
Audio-Controlled Levitator
David Mejorado and Raul Largaespada

Project Introduction

We wanted to implement a project that combined both audio processing and
controls, therefore we will be building an audio-controlled levitator. The proposed system
would take in audio information via the on board microphone of the Nexys 4DDR. The
main frequency of this audio signal will then be extracted via the Fast Fourier Transform
(FFT) and be used as the reference signal to a PSD control system. The levitator will
consist of a ping-pong ball like object that will be placed inside an acrylic tower. A fan at
the bottom of the tower will act as the actuator moving the ball up and down, while a IR
sensor placed at the top of the cylinder will provide measurements on the current position
of the ball.

The system will operate under two modes: Continuous and Discrete. In continuous

mode the ping pong ball will respond continuously to the pitch being detected, while in
discrete mode a new reference is only sent in response to a button press. The VGA display
will also be used to provide information about the state of the system, including: FFT
histogram, real-time tracking of ping bong ball relative to reference point, peak frequency,
and visual representation of incoming audio.

1. Audio Processing (David)

 1.1 Microphone Interface

 The Nexys 4 DDR’s on board microphone produces a PDM on the rising edge of a
2.4 Mhz clock. This posed the challenge of taking a 1-bit signal and converting to a bit
length that allows for appropriate processing. Overall, this task was the most difficult to
overcome and was the biggest time sink in the frequency detection aspect of the project.
My initial implementation used an 8-bit accumulator over 255 samples in order to take
advantage of the full 8-bit range and a final sampling rate of 8.7 kHz. However, when I
proceeded to verify the functionality of this by outputting the values directly to the audio
out via a PWM module, the quality of sound was severely distorted and noisy. I then
attempted increasing the bit size and increasing the final sampling rate by interleaving
multiple accumulators of varying sizes. After achieving little improvement in audio
quality, I changed my initial design to a popular implementation of a moving average with
a decimation factor done in hardware commonly referred to as a Cascaded Integrator
Comb filter.

Figure 1. Block diagram of 3 stage CIC filter with decimation ration R.

Furthermore, the literature described that pairing a CIC with a low pass filter gave the
best results. The design that was ultimately used in the final version consisted of the
following: a 5-stage CIC with a decimation ratio of 15, followed by a 16 cycle accumulator
that serves as both a low pass filter, method for increasing the bit depth, and to further
decimate the signal.

Audio Interface:
(104 MHz)
 In order to maintain a clean interface between the raw PDM signal and the valid
PCM data that would be used by the FFT IP core this module was implemented.
Furthermore, this separation allowed for a thorough isolated testing of the microphone
prior to integration with the rest of the system. Within this module, a 2.4 MHz clock was
generated with the use of counter as well as an enable signal at the rising edge of each
clock cycle. Before being sent to the first stage of processing within the CIC the PDM data
was converted into signed 8-bit data with 0 corresponding to -1 and 1 with +1. This was a
simple way to increase the bit depth and facilitate the further calculations that needed to
be done. This data was then sent to the CIC and finally to OverSampler16 before being
output to the next stage of processing.

CIC:
(104 MHz)
 This module was designed with a variable decimation ratio. This variability allowed
for testing the efficiency of various decimation ratios without the necessity of
resynthesizing. The samples were read using an enable signal at 2.4MHz and a counter
was used to generate the output frequency.

OverSampler16:
(104 MHZ)
 This module was obtained from the FFT Demo provided as an example, and was
used as the accumulator mentioned above. This module accumulated over 16 clock cycle
providing an effective decrease in sampling rate by a factor of 16. This was also the final
stage of audio processing outputting an unsigned 14-bit audio sample at 10kHz.

1.2 Pitch Detection

 The ultimate goal of the project was to control the movement of the ping pong ball
by varying the pitch being vocalized. In order to do this, we decided to use the FFT IP core

provided by Xilinx. As data was outputted by AudioInterface, it was first stored in a
circular 4096x16 BRAM. We then used the Bram2FFT module provided by the FFT Demo
to interface with the FFT IP core. The real outputs of the FFT were stored in a second
BRAM of identical size, however this BRAM ran at to clocks. The FFT wrote into the
BRAM at a 104MHz clock and the data was read with a 65Mhz clock. Both clocks were
generated using the Clock Wizard IP core. This data was then sent to Frequency
Detection, where the values outputted by the FFT were compared to a threshold and if the
value exceeded the threshold the associated address was stored. One thing to note is that
only the positive values were sent forward to the frequency detection stage, while any
negative value was set to zero. This prevented some of the noise from being propagated
since a lot of it was contained to negative values

Figure 2. Overview from Microphone to Reference Signal Generator

FFT:
(104MHz)

 When picking the parameters for the FFT IP core we took into consideration the
frequency resolution, the size of the core, and what our needs would be. In order to obtain
high frequency resolution, we chose a 4096 point FFT and used the Pipelined, Streaming
I/O option. With these parameters we could avoid the complications of verifying
additional enabling signals and have a quicker and continuous response to drive the
control. The optional scaling parameter of the FFT was implemented and controlled via
the on board switches. This allowed for real time adjustments to the size and sensitivity
of the FFT in response to changes in ambient noise levels. The output of this core was a
signed 16 bit values at 104 MHz along with its associated address number which
corresponds to the bin number of the FFT.

 Originally, the method we intended on using the FFT demo block design to perform
the FFT. However, the initial attempts did not output a reasonable signal. This was seen
in both the Integrated Logic Analyzer (ILA) and the graphic created by the histogram
module. The FFT outputs were very small and showed no structure even in the presence
of a pure tone being played into the mic. Instead of trying to debug the parts of the code
that wasn’t working it was decided that simply implementing the FFT IP core ourselves
would be more time efficient. Therefore, instead of taking the magnitude of the FFT
output like the Demo did, we only used the real output of the FFT core. This was
determined to be sufficient by playing a pure tone into the microphone and analyzing the
output of the FFT with the ILA. By matching the maximum FFT value to the appropriate
address number and then performing the arithmetic to retrieve the frequency value in Hz,
I was able to verify that the FFT was functioning properly and was sufficient for our
application.

Freq_Det:
(65 MHz)
 After analyzing the output of the FFT on the ILA it became clear that with some
scaling and tuning the most prominent frequency being heard by the microphone could
easily be extracted by applying a threshold and storing the address of whichever FFT value
last crossed the threshold. One other detail that was also considered when applying the
threshold was that the first 50 bins of the FFT were consistently noisy and non-
responsive. Therefore, in order to provide stability to the system only bins greater than
50 were compared to the threshold.

The accuracy of this method was further tested by creating a ROM that linked the
bin number outputted by the FFT with a frequency in Hz that would then be display on
the hex display via the display_8hex module. In this manner a variety of pure tones were
played with a tone generator app and compared to the value on the display. The output
was consistently within 2Hz accuracy for frequency between 0.12 kHz and 1.3kHz.

Bram_to_fft:
(104 MHz)
 This module was not altered or repurposed from the original FFT Demo. It
contains the logic to communicate with the FFT core to send data at valid moments.

Figure 3. Example Hex display where first 2 digits are the received reference, followed by the sent, and detected
reference.

1.3 Thoughts

Although I ultimately arrived at a design that provided usable PCM audio data, I
was left unsure how much of it was entirely necessary. Since I did not implement the FFT
until after the audio was functional, according to my ears, I do not know if the frequency
would have been able to be extracted with some of my earlier iterations. However, on the
opposite side of this argument, I felt that there was still much to be done in acquiring a
clean audio signal. Resources online pointed towards much more complex techniques
that I did not have the time to explore.

2. Reference Signal (David)

During initial design considerations it was brought up that the controller might not
respond well to a direct input from the detected frequency due to noise. And furthermore,
a frequency in Hz or a bin number would need to be translated to physical description of
the position of the ping pong ball. Therefore, the final implementation would output a 6-
bit reference signal to the controller in 2 modes: Continuous and Discrete.

In continuous mode a reference signal was continuously sent in response to

detected frequencies from 163 Hz to 314 Hz which is approximately one octave. Any
frequency below 163Hz output a 0 and any above 314Hz output the max, 63. This range
was chosen because it is a range that is easily swept in one breath and would work the
best for a demonstration. In discrete mode there are two key differences, the detection
range is from 163Hz to 478Hz, and the reference signal corresponding would only be sent

on the rising edge of a button press. For ease of use and testing three values were displayed
on the hex display. The detected reference signal, the sent signal, and the signal received
by the controller.

One last feature is the option for the user to alter between the pitch generated

reference signal and a direct switch input. Specifically switch 6 toggled the use of the
switches 0 to 5 as the reference signal to the controller.

 ReferenceGen:
 (65 MHz)

 This module contains the arithmetic conversion from frequency to reference. It
also houses the two modes of operations through a switch.

3. Graphics (David)

 The VGA display can be classified into 3 sections: real-time audio data display, FFT
histogram, and system state and dynamics. The top half of the screen is dedicated to
displaying the real-time audio signal being generated by microphone interface. This
provides a measure to the user of the ambient noise being picked up by the mic and also
aided in verifying the functionality of the mic. The bottom of the screen is made up of a
red histogram of the FFT output. Depending on the scaling, is how sensitive the FFT
histogram will be to sound. When tuned properly only prominent frequencies are visible.

Figure 4. Display in discrete mode.

Each mode displays a different range of frequency range as is evident by the

position of the blue bars. The bar to the left corresponds to the lowest height the ping
pong ball can go while the right bar corresponds to the highest point. The shorter green

bar appears over the last point above the histogram that was greater than the threshold.
The relationship of the green bar between the blue bars is indicative of the relative
location that that specific frequency is setting. Finally, the purple square above the green
bar is indicating the relative position of the ping pong ball. This was done by using the
output of the IR sensor as the input to the position of the square. However, this 6-bit
output of the IR sensor had to be properly scaled to match the correct location on the
screen.

Figure 5. Display in continuous mode.

 Sound:
 (65 MHz)

 This module receives the output of the BRAM storing the incoming audio and
scales it to be placed on the upper half of the screen.

 Freq_Disp:
 (65 Mhz)

 This module takes in the detected frequency and performs the appropriate scaling
to place the bar in the correct location according to the mode the system is currently in.

 Histogram:
 (65 Mhz)

 This module uses the FFT output to generate a histogram on the VGA display. This
was taken from the FFT demo provided and remained unchanged.

3. Implementation of Levitator Hardware and Closed-

Loop Discrete PD Control (Raul)

System Overview

Figure X: block diagram of PD control loop with additional sum term. Reference signal r[n] is generated from audio

pitch detection circuitry.

Figure X: The completed system.

This system follows a standard control loop architecture with proportional and

delta terms for the discrete PD controller. The height signal h[n] is subtracted from the

reference signal r[n] to form the error signal e[n], which serves as the main input to the

controller. The proportional and delta terms are generated from the error signal and are

summed with an additional constant bias term and a sum term that functioned but was

not used in the final implementation. Each term can be tuned using a 10kΩ potentiometer

connected to an analog-to-digital converter.

The controller output is then turned into a PWM duty cycle, which is fed into the

actuator, a centrifugal fan. The PWM signal controls the fan’s connection to ground,

rapidly activating and deactivating it such that the fan spins at a particular rate. The fan

is powered by a 12V DC power supply. The fan’s spinning causes the levitated ping-pong

ball to hover or rise. The height of the ball is tracked using an IR analog distance sensor.

The output of the sensor is fed into the ADC before being fed back into the controller and

subtracted from the reference signal.

Hardware Implementation

Circuitry and Sensor

Figure Y: circuit schematic showing the connections to the analog-to-digital converter and the actuator control

hardware.

 The circuitry was split into two sections connected to a common ground. The upper

section lays out the various connections to the MCP3008 analog-to-digital converter. The

MCP3008, the Sharp GP2Y0A60SZLF IR analog distance sensor, and the four tuning

potentiometers are all powered by a 3.3V rail connected to the Nexys 4 FPGA. The

potentiometers follow the standard variable resistor voltage divider architecture with a

maximum resistance of 10kΩ, and each is fed to a different input channel on the

MCP3008. The IR distance sensor features two pin outputs, the enable pin which is

unused, and the OUT pin which outputs the analog voltage reading from the sensor and

is connected to channel 0 on the MCP3008.

 The MCP3008 VDD and VREF pins are connected to the 3.3 volt rail and the analog

ground (AGND) and digital ground (DGND) pins are both connected to the same ground

rail. The SPI interface wires are all connected to the FPGA. CLK, MOSI, and CS are

connected to FPGA output pins and MISO is connected to an input pin. The MISO pin is

connected to ground via a 4.7kΩ pulldown resistor to ensure consistent readings. The

3.3V and ground rails are also connected to a 47μF bypass capacitor.

 The fan control part of the circuit is much smaller and consists of a 12V rail

connected to the motor which controls the fan. The motor’s connection to ground is

through a TIP1206 Darlington pair of transistors, and this connection is controlled by a

PWM signal from the FPGA running through a 1kΩ resistor.

Plant and Actuators

Figure X: The fan slotted into the base part, the fan’s connection to the tower, and the fan assembled with both pieces.

 The system relied on a 12V centrifugal fan to generate lift for the ping-pong ball.

The fan was linked to the levitator tower and fixed such that the lift force was

perpendicular to the ground using 3D-printed hardware. The levitator tower itself was

constructed from laser-cut acrylic and held together using tape. At the top of the levitator

tower the IR analog distance sensor was attached. This was powered using the same 3.3V

rail that powered the rest of the circuitry.

 The 3D-printed base consisted of a block with a semicircular section cut out to

accommodate the fan’s chassis, with additional wedges cut out at specific angles. These

wedges were meant to anchor the ridges used to hold the fan together and were set at

angles of 64° and 26° offset from the vertical such that the fan’s exhaust vent would point

perpendicular to the ground. The angle of these additional wedges was determined by

carefully measuring the fan’s diameter and the location and size of the attachment ridges

and using a protractor to determine each ridge’s offset from the vertical, adding additional

size for tolerance.

 The exhaust vent was connected to the tower via a 3D-printed adapter that

matched the circular diameter of the exhaust vent to the side length of the square tower.

An extra slot, visible in the top right image above, was cut out to accommodate an extra

outcropping on the fan.

System Modeling

 To model the system, we used a simple difference equation approach where the

current position is the sum of the previous position plus the previous velocity times the

timestep, and so forth. Extending this approach to acceleration we end with the final

equations

𝑥[𝑛] = 𝑥[𝑛 − 1] + ∆𝑡 ∙ 𝑣[𝑛 − 1] + ∆t2 ∙ 𝑎[𝑛 − 2]

𝑎[𝑛] =
𝛾 ∙ 𝑢[𝑛]

m

where x[n] represents the ball’s current position, v[n] is the ball’s velocity, a[n] is the ball’s

acceleration, t is the timestep, u[n] is the controller output signal, m is the ball’s mass,

and γ is a constant of proportionality between the controller’s output and the force on the

ball. The timestep is set at 1/60 seconds based on the update rate of the IR sensor. γ was

not modeled extensively but served as an unknown as the system was tested and tuned.

Verilog Implementation

Overview

 The components of the system completed in Verilog include the PD controller, the

PWM signal generation, the ADC SPI interface, and the IR sensor and potentiometer

readings. Each module of the system was fulfilled a different purpose and featured its own

set of implementation challenges.

Module: labkit

 The labkit module contained all the high-level modules required for the control

system to function. This included the PSD_controller, pwm_generator, ADC, and

IR_sensor modules. Within the labkit module these four modules were connected via

different wires, and additional testing wires were instantiated as necessary. Each module

was tested separately.

Module: PSD_controller

Inputs:

− clock: system clock, set to 65 Mhz

− i_reset: reset wire, used to restart PSD and set outputs to 0.

− [5:0] i_ref: reference height, set by audio frequency

− [5:0] i_height: height of the ping-pong ball as determined by sensor

− [9:0] i_Kp_tune: 10-bit proportional gain tuning from the ADC

− [9:0] i_Ki_tune: 10-bit sum gain tuning from the ADC

− [9:0] i_Kd_tune: 10-bit delta gain tuning from the ADC

− [9:0] i_bias_tune: 10-bit bias point tuning from the ADC

Outputs:

− o_PSD_done: output flag that pulses high when the PSD finishes a control loop

− signed [10:0] o_control_sig: control signal used for PWM generation

− [9:0] o_test, o_test2, o_test3, o_test4: testing outputs for debugging

 This module served as a wrapper module for the various modules that made up the

PD controller. The module was implemented as a finite state machine which activated the

other modules of the system and moved on to the next step as the previous one was

completed. At the start of the module each submodule and its related wires are

instantiated before the actual state machine begins its operation.

 The PSD FSM starts in the idle state. While in this state the current i_ref and

i_height signals are constantly fed into the r_ref and r_height registers. However, once

either i_ref or r_ref is different from its previous value, i.e. the register value does not

equal the input value, the r_error_start register is activated and the system moves into

the calculate error state. Because the IR sensor updates at a frequency of 60 hz, the control

loop runs at about the same speed. Because the internal clock runs at 65 Mhz, this means

that we have a large number of clock cycles to complete all calculations.

 The activation of the r_error_start register causes the calc_error module to begin

running. The controller remains in the calculate error state until the calc_error module

outputs a ‘done’ signal, at which point the controller activates r_PSD_start and moves to

the PSD calculation state. r_PSD_start causes the proportional and delta modules to

activate, and the controller waits until it receives done signals both modules before

moving to the output calculation state. Here r_command_start is activated and the

system moves to the done state. While in the done state the system waits until the

command calculation is finished, after which the system pulses r_PSD_done and returns

to the idle state.

 The actual calculations involved in the PSD_controller module are carried out in

the submodules instantiated before the state machine section of this module. The state

machine itself determines which submodules are activated whereas the wires concerning

each computation are updated within the submodules themselves. When the reset button

is activated, all registers and the output are set to zero and the FSM returns to the IDLE

state. After all steps of the computation are completed the output wire o_control_sig is

updated and this value is fed into the pwm_generator module. To test this module, both

the reference height and the ball height were set to FPGA switch inputs and the

commanded output was tracked on the FPGA 8-digit hex display.

Module: calc_error

Inputs:

− Clock: system clock, set to 65 Mhz

− i_start_err: start signal for this module

− i_reset: reset signal for this module

− [5:0] i_ref_err: input reference height r[n]

− [5:0] i_height_err: input ball height h[n]

Outputs:

− o_done_err: done signal

− signed [6:0] o_error: error signal calculated.

This module uses a finite state machine to perform signed subtraction r[n] - h[n] to

determine e[n], the error signal. r[n] and h[n] range from 0 to 63. Therefore e[n] has a

range of -63 to 63, represented by a 7-bit two's complement integer. Because of the input

constraints, integer overflow or underflow is not possible and is not checked for. The bit

size of error signal is equal to the size of reference/height signals plus one.

 The state machine for this module consists of three states. In the idle state, the

inputs i_ref_err and i_height_err are each given leading zeros and placed into signed 7-

bit registers, converting them from unsigned to signed values. Once i_start_err is

activated, the system moves to the calculate error state, which subtracts the signed

reference height and ball height registers and pulses the done signal. The done state

switches off the done signal and returns the FSM to idle. If the reset input is set, all

registers are set to zero and the FSM returns to idle.

Module: proportional_term

Inputs:

− clock: system clock, 65 Mhz

− i_reset: reset signal

− signed [6:0] i_error: error signal generated by calc_error module

− i_start: start signal

− [9:0] i_Kp_tune: 10-bit ADC value for tuning proportional gain Kp

Outputs:

− o_p_done: done signal that pulses after calculations are complete

− signed [8:0] o_prop_term: the actual proportional term calculated by module

− [9:0] test, test2: testing wires for debugging

This module uses a state machine to calculate the proportional term of the PD

controller. The proportional term is calculated using the following formula:

𝑝[𝑛] = Kp ∙ 𝑒[𝑛]

where e[n] is the error signal and Kp is the proportional gain. Within this module the

default value of the gain is hard-coded but can be manually tuned via a potentiometer

connected to an ADC. The details of this tuning calculation are explained in the

gain_tuner module. The module uses parameters to set the default Kp value, the

maximum and minimum Kp values, and the range of the gain tuner. Parameters are also

used to set the maximum and minimum proportional term output modules.

 The state machine consists of four states: idle, calculate proportional term,

calculate overflow, and done. During the idle state, the value of Kp used in the calculation

is stored in a register r_Kp and is continually set to the default value KP_BASE plus a

value Kp_offset. This offset value is generated by the gain tuner module and corresponds

to the current angle on the potentiometer. Before setting r_Kp, the module first checks if

the current value of Kp_offset, when added to r_Kp, would cause r_Kp to fall outside the

ranges set by the KP_MIN and KP_MAX parameters. If this is the case, r_Kp is set to the

minimum or maximum value as necessary; otherwise r_Kp is set to KP_BASE plus

Kp_offset.

 Once i_start is activated, the module moves to the s_CALC state, which simply

multiplies i_error by r_Kp and enters it into a register r_prop_raw before moving to the

s_CALC_OVERFLOW state. This state compares the sign of i_error with the sign of the

bottom nine bits of r_prop_raw. If the signs differ, over/underflow occurred and the

value of r_prop_term, a register which stores the final output value, is set to the

maximum or minimum value as set by parameters PROP_MAX and PROP_MIN. If no

over/underflow occurred then r_prop_term is set to the bottom nine bits of r_prop_raw

and the done signal is pulsed in the s_DONE state before the state machine returns to

idle.

Module: delta_term

Inputs:

− clock: system clock, set to 65 Mhz

− signed [6:0] i_error: the error signal produced by the error_calc module

− i_start : start signal

− [9:0] i_Kd_tune: 10-bit tuning signal from ADC

− i_reset: reset signal

Outputs:

− o_d_done: done signal

− signed [8:0] o_del_term: delta term output

− [9:0] test: testing wire for debugging

This module is used to generate the delta term of the PD controller. The formula

for the delta term is as follows:

𝑑[𝑛] = Kd

𝑒[𝑛] − 𝑒[𝑛 − 1]

∆t

which discretely approximates a derivative. Here Kd is the gain for the delta term and t

is the timestep. In the final implementation, the calculation was not divided by the

timestep t, but instead this division is implicitly incorporated into the Kd gain. This

prevented the need for a divisor module, which would slow down the computation.

Additionally, e[n-4] was used instead of e[n-1]. This slows down the derivative calculation

and makes it less susceptible to errors due to noise.

Within this module the default value of the gain is hard-coded but can be manually

tuned via a potentiometer connected to an ADC. The module uses parameters to set the

default Kd value, the maximum and minimum Kd values, and the range of the gain tuner.

Parameters are also used to set the maximum and minimum delta term output modules,

as well as maximum and minimum values for intermediate calculations.

The state machine starts in the idle state. In this state, the value of r_Kd, the delta

gain value used in the delta term calculation, is continually set to be the default value

KD_BASE plus an offset Kd_offset set by the potentiometer angle. A check to make sure

r_Kd falls between its maximum and minimum values is carried out identical to that in

the proportional term module. When the start signal is detected the module moves to the

s_CALC state.

In this state the value of e[n] – e[n-4] is calculated by shifting previous values of e

into different registers and subtracting the past value of e from the current value (equal

to i_error). This difference is placed into the r_differnce register, and in the next state

s_CALC_OVERFLOW this register is checked for over/underflow and set to the

appropriate value if this is the case.

After the over/underflow check the FSM moves to s_CALC2 wherein the

r_difference register is multiplied by r_Kd and stored in a register r_del_raw, which is

checked for over/underflow in an identical process to r_prop_raw in the

proportional_term module. After the second over/underflow check the r_del_term

register, connected to the output o_del_term, is updated and the done signal is pulsed.

While the reset wire is high, all internal registers are set to zero and the state

machine returns to the idle state.

Module: gain_tuner

Inputs:

− clock: system clock, set to 65 Mhz

− [9:0] i_tune: 10-bit tuning value set by potentiometer angle

− i_reset: reset signal

− signed [5:0] i_offset_min: minimum value for the offset

− signed [5:0] i_offset_max: maximum value for the offset

Outputs:

− signed [7:0] o_offset: calculated offset value ranging from i_offset_min to

i_offset_max

This module takes in the 10-bit ADC value from a gain tuning potentiometer and

converts it into a tuning offset value. This offset is then added to the hard-coded gain

value so that it can be tuned without resynthesizing Verilog. As input the module takes

clock and reset wires, the minimum and maximum gain offset values, and the 10-bit ADC

output.

 The module linearly scales the ADC value such that 0 on the ADC corresponds to

the minimum gain offset and 1023 corresponds to the maximum gain offset. Intermediate

ADC values are converted to offset values using the following function:

𝑜𝑓𝑓𝑠𝑒𝑡 = ioffset min + 𝑓𝑙𝑜𝑜𝑟 (
(𝐴𝐷𝐶 + 𝑏) × 𝑑

1024
)

where d is the offset range 𝑑 = ioffset max − ioffset min and b is a buffer value that allows

the system to reach the most extreme offset values without requiring an ADC value of

exactly 0 or 1023. b is dependent on the offset range, and an optimal b is calculated as

follows:

𝑏 = 𝑓𝑙𝑜𝑜𝑟 (

d + 1
d

× 1024 - 1023

2
)

b is not calculated in the program and is instead calculated by the user and entered

as a parameter, to avoid the use of division. When changing the minimum and maximum

offset values, a different b will have to be calculated each time. By default it is set to 25,

which is a healthy value for many offset ranges. The calculated offset is added to the gain

in the appropriate proportional, sum, or delta term module. Instead of dividing by 1024

and flooring, the Verilog simply right shifts by 10 bits. A register chain is used so that the

calculation can be completed without propagation delay errors. When the reset input is

high all internal registers are set to zero.

The controller module uses a potentiometer to determine the bias point and thus

this module is used to calculate what the bias should be.

Figure X: This graph shows the output of the tuning module as a function of the ADC output. Here the ADC runs from

0-1023 and the offset can range from -5 to 5. The discontinuous red lines represent the tuner output as the ADC value

increases. Other lines represent the boundaries of the ADC and the offset output.

Module: command_calc

Inputs:

− clock: system clock set to 65 Mhz

− i_start: start signal

− i_reset: reset signal

− signed [8:0] i_prop: proportional term

− signed [8:0] i_sum: sum term

− signed [8:0] i_delta: delta term

− signed [9:0] i_bias: bias term, ranges from 0 to 31 set by potentiometer angle

Outputs:

− signed [10:0] o_command: controller command signal output

− o_u_done: done signal

This module takes in the outputs from the proportional, sum, delta, and bias

modules and sums them to determine the final controller output. The summation is

carried out via a state machine where each state corresponds to a different calculation, to

prevent propagation delay errors resulting from too many calculations being attempted

in a single clock cycle. The bias term is multiplied by 10 so that it ranges from 0 to 310

instead of 0 to 31. When the reset input is activated, all internal registers are set to 0 and

the state is reset to idle. In the final implementation, the sum_term module’s output was

not used.

Module: pwm_generator

Inputs:

− clock

− signed [10:0] i_control

− i_reset

Outputs:

− o_pwm: the PWM output signal

This module creates a PWM signal switching between 0 to 3.3 volts. The frequency

of the signal is defined in the PWM_FREQ parameter. The signal implementation is based

on a pair of counters. r_counter_PWM increments up to COMMAND_MAX-1.

COMMAND_MAX is the control signal input value that corresponds to a 100% duty cycle

PWM. By default it is set to 600, because the control signal is unlikely to ever exceed this

value. Lowering or increasing this value will change how easily the controller output is

able to generate a large duty cycle PWM.

r_counter_PWM increments every
TPWM

COMMAND MAX
 seconds, where T_PWM is the

period of the PWM signal, by default set to 0.001 seconds (1khz PWM signal) .This

corresponds to approximately CLK_MAX = 108 clock cycles when the clock is running at

65mhz. The equations used to calculate CLK_MAX are as follows, where T_65 is the

period of the 65mhz clock.

CLK MAX =
TPWM COMMAND MAX⁄

T65
 =

65 Mhz

fPWM × COMMAND MAX
 ≈ 108

when COMMAND_MAX = 600. r_counter_PWM is set to increment every CLK_MAX

clock cycles, creating a PWM frequency of approximately 1khz. r_counter_clk keeps track

of these CLK_MAX clock cycles, resetting at 108. If the value of r_counter_PWM is less

than the value of control input, the PWM output signal will be high. Otherwise it will be

low. This means that a negative controller output or a controller output of 0 will give a 0%

duty cycle PWM. A controller output of COMMAND_MAX/2 is approximately a 50% duty

cycle, and a controller output of COMMAND_MAX is a 100% duty cycle.

r_counter_PWM resets at COMMAND_MAX-1.

 Because the value of CLK_MAX is hard coded (to avoid completing a division

operation), changing COMMAND_MAX requires recalculating the value of CLK_MAX.

 Within the labkit module, the control signal input is liked to the output of the

PSD_controller module and the o_pwm PWM signal output is linked to the JA[0] output

pin on the Nexys 4.

Module: ADC

Inputs:

− sysclk: the system clock, set to 65 Mhz

− ADC_start

− miso: SPI MISO wire, output from the ADC

Outputs:

− mosi, sck, cs: other SPI wires, inputs to ADC

− [9:0] o_channel0, o_channel1, o_channel2, o_channel3, o_channel4: wires that

store values from channels 0-4 of the ADC

This module uses a finite state machine to read values from channels 0-4 of the

ADC. It is based on code originally written by Joe Steinmeyer and used with his

permission. This module is used in conjunction with the spi_master module and serves

as a wrapper to determine what information is sent out of and sent back to spi_master.

The module begins by instantiating all the different wires and registers that are used to

interface with spi_master, as well as the spi_master module itself. The rest of the module

is dedicated to the state machine. In the labkit module, an additional clock and an

ADC_start signal are generated, running at 1 Mhz and 1 khz respectively. The SCK, MOSI,

and CS wires are set to the output pins JA[1], JA[2], and JA[3] respectively.

While in the idle state, the trigger register, which activates spi_master, is held at

zero until the ADC_start input is high. Once the ADC has been told to start, the registers

selection, bytes_to_send, and data_to_send are set to the appropriate values to read a

single ended reading from channel 0 on the SPI device, the MCP3008. The state machine

then triggers spi_master in the T1 state and waits until it has finished reading data in the

RW1 state. In this state, once the new_data wire from spi_master is high, the current

bottom nine bits of data_receieved are set to the appropriate channel register. After

reading channel 0, the state machine moves to the READ_NEXT_CHANNEL state, which

sets the selection, bytes_to_send, and data_to_send registers to the necessary values to

read from channels 1-4 on the MCP3008. selection and bytes_to_send do not change

their values across channels, but the channel selection bits of data_to_send change each

time. After setting each register the state machine moves back through T1 and RW1, and

after looping through all five channels the state machine returns to idle.

Module: spi_master

Inputs:

− sysclk: system clock, set to 65 Mhz

− ss: for selecting slaves from input side

− [INOUTWIDTH-1:0] data_to_send: bits sent to the SPI device

− [15:0] how_many_bytes: if we want repeated reading/writing

− miso: SPI MISO wire

− rst: reset wire

− trigger: used to start FSM

Outputs:

− reg sck, mosi

− reg [7:0] cs: for selecting slaves on output side (one hot wiring)

− reg [INOUTWIDTH-1:0] data_in,

− reg busy

− reg new_data

− reg load

This module was originally written by Joe Steinmeyer and used with his

permission. It uses a state machine to set a series of shift registers such that the right bits

are sent to the SPI device, in this case the MCP3008 ADC, to read data from a single

channel. As part of the ADC module, this state machine is looped through five times to

read data from five different channels.

Module: IR_sensor

Inputs:

− clock: system clock, set to 65 Mhz

− [9:0] i_IR: 10-bit voltage reading from the IR sensor from the ADC

Outputs:

− [5:0] o_height: 6-bit height signal sent to the PD controller

This module takes the 10-bit analog voltage reading from the ADC and converts it

to a height in centimeters, and then to the appropriate 6-bit height signal used by the

PSD_controller module. The IR sensor has a highly nonlinear curve mapping voltage to

distance. Therefore to create this module the sensor was calibrated and the curve was

linearized. The calibration was completed by carefully recording the sensor’s voltage value

at different known distances. Due to the nature of the curve, four different linearizations

were used depending on the input ADC values. The linearizatons were completed using

curve fitting tools in MATLAB.

Figure X: Linearization of the IR data in MATLAB

The calibration data from the IR sensor in the plot is the green line, which can be

seen to follow a decaying exponential curve. The four straight lines overlaying the green

line are the different linearization curves used depending on the value of the ADC. It can

be seen that the combination of all four linearizations matches the exponential curve very

well. Using the linearizations, the function mapping the 10-bit ADC reading to a height in

centimeters is as follows:

hcm = 60 −
𝛼 ∗ ADC - 𝛾

256

 Here,  and γ are parameters that define the linearization slope and y-intercept. In

Verilog, instead of dividing by 256 the appropriate register is right shifted 8 bits. Different

values for  and γ are used depending on the reading of the ADC, corresponding to the

four linearizations completed. This module first uses the ADC value to determine the

ball’s height in centimeters, which based on the height of the tower ranges from 0-50 cm.

 After the height in centimeters is computed, the module converts that height into

a 6-bit signal to be used as input to the PSD_controller module. This conversion follows

this formula:

h6bit =
(ℎcm − 15) ∗ 𝛽

128

 Here β is a separate parameter used to map the 0-50 hcm input to a 0-63 h6bit

output. hcm is decreased by 15 so that the mapping from hcm to h6bit will only span the

center section of the levitation tower, rather than the entire tower. This prevents the ball

from encountering erroneous readings or dampened dynamics that occur near the top

and bottom of the tower respectively.

Module: sum_term

Inputs:

− clock: system clock, set to 65 Mhz

− signed [6:0] i_error: the input error signal from the error_calc module

− i_start: start signal

− [9:0] i_Ks_tune: 10-bit tuning value from ADC

− i_reset: reset wire

Outputs:

− o_s_done: done signal

− signed [8:0] o_s_term: sum term output

− [9:0] test: test signal for debugging

This module was used to generate the sum term of the PSD controller according to

the following formula:

𝑠[𝑛] = Ki ∑ 𝑒[𝑛] ∗ ∆t

k

i=1

where Ki is the gain applied to the summation. The module would move through different

states to calculated both the summation value and the final sum term, checking for

over/underflow after each calculation. The value of the sum and the final output were

both limited to prevent integral windup. In the final implementation this module was not

used, as it was found to wind up too quickly, and was replaced with a constant bias point

instead.

Challenges and Lessons Learned

 Successfully bridging the gap between hardware and software was the most

difficult part of the project. Particular difficulty was encountered when calibrating the IR

sensor. In total, three different calibration setups were used, with the third being

successful in producing consistent readings from the sensor. This set up attached the IR

sensor to a hardcover book such that the sensor’s line of sight would be perpendicular to

the ground. Facing the sensor was another hardcover book covered in white paper, to

provide a reflective parallel surface for the sensor to read. An Arduino was used to read

values from the sensor, and after 500 values were taken the average reading was recorded.

This average reading was used for curve fitting. The carefulness required to set up this

calibration suggests that the use of more consistent hardware could have improved the

performance of the final system.

 Successfully tuning the system was also difficult. A large reason behind this was

certain unmodeled dynamics of the fan and sensor system whose consequences did not

become apparent until the hardware system was tested. Near the bottom of the tower,

significantly more force is required to lift the ping-pong ball in the air. At the very bottom,

even running the fan at full speed will not cause the ball to float. However, after the ball

is in the air, it requires very little airflow to keep it floating. To prevent the ball from

reaching the bottom, a spare piece of acrylic was included in the tower. Additionally, the

IR sensor has a minimum distance reading of about 10 cm, at which the voltage from the

sensor reaches a peak. If an object is moved closer than this distance, the output voltage

will actually decrease. This means that if the ball accidentally moved closer than 10 cm,

the control system would interpret this as the ball moving away from the sensor. If the

controller was set to place the ball as close to the sensor as possible, this would mean the

system would increase the PWM output if the ball moved closer than 10 cm, because the

sensor reading was telling the controller the ball was much lower. Therefore the ball

would become stuck at the top of the tower.

 These problems were alleviated via careful tuning of the mapping from the ball’s

height in centimeters to the 6-bit output from the IR_sensor module so that a height of

~15 cm would produce a 0 output and a distance of ~10 cm from the sensor would provide

a 63 output. This constrained the ball to the middle of the tower were dynamics were

mostly linear, although excess velocity of could still shift force the ball out of this zone.

Future implementations would benefit from a taller tower so that this linearized region

would be extended.

 Creating the gain_tuner module, which linearly mapped a potentiometer angle to

a specified range of outputs, also required careful math to ensure that each value within

the range could be easily and consistently reached using the potentiometer. To properly

visualize, different graphing tools were used to connect ADC output to the specified range

of outputs.

 Finally, when the sum term was added to the final implementation, excessive

windup occurred almost immediately, causing the value of this term to alternate between

the maximum and minimum values respectively. One reason for this was because in

ordinary PSD controller implementations, the sum term summation is multiplied by the

time step, which in this case is 1/60 seconds, the update rate of the sensor. This

significantly slows down the development of the sum term. In our implementation, we

did not divide by 60 in order to speed up the system. It is likely that leaving out this

division caused the sum term to accumulate too quickly to be useful. Future

implementations could use a divisor module to complete this computation, because the

65 Mhz clock frequency would probably allow this computation to complete before the 60

hz sensor updated. Alternatively, the intermediate registers of the sum term calculations

could be placed in an oversized register and then scaled back down, so that the summation

could still accumulate but would not appear as quickly on the output due to the scale

down.

Appendix: Verilog Modules

1. David

Main Module:

`default_nettype none

//

// Engineer: Mitchell Gu

// Project Name: Nexys4 FFT Demo

//

module nexys4_fft_demo (

 input wire CLK100MHZ,

 input wire [15:0] SW,

 input wire BTNC, BTNU, BTNL, BTNR, BTND,

 input wire M_DATA,

 input wire [7:0] JB,

 //input wire AD3P, AD3N, // The top pair of ports on JXADC on Nexys 4

 output wire [3:0] VGA_R,

 output wire [3:0] VGA_B,

 output wire [3:0] VGA_G,

 output wire VGA_HS,

 output wire VGA_VS,

 output wire M_CLK,M_LRSEL,

 output wire AUD_PWM, AUD_SD,

 output wire [7:0] JA,

 output wire LED16_B, LED16_G, LED16_R,

 output wire LED17_B, LED17_G, LED17_R,

 output wire [15:0] LED, // LEDs above switches

 output wire [7:0] SEG, // segments A-G (0-6), DP (7)

 output wire [7:0] AN // Display 0-7

);

 // SETUP CLOCKS

 // 104Mhz clock for XADC and primary clock domain

 // It divides by 4 and runs the ADC clock at 26Mhz

 // And the ADC can do one conversion in 26 clock cycles

 // So the sample rate is 1Msps (not posssible w/ 100Mhz)

 // 65Mhz for VGA Video

 wire clk_104mhz, clk_65mhz;

 clk_wiz_0 clockgen(

 .clk_in1(CLK100MHZ),

 .clk_out1(clk_104mhz),

 .clk_out2(clk_65mhz));

 // INSTANTIATE XVGA SIGNALS (1024x768)

 wire [10:0] hcount;

 wire [9:0] vcount;

 wire hsync, vsync, blank;

 xvga xvga1(

 .vclock(clk_65mhz),

 .hcount(hcount),

 .vcount(vcount),

 .vsync(vsync),

 .hsync(hsync),

 .blank(blank));

// **************** BEGIN BASIC IO SETUP *******************************//

 // INSTANTIATE SEVEN SEGMENT DISPLAY

 display_8hex display(

 .clk(clk_65mhz),

 .data(Display),

 .seg(SEG[6:0]),

 .strobe(AN));

 assign SEG[7] = 1;

 wire [31:0] Display;

 wire [9:0] scaled;

 assign scaled = frequency - 10'd65;

 assign Display = SW_clean[14] ? {2'b0,r_test,8'b0,2'b0,reference,2'b0,want} :

{6'b0,hertz,2'b0,IR_height,2'b0,r_test};

 // Parametrized debounce module to do all 16 switches and 5 buttons

 wire BTNC_clean, BTNU_clean, BTND_clean, BTNL_clean, BTNR_clean;

 wire [15:0] SW_clean;

 debounce #(.COUNT(21)) db0 (

 .clk(clk_65mhz),

 .reset(1'b0),

 .noisy({SW, BTNC, BTNU, BTND, BTNL, BTNR}),

 .clean({SW_clean, BTNC_clean, BTNU_clean, BTND_clean, BTNL_clean,

BTNR_clean}));

// **************** END BASIC IO SETUP *******************************//

 // INSTANTIATE 16x OVERSAMPLING

 // This outputs 14-bit samples at a 62.5kHz sample rate

 // (2 more bits, 1/16 the sample rate)

 wire [13:0] osample16;

 wire done_osample16;

 wire [13:0] audio_data;

 oversample16 osamp16_1 (

 .clk(clk_104mhz),

 .sample(audio_data[13:2]),

 .eoc(eoc),

 .oversample(osample16),

 .done(done_osample16));

//

 wire eoc;

 wire low_data;

 Audio_Interface microphone(

 .clk_104mhz(clk_104mhz),

 .M_DATA(M_DATA),

 .M_CLK(M_CLK),

 .data(audio_data),

 .sample_ready(eoc)

);

 assign M_LRSEL = 0;

///

 // INSTANTIATE SAMPLE FRAME BLOCK RAM

 // This 16x4096 bram stores the frame of samples

 // The write port is written by osample16.

 // The read port is read by the bram_to_fft module and sent to the fft.

 wire fwe;

 reg [11:0] fhead = 0; // Frame head - a pointer to the write point, works as circular buffer

 wire [15:0] fsample; // The sample data from the XADC, oversampled 15x

 wire [11:0] faddr; // Frame address - The read address, controlled by bram_to_fft

 wire [15:0] fdata; // Frame data - The read data, input into bram_to_fft

 bram_frame bram1 (

 .clka(clk_104mhz),

 .wea(fwe),

 .addra(fhead),

 .dina(fsample),

 .clkb(clk_104mhz),

 .addrb(faddr),

 .doutb(fdata));

 // SAMPLE FRAME BRAM WRITE PORT SETUP

 always @(posedge clk_104mhz) if (done_osample16) fhead <= fhead + 1; // Move the pointer

every oversample

 assign fsample = {osample16, 2'b0}; // Pad the oversample with zeros to pretend it's 16 bits

 assign fwe = done_osample16; // Write only when we finish an oversample (every 104*16

clock cycles)

 // SAMPLE FRAME BRAM READ PORT SETUP

 // For this demo, we just need to display the FFT on 60Hz video, so let's only send the frame

of samples

 // once every 60Hz. If you want to though, you can send frames much faster, one right after

each other.

 // For this 4096pt fully pipelined FFT, the limit is 104Mhz/4096cycles_per_frame = 25kHz

(approx)

 // The next two modules just synchronize the 60Hz vsync to the 104Mhz domain and convert

it to a 1 cycle pulse.

 wire vsync_104mhz, vsync_104mhz_pulse;

 synchronize vsync_synchronize(

 .clk(clk_104mhz),

 .in(vsync),

 .out(vsync_104mhz));

 level_to_pulse vsync_ltp(

 .clk(clk_104mhz),

 .level(~vsync_104mhz),

 .pulse(vsync_104mhz_pulse));

 // INSTANTIATE BRAM TO FFT MODULE

 // This module handles the magic of reading sample frames from the BRAM whenever start is

asserted,

 // and sending it to the FFT block design over the AXI-stream interface.

 wire last_missing; // All these are control lines to the FFT block design

 wire [31:0] frame_tdata;

 wire frame_tlast, frame_tready, frame_tvalid;

 bram_to_fft bram_to_fft_0(

 .clk(clk_104mhz),

 .head(fhead),

 .addr(faddr),

 .data(fdata),

 .start(vsync_104mhz_pulse),

 .last_missing(last_missing),

 .frame_tdata(frame_tdata),

 .frame_tlast(frame_tlast),

 .frame_tready(frame_tready),

 .frame_tvalid(frame_tvalid)

);

//

 wire empty,empty2,empty3,empty4,empty5,empty6,empty7,empty8;

 xfft_0 test(

 .aclk(clk_104mhz),

 .s_axis_config_tdata({5'b11100,SW_clean[12:7],2'b0,1'b1}),

 .s_axis_config_tvalid(frame_tvalid),

 .s_axis_config_tready(empty),

 .s_axis_data_tdata(frame_tdata),

 .s_axis_data_tvalid(frame_tvalid),

 .s_axis_data_tready(frame_tready),

 .s_axis_data_tlast(frame_tlast),

 .m_axis_data_tdata(magnitude_tdata),

 .m_axis_data_tvalid(magnitude_tvalid),

 .m_axis_data_tready(1'b1),

 .m_axis_data_tlast(empty2),

 .m_axis_data_tuser(magnitude_tuser),

 .event_frame_started(empty3),

 .event_tlast_unexpected(empty4),

 .event_tlast_missing(empty5),

 .event_status_channel_halt(empty6),

 .event_data_in_channel_halt(empty7),

 .event_data_out_channel_halt(empty8));

 // This is the FFT module, implemented as a block design with a 4096pt, 16bit FFT

 // that outputs in magnitude by doing sqrt(Re^2 + Im^2) on the FFT result.

 // It's fully pipelined, so it streams 4096-wide frames of frequency data as fast as

 // you stream in 4096-wide frames of time-domain samples.

 wire [31:0] magnitude_tdata; // This output bus has the FFT magnitude for the current index

 wire [11:0] magnitude_tuser; // This represents the current index being output, from 0 to 4096

 wire [11:0] scale_factor; // This input adjusts the scaalidling of the FFT, which can be tuned to

the input magnitude.

 wire magnitude_tlast, magnitude_tvalid;

 // Let's only care about the range from index 0 to 1023, which represents frequencies 0 to

omega/2

 // where omega is the nyquist frequency (sample rate / 2)

 wire in_range = ~|magnitude_tuser[11:10]; // When 13 and 12 are 0, we're on indexes 0 to

1023

 // INSTANTIATE HISTOGRAM BLOCK RAM

 // This 16x1024 bram stores the histogram data.

 // The write port is written by process_fft.

 // The read port is read by the video outputter or the SD care saver

 // Assign histogram bram read address to histogram module unless saving

 wire [9:0] haddr; // The read port address

 wire [15:0] hdata; // The read port data

 bram_fft bram2 (

 .clka(clk_104mhz),

 .wea(in_range & magnitude_tvalid), // Only save FFT output if in range and output is valid

 .addra(magnitude_tuser[9:0]), // The FFT output index, 0 to 1023

 .dina(magnitude_tdata[15:0]), // The actual FFT magnitude

 .clkb(clk_65mhz), // input wire clkb

 .addrb(haddr), // input wire [9 : 0] addrb

 .doutb(hdata) // output wire [15 : 0] doutb

);

 reg [9:0] addr_in=0;

 wire [9:0] addr_out;

 wire [15:0] soundin;

 wire [15:0] soundout;

 always @(posedge clk_104mhz) begin addr_in<= done_osample16 ? addr_in +1 : addr_in;

end

 assign soundin = {audio_data,2'b0};

 bram_fft bram3 (

 .clka(clk_104mhz),

 .wea(done_osample16), // Only save FFT output if in range and output is valid

 .addra(addr_in), // The FFT output index, 0 to 1023

 .dina(soundin), // The actual FFT magnitude

 .clkb(clk_65mhz), // input wire clkb

 .addrb(addr_out), // input wire [9 : 0] addrb

 .doutb(soundout) // output wire [15 : 0] doutb

);

 // INSTANTIATE SOUND VISUAL

 wire [2:0] sound_pixel;

 sound aud_disp(

 .clk(clk_65mhz),

 .data(soundout[15:6]),

 .hcount(hcount),

 .vcount(vcount),

 .blank(blank),

 .pixel(sound_pixel),

 .vaddr(addr_out));

 // INSTANTIATE HISTOGRAM VIDEO

 // A simple module that outputs a VGA histogram based on

 // hcount, vcount, and the BRAM read values

 reg [14:0] data;

 reg [9:0] addr;

 always @(posedge clk_65mhz) begin

 data<= hdata[15] ? 0 : hdata[14:0];

 addr<=haddr;

 end

 wire [2:0] hist_pixel;

 wire [1:0] hist_range;

 histogram fft_histogram(

 .clk(clk_65mhz),

 .hcount(hcount),

 .vcount(vcount),

 .blank(blank),

 .range({1'b1,SW_clean[15]}), // How much to zoom on the first part of the spectrum

 .vaddr(haddr),

 .vdata(data),

 .pixel(hist_pixel));

 ///

 wire [9:0] frequency;

 freq_det pitch(

 .clk(clk_65mhz),

 .addr(addr),

 .data(data),

 .thresh(4'b1110),

 .frequency(frequency));

 ///

 wire [5:0] reference;

 wire [5:0] want;

 ReferenceGen Ref(

 .clk(clk_65mhz),

 .send(BTND_clean),

 .mode(SW_clean[15]),

 .freq(frequency),

 .Ref(reference),

 .want(want)

);

 wire [11:0] hertz;

 dist_mem_gen_0 find(

 .a(frequency), // input wire [9 : 0] a

 .clk(clk_65mhz), // input wire clk

 .spo(hertz) // output wire [11 : 0] spo

);

// //

 wire [2:0] line;

 freq_disp bar(

 .clk(clk_65mhz),

 .bin(frequency),

 .hcount(hcount),

 .vcount(vcount),

 .blank(blank),

 .range({1'b1,SW_clean[15]}),

 .pixel(line));

 // INSTANTIATE PWM AUDIO OUT MODULE

 // 11 bit PWM audio out is reasonable because otherwise, the PWM frequency would

 // drop close to the audible and unfiltered range. 11bits -> 104Mhz/2^11=51Khz

 wire [10:0] pwm_sample;

 pwm11 pwm_out(

 .clk(clk_104mhz),

 .PWM_in(osample16[13:3]),

 .PWM_out(AUD_PWM),

 .PWM_sd(AUD_SD));

//

//

//

//

//

//Final Project Implementation

 //testing wires

 wire [5:0] r_test;

 assign r_test = SW_clean[6] ? reference : SW_clean[5:0];

// wire [5:0] h_test;

// assign h_test = SW[15:10];

 wire reset;

 assign reset = BTNC;

 //PSD Controller Instantiation

 wire signed [10:0] control_signal;

 wire [9:0] ADC_ch0, ADC_ch1, ADC_ch2, ADC_ch3, ADC_ch4;

 wire [5:0] IR_height;

 wire PSD_done;

 wire [9:0] PSD_test;

 wire [9:0] PSD_test2;

 wire [9:0] PSD_test3;

 PSD_controller PSD(.clock(clk_65mhz), .i_ref(r_test), .i_height(IR_height), .i_reset(reset),

 .i_Kp_tune(ADC_ch1), .i_Ki_tune(ADC_ch2), .i_Kd_tune(ADC_ch3),

.i_bias_tune(ADC_ch4),

 .o_control_sig(control_signal), .o_PSD_done(PSD_done), .o_test(PSD_test),

.o_test2(PSD_test2), .o_test3(PSD_test3));

 //PWM Generator Instantiation

 //testing wires

 //wire [10:0] PWM_test;

 //assign PWM_test = SW[10:0];

 wire PWM_signal;

 pwm_generator PWM(.clock(clk_65mhz), .i_control(control_signal), .o_pwm(PWM_signal),

.i_reset(reset));

 //ADC Instantiation

 wire ADC_sck, ADC_mosi, ADC_miso, ADC_cs;

 synchronize syn_ADC(.clk(clk_65mhz), .in(JB[0]), .out(ADC_miso));

 reg ADC_sysclk, ADC_start;

 wire w_ADC_sysclk, w_ADC_start;

 ADC MCP3008(.sysclk(ADC_sysclk), .ADC_start(ADC_start), .miso(ADC_miso),

 .mosi(ADC_mosi), .cs(ADC_cs), .sck(ADC_sck),

 .o_channel0(ADC_ch0), .o_channel1(ADC_ch1), .o_channel2(ADC_ch2),

.o_channel3(ADC_ch3), .o_channel4(ADC_ch4));

 //code for generating proper clock and start signals for ADC. MCP3008 only runs at a max of

3.6 MHhz

 //creates a ~1 mhz clock and a 1khz start pulse

 reg [3:0] r_ADC_clk_counter = 4'd0;

 reg [15:0] r_ADC_start_counter = 16'd0;

 reg [9:0] ADC_test;//ADC testing

 always @(posedge clk_65mhz) begin

 //~1 mhz clock

 if (r_ADC_clk_counter == 4'd15) begin

 ADC_sysclk <= ~ ADC_sysclk;

 r_ADC_clk_counter <= 4'd0;

 end

 else r_ADC_clk_counter <= r_ADC_clk_counter + 1;

 //1 khz ADC start signal

 if (r_ADC_start_counter == 16'd64999) begin

 ADC_start <= 1'b1;

 r_ADC_start_counter <= 16'd0;

 end

 else begin

 r_ADC_start_counter <= r_ADC_start_counter + 1;

 ADC_start <= 1'b0;

 end

 //ADC testing

 case (SW[1:0])

 2'b00: ADC_test <= ADC_ch0;

 2'b01: ADC_test <= ADC_ch1;

 2'b10: ADC_test <= ADC_ch2;

 2'b11: ADC_test <= ADC_ch3;

 endcase

 end

 assign w_ADC_sysclk = ADC_sysclk;

 assign w_ADC_start = ADC_start;

 //IR Sensor Module Instantiation

 IR_Sensor sensor(.clock(clk_65mhz), .i_IR(ADC_ch0), .o_height(IR_height));

 //assign data = {{2'b00, PSD_test}};//, {2'b0, PSD_test3}};

 assign JA[0] = PWM_signal;

 assign JA[1] = ADC_sck;

 assign JA[2] = ADC_mosi;

 assign JA[3] = ADC_cs;

//

//

//

//

//

 // VGA OUTPUT

 // Histogram has two pipeline stages so we'll pipeline the hs and vs accordingly

 ///

 /////////////////////Make the range bars

 wire [2:0] tot_pixel;

 wire [9:0] horiz;

 reg [3:0] fence;

 reg [3:0] fence1;

 wire [9:0] x,x1;

 wire [9:0] y;

 parameter HEIGHT=100;

 assign y=10'd500;

 assign horiz = (hcount[9:0] >> {1'b1,SW_clean[15]});

 assign x=10'd65;

 assign x1=SW_clean[15] ? 10'd125 : 10'd190;

 always @(posedge clk_65mhz) begin

 fence<= ((horiz >= x && horiz < (x+1)) &&

 (vcount >= y && vcount < (y+HEIGHT))) ? 3'b100 : 3'b0;

 fence1<= ((horiz >= x1 && horiz < (x1+1)) &&

 (vcount >= y && vcount < (y+HEIGHT))) ? 3'b100 : 3'b0;

 end

 //

 //

 ///////////////Track location of Ball///

 parameter MID=512;

 parameter QUART=256;

 parameter HALF=1;

 parameter FOURTH=0;

 wire [10:0] xball;

 wire [9:0] yball;

 wire ball_state;

 assign ball_state=SW_clean[15];

 assign yball=10'd515;

 assign xball=bottom;

 reg [10:0] bottom;

 reg [2:0] ball;

 wire [5:0]track;

 assign track =SW_clean[14] ? r_test : IR_height;

 always @ (posedge clk_65mhz) begin // generate round puck

 case(ball_state)

 // compute x -xcenter and y-ycenter

 HALF: begin

 if (SW_clean[13]) begin

 bottom<=(track>=6'd58) ? MID+(6'd58<<3)+11'd5 : MID+(track<<3)+11'd5;

 ball <=(vcount >= yball && vcount < (yball+10'd20)) &&

 (hcount >= xball && hcount < (xball+11'd20)) ? 3'b101 : 3'b0 ;

 end

 else

 ball <=3'b0;

 end

 FOURTH: begin

 if (SW_clean[13]) begin

 bottom<=(track>=6'd61) ? QUART+(6'd61<<3)+11'd5 :

QUART+(track<<3)+11'd5;

 ball <=(vcount >= yball && vcount < (yball+10'd15)) &&

 (hcount >= xball && hcount < (xball+11'd15)) ? 3'b101 : 3'b0 ;

 end

 else

 ball <=3'b0;

 end

 endcase

 end

 //

 ///////////////Instantiate actual pixels bing sent to VGA//////////////////////////

 assign tot_pixel = hist_pixel + sound_pixel + line+fence+fence1+ball;

 reg [1:0] hsync_delay;

 reg [1:0] vsync_delay;

 reg hsync_out, vsync_out;

 always @(posedge clk_65mhz) begin

 {hsync_out,hsync_delay} <= {hsync_delay,hsync};

 {vsync_out,vsync_delay} <= {vsync_delay,vsync};

 end

 assign VGA_R = {4{tot_pixel[0]}};

 assign VGA_G = {4{tot_pixel[1]}};

 assign VGA_B = {4{tot_pixel[2]}};

 assign VGA_HS = hsync_out;

 assign VGA_VS = vsync_out;

 // Assign RGB LEDs

 assign {LED16_R, LED16_G, LED16_B} = 3'b000;

 assign {LED17_R, LED17_G, LED17_B} = 3'b000;

 // Assign switch LEDs to switch states

 assign LED = SW;

//

//

endmodule

 Switch Debounce Module

// use your system clock for the clock input

// to produce a synchronous, debounced output

module debounce #(parameter DELAY=1000000, parameter COUNT=1) (

 input wire clk,

 input wire reset,

 input wire [COUNT-1:0] noisy,

 output reg [COUNT-1:0] clean);

 genvar i;

 generate

 for (i = 0; i < COUNT; i = i + 1) begin

 reg [19:0] count;

 reg new;

 always @(posedge clk) begin

 if (reset) begin

 count <= 0;

 new <= noisy[i];

 clean[i] <= noisy[i];

 end

 else if (noisy[i] != new) begin

 new <= noisy[i];

 count <= 0;

 end

 else if (count == DELAY)

 clean[i] <= new;

 else

 count <= count+1;

 end

 end

 endgenerate

endmodule

module level_to_pulse (

 input wire clk,

 input wire level,

 output wire pulse);

 reg last_level;

 always @(posedge clk) begin

 last_level <= level;

 end

 assign pulse = level & ~last_level;

endmodule

module display_8hex(

 input wire clk, // system clock

 input wire [31:0] data, // 8 hex numbers, msb first

 output reg [6:0] seg, // seven segment display output

 output reg [7:0] strobe // digit strobe

);

 localparam bits = 13;

 reg [bits:0] counter = 0; // clear on power up

 wire [6:0] segments[15:0]; // 16 7 bit memorys

 assign segments[0] = 7'b100_0000;

 assign segments[1] = 7'b111_1001;

 assign segments[2] = 7'b010_0100;

 assign segments[3] = 7'b011_0000;

 assign segments[4] = 7'b001_1001;

 assign segments[5] = 7'b001_0010;

 assign segments[6] = 7'b000_0010;

 assign segments[7] = 7'b111_1000;

 assign segments[8] = 7'b000_0000;

 assign segments[9] = 7'b001_1000;

 assign segments[10] = 7'b000_1000;

 assign segments[11] = 7'b000_0011;

 assign segments[12] = 7'b010_0111;

 assign segments[13] = 7'b010_0001;

 assign segments[14] = 7'b000_0110;

 assign segments[15] = 7'b000_1110;

 always @(posedge clk) begin

 counter <= counter + 1;

 case (counter[bits:bits-2])

 3'b000: begin

 seg <= segments[data[31:28]];

 strobe <= 8'b0111_1111 ;

 end

 3'b001: begin

 seg <= segments[data[27:24]];

 strobe <= 8'b1011_1111 ;

 end

 3'b010: begin

 seg <= segments[data[23:20]];

 strobe <= 8'b1101_1111 ;

 end

 3'b011: begin

 seg <= segments[data[19:16]];

 strobe <= 8'b1110_1111;

 end

 3'b100: begin

 seg <= segments[data[15:12]];

 strobe <= 8'b1111_0111;

 end

 3'b101: begin

 seg <= segments[data[11:8]];

 strobe <= 8'b1111_1011;

 end

 3'b110: begin

 seg <= segments[data[7:4]];

 strobe <= 8'b1111_1101;

 end

 3'b111: begin

 seg <= segments[data[3:0]];

 strobe <= 8'b1111_1110;

 end

 endcase

 end

endmodule

module pwm11 (

 input wire clk,

 input wire [10:0] PWM_in,

 output reg PWM_out,

 output wire PWM_sd

);

 reg [10:0] new_pwm=0;

 reg [10:0] PWM_ramp=0;

 always @(posedge clk) begin

 if (PWM_ramp==0) new_pwm <= PWM_in;

 PWM_ramp <= PWM_ramp + 1'b1;

 PWM_out <= (new_pwm>PWM_ramp);

 end

 assign PWM_sd = 1;

endmodule

// pulse synchronizer

module synchronize #(parameter NSYNC = 2) (// number of sync flops. must be >= 2

 input wire clk,in,

 output reg out);

 reg [NSYNC-2:0] sync;

 always @ (posedge clk)

 begin

 {out,sync} <= {sync[NSYNC-2:0],in};

 end

endmodule

module xvga(

 input wire vclock,

 output reg [10:0] hcount, // pixel number on current line

 output reg [9:0] vcount, // line number

 output reg vsync, hsync, blank);

 // horizontal: 1344 pixels total

 // display 1024 pixels per line

 reg hblank,vblank;

 wire hsyncon,hsyncoff,hreset,hblankon;

 assign hblankon = (hcount == 1023);

 assign hsyncon = (hcount == 1047);

 assign hsyncoff = (hcount == 1183);

 assign hreset = (hcount == 1343);

 // vertical: 806 lines total

 // display 768 lines

 wire vsyncon,vsyncoff,vreset,vblankon;

 assign vblankon = hreset & (vcount == 767);

 assign vsyncon = hreset & (vcount == 776);

 assign vsyncoff = hreset & (vcount == 782);

 assign vreset = hreset & (vcount == 805);

 // sync and blanking

 wire next_hblank,next_vblank;

 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;

 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

 always @(posedge vclock) begin

 hcount <= hreset ? 0 : hcount + 1;

 hblank <= next_hblank;

 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;

 vblank <= next_vblank;

 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);

 end

endmodule

module sound (

 input wire clk,

 input wire [9:0] data,

 input wire [10:0] hcount,

 input wire [9:0] vcount,

 input wire blank,

 output reg [2:0] pixel,

 output reg [9:0] vaddr);

 reg blank1;

 reg [10:0] hheight;

 reg [9:0] vtop;

 reg [9:0] vbot;

 wire [9:0] sound;

 always @(posedge clk) begin

 vaddr <= hcount[9:0];

 blank1<=blank;

 vtop<=10'd470 - vcount;

 vbot<=10'd475 - vcount;

 pixel <= blank1 ? 3'b0 : (vtop < data && vbot > data) ? 3'b101 : 3'b0;

 end

endmodule

module freq_det(

 input wire clk,

 input wire [9:0] addr,

 input wire [14:0] data,

 input wire [4:0] thresh,

 output wire [9:0] frequency

);

 reg [9:0] temp_freq;

 reg [9:0] N;

 reg [14:0] F;

 parameter WAIT =2'b00;

 parameter MAYBE =2'b01;

 parameter DISP =2'b11;

 reg [1:0] state;

 reg [8:0] threshhold;

 always @(posedge clk) begin

 threshhold<= {thresh[4:1],5'd25};

 if ({data[12:0],2'b0}>threshhold && addr>50) begin

 temp_freq<=addr;

 F<=data;

 end

 else begin

 temp_freq<=temp_freq;

 end

 end

 assign frequency = temp_freq;

endmodule

module freq_disp(

 input wire clk,

 input wire [9:0] bin,

 input wire [10:0] hcount,

 input wire [9:0] vcount,

 input wire blank,

 input wire [1:0] range,

 output reg [2:0] pixel);

 reg blank1;

 reg [9:0] hheight;

 reg [9:0] vaddr;

 reg [9:0] vheight;

 reg [9:0] vtop;

 reg [9:0] vbot;

 wire [9:0] sound;

 reg [9:0] data;

 wire [9:0] horiz;

 assign horiz = (hcount[9:0] >> range);

 parameter [9:0] MAX = 10'd250;

 parameter [9:0] MIN = 10'd65;

 always @(posedge clk) begin

 vaddr <= hcount[9:0];

 data<=10'd50;

 blank1<=blank;

 vtop<=10'd600 - vcount;

 vbot<=10'd700 - vcount;

 if (bin== horiz) begin

 pixel <= blank1 ? 3'b0 : (vtop < data && vbot > data) ? 3'b010 : 3'b0;

 end

 else

 pixel<=3'b0;

 end

endmodule

module ReferenceGen(

 input wire clk,

 input wire send,

 input wire mode,

 input wire [9:0] freq,

 output wire [5:0] Ref,

 output reg [5:0] want

);

 reg [5:0] curr_loc;

 wire send_pulse;

 level_to_pulse SAMP(.clk(clk),

 .level(send),

 .pulse(send_pulse));

 parameter CONT=1;

 parameter DISC=0;

 parameter [9:0] MAX = 10'd190;

 parameter [9:0] MAXL = 10'd120;

 parameter [9:0] MIN = 10'd65;

 always @ (posedge clk) begin

 case(mode)

 CONT: begin

 if (freq>MIN && freq<MAXL) begin

 curr_loc<= (freq-MIN);

 end

 else if (freq>=MAXL) begin curr_loc<=6'd63; end

 else

 curr_loc<=6'd0;

 end

 DISC: begin

 curr_loc<= send_pulse ? want : curr_loc;

 if (freq>MIN && freq<MAX) begin

 want<= (freq-MIN)>>1;

 end

 else if (freq>=MAX) begin want<=6'd63; end

 else

 want<=6'd0;

 end

 endcase

 end

assign Ref=curr_loc;

endmodule

module bram_to_fft(

 input wire clk,

 input wire [11:0] head,

 output reg [11:0] addr,

 input wire [15:0] data,

 input wire start,

 input wire last_missing,

 output reg [31:0] frame_tdata,

 output reg frame_tlast,

 input wire frame_tready,

 output reg frame_tvalid

);

 // Get a signed version of the sample by subtracting half the max

 wire signed [15:0] data_signed = {1'b0, data} - (1 << 15);

 // SENDING LOGIC

 // Once our oversampling is done,

 // Start at the frame bram head and send all 4096 buckets of bram.

 // Hopefully every time this happens, the FFT core is ready

 reg sending = 0;

 reg [11:0] send_count = 0;

 always @(posedge clk) begin

 frame_tvalid <= 0; // Normally do not send

 frame_tlast <= 0; // Normally not the end of a frame

 if (!sending) begin

 if (start) begin // When a new sample shifts in

 addr <= head; // Start reading at the new head

 send_count <= 0; // Reset send_count

 sending <= 1; // Advance to next state

 end

 end

 else begin

 if (last_missing) begin

 // If core thought the frame ended

 sending <= 0; // reset to state 0

 end

 else begin

 frame_tdata <= {16'b0, data_signed};

 frame_tvalid <= 1; // Signal to fft a sample is ready

 if (frame_tready) begin // If the fft module was ready

 addr <= addr + 1; // Switch to read next sample

 send_count <= send_count + 1; // increment send_count

 end

 if (&send_count) begin

 // We're at last sample

 frame_tlast <= 1; // Tell the core

 if (frame_tready) sending <= 0; // Reset to state 0

 end

 end

 end

 end

endmodule

module histogram(

 input wire clk,

 input wire [10:0] hcount,

 input wire [9:0] vcount,

 input wire blank,

 input wire [1:0] range,

 output wire [9:0] vaddr,

 input wire [14:0] vdata,

 output reg [2:0] pixel

);

 // 1 bin per pixel, with the selected range

 assign vaddr = hcount[9:0] >> range;

 reg [9:0] hheight; // Height of histogram bar

 reg [9:0] vheight; // The height of pixel above bottom of screen

 reg blank1; // blank pipelined 1

 always @(posedge clk) begin

 // Pipeline stage 1

 hheight <= vdata[14:5]<<3;

 vheight <= 10'd767 - vcount;

 blank1 <= blank;

 // Pipeline stage 2

 pixel <= blank1 ? 3'b0 : (vheight < hheight) ? 3'b001 : 3'b0;

 end

endmodule

module CIC

#(parameter width = 12)

 (input wire clk,

 input wire rst,

 input wire [15:0] decimation_ratio,

 input wire signed [7:0] d_in,

 output reg signed [7:0] d_out,

 output reg d_clk);

reg signed [width-1:0] d_tmp, d_d_tmp;

// Integrator stage registers

reg signed [width-1:0] d1=0;

reg signed [width-1:0] d2=0;

reg signed [width-1:0] d3=0;

reg signed [width-1:0] d4=0;

reg signed [width-1:0] d5=0;

// Comb stage registers

reg signed [width-1:0] d6=0, d_d6=0;

reg signed [width-1:0] d7=0, d_d7=0;

reg signed [width-1:0] d8=0, d_d8=0;

reg signed [width-1:0] d9=0, d_d9=0;

reg signed [width-1:0] d10=0;

reg [15:0] count=0;

reg v_comb; // Valid signal for comb section running at output rate

reg d_clk_tmp;

 always @(posedge clk)

 begin

 if (rst)

 begin

 d1 <= 0;

 d2 <= 0;

 d3 <= 0;

 d4 <= 0;

 d5 <= 0;

 count <= 0;

 end else

 begin

 // Integrator section

 d1 <= d_in + d1;

 d2 <= d1 + d2;

 d3 <= d2 + d3;

 d4 <= d3 + d4;

 d5 <= d4 + d5;

 // Decimation

 if (count == decimation_ratio - 1)

 begin

 count <= 16'b0;

 d_tmp <= d5;

 d_clk_tmp <= 1'b1;

 v_comb <= 1'b1;

 end else if (count == decimation_ratio >> 1)

 begin

 d_clk_tmp <= 1'b0;

 count <= count + 16'd1;

 v_comb <= 1'b0;

 end else

 begin

 count <= count + 16'd1;

 v_comb <= 1'b0;

 end

 end

 end

 always @(posedge clk) // Comb section running at output rate

 begin

 d_clk <= d_clk_tmp;

 if (rst)

 begin

 d6 <= 0;

 d7 <= 0;

 d8 <= 0;

 d9 <= 0;

 d10 <= 0;

 d_d6 <= 0;

 d_d7 <= 0;

 d_d8 <= 0;

 d_d9 <= 0;

 d_out <= 8'b0;

 end else

 begin

 if (v_comb)

 begin

 // Comb section

 d_d_tmp <= d_tmp;

 d6 <= d_tmp - d_d_tmp;

 d_d6 <= d6;

 d7 <= d6 - d_d6;

 d_d7 <= d7;

 d8 <= d7 - d_d7;

 d_d8 <= d8;

 d9 <= d8 - d_d8;

 d_d9 <= d9;

 d10 <= d9 - d_d9;

 d_out <= d10 >>> (width - 8);

 end

 end

 end

endmodule

module oversample16(

 input wire clk,

 input wire [11:0] sample,

 input wire eoc,

 output reg [13:0] oversample,

 output reg done

);

 reg [3:0] counter = 0;

 reg [15:0] accumulator = 0;

 always @(posedge clk) begin

 done <= 0;

 if (eoc) begin

 // Conversion has ended and we can read a new sample

 if (&counter) begin // If counter is full (16 accumulated)

 // Get final total, divide by 4 with (very limited) rounding.

 oversample <= (accumulator + sample + 2'b10) >> 2;

 done <= 1;

 // Reset accumulator

 accumulator <= 0;

 end

 else begin

 // Else add to accumulator as usual

 accumulator <= accumulator + sample;

 done <= 0;

 end

 counter <= counter + 1;

 end

 end

endmodule

2. Raul

PSD Controller

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/19/2018 04:31:45 PM

// Design Name:

// Module Name: PSD_controller

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module PSD_controller(

 input clock,

 input i_reset,

 input [5:0] i_ref,

 input [5:0] i_height,

 input [9:0] i_Kp_tune,

 input [9:0] i_Ki_tune,

 input [9:0] i_Kd_tune,

 input [9:0] i_bias_tune,

 output o_PSD_done,

 output signed [10:0] o_control_sig,

 output [9:0] o_test,

 output [9:0] o_test2,

 output [9:0] o_test3,

 output [9:0] o_test4

);

 parameter s_IDLE = 0;

 parameter s_CALC_ERROR = 1;

 parameter s_CALC_PSD = 2;

 parameter s_CALC_OUTPUT = 3;

 parameter s_DONE = 4;

 reg [1:0] state_main = 3'b000;

 reg [5:0] r_ref, r_height;

 //error signal calculation module

 reg r_error_start;

 wire error_done;

 wire signed [6:0] error_signal;

 calc_error error(.clock(clock), .i_start_err(r_error_start), .i_ref_err(r_ref), .i_height_err(r_height),

.i_reset(i_reset),

 .o_done_err(error_done), .o_error(error_signal));

 //PSD term modules

 reg r_PSD_start;

 wire p_done;

 wire signed [8:0] prop_term;

 reg r_p_done;

 wire [9:0] ptest1;

 wire [9:0] ptest2;

 proportional_term prop_calc(.clock(clock), .i_error(error_signal), .i_start(r_PSD_start),

.i_Kp_tune(i_Kp_tune), .i_reset(i_reset),

 .o_p_done(p_done), .o_prop_term(prop_term), .test(ptest1), .test2(ptest2));

 wire s_done;

 wire signed [8:0] s_term;

 reg r_s_done;

 sum_term sum_calc(.clock(clock), .i_error(error_signal), .i_start(r_PSD_start), .i_Ks_tune(i_Ks_tune),

.i_reset(i_reset),

 .o_s_done(s_done), .o_s_term(s_term));

 wire d_done;

 wire signed [8:0] del_term;

 reg r_d_done;

 delta_term delta_calc(.clock(clock), .i_error(error_signal), .i_start(r_PSD_start),

.i_Kd_tune(i_Kd_tune), .i_reset(i_reset),

 .o_d_done(d_done), .o_del_term(del_term));

 parameter BIAS_MIN = 0;

 parameter BIAS_MAX = 31;

 wire signed [9:0] bias;

 gain_tuner #(.OFFSET_BUFFER(17)) bias_point(.clock(clock), .i_reset(i_reset),.i_tune(i_bias_tune),

.i_offset_min(BIAS_MIN), .i_offset_max(BIAS_MAX),

 .o_offset(bias));

 //command signal calculation registers

 wire signed [10:0] control_signal;

 reg signed [10:0] r_control_signal;

 reg r_command_start;

 wire command_done;

 reg r_PSD_done;

 command_calc command(.clock(clock), .i_reset(i_reset), .i_start(r_command_start),

 .i_prop(prop_term), .i_sum(sum_term), .i_delta(del_term), .i_bias(bias),

 .o_u_done(command_done), .o_command(control_signal));

 always @(posedge clock) begin

 if (!i_reset) begin

 case (state_main)

 s_IDLE: begin

 r_error_start <= 0;

 r_PSD_done <= 0;

 //always update registers

 r_ref <= i_ref;

 r_height <= i_height;

 //if anything changed, run control loop

 if (r_ref != i_ref || r_height != i_height) begin

 state_main <= s_CALC_ERROR;

 r_error_start <= 1;

 end

 else state_main <= s_IDLE;

 end

 s_CALC_ERROR: begin

 //wait until error signal is calculated, then move to next state

 r_error_start <= 0;

 if (error_done) begin

 state_main <= s_CALC_PSD;

 r_PSD_start <= 1;

 end

 else state_main <= s_CALC_ERROR;

 end

 s_CALC_PSD: begin

 r_PSD_start <= 0;

 if (p_done) r_p_done <= 1'b1;

 if (s_done) r_s_done <= 1'b1;

 if (d_done) r_d_done <= 1'b1;

 if (r_p_done && r_s_done && r_d_done) begin

 state_main <= s_CALC_OUTPUT;

 end

 else state_main <= s_CALC_PSD;

 end

 s_CALC_OUTPUT: begin

 r_p_done <= 0;

 r_s_done <= 0;

 r_d_done <= 0;

 r_command_start <= 1;

 //r_control_signal <= prop_term + bias*10;// + prop_term;

 //r_control_signal <= prop_term + s_term + del_term;//prop_term+ del_term +

(bias*10);//prop_term + del_term + (bias*10);//+ s_term + del_term;

 state_main <= s_DONE;

 end

 s_DONE: begin

 r_command_start <= 1'b0;

 if (command_done) begin

 r_PSD_done <= 1'b1;

 state_main <= s_IDLE;

 end

 else state_main <= s_DONE;

 end

 endcase

 end

 else begin

 //r_control_signal <= 10'd0;

 r_ref <= 6'b0;

 r_height <= 6'b0;

 r_PSD_start <= 1'b0;

 r_error_start <= 1'b0;

 r_PSD_done <= 1'b0;

 r_p_done <= 1'b0;

 r_s_done <= 1'b0;

 r_d_done <= 1'b0;

 state_main <= 3'd0;

 end

 end

 assign o_control_sig = control_signal;

 assign o_PSD_done = r_PSD_done;

 assign o_test = prop_term;

 assign o_test2 = ptest2;

 assign o_test3 = del_term;

endmodule

calc_error

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/19/2018 05:23:51 PM

// Design Name:

// Module Name: calc_error

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module calc_error(

 input clock,

 input i_start_err,

 input i_reset,

 output o_done_err,

 output signed [6:0] o_error,

 input [5:0] i_ref_err,

 input [5:0] i_height_err

);

 /*

 Uses a finite state machine to perform signed subtraction r[n]-h[n] to determine e[n],

 the error signal. r[n] and h[n] range from 0 to 63. Therefore e[n] has a range of -63 to

 63, represented by a 7-bit two's complement integer. Overflow is not possible and is not

 checked for. Bit size of error signal is equal to sizes of reference/height signals plus one.

 Terminology:

 r[n] = reference command signal

 h[n] = current levitator height

 */

 //FSM

 parameter s_IDLE = 0;

 parameter s_CALC = 1;

 parameter s_DONE = 2;

 reg state_err = 2'b0;

 //registers for error signal calc

 reg signed [6:0] r_ref_err;

 reg signed [6:0] r_height_err;

 reg signed [6:0] r_error;

 reg r_done_err;

 always @(posedge clock) begin

 if (!i_reset) begin

 case(state_err)

 s_IDLE: begin

 //at start, load signed registers with positive signed vals for r and h

 if (i_start_err) begin

 state_err <= s_CALC;

 r_ref_err <= {1'b0, i_ref_err};

 r_height_err <= {1'b0, i_height_err};

 end

 else state_err <= s_IDLE;

 end

 s_CALC: begin

 //calculate error signal thru signed subtraction, flash done signal

 r_error <= r_ref_err - r_height_err;

 r_done_err <= 1'b1;

 state_err <= s_DONE;

 end

 s_DONE:begin

 //stop done signal, return to idle

 r_done_err <= 1'b0;

 state_err <= s_IDLE;

 end

 endcase

 end

 else begin //reset everything

 r_error <= 7'b0000000;

 r_ref_err <= 7'b0000000;

 r_height_err <= 7'b0000000;

 state_err <= s_IDLE;

 end

 end

 assign o_done_err = r_done_err;

 assign o_error = r_error;

endmodule

proportional_term

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/19/2018 10:06:51 PM

// Design Name:

// Module Name: proportional_term

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module proportional_term(

 input clock,

 input signed [6:0] i_error,

 input i_start,

 input [9:0] i_Kp_tune,

 input i_reset,

 output o_p_done,

 output signed [8:0] o_prop_term,

 output [9:0] test,

 output [9:0] test2

);

 /*

 Uses a FSM to calculate the proportional control term, done by multiplying the error signal by a gain

Kp.

 Input is a 7-bit signed integer, ranging from -63 to 63. Output is limited to a signed 8 bit term, and

ranges from

 -256 to 255. Calculations that result in over or underflow are set to the most extreme values instead.

Bit size of

 proportional term is limited to bit size of error signal plus one.

 Terminology:

 e[n]: error signal = i_error

 Kp: proportional gain = r_Kp

 p[n]: proportional term = r_prop_term

 Calculation:

 p[n] = Kp * e[n]

 */

 parameter s_IDLE = 2'b00;

 parameter s_CALC = 2'b01;

 parameter s_CALC_OVERFLOW = 2'b10;

 parameter s_DONE = 2'b11;

 reg [1:0] state_prop;

 //default value/range for Kp

 parameter signed KP_BASE = 6'd2;

 parameter signed KP_MAX = 6'd31;

 parameter signed KP_MIN = 6'd0;

 //Kp, ranges from -32 to 31, will keep positive

 reg signed [5:0] r_Kp = KP_BASE;

 //tuning offset and range

 //added to r_Kp to adjust gain value without resynthesizing

 parameter signed [5:0] TUNING_MAX = 6'd5;

 parameter signed [5:0] TUNING_MIN = -5;

 wire signed [7:0] Kp_offset;

 gain_tuner #(.OFFSET_BUFFER(51)) p_gain_tuner(.clock(clock), .i_reset(i_reset),.i_tune(i_Kp_tune),

.i_offset_min(TUNING_MIN), .i_offset_max(TUNING_MAX),

 .o_offset(Kp_offset));

 //raw multiplication value from Kp*e[n]. Large number of bits to prevent under/overflow. Will check

Nth bit

 //to determine if under/overflow occured, where N = bit size of output signal. N=8 by default.

 reg signed [20:0] r_prop_raw;

 parameter [10:0] overflow_bit = 11'd8;

 reg signed [8:0] r_prop_term;

 parameter signed [8:0] PROP_MAX = 9'd255;

 parameter signed [8:0] PROP_MIN = -256;

 reg r_p_done;

 always @(posedge clock) begin

 if (!i_reset) begin

 case (state_prop)

 s_IDLE: begin

 //when idle, offset Kp with current value, wait for start signal

 //check if tuning will cause over/underflow

 if (KP_BASE < -Kp_offset) r_Kp <= KP_MIN; //if true, Kp would be negative, force to be

positive

 else if ((Kp_offset > 0) && KP_BASE + Kp_offset < 0) r_Kp <= KP_MAX; //if both true, Kp

overflowed

 else r_Kp <= KP_BASE + Kp_offset; //no over/underflow, normal addition

 //wait for start signal to calculate values

 if (i_start) state_prop <= s_CALC;

 else state_prop <= s_IDLE;

 end

 s_CALC: begin

 //calculate proportional term

 r_prop_raw <= r_Kp*i_error;

 state_prop <= s_CALC_OVERFLOW;

 end

 s_CALC_OVERFLOW: begin

 //check if propotional term under/over flows 8 bit size, flash done signal when set

 //Kp is always positive, only need to check if e[n] is positive or negative

 if (i_error > 0 && r_prop_raw[overflow_bit] == 1) r_prop_term <= PROP_MAX; //Kp , e[n] > 0,

p[n] < 0, overflow occured, set to max

 else if (i_error < 0 && r_prop_raw[overflow_bit] == 0 && r_prop_raw != 0) r_prop_term <=

PROP_MIN; //Kp, p[n] > 0, e[n] < 0. underflowed, set to min

 else r_prop_term <= r_prop_raw[8:0];

 r_p_done <= 1'b1;

 state_prop <= s_DONE;

 end

 s_DONE: begin

 r_p_done <= 1'b0;

 state_prop <= s_IDLE;

 end

 endcase

 end

 else begin

 state_prop <= s_IDLE;

 r_Kp <= KP_BASE;

 r_p_done <= 1'b0;

 r_prop_raw <= 0;

 r_prop_term <= 0;

 end

 end

 assign o_prop_term = r_prop_term;

 assign o_p_done = r_p_done;

 assign test = Kp_offset;

 assign test2 = r_Kp;

endmodule

delta_term

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/20/2018 06:11:47 PM

// Design Name:

// Module Name: delta_term

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module delta_term(

 input clock,

 input signed [6:0] i_error,

 input i_start,

 input [9:0] i_Kd_tune,

 input i_reset,

 output o_d_done,

 output signed [8:0] o_del_term,

 output [9:0] test

);

 /*

 Uses a FSM to generate the delta term of a PSD controller. As input takes a 7 bit signed

 error signal ranging from -63 to 63, and outputs an 8 bit signed delta term ranging from -256

 to 255. Calculations that would result in under/overflow are set to the most extreme values instead.

 Calculation is done by multiplying the difference between the current and previous

 error signals by the gain Kd and the sampling frequency 60Hz. Because multiplying by the sampling

 frequency would increase the output by a factor of 60, instead we ignore the sampling frequency and

 implicitely integrate it into the gain Kd. To compensate, Kd will need to be larger than in a comparable

 PSD that does multiply by the sampling frequency.

 Terminology:

 e[n]: error signal at time n = i_error

 Kd: delta gain

 difference[n]: e[n]-e[n-1] = r_difference

 d[n]: delta term = o_del_term

 Calculation:

 d[n] = Kd * (e[n]-e[n-1])/(deltaT)

 = Kd * samplingFrequency * (e[n]-e[n-1])

 */

 parameter s_IDLE = 3'd0;

 parameter s_CALC = 3'd1;

 parameter s_CALC_OVERFLOW = 3'd2;

 parameter s_CALC2 = 3'd3;

 parameter s_CALC_OVERFLOW2 = 3'd4;

 parameter s_DONE = 3'd5;

 reg [2:0] state_delta = 3'd0;

 //Default values/range for delta gain Kd

 parameter signed [5:0] KD_BASE = 6'd2;

 parameter signed [5:0] KD_MAX = 6'd32;

 parameter signed [5:0] KD_MIN = 6'd0;

 //Kd, should be kept positive

 reg signed [5:0] r_Kd = KD_BASE;

 //tuning offset for Kd

 //added to r_Kp to adjust gain value without resynthesizing

 wire signed [7:0] Kd_offset;

 parameter signed [5:0] TUNING_MAX = 6'd15;

 parameter signed [5:0] TUNING_MIN = -5;

 gain_tuner #(.OFFSET_BUFFER(26)) d_gain_tuner(.clock(clock), .i_reset(i_reset),.i_tune(i_Kd_tune),

.i_offset_min(TUNING_MIN), .i_offset_max(TUNING_MAX),

 .o_offset(Kd_offset));

 //previous error signal, sampling frequency

 reg signed [8:0] r_difference; //current minus previous error signals

 reg signed [8:0] r_error_prev = 9'd0;

 reg signed [8:0] r_error_prev2 = 9'd0;

 reg signed [8:0] r_error_prev3 = 9'd0;

 reg signed [8:0] r_error_prev4 = 9'd0;

 parameter signed sampling_freq = 6'd60;

 parameter signed DIFFERENCE_MAX = 9'd255;

 parameter signed DIFFERENCE_MIN = -256;

 //add additional shift registers here for slower derivatives

 //raw multiplication value from Ks*sampling_freq*(e[n]-e[n-1]). Large number of bits to prevent

under/overflow.

 //Will check Nth bit to determine if under/overflow occured, where N = bit size of delta term. N=8 by

default.

 reg signed [20:0] r_del_raw;

 parameter [10:0] overflow_bit = 11'd8;

 //actual sum term with min/max range

 reg signed [8:0] r_del_term;

 parameter signed DELTA_MAX = 9'd255;

 parameter signed DELTA_MIN = -256;

 reg r_d_done;

 always @(posedge clock) begin

 if (!i_reset) begin

 case(state_delta)

 s_IDLE: begin

 //when idle, offset Ki with current value, wait for start signal

 //check if tuning will cause over/underflow

 if (KD_BASE < -Kd_offset) r_Kd <= KD_MIN; //if true, resulting Kd would be negative, force

to be one instead

 else if ((Kd_offset > 0) && KD_BASE + Kd_offset < 0) r_Kd <= KD_MAX; //if both true, Kd

overflowed

 else r_Kd <= KD_BASE + Kd_offset; //no over/underflow, normal addition

 //wait for start signal to calculate values

 if (i_start) state_delta <= s_CALC;

 else state_delta <= s_IDLE;

 end

 s_CALC: begin

 //state calculates e[n]-e[n-1]

 r_error_prev <= i_error;

 r_error_prev2 <= r_error_prev;

 r_error_prev3 <= r_error_prev2;

 r_error_prev4 <= r_error_prev3;

 //add additional shift registers here for slower derivatives

 r_difference <= (i_error - r_error_prev4);

 state_delta <= s_CALC_OVERFLOW;

 end

 s_CALC_OVERFLOW: begin

 //detects over/underflow in e[n]-e[n-1] calculation

 //probably not necessary given bit widths and input ranges but good for safety

 if ((i_error > 0 && r_error_prev < 0) && r_difference < 0) r_difference <= DIFFERENCE_MAX;

//overflow

 else if ((i_error < 0 && r_error_prev > 0) && r_difference > 0) r_difference <=

DIFFERENCE_MIN; //underflow

 //else keep difference the same

 state_delta <= s_CALC2;

 end

 s_CALC2: begin

 //multiplies difference by Kd and optionally by sampling_freq to get delta term

 r_del_raw <= r_Kd*r_difference;

 state_delta <= s_CALC_OVERFLOW2;

 end

 s_CALC_OVERFLOW2: begin

 //check if delta term under/over flows 8 bit size, flash done signal

 //Kd is always positive, only need to check if difference[n] is positive or negative

 if (r_difference > 0 && r_del_raw[overflow_bit] == 1) r_del_term <= DELTA_MAX;

 //difference[n] > 0, d[n] < 0, overflow occured, set to max

 else if (r_difference < 0 && r_del_raw[overflow_bit] == 0 && r_del_raw != 0) r_del_term <=

DELTA_MIN;

 //d[n] > 0, difference[n] < 0. underflowed, set to min

 else r_del_term <= r_del_raw[8:0]; //else keep as is

 r_d_done <= 1'b1;

 state_delta <= s_DONE;

 end

 s_DONE: begin

 r_d_done <= 1'b0;

 state_delta <= s_IDLE;

 end

 endcase

 end

 else begin

 r_difference <= 8'd0;

 r_error_prev <= 7'd0;

 r_del_raw <= 20'd0;

 r_Kd <= KD_BASE;

 r_d_done <= 1'b0;

 r_del_term <= 8'd0;

 state_delta <= s_IDLE;

 end

 end

 assign o_del_term = r_del_term;

 assign o_d_done = r_d_done;

endmodule

sum_term

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/20/2018 02:12:20 PM

// Design Name:

// Module Name: sum_term

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module sum_term(

 input clock,

 input signed [6:0] i_error,

 input i_start,

 input [9:0] i_Ks_tune,

 input i_reset,

 output o_s_done,

 output signed [8:0] o_s_term,

 output [9:0] test

);

 /*

 Uses a FSM to calculate the sum term of the PSD controller, by summing all previous error terms and

 multiplying by the sampling time a gain Ki. Because the sampling time 1/60 s is a constant, we have

ignored

 it in these calculations and implicitely integrated it into Ki. This means that, to compensate, the gain Ki

will

 need to be smaller than in a comparable implementation which does multiply by the sampling time.

 Input is a 7-bit signed integer i_error, ranging from -63 to 63. Output is limited to an 8-bit signed

integer

 ranging from -256 to 255. Limiting the output width prevents integral windup.Calculations that would

result in

 under/overflow are set to the most extreme values instead.

 Terminology:

 e[n]: error signal = i_error

 Ki: sum gain = r_Ki

 total[n]: output from summation before being multiplied by Ki = r_total

 s[n]: sum term = o_s_term

 Calculation:

 s[n] = Ki * (e[n]+s[n-1])

 */

 parameter s_IDLE = 0;

 parameter s_CALC = 1;

 parameter s_CALC_OVERFLOW = 2;

 parameter s_CALC2 = 3;

 parameter s_CALC_OVERFLOW2 = 4;

 parameter s_DONE = 5;

 reg [2:0] state_sum;

 //default value for Ks, range for Ks

 parameter signed KI_BASE = 6'd1;

 parameter signed KI_MAX = 6'd31;

 parameter signed KI_MIN = 6'd0;

 //Ks register, must be positive

 reg signed [5:0] r_Ki = KI_BASE;

 //tuing offset, added to r_Ki to adjust gain value without resynthesizing

 //change to a wire when possible

 wire signed [7:0] Ki_offset;

 parameter signed [5:0] TUNING_MAX = 6'd5;

 parameter signed [5:0] TUNING_MIN = -5;

 gain_tuner #(.OFFSET_BUFFER(51)) s_gain_tuner(.clock(clock), .i_reset(i_reset),.i_tune(i_Ks_tune),

.i_offset_min(TUNING_MIN), .i_offset_max(TUNING_MAX),

 .o_offset(Ki_offset));

 //summed total of all error inputs

 reg signed [8:0] r_total = 9'd0;

 reg signed [8:0] r_total_prev = 9'd0;

 parameter signed [8:0] TOTAL_MAX = 9'd255;

 parameter signed [8:0] TOTAL_MIN = -256;

 //raw multiplication value from Ki*total[n]. Large number of bits to prevent under/overflow. Will

check Nth bit

 //to determine if under/overflow occured, where N = bit size of sum term. N=8 by default.

 reg signed [20:0] r_sum_raw;

 parameter [10:0] overflow_bit = 11'd8;

 //actual sum term, total error multiplied by Ki

 reg signed [8:0] r_sum_term;

 parameter signed [8:0] SUM_MAX = 9'd255;

 parameter signed [8:0] SUM_MIN = -256;

 reg r_s_done;

 always @(posedge clock) begin

 if (!i_reset) begin

 case (state_sum)

 s_IDLE: begin

 //when idle, offset Ki with current value, wait for start signal

 //check if tuning will cause over/underflow

 if (KI_BASE < -Ki_offset) r_Ki <= KI_MIN; //if true, resulting Ki would be negative, force to be

one instead

 else if ((Ki_offset > 0) && KI_BASE + Ki_offset < 0) r_Ki <= KI_MAX; //if both true, Ki

overflowed

 else r_Ki <= KI_BASE + Ki_offset; //no over/underflow, normal addition

 //wait for start signal to calculate values

 if (i_start) state_sum <= s_CALC;

 else state_sum <= s_IDLE;

 end

 s_CALC: begin

 //state is only meant to calculate new total error value before moving to over/underflow

detection

 r_total_prev <= r_total;

 r_total <= r_total + i_error;

 state_sum <= s_CALC_OVERFLOW;

 end

 s_CALC_OVERFLOW: begin

 //state calculates if total over/underflowed, sets to max value otherwise

 //range limitations prevent integer windup

 if ((i_error > 0 && r_total_prev > 0) && r_total < 0) r_total <= TOTAL_MAX;// two positive

operands with negative sum, overflow occured

 else if ((i_error < 0 && r_total_prev < 0) && r_total > 0) r_total <= TOTAL_MIN; //2 negative

operands with positive sum, underflow occured

 //else, keep r_total the same

 //move to next state

 state_sum <= s_CALC2;

 end

 s_CALC2: begin

 //r_total is multiplied by sum gain Ki

 r_sum_raw <= r_Ki * r_total;

 state_sum <= s_CALC_OVERFLOW2;

 end

 s_CALC_OVERFLOW2: begin

 //check if sum term under/over flows 8 bit size, flash done signal

 //Ks is always positive, only need to check if total[n] is positive or negative

 if (r_total > 0 && r_sum_raw[overflow_bit] == 1) r_sum_term <= SUM_MAX; //total[n] > 0,

s[n] < 0, overflow occured, set to max

 else if (r_total < 0 && r_sum_raw[overflow_bit] == 0 && r_sum_raw != 0) r_sum_term <=

SUM_MIN; //s[n] > 0, total[n] < 0. underflowed, set to min

 else r_sum_term <= r_sum_raw[8:0];

 r_s_done <= 1'b1;

 state_sum <= s_DONE;

 end

 s_DONE: begin

 r_s_done <= 0;

 state_sum <= s_IDLE;

 end

 endcase

 end

 else begin

 r_total <= 8'd0;

 r_total_prev <= 8'd0;

 r_Ki <= KI_BASE;

 r_s_done <= 1'b0;

 r_sum_raw <= 0;

 r_sum_term <= 0;

 state_sum <= s_IDLE;

 end

 end

 assign o_s_done = r_s_done;

 assign o_s_term = r_sum_term;

endmodule

command_calc

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 11/20/2018 09:28:14 PM

// Design Name:

// Module Name: command_calc

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module command_calc(

 input clock,

 input i_start,

 input i_reset,

 input signed [8:0] i_prop,

 input signed [8:0] i_sum,

 input signed [8:0] i_delta,

 input signed [9:0] i_bias,

 output signed [10:0] o_command,

 output o_u_done

);

 /*

 This module sums the proportional, sum, delta, and bias terms to generate the command output u[n].

 */

 //parameter signed [9:0] U_MAX = 10'd511;

 //parameter signed [9:0] U_MIN = -512;

 parameter s_IDLE = 0;

 parameter s_CALC2 = 1;

 parameter s_CALC3 = 2;

 parameter s_DONE = 3;

 reg [3:0] state_command;

 reg signed [10:0] calc1, calc2, calc3;

 reg signed [10:0] r_bias_calc;

 reg r_command_done;

 always @(posedge clock) begin

 if (!i_reset) begin

 case(state_command)

 s_IDLE: begin

 r_command_done <= 0;

 if (i_start) begin

 calc1 <= i_prop + i_delta;

 r_bias_calc <= i_bias*10;

 state_command <= s_CALC2;

 end

 else state_command <= s_IDLE;

 end

 s_CALC2: begin

 calc2 <= calc1 + r_bias_calc;

 state_command <= s_IDLE;

 end

 s_CALC3: begin

 calc3 <= calc2 + i_sum;

 r_command_done <= 1;

 state_command <= s_DONE;

 end

 s_DONE: begin

 r_command_done <= 0;

 state_command <= s_IDLE;

 end

 default: state_command <= s_IDLE;

 endcase

 end

 else begin

 calc1 <= 0;

 calc2 <= 0;

 calc3 <= 0;

 r_command_done <= 0;

 state_command <= s_IDLE;

 end

 end

 assign o_command = calc2;

 assign o_u_done = r_command_done;

endmodule

gain_tuner

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/27/2018 03:43:31 PM

// Design Name:

// Module Name: gain_tuner

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module gain_tuner(

 input clock,

 input [9:0] i_tune,

 input i_reset,

 input signed [5:0] i_offset_min,

 input signed [5:0] i_offset_max,

 output signed [7:0] o_offset

);

 /*

 This module takes in the 10-bit ADC value from a gain tuning potentiometer and converts it into a

tuning offset value.

 This offset is then added to the hard-coded gain value so that it can be tuned without resynthesizing

Verilog. As input,

 the module takes clock and reset wires, the minimum and maximum gain offset values, and the 10-bit

ADC output.

 The module linearly scales the ADC value such that 0 on the ADC corresponds to the minimum gain

offset and 1023 corresponds

 to the maximum gain offset. Intermediate ADC values are converted to offset values using the

following function:

 offset = i_offset_min + floor((ADC+b) * d/1024)

 where d is the offset range d = (i_offset_max - i_offset_min) and b is a buffer value that allows the

system to reach the

 most extreme offset values without requiring an ADC value of exactly 0 or 1023. b is dependent on the

offset range, and an

 optimal b is calculated as follows:

 b = floor((((d+1)/d)*1024 - 1023)/2)

 b is not calculated in the program and is instead calculated by the user and entered as a parameter, to

avoid the use of division.

 When changing the minimum and maximum offset values, a different b will have to be calculated each

time. By default it is set

 to 25, which is a healthy value for many offset ranges.

 The calculated offset is added to the gain in the appropriate proportional, sum,or delta term module.

Instead of dividing by 1024

 and flooring, the Verilog simply right shifts by 10 bits. A register chain is used so that the calculation

can be completed without

 propagation delay errors.

 */

 reg signed [6:0] r_offset_range; //d in equations above

 reg signed [7:0] r_offset;

 reg signed [10:0] r_tune;

 //registers for proper clocking

 reg signed [11:0] r1;

 reg signed [17:0] r2;

 reg signed [7:0] r3;

 //provides a buffer so that the maximum offset can be hit without an ADC output of exactly 1023

 parameter signed [9:0] OFFSET_BUFFER = 8'd25; //b

 //use equation for optimal buffer defined above

 //default set to 25, should be greater than 0

 always @(posedge clock) begin

 if (!i_reset) begin

 r_offset_range <= i_offset_max - i_offset_min;

 r_tune <= {1'b0, ~i_tune};//because the ADC output is unsigned, converts to positive signed

 //inversion of i_tune means that turning potentiometer CW increases value instead of opposite

 r1 <= r_tune + OFFSET_BUFFER;

 r2 <= r1 * r_offset_range;

 r3 <= r2>>4'd10;

 r_offset <= i_offset_min + r3;

 end

 else begin

 r_offset <= 0;

 r1 <= 0;

 r2 <= 0;

 r3 <= 0;

 end

 end

 assign o_offset = r_offset;

endmodule

pwm_generator

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/26/2018 03:50:14 PM

// Design Name:

// Module Name: pwm_generator

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module pwm_generator(

 input clock,

 input signed [10:0] i_control,

 input i_reset,

 output o_pwm

);

 /*

 This module creates a PWM signal switching betwen 0 to 3.3 volts. The frequency of the signal is

defined in the PWM_FREQ parameter.

 The signal implementation is based on a pair of counters. r_counter_PWM increments up to

COMMAND_MAX-1 = 765-1 = 764. COMMAND_MAX

 is the control signal input value that corresponds to a 100% duty cycle PWM. By default it is set to

765, the maximum possible

 value of the control signal (occurs when the proportional, sum, and delta modules each output their

maximum value of 255. 255*3 = 765).

 Lowering or increasing this value will change how easily the controller output is able to generate a

large duty cycle PWM.

 r_counter_PWM increments every (T_PWM)/(COMMAND_MAX) seconds, where T_PWM is the

period of the PWM signal, by default set to

 1/1000hz.This corresponds to approximately CLK_MAX = 85 clock cycles when the clock is running at

65mhz. The equations used to

 calculate CLK_MAX are as follows, where T_65 is the period of the 65mhz clock.

 CLK_MAX = (T_PWM/COMMAND_MAX)/(T_65) = (65mhz)/(PWM_FREQ*COMMAND_MAX) =

84.967 with default values

 Rounding CLK_MAX to 85 gives the parameter value. r_counter_PWM is set to increment every

CLK_MAX clock cycles, creating a PWM

 frequency of approximately 1khz. r_counter_clk keeps track of these CLK_MAX clock cycles, resetting

at 85. If r_counter_PWM is less than the

 control input, the PWM signal will be high. Otherwise it will be low. This means that a negative

controller output or

 a controller output of 0 will give a 0% duty cycle PWM. A controller output of COMMAND_MAX/2 is

approximately a 50% duty cycle, and a

 controller output of COMMAND_MAX is a 100% duty cycle. r_counter_PWM resets at

COMMAND_MAX-1.

 Because the value of CLK_MAX is hard coded (to avoid completing a division operation), CHANGING

COMMAND_MAX REQUIRES RECOMPUTING THE

 VALUE OF CLK_MAX.

 */

 //set up PWM paramters/counters

 parameter [10:0] PWM_FREQ = 10'd1000; //frequency of PWM signal

 parameter signed [11:0] COMMAND_MAX = 10'd600; //command signal value that corresponds to

100% duty cycle

 parameter [8:0] CLK_MAX = 9'd108; //(65mhz/(PWM_FREQ*COMMAND_MAX), number of clock

cycles in T_PWM/COMMAND_MAX seconds

 //CLK_MAX is the number of clock cycles of the 65mhz clock for counter PWM to increment once

 reg signed [11:0] r_counter_PWM;

 reg [6:0] r_counter_clk;

 reg r_PWM;

 always @(posedge clock) begin

 if (!i_reset) begin

 //if (i_control > 0) begin

 if (r_counter_clk == (CLK_MAX)) begin

 r_counter_PWM <= r_counter_PWM + 1;

 r_counter_clk <= 7'd0;

 end

 else r_counter_clk <= r_counter_clk + 1;

 if (r_counter_PWM == COMMAND_MAX-1) r_counter_PWM <= 10'd0;

 if (r_counter_PWM < i_control && i_control > 0) r_PWM <= 1'b1;

 else r_PWM <= 1'b0;

 //end

 //else r_PWM <= 0;

 end

 else begin

 r_counter_PWM <= 10'd0;

 r_counter_clk <= 7'b0;

 r_PWM <= 1'b0;

 end

 end

 assign o_pwm = r_PWM;

endmodule

ADC

`timescale 1ns / 1ps

//

// Company: MIT

// Engineer: Raul Largaespada

//

// Create Date: 11/29/2018 05:01:11 PM

// Design Name:

// Module Name: ADC

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module ADC(input sysclk,

 input ADC_start,

 /*

 input [1:0]btn, // Button inputs

 output [1:0]led, // Led outputs

 output led0_b, //blue led output

 output led0_g, //green led output

 output led0_r, //red led output

 inout [3:0]g, //inouts (see xdc file)

 */

 input miso,

 output mosi, sck, cs,

 output [9:0] o_channel0,

 output [9:0] o_channel1,

 output [9:0] o_channel2,

 output [9:0] o_channel3,

 output [9:0] o_channel4

 //inout [1:0]pio

);

 /*

 This module uses a FSM to read inputs and outputs from an MCP3008 ADC. It is based on code

originally written by Joe Steinmeyer (jodalyst) and

 used with his permission. The FSM starts by reading channel 0 of the ADC, and reads channels 1, 2,

and 3 before looping back to IDLE. The

 frequency of the input clock is meant to be around 3MHz, a good value for an MCP3008 running at 5V

VDD. Large sections of commented out code

 are unused leftovers from Joe's original code.

 */

 //wire cs, mosi,miso,sck; //chip select, si, so, sck

 parameter commwidth = 17;

 //assign g[3:0] = {sck,miso,mosi,cs}; //link pins to wires with understandable names

 //assign g[3:0] = {cs, mosi, miso,sck};

 /*

 //some random heartbeat for LEDs to know it is uploading

 assign led[1] = sysclk;

 //led flashing "heartbeat" code...

 reg [23:0] r;

 always @(posedge sysclk)

 begin

 if(btn[0] == 1)

 r <= 0;

 else

 r <= r + 1;

 //if (&r) brightness<=8'd127;

 end

 assign led0_r =1'b1; //r[20]?1'b1:1'b0; //6hz 25% pwm

 assign led0_g =1'b1; //r[21]?1'b1:1'b0; //12hz

 assign led0_b =r[22]?1'b1:1'b0; //3Hz

 assign led[0] = r[23];

 //assign pio[8] = r[23];

 //done

 reg [7:0] brightness;

 //dimmer dm(.clock(sysclk), .brightness(brightness), .driver(pio[0]));

 assign pio[1] = 1'b0;

 */

 //values from first four channels

 reg [9:0] r_channel0;

 reg [9:0] r_channel1;

 reg [9:0] r_channel2;

 reg [9:0] r_channel3;

 reg [9:0] r_channel4;

 reg [2:0] r_channel_select = 3'b000;

 //wires/regs for interacting with spi_master

 wire [commwidth-1:0] data_received;

 wire new_data; //new data is present!

 wire spi_busy;

 reg trigger; //used to trigger spi;

 reg [2:0] selection; //which device to pick

 reg [15:0] bytes_to_send; //number of bytes to send

 reg [commwidth-1:0] data_to_send; //data to send out

 reg rst;

 wire [7:0] chip_selects; ///chip selects

 assign cs = chip_selects[0]; //tft chip select

 spi_master #(.INOUTWIDTH(commwidth))

spm(.sysclk(sysclk),.ss(selection),.data_to_send(data_to_send),

 .how_many_bytes(bytes_to_send), .new_data(new_data), .cs(chip_selects), .data_in(data_received),

 .mosi(mosi),

 .miso(miso),

 .sck(sck),

 .rst(rst),

 .busy(spi_busy),

 .trigger(trigger));

 reg [3:0] state;

 localparam IDLE = 4'h0;

 localparam T1 = 4'h1;

 localparam RW1 = 4'h2;

 localparam READ_NEXT_CHANNEL = 4'h3;

 /*

 localparam READ1 = 4'h3;

 localparam START2 = 4'h4;

 localparam RUN2 = 4'h5;

 localparam PAUSE2 = 4'h6;

 localparam START3 = 4'h7;

 localparam RUN3 = 4'h8;

 localparam PAUSE3 = 4'h9;

 localparam START4 = 4'hA;

 localparam RUN4 = 4'hB;

 localparam PAUSE4 = 4'hC;

 */

 always @(posedge sysclk)begin

 case(state)

 IDLE: begin

 if(ADC_start)begin

 //set up for reading channel 0

 r_channel_select <= 3'b000; //start at channel 0

 rst <= 1'b0;

 selection <= 3'b0; //pick device 0

 bytes_to_send <= 16'd1; //send two bytes and read one byte

 data_to_send <= 17'b11_000_0000_0000_0000; //start, SGL, ch0

 state <= T1;

 end else begin

 trigger <= 1'b0;

 r_channel_select <= 3'b000; //start at channel 0

 state <= IDLE;

 end

 end

 //trigger SPI data read

 T1: begin

 trigger<=1'b1;

 if (~new_data && spi_busy) begin

 state <= RW1;

 end

 //state <= RW1;

 end

 RW1:begin

 trigger <=1'b0;

 if (new_data)begin

 case (r_channel_select)

 //load data into current channel, set up to read next channel

 0: begin

 r_channel0 <= data_received[9:0];

 r_channel_select <= 3'b001;

 state <= READ_NEXT_CHANNEL;

 end

 1: begin

 r_channel1 <= data_received[9:0];

 r_channel_select <= 3'b010;

 state <= READ_NEXT_CHANNEL;

 end

 2: begin

 r_channel2 <= data_received[9:0];

 r_channel_select <= 3'b011;

 state <= READ_NEXT_CHANNEL;

 end

 3: begin

 r_channel3 <= data_received[9:0];

 r_channel_select <= 3'b100;

 state <= READ_NEXT_CHANNEL;

 end

 4: begin

 r_channel4 <= data_received[9:0];

 r_channel_select <= 3'b00;//all five channels read, go back to idle

 state <= IDLE;

 end

 default:

 state <= IDLE; //if there's a weird error just go back to idle

 endcase

 end

 end

 //set up to read channel 1, 2, or 3

 READ_NEXT_CHANNEL: begin

 rst <= 1'b0;

 selection <= 3'b0; //pick device 0

 bytes_to_send <= 16'd1; //send two bytes and read one byte

 case (r_channel_select)

 0:

 data_to_send <= 17'b11_000_0000_0000_0000; //start, SGL, ch0, in this state this case

should never occur since we're reading channel 1/2/3

 1:

 data_to_send <= 17'b11_001_0000_0000_0000; //start, SGL, ch1

 2:

 data_to_send <= 17'b11_010_0000_0000_0000; //start, SGL, ch2

 3:

 data_to_send <= 17'b11_011_0000_0000_0000; //start, SGL, ch3

 4:

 data_to_send <= 17'b11_100_0000_0000_0000; //start, SGL, ch4

 default:

 state <= IDLE; //if there's a weird error just go back to idle

 endcase

 state <= T1;

 end

 default:

 state <= IDLE;

 endcase

 end

 assign o_channel0 = r_channel0;

 assign o_channel1 = r_channel1;

 assign o_channel2 = r_channel2;

 assign o_channel3 = r_channel3;

 assign o_channel4 = r_channel4;

 ///logic analyzer below:

 //ila_0 myila(.clk(sysclk),.probe0(sck),

 // .probe1(si), .probe2(so),.probe3(ccs),

 // .probe4(new_data), .probe5(trigger));

endmodule

spi_master

`timescale 1ns / 1ps

//

// Company: jodalyst

// Engineer: jodalyst

//

// Create Date: 10/06/2017 07:38:04 PM

// Design Name: SPI_master module for MCP3008 (experimental)

// Module Name: spi_master

// Project Name: SPI_demo

// Target Devices: Artix-7 on CMOD A7-35T by Digilent

// Tool Versions: Vivado

// Description:

//

// Dependencies: On CMOD by Digilent this thing needs a faster clock than what it comes with

// in order to be able to run in worthwhile SPI clock domains, so you'll need to use a clock

// multiplier from

//

// Revision:

// Revision 0.03 core functionality working

// Additional Comments:

//

//

//Version 2...you need your sysclk to be 2 times SCLK speed!

module spi_master #(parameter INOUTWIDTH = 24)

 (input sysclk,

 input [2:0] ss, //for selecting slaves from input side

 input [INOUTWIDTH-1:0] data_to_send,

 input [15:0] how_many_bytes, //if we want repeated reading...or writing..how long of a continuous

are we going to deal with

 input miso,

 output reg sck,

 output reg mosi,

 output reg [7:0] cs, //for selecting slaves on output side (one hot wiring)

 output reg [INOUTWIDTH-1:0] data_in,

 output reg busy,

 output reg new_data,

 output reg load,

 input rst,

 input trigger //active high

);

 reg [INOUTWIDTH-1:0] buffer_in; //buffer for data to be received from slave (and sent "out" to user)

 reg [INOUTWIDTH-1:0] buffer_out; //"buffer for data to be sent to slave

 //output reg [7:0] buffer_in; //buffer for data to be received from slave (and sent "out" to user)

 localparam IDLE = 4'h0,

 PRERUN1 = 4'h1,

 PRERUN2 = 4'h2,

 RUN = 4'h3,

 FINISH = 4'h4;

 reg [15:0] bytes_to_run;

 reg [15:0] byte_count;

 reg [4:0] state;

 reg [8:0] count; //allows supporting INOUTWIDTH of up to 256 bits

 always @(posedge sysclk) begin

 if (rst)begin

 state <= IDLE;//simply return to idle..abandon all hope

 end else begin

 case (state)

 IDLE: begin

 sck <= 1'b0; //always assume we are this in IDLE!

 if (trigger)begin

 buffer_out <= data_to_send;

 buffer_in<= 8'b0;

 bytes_to_run <= how_many_bytes;

 cs <= ~(8'b1<<(ss)); //pull sel down, leave others up

 data_in <= 0; //empty output register

 count <= 8'b0; //reset count

 state <= PRERUN1; //move onto PRERUN

 busy <= 1'b1;

 new_data <= 1'b0;

 byte_count <= 16'b0;

 load <=1'b0;

 end else begin

 cs <= ~(8'b0); //all high in rest state

 mosi <= 1'b0; //all low in rest state

 busy <= 1'b0;//low for busy

 load <= 1;

 new_data <= 1'b0;

 state <= IDLE;

 //and remain in IDLE

 end

 end

 PRERUN1: begin

 sck <= 1'b0; //register

 buffer_out <= {buffer_out[INOUTWIDTH-2:0],1'b0}; //push new data in now that both

sides have measured

 mosi <= buffer_out[INOUTWIDTH-1]; //new value on mosi

 count <= count +1;

 state <= PRERUN2;

 end

 PRERUN2: begin

 sck <= 1'b1;

 state <= RUN;

 end

 RUN: begin

 if (sck)begin //about to be on rising edge!

 buffer_in <= {buffer_in[INOUTWIDTH-1:0],miso};//take a measurement and shove in

 if (count == INOUTWIDTH)begin //we've read 8 bits in...time to decide are we done or

keep goin!

 new_data <= 1'b1; //set the new data flag!

 data_in <= {buffer_in[INOUTWIDTH-1:0],miso}; //load the data_in with what is in

buffer_in (from the slave)

 if (byte_count +1'b1 == bytes_to_run)begin //we done

 sck <= 1'b0; //clock can shut off.

 state <= FINISH; //we've run the number of bits we needed!

 end

 else begin

 buffer_out <= {data_to_send[INOUTWIDTH-2:0],1'b0}; //grab fresh set of data

 mosi <= data_to_send[INOUTWIDTH-1]; //new value on mosi

 count <= 8'b1;

 byte_count <= byte_count +1'b1; //one more byte!

 state <= RUN; //not needed, but for clarity

 sck <= ~sck; //keep going, child.

 end

 end

 else begin

 buffer_out <= {buffer_out[INOUTWIDTH-2:0],1'b0}; //push new data in now that

both sides have measured

 mosi <= buffer_out[INOUTWIDTH-1]; //new value on mosi

 sck <= ~sck; //keep clock on

 count <= count +1;

 new_data <= 1'b0; //deassert new_data (usually keeps at 0...coming from a

 end

 end

 else begin

 sck= ~sck;

 end

 end

 FINISH: begin

 cs <= ~(8'b0);

 state <= IDLE;

 end

 default: begin

 state <= IDLE;

 end

 endcase

 end

 end

endmodule

//minimal only in charge of

/*

module spi_write_1_byte(input clock, input

 output reg dev_trigger,

 output reg done);

 reg [3:0] state;

 localparam IDLE = 4'h0,

 localparam START1 = 4'h1;

 localparam RUN1

 always @(posedge fastclk)begin

 if (clock_25mhz)begin

 case(state)

 IDLE: begin

 dc <= 1'b1;

 trigger <= 1'b0;

 rst <=1 1'b0;

 if(btn[1] == 1)begin

 selection <= 3'b0; //pick device 0

 bytes_to_send <= 16'b1; //send one byte

 data_to_send <= SWRESET;

 state <= START1;

 end

 START1: begin

 trigger<=1'b1;

 state <= RUN1

 pause_counter <= 24'b0;

 end

 RUN1:begin

 trigger <=1'b0;

 if (data

 end

 PAUSE1:begin

 if (&pause_counter)begin

 state <= START2;

 data_to_send <= SLPOUT;

 end else begin

 pause_counter <= pause_counter +1;

 end

 end

 START2: begin

 trigger <=1 1'b1;

 state <= RUN2;

 endcase

 end

 end

endmodule

*/

IR_sensor

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12/08/2018 12:08:43 PM

// Design Name:

// Module Name: IR_Sensor

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module IR_Sensor(

 input clock,

 input [9:0] i_IR,

 output [5:0] o_height

);

 /*

 Module takes the 10 bit IR sensor value from the ADC and converts it to a CM hieght, and then to the

appropriate

 6 bit reference signal for the controller.

 */

 parameter signed alpha1 = -6;

 parameter signed alpha2 = -11;

 parameter signed alpha3 = -27;

 parameter signed alpha4 = -57;

 parameter signed gamma1 = 34;

 parameter signed gamma2 = 47;

 parameter signed gamma3 = 77;

 parameter signed gamma4 = 118;

 reg signed [11:0] r_IR_signed;

 reg signed [16:0] r_d_calc1;//times alpha

 reg signed [8:0] r_d_calc2;//divided by 256

 reg signed [8:0] r_d_calc3;//add gamma

 reg signed [8:0] r_height_cm;//subtract from 60

 reg [8:0] r_height_ref1;

 reg [16:0] r_height_ref2;

 reg [5:0] r_height_ref3;

 parameter beta = 234;

 always @(posedge clock) begin

 r_IR_signed <= {1'b0, i_IR};

 if (r_IR_signed >= 10'd669) begin

 r_d_calc1 <= r_IR_signed * alpha1;

 r_d_calc2 <= r_d_calc1>>8;

 r_d_calc3 <= r_d_calc2 + gamma1;//positive after this addition

 r_height_cm <= 60 - r_d_calc3;

 end

 else if (r_IR_signed < 10'd669 && r_IR_signed >= 10'd481) begin

 r_d_calc1 <= r_IR_signed * alpha2;

 r_d_calc2 <= r_d_calc1>>8;

 r_d_calc3 <= r_d_calc2 + gamma2;//positive after this addition

 r_height_cm <= 60 - r_d_calc3;

 end

 else if (r_IR_signed < 10'd481 && r_IR_signed >= 10'd355) begin

 r_d_calc1 <= r_IR_signed * alpha3;

 r_d_calc2 <= r_d_calc1>>8;

 r_d_calc3 <= r_d_calc2 + gamma3;//positive after this addition

 r_height_cm <= 60 - r_d_calc3;

 end

 else if (r_IR_signed < 10'd355) begin

 r_d_calc1 <= r_IR_signed * alpha4;

 r_d_calc2 <= r_d_calc1>>8;

 r_d_calc3 <= r_d_calc2 + gamma4;//positive after this addition

 r_height_cm <= 60 - r_d_calc3;

 end

 //at this point we have the height in cm at r_height cm

 //converting 10-50 cm height to 6 bit reference signal

 r_height_ref1 <= r_height_cm[7:0] - 15;//

 r_height_ref2 <= r_height_ref1 * beta;

 r_height_ref3 <= r_height_ref2>>7;

 end

 assign o_height = r_height_ref3;

endmodule

