
6.111 Final Project Proposal

FPGA Digital Synth

Sarah Pohorecky

November 5, 2018

Figure 1: General System Diagram. Control Signals: Red. Direct IO: Green.
Data: Black. Extension: Grey.

1 Interface

1.1 Keyboard

The main input for the synthesizer will be a 2-octave keyboard. This will
either be a premade keyboard (which will likely require interfacing via MIDI),
or simply 25 indivudual wires for each of the 25 notes in the two octaves centered
at middle C. An “octave select” feature will allow the keys to be shifted to up or
down octaces, so the user can play the full set of notes on a 5-octave keyboard.

The keyboard input will be transformed by the octave select value, and used
as an index into a lookup table which will give a “tuning word” for the frequency
of each note. The interface will output 25 of these 8-bit tuning words and send

1



Figure 2: Keyboard Interface

them to the tone generator. This lookup table will require 61 × 8 = 488b to
store mappings for all 61 possible notes.

1.2 Settings

The synth will use additional buttons and switches for auxillery system settings:

• Volume: Two labkit buttons will be used for volume input to the AC97

• Octave Select: Two buttons will be used to shift the octave of the
keyboard to a higher or lower register

• Instrument Select: Will be a set of switches to select the correct number
for different instruments sound effects

• Recording: Switch to start recording a new track

• Playback: Button for playback, switches for selecting which track to play
back, option to clear tracks

2 Tone Generator

While a simple square wave generator may be used for initial testing of certain
modules, it will be replaced with a sine wave generator that will allow mixing
and more interesting audio effects.

Sine wave generation will use a CORDIC (Coordinate Rotation Digital Com-
puter) algorithm. CORDICs function as successive approximators that only use
addition and bit-shifting, instead of multiplication, making them reasonable to
implement on FPGA. A CORDIC will also be more memory-efficient than just
using LUTs for sine generation, as the CORDIC will be able to generate any

2



Figure 3: Tone Generator and Mixer

frequency on-demand, whereas individual LUTs would have to be built for each
desired freqeuncy without the algorithm. An N-iterative CORDIC requires only
N+1 pre-computed values. CORDIC is not a fast algorithm, taking about 40
cycles to converge reasonably for each desired angle, however the AC97 audio
interface clocked at only 48kHz, much lower than the labkit FPGA in the MHz
range, the convergence time shouldn’t be a problem. However, if time allows, a
lower-latency version of the CORDIC can be implemented. The CORDIC re-
quires an input angle to generate a sine sample value. This angle comes from a
phase accumulator set up for each note. The phase accumulator can be thought
of as stepping around the unit circle at a rate consistent with the desired fre-
quency. The tuning word passed to the module by the keyboard interface is the
step size. Each phase accumulator is made up of a 16b counter which incre-
ments by the tuning word each time step is high and overflows when it reaches
its max value. This behaviour is desirable, as it emulates the periodicity of
trigonometric signals.

Since having multiple CORDICS would overly complicate the system, each
output of the phase accumulator will be serially piped into the CORDIC module
and its output (the sine value of the given angle) will be fed into the mixers
running sum, which will be the input to the AC97 when all signals have been

3



processed. Most of these signals will be zero at any particular time (unless the
user is keyboard-smashing), so if signals that are zero are ignored, the CORDIC
should be able to process every angle within the 48 kHz clock rate of the AC97.
However, if all the keys are being pressed at once, the single CORDIC may
not be sufficient. If the serial CORDIC is insufficient, multiple CORDICs could
be used in parallel, though there may be some tradeoff with memory. If the
tradeoff isn’t terrible, parallel CORDICs can be used even if the serial version
is sufficient.

2.1 Instrument Generator

While simple tones corresponding to note frequencies will suffice to play music,
in order to sound “musical,” most people require more complex and rich sounds.
In electronic synthesizers, there are several ways to do this. One is to adjust
the ADSR (attack-delay-sustain-release) envelope of the sound, which changes
the amplitude of a signal over time to emulate the sound characteristics of
physical instruments (striking a key, and dying away, for example). Another
is by adding frequency or phase modulation to the signal to emulate the tibre,
or tonal quality, or the instrument and adding harmonic signals. This will
likely be one of the more mathematically-intense modules, so it will need to be
designed using methods that work well with FPGA (for example, minimizing
multiplications and dealing with latency issues). It will take as input a note
and a selection of an instrument or effect which will correspond to some logic
implementing the setting. It will output a waveform that will be passed to the
mixer or to the audio output.

This module will be implemented once the basic synthesizer is functional.

3 Mixer and Audio Output

In order to make more interesting music, the synth should be able to mix differ-
ent tones together, allowing for additional interesting audio effects, the playing
of chords, and the eventual overlay of different audio tracks. In many cases,
mixing is as simple as adding together the multiple waveforms that need to be
produced. More complex mixing will be an extension.

The labkit AC-97 chip will be used for audio output. This project will likely
require utilization of more complex settings for the chip then were used in lab
5, so the provided AC97 modules will be used as a starting point and extended
to provide neccesary functionality (for example, as may be needed to help im-
plement the ADSR enveloping). The signal to the AC97 will be downsampled
from 48kHz to 12kHz (4 times downsample), with Nyquist frequenct of 6 kHz.
Since the maximum note frequency that will be generated is C6 at 1046.502 Hz,
this should not result in loss of signal. Full 18b samples will be used throughout
the system in order to preserve fidelity as much as possible.

4



4 Recorder

Figure 4: Recorder

The recorder will allow users to record and playback tracks. Audio output
from the mixer to the AC97 will also be sent to the recorder, and it will record to
the ZBT memory when record is enabled. The module will also be responsible
for sending recorded tracks back to the AC97 when playback is enabled. Each
ZBT memory is 512k×36. Since each sample sent to the AC97 will be 18b, two
samples can be stored at each address of the ZBT (helped along by the ZBTs
word write signals). Then, the total number of samples that can be stored in
memory is: 512k × 2 × 2 = 2048000 samples. At 12 kHz, this allows for 170
seconds of audio to be recorded.

5 References

Andraka, Ray. A Survey of CORDIC Algorithms for FPGA Based Computers.
1998.

Chowning, John M. The Synthesis of Complex Audio Spectra by Means of Fre-
quency Modulation. Stanford Ariticial Intelligence Laboratory. Stanford, CA.
1973.

5



Mehra, Rajesh; Kamboj, Bindiya. FPGA Based Design of Digital Wave Gen-
erator Using CORDIC Algorithm.

Murphy, Ava; Slattery, Colm. All About Direct Digital Synthesis. Ask The Ap-
plication Engineer. Analog Devices. 2004.

Oppenheim, Alan; Willsky, Alan. Signals & Systems: Second Edition.

Volder, Jack E. The CORDIC Trigonometric Computing Technique. The Insti-
tute of Electrical and Electronics Engineers. 1959.

6


