:0] world2_y;

logic signed [31:0] scaling2 = 1;
i
/1 STAGE 3: scaling

// Camera 1 world vector

logic signed [31:0] world1_x_scaled;

logic signed [31:0] world1_y_scaled;

//Camera 2 world vector
logic signed [31:0] world2_x_scaled;
logic signed [31:0] world2_y_scaled;

my_division world1x(
.clk_in(clk_in),
.dividend(world1_x),
.divisor(scaling1),

.valid_signal(1),

68

.quotient(world1_x_scaled)

)

my_division world1y(
.clk_in(clk_in),
.dividend(world1_y),
.divisor(scaling1),
.valid_signal(1),
.quotient(world1_y_scaled)

)

my_division world2x(
.clk_in(clk_in),
.dividend(world2_x),
.divisor(scaling2),
.valid_signal(1),
.quotient(world2_x_scaled)

)

my_division world2y(

.clk_in(clk_in),

.dividend(world2_y),

.divisor(scaling2),

.valid_signal(1),

.quotient(world2_y_scaled)

);
1111111111111
// STAGE 4 u, v calculations

// Midpoint Calculation Variables
//Camera 1 unit vector

logic signed [31:0] u1;

logic signed [31:0] u2;

70

logic signed [31:0] u3;

logic signed [31:0] u1_delay;
logic signed [31:0] u2_delay;
logic signed [31:0] u3_delay;

logic signed [31:0] ul1_delay2;
logic signed [31:0] u2_delay2;
logic signed [31:0] u3_delay2;

logic signed [31:0] ul1_delay3;
logic signed [31:0] u2_delay3;
logic signed [31:0] u3_delay3;

logic signed [31:0] ul1_delay4;
logic signed [31:0] u2_delay4;
logic signed [31:0] u3_delay4;

// Camera 2 unit vector
logic signed [31:0] v1;
logic signed [31:0] v2;
logic signed [31:0] v3;

logic signed [31:0] v1_delay;
logic signed [31:0] v2_delay;
logic signed [31:0] v3_delay;

logic signed [31:0] v1_delay2;
logic signed [31:0] v2_delay2;

logic signed [31:0] v3_delay2;

logic signed [31:0] v1_delay3;

logic signed [31:0] v2_delay3;
logic signed [31:0] v3_delay3;

logic signed [31:0] v1_delay4;
logic signed [31:0] v2_delay4;
logic signed [31:0] v3_delay4;

111111111
// STAGE 5: t_cpa breakdown

logic signed [31:0] t_subtraction_1;

logic signed [31:0] t_subtraction_2;

logic signed [31:0] t_subtraction_3;

logic signed [31:0] t_subtraction_4;

logic signed [31:0] t_subtraction_5;

logic signed [31:0] t_subtraction_6;

logic signed [31:0] t_multiplication_1;
logic signed [31:0] t_multiplication_2;
logic signed [31:0] t_multiplication_3;

logic signed [63:0] t_multiplication_1_temp;
logic signed [63:0] t_multiplication_2_temp;

logic signed [63:0] t_multiplication_3_temp;

logic signed [31:0] t_divisor_1;
logic signed [31:0] t_divisor_2;
logic signed [31:0] t_divisor_3;

logic signed [63:0] t_divisor_1_temp;
logic signed [63:0] t_divisor_2_temp;
logic signed [63:0] t_divisor_3_temp;

71

/! STAGE 7
logic signed [31:0] t_cpa_numerator;

logic signed [31:0] t_cpa_denominator;

// STAGE 8
// scaling factor of where the two lines come closest
logic signed [31:0] t_cpa;
my_division get_tcpa(
.clk_in(clk_in),
.dividend(t_cpa_numerator),
.divisor(t_cpa_denominator),
.valid_signal(1),
.quotient(t_cpa)
);

T 11T

// STAGE 9
logic signed [31:0] world_x_multiplication_1;

logic signed [31:0] world_x_multiplication_2;

logic signed [31:0] world_y_multiplication_1;

logic signed [31:0] world_y_multiplication_2;

logic signed [31:0] world_z_multiplication_1;

logic signed [31:0] world_z_multiplication_2;

logic signed [63:0] world_x_multiplication_1_temp;

logic signed [63:0] world_x_multiplication_2_temp;

logic signed [63:0] world_y_multiplication_1_temp;

logic signed [63:0] world_y_multiplication_2_temp;

logic signed [63:0] world_z_multiplication_1_temp;

72

logic signed [63:0] world_z_muiltiplication_2_temp;

1111111111111
/1 STAGE 10

logic signed [31:0] world_x_numerator;

logic signed [31:0] world_y_numerator;

logic signed [31:0] world_z_numerator;
11111111

logic signed [63:0] world_x_sq;

logic signed [63:0] world_y_sq;

logic signed [63:0] world_z_sq;

logic signed [63:0] world_x_sq_temp;
logic signed [63:0] world_y_sq_temp;
logic signed [63:0] world_z_sq_temp;

// - my_division worldz(

// .clk_in(clk_in),

// .dividend(world_z_numerator),

/1 .divisor({1'b0, 13'b0, 1'b1,17'b0}),
// valid_signal(1),

// .quotient(world_z)

)

I
/7 FINAL STAGE:

logic [63:0] squared_distance;

my_sqrt sqrt_function(
.clk_in(clk_in),
.valid_signal(1),

.squared_distance(squared_distance),

73

.distance_output(distance)
)
HI1101110111

always_comb begin
s1_world1_x1 =s1_world1_x1_temp[47:16];
s1_world1_x2 =s1_world1_x2_temp[47:16];

s1_world1_y1 =s1_world1_y1_temp[47:16];
s1_world1_y2 =s1_world1_y2_temp[47:16];

s1_scaling_1 =s1_scaling_1_temp[47:16];
s1_scaling_2 = s1_scaling_2_temp[47:16];

s2_world1_x1 =s2_world1_x1_temp[47:16];
s2_world1_x2 =s2_world1_x2_temp[47:16];

s2_world1_y1 =s2_world1_y1_temp[47:16];
s2_world1_y2 = s2_world1_y2_temp[47:16];

s2_scaling_1 = s2_scaling_1_temp[47:16];
s2_scaling_2 = s2_scaling_2_templ[47:16];

t_multiplication_1 = t_multiplication_1_temp[47 + 7:16 + 7];
t_multiplication_2 = t_multiplication_2_temp[47 + 7:16 + 7];

t_multiplication_3 = t_multiplication_3_temp[47 + 7:16 + 7];
t_divisor_1 = t_divisor_1_temp[47 + 7:16 + 7];
t_divisor_2 = t_divisor_2_temp[47 + 7:16 + 7];

t_divisor_3 = t_divisor_3_temp[47 + 7:16 + 7];

world_x_multiplication_1 = world_x_multiplication_1_temp[47:16];

/1
/1
/1

world_x_multiplication_2 = world_x_multiplication_2_temp[47:16];

world_y_multiplication_1 = world_y_multiplication_1_temp[47:16];

world_y_multiplication_2 = world_y_multiplication_2_temp[47:16];

world_z_multiplication_1 = world_z_multiplication_1_temp[47:16];

world_z_multiplication_2 = world_z_multiplication_2_temp[47:16];

world_x_sq = world_x_sq_temp[47:16];
world_y_sq = world_y_sq_temp[47:16];
world_z_sq = world_z_sq_temp[47:16];

end

always_ff @(posedge clk_in)begin
// STAGE 1 [xy 1 1* P_inv to get world coord X, Y (scale by third value)
s1_world1_x1_temp <= converted_x1*P1_inv11;
s1_world1_x2_temp <= converted_y1*P1_inv21;

s1_world1_x3 <=P1_inv31;

s1_world1_y1_temp <= converted_x1*P1_inv12;
s1_world1_y2_temp <= converted_y1*P1_inv22;
s1_world1_y3 <= P1_inv32;

s1_scaling_1_temp <= converted_x1*P1_inv13;
s1_scaling_2_temp <= converted_y1*P1_inv23;

s1_scaling_3 <= P1_inv33;

s2_world1_x1_temp <= converted_x2*P2_inv11;
s2_world1_x2_temp <= converted_y2*P2_inv21;

s2_world1_x3 <=P2_inv31;

75

s2_world1_y1_temp <= converted_x2*P2_inv12;
s2_world1_y2_temp <= converted_y2*P2_inv22;
s2_world1_y3 <= P2_inv32;

s2_scaling_1_temp <= converted_x2*P2_inv13;
s2_scaling_2_temp <= converted_y2*P2_inv23;

s2_scaling_3 <= P2_inv33;

// STAGE 2
world1_x <=s1_world1_x1 +s1_world1_x2 +s1_world1_x3;
world1_y <=s1_world1_y1 + s1_world1_y2 + s1_world1_y3;

scaling1 <=s1_scaling_1 + s1_scaling_2 + s1_scaling_3;

world2_x <=s2_world1_x1 + s2_world1_x2 + s2_world1_x3;
world2_y <= s2_world1_y1 + s2_world1_y2 + s2_world1_y3;

scaling2 <=s2_scaling_1 + s2_scaling_2 + s2_scaling_3;

/1 STAGE 3

// divide both world1_x and world1_y by scaling1 = world1_x_scaled, world1_y_scaled

// divide both world2_x and world2_y by scaling2 = world2_x_scaled, world2_y_scaled

/*
world1_x_scaled <= world1_x / scaling1;

world1_y_scaled <= world1_y / scaling1;

world2_x_scaled <= world2_x / scaling2;
world2_y_scaled <= world2_y / scaling2;
*/

76

//STAGE 4

ul <=world1_x_scaled - C1_1;
u2 <=world1_y_scaled - C1_2;
ul<=-C1_3;

v1 <=world2_x_scaled - C2_1;

v2 <= world2_y_scaled - C2_2;

v3<=-C2_3;

/1 STAGE 5
/1 t_cpa <=-((C1_1-C2_1)*(u1-v1)+(C1_2-C2_2)*(u2 - v2)+(C1_3-C2_3)*(u3-v3)); // break
these up
/1 t_cpa <= (C1_1-C2_1)*(v1 -ul) +(C1_2-C2_2)*(v2 - u2) + (C1_3- C2_3)*(v3-u3);

t_subtraction_1<=C1_1-C2_1;
t_subtraction_2 <=v1-ul;
t_subtraction 3<=C1.2-C2_2;
t_subtraction_4 <=v2 - u2;
t_subtraction 5<=C1_3-C2_3;

t_subtraction_6 <=v3 - u3;

ul_delay <= uf;
u2_delay <= u2;
u3_delay <= u3;
v1_delay <=v1;
v2_delay <=v2;
v3_delay <=v3;

// STAGE 6
t_multiplication_1_temp <= t_subtraction_1 * t_subtraction_2;

t_multiplication_2_temp <= t_subtraction_3 * t_subtraction_4;

77

78

t_multiplication_3_temp <= t_subtraction_5 * t_subtraction_6;

ul_delay2 <= u1_delay;
u2_delay2 <= u2_delay;
u3_delay2 <= u3_delay;
v1_delay2 <=v1_delay;
v2_delay2 <= v2_delay;
v3_delay2 <= v3_delay;

// divide t_cpa by ((u1 - v1)*(u1 - v1) + (U2 - v2)*(u2 - v2) + (U3 - v3)*(u3 - v3))
t_divisor_1_temp <= t_subtraction_2 * t_subtraction_2;
t_divisor_2_temp <= t_subtraction_4 * t_subtraction_4;

t_divisor_3_temp <= t_subtraction_6 * t_subtraction_6;

// STAGE 7
t_cpa_numerator <= t_multiplication_1 + t_multiplication_2 + t_multiplication_3;

t_cpa_denominator <= t_divisor_1 + t_divisor_2 + t_divisor_3;

ul_delay3 <= u1_delay2;
u2_delay3 <= u2_delay?2;
u3_delay3 <= u3_delay2;
v1_delay3 <= v1_delay2;
v2_delay3 <= v2_delay2;
v3_delay3 <= v3_delay2;

/1 STAGE 8:

/! t_cpa <= t_cpa_numerator / t_cpa_denominator;

ul_delay4 <= u1_delay3;
u2_delay4 <= u2_delay3;

u3_delay4 <= u3_delay3;
v1_delay4 <= v1_delay3;
v2_delay4 <= v2_delay3;
v3_delay4 <= v3_delay3;

// STAGE 9: individual multiplications
world_x_multiplication_1_temp <=t_cpa * u1_delay4;

world_x_multiplication_2_temp <=t_cpa * v1_delay4;

world_y_multiplication_1_temp <= t_cpa * u2_delay4;

world_y_multiplication_2_temp <=t_cpa * v2_delay4;
world_z_multiplication_1_temp <= t_cpa * u3_delay4;

world_z_multiplication_2_temp <=t_cpa * v3_delay4;

// STAGE 10: add to get world_x, world_y, and world_z

world_x_numerator <= C1_1 + world_x_multiplication_1 + C2_1 + world_x_multiplication_2; //

change these to delays,

/1
/1
/1

world_y_numerator <= C1_2 + world_y_multiplication_1 + C2_2 + world_y_multiplication_2;

world_z_numerator <= C1_3 + world_z_multiplication_1 + C2_3 + world_z_multiplication_2;

world_x <= (C1_1 + t_cpa*ul + C2_1 + t_cpa*v1l) >>1;
world_y <= (C1_2 + t_cpa*u2 + C2_2 + t_cpa*v2) >>1;
world_z <= (C1_3 + t_cpa*u3 + C2_3 + t_cpa*v3)16 >> 1;

// STAGE 11: divide world_x, world_y, and world_z by 2
world_x <= world_x_numerator >>> 1;
world_y <= world_y_numerator >>> 1;

world_z <= world_z_numerator >>> 1;// use divider

79

// STAGE 12

// do individual multiplications
world_x_sq <= world_x * world_x;
world_y_sq <= world_y * world_y;

world_z_sq <= world_z * world_z;

// STAGE 13
// add to get distance (change below to use _sq signals)

squared_distance <= world_x_sq + world_y_sq + world_z_sq;

/1 STAGE 14

// compute sqrt

end

endmodule

module my_division(
input clk_in,
input signed[31:0] dividend,
input signed [31:0] divisor,
input valid_signal,
output signed [31:0] quotient
)i

logic signed [63:0] dividend_float64;
logic signed [63:0] divisor_float64;
logic signed [63:0] division_result;
logic dividend_result_valid;

logic divisor_result_valid;

logic division_result_valid;

logic quotient_result_valid;

floating_point_0 convi(

.aclk(clk_in), //: IN STD_LOGIC;
.s_axis_a_tvalid(valid_signal), //: IN STD_LOGIC;
.S_axis_a_tready(), //: OUT STD_LOGIC;
.S_axis_a_tdata(dividend), //: IN STD_LOGIC_VECTOR(31 DOWNTO 0);

.m_axis_result_tvalid(dividend_result_valid), //: OUT STD_LOGIC;
.m_axis_result_tready(1), //: IN STD_LOGIC;
.m_axis_result_tdata(dividend_float64) //: OUT STD_LOGIC_VECTOR(63 DOWNTO 0)

floating_point_0 conv2(

.aclk(clk_in), //: IN STD_LOGIC;
.s_axis_a_tvalid(valid_signal), //:IN STD_LOGIC;
.s_axis_a_tready(), //: OUT STD_LOGIC;
.S_axis_a_tdata(divisor), //: IN STD_LOGIC_VECTOR(31 DOWNTO 0);

.m_axis_result_tvalid(divisor_result_valid), //: OUT STD_LOGIC;
.m_axis_result_tready(1), //: IN STD_LOGIC;
.m_axis_result_tdata(divisor_float64) //: OUT STD_LOGIC_VECTOR(63 DOWNTO 0)

division div1(

.aclk(clk_in),

.S_axis_a_tvalid(dividend_result_valid), // IN STD_LOGIC;

.S_axis_a_tready(), // OUT STD_LOGIC;

.S_axis_a_tdata(dividend_float64), // IN STD_LOGIC_VECTOR(63 DOWNTO 0);

.s_axis_b_tvalid(divisor_result_valid), // IN STD_LOGIC;
.S_axis_b_tready(), // OUT STD_LOGIC;
.S_axis_b_tdata(divisor_float64), //: IN STD_LOGIC_VECTOR(63 DOWNTO 0);

.m_axis_result_tvalid(division_result_valid), //: OUT STD_LOGIC;

81

82

.m_axis_result_tready(1), //: IN STD_LOGIC;
.m_axis_result_tdata(division_result) //: OUT STD_LOGIC_VECTOR(63 DOWNTO 0)
)

floating_point_1 convertBack(
.aclk(clk_in), //: IN STD_LOGIC;
.S_axis_a_tvalid(division_result_valid), //: IN STD_LOGIC;
.s_axis_a_tready(), //: OUT STD_LOGIC;
.S_axis_a_tdata(division_result), //: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
.m_axis_result_tvalid(quotient_result_valid), //: OUT STD_LOGIC;
.m_axis_result_tready(1), //:IN STD_LOGIC;
.m_axis_result_tdata(quotient) //: OUT STD_LOGIC_VECTOR(63 DOWNTO 0)

endmodule

module my_sqrt(

input clk_in,

input valid_signal,

input [63:0] squared_distance,

output [31:0] distance_output

logic sqrt_result_valid;

logic actual_sqrt_result_valid;

logic [63:0] squared_distance_float64;
logic [63:0] sqrt_float64;

sqrt_conversion convert(

.aclk(clk_in), //: IN STD_LOGIC;
.S_axis_a_tvalid(valid_signal), //: IN STD_LOGIC;
.S_axis_a_tready(), //: OUT STD_LOGIC;

.s_axis_a_tdata(squared_distance), //: IN STD_LOGIC_VECTOR(31 DOWNTO 0);

83

.m_axis_result_tvalid(sqrt_result_valid), //: OUT STD_LOGIC;
.m_axis_result_tready(1), //: IN STD_LOGIC;
.m_axis_result_tdata(squared_distance_float64) //: OUT STD_LOGIC_VECTOR(63 DOWNTO 0)

square_root my_sqrt(

.aclk(clk_in),

.s_axis_a_tvalid(sqrt_result_valid), //: IN STD_LOGIC;

.S_axis_a_tready(), //: OUT STD_LOGIC;
.s_axis_a_tdata(squared_distance_float64), //: IN STD_LOGIC_VECTOR(31 DOWNTO 0);

.m_axis_result_tvalid(actual_sqrt_result_valid), //: OUT STD_LOGIC;
.m_axis_result_tready(1), //: IN STD_LOGIC;
.m_axis_result_tdata(sqrt_float64) //: OUT STD_LOGIC_VECTOR(63 DOWNTO 0)

logic final_result_valid;

floating_point_1 convertBack(
.aclk(clk_in), //: IN STD_LOGIC;
.s_axis_a_tvalid(actual_sqrt_result_valid), /1: IN STD_LOGIC;
.S_axis_a_tready(), //: OUT STD_LOGIC;
.s_axis_a_tdata(sqrt_float64), //: IN STD_LOGIC_VECTOR(31 DOWNTO 0);
.m_axis_result_tvalid(final_result_valid), //: OUT STD_LOGIC;
.m_axis_result_tready(1), //: IN STD_LOGIC;
.m_axis_result_tdata(distance_output) //: OUT STD_LOGIC_VECTOR(63 DOWNTO 0)

endmodule

module get_divisor(

input clk_in,
input [16:0] number,
output logic [16:0] divisor
);
logic [16:0] curr_num = number;

logic [16:0] temp_divisor ='d1;

always_ff@(posedge clk_in)begin
if(curr_num >> 2 == O)begin
if(number - temp_divisor < temp_divisor*2 - number)begin
divisor <= temp_divisor;
end else begin
divisor <= temp_divisor * 2;
end
curr_num <= number;
temp_divisor <= 1;
end else begin
curr_num <= curr_num >> 2;
temp_divisor <= temp_divisor * 2;
end

end

endmodule // get_divisor

Ryan:

Object_detection.sv
module object_detection (input clk,
input dilate,

input erode, //switch operated mechanism that allows us to see either erosion or
dilation---temporary testing input

input [1:0] thresholds, //switch-based thresholding alternators

input [23:0] pixel_in, //pixel that goes in

84

input [10:0] hcount,

input [9:0] vcount,

input inBounds,

output logic [15:0] centroid_x,
output logic [15:0] centroid_y,
output logic [11:0] pixel_out,
output logic [24:0] x_acc,
output logic [24:0] y_acc,
output logic [24:0] bit_count
);

logic [23:0] pixel; //pixel that goes in module

logic thresh_out; //bit leaving hue thresholding
logic erosion_out; //bit leaving erosion

logic dilation_out; //bit leaving dilation

logic thresh_valid;
logic erode_valid;

logic dilate_valid;

logic [7:0] hue; //hsv
logic [7:0] sat;

logic [7:0] val;

logic hugh_valid;

//for localizer
logic frame_over;

logic [15:0] averaging;

85

86

rgb2hsv convert(.clock(clk), .reset(0), .r(pixel[23:16]), .g(pixel[15:8]), .b(pixel[7:0]), .h(hue), .s(sat),
.v(val), .hue_valid(hugh_valid));

hue_thresholding thresh(.clk(clk), .threshes(thresholds), .hue_val(hue), .isValid(hugh_valid),
.thresh_bit(thresh_out), .valid(thresh_valid));

erosion eroding(.clk(clk), .bit_in(thresh_out), .isValid(thresh_valid), .eroded_bit(erosion_out),
.valid(erode_valid));

dilation dilating(.clk(clk), .bit_in(erosion_out), .isValid(erode_valid), .dilated_bit(dilation_out),
Jvalid(dilate_valid));

localizer centroid(.clk(clk), .erode_bit(erosion_out), .isValid(erode_valid), .hcount(hcount),
.vcount(vcount), .inBounds(inBounds), .x_center(centroid_x),

.y_center(centroid_y), .frame_blink(frame_over), .x_accumulator(x_acc), .y_accumulator(y_acc),
.bit_count(bit_count));

/l centroid busqueda(.clock(clk), .reset(0), .x(hcount), .y(vcount), .green(erosion_out),

// .centroid_x(centroid_x[10:0]), .centroid_y(centroid_y[9:0]), .frame_done(frame_over),
.averaging(averaging));

always_ff @(posedge clk) begin
pixel <= pixel_in;
if (hcount == 11'd319 && vcount == 10'd239) frame_over <= 1;
else frame_over <= 0;
if (dilate) begin
if (dilation_out == 1'b1) begin
pixel_out <=12'b1111_1111_1111;
end else if (dilation_out == 1'b0) begin
pixel_out <= 12'b0000_0000_0000;
end
end else if (erode) begin
if (erosion_out == 1'b1) begin
pixel_out <=12'b1111_1111_1111;
end else if (erosion_out == 1'b0) begin
pixel_out <= 12'b0000_0000_0000;
end
end else begin

if (thresh_out == 1'b1) begin

pixel_out <= 12'b1111_1111_1111;
end else if (thresh_out == 1'b0) begin
pixel_out <= 12'b0000_0000_0000;
end
end

end

endmodule

module hue_thresholding (input clk,
input [1:0] threshes,
input [7:0] hue_val,
input isValid,
output logic thresh_bit,

output logic valid

);

always_ff @(posedge clk) begin
if (isValid) begin
if (threshes == 2'b00) begin
if (hue_val > 8'd172 | | hue_val < 8'd165) begin
thresh_bit <= 0;
valid <= 1;
end else begin
thresh_bit <= 1;
valid <=1;
end
end else if (threshes == 2'b01) begin
if (hue_val > 8'd87 | | hue_val < 8'd82) begin
thresh_bit <= 0;

valid <=1;

87

88

end else begin
thresh_bit <= 1;
valid <=1;
end
end else if (threshes == 2'b10) begin
if (hue_val > 8'd87 | | hue_val < 8'd82) begin
thresh_bit <=0;
valid <=1;
end else begin
thresh_bit <= 1;
valid <=1;
end
end
end else valid <= 0;
end

endmodule

module erosion(input clk,
input bit_in,
input isValid,
output logic eroded_bit,

output logic valid

logic [9:0] ycounter;
logic [9:0] xcounter;
logic [321:0] kernel_workspace; //workspace register

logic erosion_trigger; //tells the module when to start eroding

initial begin

valid = 0;

89

xcounter = 10'd1;

ycounter = 10'd0;
erosion_trigger = 1'b0;
kernel_workspace[321] = 1'b1;
kernel_workspace[0] = 1'b1;

end

logic kernel; // result of erosion

assign kernel = kernel_workspace[xcounter-9] && kernel_workspace[xcounter-8] &&
kernel_workspace[xcounter-7] && kernel_workspace[xcounter-6] &&

kernel_workspace[xcounter-5] && kernel_workspace[xcounter-4] &&
kernel_workspace[xcounter-3] && kernel_workspace[xcounter-2] &&

kernel_workspace[xcounter-1];

always_ff @(posedge clk) begin
if (isValid) begin
if (ycounter == 10'd239) begin
ycounter <= 10'd0;
end else if (xcounter == 10'd320) begin
xcounter <= 10'd1;
ycounter <= ycounter + 1'd1;
end else if (xcounter < 10'd320) begin

xcounter <= xcounter + 1'd1;

end if (xcounter == 10'd8) begin
erosion_trigger <= 1;

end if (erosion_trigger) begin
eroded_bit <= kernel;
valid <= 1;

end

kernel_workspace[xcounter] <= bit_in;

end else valid <= 0;
end

endmodule

module dilation(input clk,
input bit_in,
input isValid,
output logic dilated_bit,
output logic valid

)

logic [9:0] xcount;
logic [9:0] ycount;

logic [321:0] kernel_workspace; //workspace register

logic dilation_trigger; //tells the module when to start dilating

logic kernel;

assign kernel = kernel_workspace[xcount-5] | | kernel_workspace[xcount-4] | |
kernel_workspace[xcount-3]

| | kernel_workspace[xcount-2] | | kernel_workspace[xcount-1];

initial begin
valid = 0;
xcount = 10'd1;
ycount = 10'd0;
kernel_workspace[0] = 1'b1;
kernel_workspace[321] = 1'b1;
dilation_trigger = 1'b0;

end

always_ff @(posedge clk) begin

90

if (isValid) begin
if (ycount == 10'd239) begin
ycount <= 10'd0;
end else if (xcount == 10'd320) begin
xcount <= 10'd1;
ycount <= ycount + 1'd1;
end else if (xcount < 10'd320) begin

xcount <= xcount + 1;

end if (xcount == 10'd4) begin
dilation_trigger <= 1;

end if (dilation_trigger) begin
dilated_bit <= kernel;
valid <=1;

end

kernel_workspace[xcount] <= bit_in;
end else valid <= 0;
end

endmodule

module localizer(input clk,
input erode_bit,
input isValid,
input frame_blink,
input [10:0] hcount,
input [9:0] vcount,
input inBounds,
output logic [15:0] x_center,
output logic [15:0] y_center,
output logic [24:0] x_accumulator,

output logic [24:0] y_accumulator,

91

output logic [24:0] bit_count
)

//logic [24:0] x_accumulator; // accumulates all values of x

//logic [24:0] y_accumulator; //and y

//logic [24:0] bit_count; // counts number of bits that enter the stream
//logic [4:0] bit_shift;

/llogic div_start; //tells the divider to start dividing

logic a_frame_passed; //true the cycle after frame_blink?

//for division
/1 logic [24:0] y_total;
/1l logic [24:0] x_total;

logic [63:0] x_center_BIG;
logic [63:0] y_center_BIG;
logic add_break;
logic [9:0] break_counter;
//assign x_center = x_center_BIG[47:32];

// assigny_center =y_center_BIG[47:32];

initial begin
add_break =0;
break_counter = 0;
x_center BIG =64'h1111_0011_1111_1111;
y_center_BIG = 64'd100;
x_accumulator = 25'd100;
y_accumulator = 25'd100;
bit_count = 25'd0;
//div_start = 0;
a_frame_passed = 0;

end

92

divider #(.WIDTH(25)) ydivide(.clk(clk), .start(div_start), .dividend(y_accumulator),

.divider(bit_count), .quotient(y_center));

divider #(.WIDTH(25)) xdivide(.clk(clk), .start(div_start), .dividend(x_accumulator),
.divider(bit_count), .quotient(x_center));

logic xcenter_valid;

logic ycenter_valid;

logic [24:0] x_feed;

logic [24:0] y_feed;

divvy_itup xcenter (.aclk(clk),
.s_axis_divisor_tdata({7'b0000_000, bit_count}),
.s_axis_divisor_tvalid(a_frame_passed),
.s_axis_dividend_tdata({7'b0000_000, x_feed}),
.s_axis_dividend_tvalid(a_frame_passed),
.m_axis_dout_tdata({x_center_BIG}),

.m_axis_dout_tvalid(xcenter_valid));

divvy_itup ycenter (.aclk(clk),
.s_axis_divisor_tdata({7'b0000_000, bit_count}),
.s_axis_divisor_tvalid(a_frame_passed),
.s_axis_dividend_tdata({7'b0000_000, y_feed}),
.s_axis_dividend_tvalid(a_frame_passed),
.m_axis_dout_tdata({y_center_BIG}),

.m_axis_dout_tvalid(ycenter_valid));

always_ff @(posedge clk) begin
if (xcenter_valid) x_center <= x_center_BIG[47:32];

if (ycenter_valid) y_center <=y_center_BIG[47:32];

93

if (frame_blink) begin //start centroid calculation
x_feed <= x_accumulator;
y_feed <=y_accumulator;
a_frame_passed <= 1;
//add_break <= 1;
//div_start <= 1;
end else if (Iframe_blink && a_frame_passed) begin
bit_count <= 0;
//div_start <= 0;
a_frame_passed <= 0;
y_accumulator <= 25'd0;
X_accumulator <= 25'd0;
end else if (inBounds && !add_break && erode_bit) begin
y_accumulator <=y_accumulator + vcount;

X_accumulator <= x_accumulator + hcount;

// if (break_counter == 10'd100) begin
// add_break <=1;
// end

bit_count <= bit_count + 25'd1;
end
end

endmodule

//inBounds && erode_bit && isValid

I 111111
// Company:

// Engineer: Kevin Zheng Class of 2012

/1 Dept of Electrical Engineering & Computer Science

/1

/1 Create Date: 18:45:01 11/10/2010

94

// Design Name:
// Module Name: rgb2hsv
/1 Project Name:
// Target Devices:
// Tool versions:
// Description:
/1
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
/1
I
module rgb2hsv(clock, reset, r, g, b, h, s, v, hue_valid);
input wire clock;
input wire reset;
input wire [7:0] r;
input wire [7:0] g;
input wire [7:0] b;
output reg [7:0] h;
output reg [7:0] s;
output reg [7:0] v;
output reg hue_valid;
reg [7:0] my_r_delay1, my_g_delay1, my_b_delay1;
reg [7:0] my_r_delay2, my_g_delay2, my_b_delay2;
reg [7:0] my_r, my_g, my_b;
reg [7:0] min, max, delta;
reg [15:0] s_top;
reg [15:0] s_bottom;
reg [15:0] h_top;
reg [15:0] h_bottom;

95

wire [15:0] s_quotient;

wire [15:0] s_remainder;

wire s_rfd;

wire [15:0] h_quotient;

wire [15:0] h_remainder;

wire h_rfd;

reg [7:0] v_delay [19:0];

reg [18:0] h_negative;

reg [15:0] h_add [18:0];

reg [4:0];

/1 Clocks 4-18: perform all the divisions
//the s_divider (16/16) has delay 18
//the hue_div (16/16) has delay 18

divider hue_div1(
.clk(clock),
.dividend(s_top),
.divider(s_bottom),
.quotient(s_quotient),

// note: the "fractional" output was originally named "remainder" in this
// file -- it seems coregen will name this output "fractional" even if
// you didn't select the remainder type as fractional.
.remainder(s_remainder),

.ready(s_rfd)

);

divider hue_div2(
.clk(clock),
.dividend(h_top),
.divider(h_bottom),
.quotient(h_quotient),
.remainder(h_remainder),

.ready(h_rfd)

96

my_b_delay1};

);

97

always_ff @ (posedge clock) begin

// Clock 1: latch the inputs (always positive)

{my_r, my_g, my_b}<={r, g, b};

/1 Clock 2: compute min, max

{my_r_delay1, my_g_delay1, my_b_delay1} <= {my_r, my_g, my_b};

if((my_r >= my_g) && (my_r >= my_b)) //(B,S,S)
max <= my_r;

else if((my_g >= my_r) && (my_g >= my_b)) //(S,B,S)
max <= my_g;

else max <= my_b;

if((my_r <= my_g) && (my_r <= my_b)) //(S,B,B)
min <= my_r;

else if((my_g <= my_r) && (my_g <= my_b)) //(B,S,B)
min <=my_g;

else

min <= my_b;

/1 Clock 3: compute the delta
{my_r_delay2, my_g_delay2, my_b_delay2} <= {my_r_delay1, my_g_delay1,

v_delay[0] <= max;

delta <= max - min;

// Clock 4: compute the top and bottom of whatever divisions we need to do
s_top <= 8'd255 * delta;
s_bottom <= (v_delay[0]>0)?{8'd0, v_delay[0]}: 16'd1;

98

if(my_r_delay2 == v_delay[0]) begin

h_top <= (my_g_delay2 >= my_b_delay2)?(my_g_delay2 - my_b_delay2)
* 8'd255:(my_b_delay2 - my_g_delay2) * 8'd255;

h_negative[0] <= (my_g_delay2 >= my_b_delay2)?0:1;
h_add[0] <= 16'd0;

end

else if(my_g_delay2 == v_delay[0]) begin

h_top <= (my_b_delay2 >= my_r_delay2)?(my_b_delay2 - my_r_delay?2)
* 8'd255:(my_r_delay2 - my_b_delay2) * 8'd255;

h_negative[0] <= (my_b_delay2 >= my_r_delay2)?0:1;
h_add[0] <= 16'd85;

end

else if(my_b_delay2 == v_delay[0]) begin

h_top <= (my_r_delay2 >= my_g_delay2)?(my_r_delay2 - my_g_delay2)
* 8'd255:(my_g_delay2 - my_r_delay2) * 8'd255;

h_negative[0] <= (my_r_delay2 >= my_g_delay2)?0:1;
h_add[0] <= 16'd170;

end

h_bottom <= (delta > 0)?delta * 8'd6:16'd6;

//delay the v and h_negative signals 18 times
for(i=1; i<19; i=i+1) begin
v_delay[i] <= v_delay[i-1];
h_negative[i] <= h_negative[i-1];
h_add[i] <= h_add[i-1];

end

v_delay[19] <= v_delay[18];

//Clock 22: compute the final value of h

end

endmodule

99

//depending on the value of h_delay[18], we need to subtract 255 from it to
make it come back around the circle

if(h_negative[18] && (h_quotient > h_add[18])) begin
h <= 8'd255 - h_quotient[7:0] + h_add[18];

hue valid <= 1;

end

else if(h_negative[18]) begin
h <= h_add[18] - h_quotient[7:0];
hue_valid <= 1;

end

else if (Ih_negative[18]) begin
h <= h_quotient[7:0] + h_add[18];
hue valid <= 1;

end else hue_valid <=0;

//pass out s and v straight
S <= s_quotient;

v <=v_delay[19];

// The divider module divides one number by another. It

// produces a signal named "ready" when the quotient output

/1 is ready, and takes a signal named "start" to indicate

// the the input dividend and divider is ready.

// sign -- 0 for unsigned, 1 for twos complement

/1 It uses a simple restoring divide algorithm.

/1 http://en.wikipedia.org/wiki/Division_(digital)#Restoring_division

/1

// Author Logan Williams, updated 11/25/2018 gph

100

module divider #(parameter WIDTH = 8)
(input clk, sign, start,
input [WIDTH-1:0] dividend,
input [WIDTH-1:0] divider,
output reg [WIDTH-1:0] quotient,
output [WIDTH-1:0] remainder,

output ready);

reg [WIDTH-1:0] quotient_temp;
reg [WIDTH*2-1:0] dividend_copy, divider_copy, diff;

reg negative_output;

assign remainder = (Inegative_output) ?

dividend_copy[WIDTH-1:0] : ~dividend_copy[WIDTH-1:0] + 1'b1;

reg [5:0] a_bit = 0;
reg del_ready = 1;
assign ready = (a_bit==0) & ~del_ready;

wire [WIDTH-2:0] zeros = 0;
initial a_bit = 0;
initial negative_output = 0;
always @(posedge clk) begin
del_ready <= (a_bit==0);
if(start) begin

a_bit = WIDTH;

quotient = 0;

quotient_temp = 0;

dividend_copy = (!sign | | !dividend[WIDTH-1]) ?
{1'b0,zeros,dividend} :
{1'b0,zeros,~dividend + 1'b1};

101

divider_copy = (Isign | | !divider[WIDTH-1]) ?
{1'b0,divider,zeros} :
{1'b0,~divider + 1'b1,zeros};

negative_output = sign &&
((divider[WIDTH-1] && !dividend[WIDTH-1])
| |(!divider[WIDTH-1] && dividend[WIDTH-11));
end
else if (a_bit > 0) begin
diff = dividend_copy - divider_copy;
quotient_temp = quotient_temp << 1;
if(!diff[WIDTH*2-1]) begin
dividend_copy = diff;
quotient_temp[0] = 1'd1;
end
quotient = (Inegative_output) ?
quotient_temp :
~quotient_temp + 1'b1;
divider_copy = divider_copy >> 1;
a_bit =a_bit-1'b1;
end
end

endmodule

Appendix B - Non-Verilog Code

Create_image.py (Python script that receives the serial transmission)
"'Automatically find USB Serial Port (jodalyst 8/2019)

import serial.tools.list_ports

from PIL import Image

import numpy as np

def get_usb_port():
usb_port = list(serial.tools.list_ports.grep("USB"))
if len(usb_port) == 1:
print("Automatically found USB-Serial Controller: {}".format(usb_port[0].description))
return usb_port[0].device
else:
ports = list(serial.tools.list_ports.comports())
port_dict = {i:[ports[i],ports[il.vid] for i in range(len(ports))}
usb_id=None
for p in port_dict:
#print("{}: {} (Vendor ID: {})".format(p,port_dict[p][0],port_dict[p][1]))
#print(port_dict[p][0],"UART")
print("UART" in str(port_dict[p][0]))
if port_dict[p][1]==1027 and "UART" in str(port_dict[p][0]): #for generic USB Devices
usb_id =p
if usb_id== None:
return False
else:
print("Found it")
print("USB-Serial Controller: Device {}".format(p))

return port_dict[usb_id][0].device

s = get_usb_port() #grab a port

print("USB Port: "+str(s)) #print it if you got

if s:

ser = serial.Serial(port = s,

baudrate=115200,
parity=serial.PARITY_NONE,
stopbits=serial. STOPBITS_ONE,
bytesize=serial.EIGHTBITS,

timeout=0.01) #auto-connects already | guess?

102

103

print("Serial Connected!")
if ser.isOpen():
print(ser.name +'is open...")
else:

print("No Serial Device :/ Check USB cable connections/device!")

exit()
i=0
k=0

foriin range(30):

test_data =[]

count=0
temp =]
try:

print("Reading...")

while True:
data = ser.read(1) #read the buffer (99/100 timeout will hit)
if data I= b": #if not nothing there.
print("data", data[0] << 4, "num data received", count)

count += 1

#RED

if count <= 320%240:

print("current count”, count)

test_data.append((data[0] << 4, 0, 0))
else:

print("uh oh" ,count)

break

Actual

104

temp.append(data[0] << 4)

if count % 3 ==0:
test_data.append(tuple(temp))
temp =]

if count == 240*320%*3:
break

print("done!")
print("v1", test_data)
test_data2 = np.array(test_data, dtype=np.uint8).reshape(240, 320, 3)
print("reshaped", test_data2)
new_image = Image.fromarray(test_data2, mode="RGB')
ifi%2==0:

j+=1

new_image.save('k_left_final16.png'.format(j))
else:

k+=1

new_image.save('k_right_final16.png'.format(k))

except Exception as e:

print(e)

Distance_calculation.m (MatLab script that we used to confirm our calculations before we
converted it to Verilog)
% NOTE: images used for extrinsics: kleft_11.png and kright_11.png

%%%%%%% INTRINSIC %%%%%%%
%

% K =[516.803363075377,0,0;

% 0,522.531338207211,0;

105

% 176.054418694951,125.385553812360,1]; % combined_2
K =1[528.387846862879,0,0;
0,534.167521736855,0;
178.314289048315,123.438835414497,1];

% combined2_ with combined_1

% K =[530.908953461668,0,0;

% 0,535.774246324611,0;

% 174.570734765001,125.908473105822,1];

%%%%%% LEFT CAMERA %%%%%%

% t1 =[316.881687216546, 28.5629433008597, 2072.02752489358]; % combined_2

% t1 =[322.427356065384,26.5027310146368,2125.89263907133]; % combined_1 and combined_2
t1 =[141.723252846619,66.1454836638422,1750.40978151427];

% R1 =[0.9573 -0.0356 -0.2869;
% 0.0214 0.9984 -0.0522;
% 0.2883 0.0438 0.9565];

R1=[0.9630 -0.0037 -0.2693;
-0.0216 0.9956 -0.0910;
0.2685 0.0935 0.9587];

C1 =round(-t1/R1) %/ 25.4 % -t * inv(R)

% R2 = [0.9738 -0.0355 0.2247;
% 0.0492 0.9972 -0.0556;
% -0.2221 0.0652 0.9728];

R2 =[0.9883 0.0103 0.1524,
0.0040 0.9956 -0.0932;
-0.1527 0.0927 0.9839];

% t2 = [-495.460497629209,-48.1755393560359,2031.36032904293]; % combined_2
t2 = [-441.178698771649,14.8160945906379,1694.52827944107];

C2 = round(-t2/R2)

%%% coordinates to choose from

imagePoints_left = [253 131; 302 130; 304 162; 254 163];
origin_left = [253 131 1]; % actual: 255 132.5

orange_left =[268 116 1]; %[147 160 1];
% example_left =[211 120 1];
example_left =[230 117 1];
example_left3 =216 98 1];
example_left4 =[208 131 1];

%%%

% example_right = [37 98 1];
example_right =[167 93 1];
example_right3=[116 79 1];
example_right4 =[104 110 1];

invl =inv([R1(1, 2); R1(2,)); t11*K) * 2.A2

inv2 = inv([R2(1, 2); R2(2,:); t2]*K) * 2.A2

% STAGE 1

P1 = origin_left * inv1; % Actual
s1_world1_x1 = example_left(1)*inv1(1, 1)
s1_world1_x2 = example_left(2)*inv1(2, 1)

s1_world1_x3 =inv1(3, 1)

106

107

s1_world1_y1 = example_left(1)*inv1(1, 2)
s1_world1_y2 = example_left(2)*inv1(2, 2)
s1_world1_y3 =inv1(3, 2)

s1_scaling_1 = example_left(1)*inv1(1, 3)
s1_scaling_2 = example_left(2)*inv1(2, 3)

s1_scaling_3 =inv1(3, 3)

%% %% % % % %% % % % % % %

P2 = origin_right * inv2; % Actual

s2_world1_x1 = example_right(1)*inv2(1, 1)
s2_world1_x2 = example_right(2)*inv2(2, 1)
s2_world1_x3 =inv2(3, 1)

s2_world1_y1 = example_right(1)*inv2(1, 2)
s2_world1_y2 = example_right(2)*inv2(2, 2)
s2_world1_y3 =inv2(3, 2)

s2_scaling_1 = example_right(1)*inv2(1, 3)
s2_scaling_2 = example_right(2)*inv2(2, 3)
s2_scaling_3 =inv2(3, 3)

% STAGE 2
world1_x =s1_world1_x1 +s1_world1_x2 +s1_world1_x3
world1_y =s1_world1_y1 + s1_world1_y2 + s1_world1_y3

scaling1 = s1_scaling_1 + s1_scaling_2 + s1_scaling_3

world2_x =s2_world1_x1 + s2_world1_x2 + s2_world1_x3
world2_y =s2_world1_y1 + s2_world1_y2 + s2_world1_y3

scaling2 = s2_scaling_1 + s2_scaling_2 + s2_scaling_3

108

% STAGE 3

world1_x_scaled = world1_x / scaling1
world1_y_scaled = world1_y / scaling1
world2_x_scaled = world2_x / scaling2

world2_y_scaled = world2_y / scaling2

% STAGE 4
ul =world1_x_scaled - C1(1)
u2 = world1_y_scaled - C1(2)
u3=-C1(3)

v1 = world2_x_scaled - C2(1)
v2 = world2_y scaled - C2(2)
v3 =-C2(3)

% STAGE 5

% t_subtraction_1 = C1(1) - C2(1);
% t_subtraction_2 =u1 - v1;

% t_subtraction_3 = C1(2) - C2(2);
% t_subtraction_4 = u2 - v2;

% t_subtraction_5 = C1(3) - C2(3);

% t_subtraction_6 = u3 - v3;

t_subtraction_1 = C1(1) - C2(1) % divide everything by 8 here
t_subtraction_2 =v1 - ul

t_subtraction_3 = C1(2) - C2(2)

t_subtraction 4 =v2 - u2

t_subtraction_5 = C1(3)- C2(3)

t_subtraction_ 6 =v3-u3

109

% STAGE 6
% t_multiplication_1 = -(t_subtraction_1 * t_subtraction_2);
% t_multiplication_2 = -(t_subtraction_3 * t_subtraction_4);

% t_multiplication_3 = -(t_subtraction_5 * t_subtraction_6);

t_multiplication_1 = (t_subtraction_1 * t_subtraction_2)
t_multiplication_2 = (t_subtraction_3 * t_subtraction_4)

t_multiplication_3 = (t_subtraction_5 * t_subtraction_6)

t_divisor_1 =t_subtraction_2 * t_subtraction_2
t_divisor_2 =t_subtraction_4 * t_subtraction_4

t_divisor_3 =t_subtraction_6 * t_subtraction_6
% STAGE 7

t_cpa_numerator = t_multiplication_1 + t_multiplication_2 + t_multiplication_3

t_cpa_denominator = t_divisor_1 + t_divisor_2 + t_divisor_3

% STAGE 8

t_cpa = t_cpa_numerator / t_cpa_denominator;

% STAGE 9

world_x_multiplication_1 = t_cpa * u

world_x_multiplication_2 = t_cpa * v1

world_y_multiplication_1 = t_cpa * u2

world_y_multiplication_2 = t_cpa * v2

world_z_multiplication_1 = t_cpa * u3

world_z_multiplication_2 = t_cpa * v3

110

% STAGE 10
world_x_numerator = C1(1) + world_x_multiplication_1 + C2(1) + world_x_multiplication_2
world_y_numerator = C1(2) + world_y_multiplication_1 + C2(2) + world_y_multiplication_2

world_z_numerator = C1(3) + world_z_multiplication_1 + C2(3) + world_z_multiplication_2
% STAGE 11

world_x = world_x_numerator / 2
world_y = world_y_numerator / 2

world_z = world_z_numerator / 2
% STAGE 12

world_x_sq = world_x * world_x
world_y_sq = world_y * world_y

world_z_sq = world_z * world_z

% STAGE 13

squared_distance = world_x_sq + world_y_sq + world_z_sq

% STAGE 14

distance = sqrt(squared_distance)

Appendix C - CAD Files

Camera L-Bracket

111

Camera Base

112

