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Project Introduction 
 

We wanted to implement a project that combined both audio processing and 
controls, therefore we will be building an audio-controlled levitator. The proposed system 
would take in audio information via the on board microphone of the Nexys 4DDR. The 
main frequency of this audio signal will then be extracted via the Fast Fourier Transform 
(FFT) and be used as the reference signal to a PSD control system. The levitator will 
consist of a ping-pong ball like object that will be placed inside an acrylic tower. A fan at 
the bottom of the tower will act as the actuator moving the ball up and down, while a IR 
sensor placed at the top of the cylinder will provide measurements on the current position 
of the ball.  

 
The system will operate under two modes: Continuous and Discrete. In continuous 

mode the ping pong ball will respond continuously to the pitch being detected, while in 
discrete mode a new reference is only sent in response to a button press. The VGA display 
will also be used to provide information about the state of the system, including: FFT 
histogram, real-time tracking of ping bong ball relative to reference point, peak frequency, 
and visual representation of incoming audio.  

 
 

1. Audio Processing (David) 
 
 1.1 Microphone Interface 

 
 The Nexys 4 DDR’s on board microphone produces a PDM on the rising edge of a 
2.4 Mhz clock. This posed the challenge of taking a 1-bit signal and converting to a bit 
length that allows for appropriate processing. Overall, this task was the most difficult to 
overcome and was the biggest time sink in the frequency detection aspect of the project. 
My initial implementation used an 8-bit accumulator over 255 samples in order to take 
advantage of the full 8-bit range and a final sampling rate of 8.7 kHz. However, when I 
proceeded to verify the functionality of this by outputting the values directly to the audio 
out via a PWM module, the quality of sound was severely distorted and noisy. I then 
attempted increasing the bit size and increasing the final sampling rate by interleaving 
multiple accumulators of varying sizes. After achieving little improvement in audio 
quality, I changed my initial design to a popular implementation of a moving average with 
a decimation factor done in hardware commonly referred to as a Cascaded Integrator 
Comb filter.  
 



 
Figure 1. Block diagram of 3 stage CIC filter with decimation ration R. 
 

 
Furthermore, the literature described that pairing a CIC with a low pass filter gave the 
best results. The design that was ultimately used in the final version consisted of the 
following: a 5-stage CIC with a decimation ratio of 15, followed by a 16 cycle accumulator 
that serves as both a low pass filter, method for increasing the bit depth, and to further 
decimate the signal. 
 
 
Audio Interface:  
(104 MHz) 
 In order to maintain a clean interface between the raw PDM signal and the valid 
PCM data that would be used by the FFT IP core this module was implemented. 
Furthermore, this separation allowed for a thorough isolated testing of the microphone 
prior to integration with the rest of the system. Within this module, a 2.4 MHz clock was 
generated with the use of counter as well as an enable signal at the rising edge of each 
clock cycle. Before being sent to the first stage of processing within the CIC the PDM data 
was converted into signed 8-bit data with 0 corresponding to -1 and 1 with +1. This was a 
simple way to increase the bit depth and facilitate the further calculations that needed to 
be done. This data was then sent to the CIC and finally to OverSampler16 before being 
output to the next stage of processing. 
  
CIC:  
(104 MHz) 
 This module was designed with a variable decimation ratio. This variability allowed 
for testing the efficiency of various decimation ratios without the necessity of 
resynthesizing. The samples were read using an enable signal at 2.4MHz and a counter 
was used to generate the output frequency. 
 
OverSampler16:  
(104 MHZ) 
 This module was obtained from the FFT Demo provided as an example, and was 
used as the accumulator mentioned above. This module accumulated over 16 clock cycle 
providing an effective decrease in sampling rate by a factor of 16. This was also the final 
stage of audio processing outputting an unsigned 14-bit audio sample at 10kHz. 
 
 

1.2 Pitch Detection 
 
 The ultimate goal of the project was to control the movement of the ping pong ball 
by varying the pitch being vocalized. In order to do this, we decided to use the FFT IP core 



provided by Xilinx. As data was outputted by AudioInterface, it was first stored in a 
circular 4096x16 BRAM. We then used the Bram2FFT module provided by the FFT Demo 
to interface with the FFT IP core. The real outputs of the FFT were stored in a second 
BRAM of identical size, however this BRAM ran at to clocks. The FFT wrote into the 
BRAM at a 104MHz clock and the data was read with a 65Mhz clock. Both clocks were 
generated using the Clock Wizard IP core. This data was then sent to Frequency 
Detection, where the values outputted by the FFT were compared to a threshold and if the 
value exceeded the threshold the associated address was stored. One thing to note is that 
only the positive values were sent forward to the frequency detection stage, while any 
negative value was set to zero. This prevented some of the noise from being propagated 
since a lot of it was contained to negative values 
 
 
 

 
Figure 2. Overview from Microphone to Reference Signal Generator 

 
FFT: 
(104MHz) 

 When picking the parameters for the FFT IP core we took into consideration the 
frequency resolution, the size of the core, and what our needs would be. In order to obtain 
high frequency resolution, we chose a 4096 point FFT and used the Pipelined, Streaming 
I/O option. With these parameters we could avoid the complications of verifying 
additional enabling signals and have a quicker and continuous response to drive the 
control.  The optional scaling parameter of the FFT was implemented and controlled via 
the on board switches. This allowed for real time adjustments to the size and sensitivity 
of the FFT in response to changes in ambient noise levels. The output of this core was a 
signed 16 bit values at 104 MHz along with its associated address number which 
corresponds to the bin number of the FFT.  



 
 Originally, the method we intended on using the FFT demo block design to perform 
the FFT. However, the initial attempts did not output a reasonable signal. This was seen 
in both the Integrated Logic Analyzer (ILA) and the graphic created by the histogram 
module. The FFT outputs were very small and showed no structure even in the presence 
of a pure tone being played into the mic. Instead of trying to debug the parts of the code 
that wasn’t working it was decided that simply implementing the FFT IP core ourselves 
would be more time efficient. Therefore, instead of taking the magnitude of the FFT 
output like the Demo did, we only used the real output of the FFT core. This was 
determined to be sufficient by playing a pure tone into the microphone and analyzing the 
output of the FFT with the ILA. By matching the maximum FFT value to the appropriate 
address number and then performing the arithmetic to retrieve the frequency value in Hz, 
I was able to verify that the FFT was functioning properly and was sufficient for our 
application. 
 
Freq_Det:  
(65 MHz) 
 After analyzing the output of the FFT on the ILA it became clear that with some 
scaling and tuning the most prominent frequency being heard by the microphone could 
easily be extracted by applying a threshold and storing the address of whichever FFT value 
last crossed the threshold. One other detail that was also considered when applying the 
threshold was that the first 50 bins of the FFT were consistently noisy and non-
responsive. Therefore, in order to provide stability to the system only bins greater than 
50 were compared to the threshold.  
  

The accuracy of this method was further tested by creating a ROM that linked the 
bin number outputted by the FFT with a frequency in Hz that would then be display on 
the hex display via the display_8hex module. In this manner a variety of pure tones were 
played with a tone generator app and compared to the value on the display. The output 
was consistently within 2Hz accuracy for frequency between 0.12 kHz and 1.3kHz. 
 
 
Bram_to_fft:  
(104 MHz) 
 This module was not altered or repurposed from the original FFT Demo. It 
contains the logic to communicate with the FFT core to send data at valid moments. 
  



 
 

Figure 3. Example Hex display where first 2 digits are the received reference, followed by the sent, and detected 
reference. 

 
 
1.3 Thoughts 

Although I ultimately arrived at a design that provided usable PCM audio data, I 
was left unsure how much of it was entirely necessary. Since I did not implement the FFT 
until after the audio was functional, according to my ears, I do not know if the frequency 
would have been able to be extracted with some of my earlier iterations. However, on the 
opposite side of this argument, I felt that there was still much to be done in acquiring a 
clean audio signal. Resources online pointed towards much more complex techniques 
that I did not have the time to explore.  

 

2. Reference Signal (David) 
  

During initial design considerations it was brought up that the controller might not 
respond well to a direct input from the detected frequency due to noise. And furthermore, 
a frequency in Hz or a bin number would need to be translated to physical description of 
the position of the ping pong ball. Therefore, the final implementation would output a 6-
bit reference signal to the controller in 2 modes: Continuous and Discrete. 

 
In continuous mode a reference signal was continuously sent in response to 

detected frequencies from 163 Hz to 314 Hz which is approximately one octave. Any 
frequency below 163Hz output a 0 and any above 314Hz output the max, 63. This range 
was chosen because it is a range that is easily swept in one breath and would work the 
best for a demonstration. In discrete mode there are two key differences, the detection 
range is from 163Hz to 478Hz, and the reference signal corresponding would only be sent 



on the rising edge of a button press. For ease of use and testing three values were displayed 
on the hex display. The detected reference signal, the sent signal, and the signal received 
by the controller. 

 
One last feature is the option for the user to alter between the pitch generated 

reference signal and a direct switch input. Specifically switch 6 toggled the use of the 
switches 0 to 5 as the reference signal to the controller. 
 

 ReferenceGen: 
 (65 MHz) 

 This module contains the arithmetic conversion from frequency to reference. It 
also houses the two modes of operations through a switch. 

 
3. Graphics (David) 
 
 The VGA display can be classified into 3 sections: real-time audio data display, FFT 
histogram, and system state and dynamics.  The top half of the screen is dedicated to 
displaying the real-time audio signal being generated by microphone interface. This 
provides a measure to the user of the ambient noise being picked up by the mic and also 
aided in verifying the functionality of the mic. The bottom of the screen is made up of a 
red histogram of the FFT output. Depending on the scaling, is how sensitive the FFT 
histogram will be to sound. When tuned properly only prominent frequencies are visible.  
 

                       
 
Figure 4. Display in discrete mode. 

 
Each mode displays a different range of frequency range as is evident by the 

position of the blue bars. The bar to the left corresponds to the lowest height the ping 
pong ball can go while the right bar corresponds to the highest point. The shorter green 



bar appears over the last point above the histogram that was greater than the threshold. 
The relationship of the green bar between the blue bars is indicative of the relative 
location that that specific frequency is setting. Finally, the purple square above the green 
bar is indicating the relative position of the ping pong ball. This was done by using the 
output of the IR sensor as the input to the position of the square. However, this 6-bit 
output of the IR sensor had to be properly scaled to match the correct location on the 
screen. 

 

                             
 
Figure 5. Display in continuous mode. 

 
 
  
 Sound: 
 (65 MHz) 

 This module receives the output of the BRAM storing the incoming audio and 
scales it to be placed on the upper half of the screen. 

 
 Freq_Disp:  
 (65 Mhz) 

 This module takes in the detected frequency and performs the appropriate scaling 
to place the bar in the correct location according to the mode the system is currently in. 

 
 Histogram: 
 (65 Mhz)  

 This module uses the FFT output to generate a histogram on the VGA display. This 
was taken from the FFT demo provided and remained unchanged. 
 

 



3. Implementation of Levitator Hardware and Closed-

Loop Discrete PD Control (Raul) 

System Overview 

 

Figure X: block diagram of PD control loop with additional sum term. Reference signal r[n] is generated from audio 

pitch detection circuitry.  

 



Figure X: The completed system. 

This system follows a standard control loop architecture with proportional and 

delta terms for the discrete PD controller. The height signal h[n] is subtracted from the 

reference signal r[n] to form the error signal e[n], which serves as the main input to the 

controller. The proportional and delta terms are generated from the error signal and are 

summed with an additional constant bias term and a sum term that functioned but was 

not used in the final implementation. Each term can be tuned using a 10kΩ potentiometer 

connected to an analog-to-digital converter.  

The controller output is then turned into a PWM duty cycle, which is fed into the 

actuator, a centrifugal fan. The PWM signal controls the fan’s connection to ground, 

rapidly activating and deactivating it such that the fan spins at a particular rate. The fan 

is powered by a 12V DC power supply. The fan’s spinning causes the levitated ping-pong 

ball to hover or rise. The height of the ball is tracked using an IR analog distance sensor. 

The output of the sensor is fed into the ADC before being fed back into the controller and 

subtracted from the reference signal. 

Hardware Implementation 

Circuitry and Sensor 

 

Figure Y: circuit schematic showing the connections to the analog-to-digital converter and the actuator control 

hardware. 

 The circuitry was split into two sections connected to a common ground. The upper 

section lays out the various connections to the MCP3008 analog-to-digital converter. The 

MCP3008, the Sharp GP2Y0A60SZLF IR analog distance sensor, and the four tuning 

potentiometers are all powered by a 3.3V rail connected to the Nexys 4 FPGA. The 

potentiometers follow the standard variable resistor voltage divider architecture with a 

maximum resistance of 10kΩ, and each is fed to a different input channel on the 

MCP3008. The IR distance sensor features two pin outputs, the enable pin which is 



unused, and the OUT pin which outputs the analog voltage reading from the sensor and 

is connected to channel 0 on the MCP3008. 

 The MCP3008 VDD and VREF pins are connected to the 3.3 volt rail and the analog 

ground (AGND) and digital ground (DGND) pins are both connected to the same ground 

rail. The SPI interface wires are all connected to the FPGA. CLK, MOSI, and CS are 

connected to FPGA output pins and MISO is connected to an input pin. The MISO pin is 

connected to ground via a 4.7kΩ pulldown resistor to ensure consistent readings. The 

3.3V and ground rails are also connected to a 47μF bypass capacitor.  

 The fan control part of the circuit is much smaller and consists of a 12V rail 

connected to the motor which controls the fan. The motor’s connection to ground is 

through a TIP1206 Darlington pair of transistors, and this connection is controlled by a 

PWM signal from the FPGA running through a 1kΩ resistor.  

Plant and Actuators 

 

Figure X: The fan slotted into the base part, the fan’s connection to the tower, and the fan assembled with both pieces. 



 The system relied on a 12V centrifugal fan to generate lift for the ping-pong ball. 

The fan was linked to the levitator tower and fixed such that the lift force was 

perpendicular to the ground using 3D-printed hardware. The levitator tower itself was 

constructed from laser-cut acrylic and held together using tape. At the top of the levitator 

tower the IR analog distance sensor was attached. This was powered using the same 3.3V 

rail that powered the rest of the circuitry.  

 The 3D-printed base consisted of a block with a semicircular section cut out to 

accommodate the fan’s chassis, with additional wedges cut out at specific angles. These 

wedges were meant to anchor the ridges used to hold the fan together and were set at 

angles of 64° and 26° offset from the vertical such that the fan’s exhaust vent would point 

perpendicular to the ground. The angle of these additional wedges was determined by 

carefully measuring the fan’s diameter and the location and size of the attachment ridges 

and using a protractor to determine each ridge’s offset from the vertical, adding additional 

size for tolerance.  

 The exhaust vent was connected to the tower via a 3D-printed adapter that 

matched the circular diameter of the exhaust vent to the side length of the square tower. 

An extra slot, visible in the top right image above, was cut out to accommodate an extra 

outcropping on the fan. 

System Modeling 

 To model the system, we used a simple difference equation approach where the 

current position is the sum of the previous position plus the previous velocity times the 

timestep, and so forth. Extending this approach to acceleration we end with the final 

equations 

𝑥[𝑛] = 𝑥[𝑛 − 1] + ∆𝑡 ∙ 𝑣[𝑛 − 1] + ∆t2 ∙ 𝑎[𝑛 − 2] 

𝑎[𝑛] =
𝛾 ∙ 𝑢[𝑛]

m
 

where x[n] represents the ball’s current position, v[n] is the ball’s velocity, a[n] is the ball’s 

acceleration, t is the timestep, u[n] is the controller output signal, m is the ball’s mass, 

and γ is a constant of proportionality between the controller’s output and the force on the 

ball. The timestep is set at 1/60 seconds based on the update rate of the IR sensor. γ was 

not modeled extensively but served as an unknown as the system was tested and tuned.  

Verilog Implementation 

Overview 

 The components of the system completed in Verilog include the PD controller, the 

PWM signal generation, the ADC SPI interface, and the IR sensor and potentiometer 

readings. Each module of the system was fulfilled a different purpose and featured its own 

set of implementation challenges.  

Module: labkit 



 The labkit module contained all the high-level modules required for the control 

system to function. This included the PSD_controller, pwm_generator, ADC, and 

IR_sensor modules. Within the labkit module these four modules were connected via 

different wires, and additional testing wires were instantiated as necessary. Each module 

was tested separately.  

Module: PSD_controller 

Inputs:  

− clock: system clock, set to 65 Mhz 

− i_reset: reset wire, used to restart PSD and set outputs to 0. 

− [5:0] i_ref: reference height, set by audio frequency 

− [5:0] i_height: height of the ping-pong ball as determined by sensor 

− [9:0] i_Kp_tune: 10-bit proportional gain tuning from the ADC 

− [9:0] i_Ki_tune: 10-bit sum gain tuning from the ADC 

− [9:0] i_Kd_tune: 10-bit delta gain tuning from the ADC 

− [9:0] i_bias_tune: 10-bit bias point tuning from the ADC 

Outputs: 

− o_PSD_done: output flag that pulses high when the PSD finishes a control loop 

− signed [10:0] o_control_sig: control signal used for PWM generation 

− [9:0] o_test, o_test2, o_test3,  o_test4: testing outputs for debugging 

 This module served as a wrapper module for the various modules that made up the 

PD controller. The module was implemented as a finite state machine which activated the 

other modules of the system and moved on to the next step as the previous one was 

completed. At the start of the module each submodule and its related wires are 

instantiated before the actual state machine begins its operation.  

 The PSD FSM starts in the idle state. While in this state the current i_ref and 

i_height signals are constantly fed into the r_ref and r_height registers. However, once 

either i_ref or r_ref is different from its previous value, i.e. the register value does not 

equal the input value, the r_error_start register is activated and the system moves into 

the calculate error state. Because the IR sensor updates at a frequency of 60 hz, the control 

loop runs at about the same speed. Because the internal clock runs at 65 Mhz, this means 

that we have a large number of clock cycles to complete all calculations.  

 The activation of the r_error_start register causes the calc_error module to begin 

running. The controller remains in the calculate error state until the calc_error module 

outputs a ‘done’ signal, at which point the controller activates r_PSD_start and moves to 

the PSD calculation state. r_PSD_start causes the proportional and delta modules to 

activate, and the controller waits until it receives done signals both modules before 

moving to the output calculation state. Here r_command_start is activated and the 

system moves to the done state. While in the done state the system waits until the 



command calculation is finished, after which the system pulses r_PSD_done and returns 

to the idle state.  

 The actual calculations involved in the PSD_controller module are carried out in 

the submodules instantiated before the state machine section of this module. The state 

machine itself determines which submodules are activated whereas the wires concerning 

each computation are updated within the submodules themselves. When the reset button 

is activated, all registers and the output are set to zero and the FSM returns to the IDLE 

state. After all steps of the computation are completed the output wire o_control_sig is 

updated and this value is fed into the pwm_generator module. To test this module, both 

the reference height and the ball height were set to FPGA switch inputs and the 

commanded output was tracked on the FPGA 8-digit hex display.  

Module: calc_error 

Inputs: 

− Clock: system clock, set to 65 Mhz  

− i_start_err: start signal for this module 

− i_reset: reset signal for this module 

− [5:0] i_ref_err: input reference height r[n] 

− [5:0] i_height_err: input ball height h[n] 

Outputs: 

− o_done_err: done signal 

− signed [6:0] o_error: error signal calculated. 

This module uses a finite state machine to perform signed subtraction r[n] - h[n] to 

determine e[n], the error signal. r[n] and h[n] range from 0 to 63. Therefore e[n] has a 

range of -63 to 63, represented by a 7-bit two's complement integer. Because of the input 

constraints, integer overflow or underflow is not possible and is not checked for. The bit 

size of error signal is equal to the size of reference/height signals plus one. 

 The state machine for this module consists of three states. In the idle state, the 

inputs i_ref_err and i_height_err are each given leading zeros and placed into signed 7-

bit registers, converting them from unsigned to signed values. Once i_start_err is 

activated, the system moves to the calculate error state, which subtracts the signed 

reference height and ball height registers and pulses the done signal. The done state 

switches off the done signal and returns the FSM to idle. If the reset input is set, all 

registers are set to zero and the FSM returns to idle. 

Module: proportional_term 

Inputs:  

− clock: system clock, 65 Mhz 

− i_reset: reset signal 

− signed [6:0] i_error: error signal generated by calc_error module 



− i_start: start signal 

− [9:0] i_Kp_tune: 10-bit ADC value for tuning proportional gain Kp 

Outputs: 

− o_p_done: done signal that pulses after calculations are complete 

−  signed [8:0] o_prop_term: the actual proportional term calculated by module 

− [9:0] test, test2: testing wires for debugging 

This module uses a state machine to calculate the proportional term of the PD 

controller. The proportional term is calculated using the following formula: 

𝑝[𝑛] = Kp ∙ 𝑒[𝑛] 

where e[n] is the error signal and Kp is the proportional gain. Within this module the 

default value of the gain is hard-coded but can be manually tuned via a potentiometer 

connected to an ADC. The details of this tuning calculation are explained in the 

gain_tuner module. The module uses parameters to set the default Kp value, the 

maximum and minimum Kp values, and the range of the gain tuner. Parameters are also 

used to set the maximum and minimum proportional term output modules.  

 The state machine consists of four states: idle, calculate proportional term, 

calculate overflow, and done. During the idle state, the value of Kp used in the calculation 

is stored in a register r_Kp and is continually set to the default value KP_BASE plus a 

value Kp_offset. This offset value is generated by the gain tuner module and corresponds 

to the current angle on the potentiometer. Before setting r_Kp, the module first checks if 

the current value of Kp_offset, when added to r_Kp, would cause r_Kp to fall outside the 

ranges set by the KP_MIN and KP_MAX parameters. If this is the case, r_Kp is set to the 

minimum or maximum value as necessary; otherwise r_Kp is set to KP_BASE plus 

Kp_offset.  

 Once i_start is activated, the module moves to the s_CALC state, which simply 

multiplies i_error by r_Kp and enters it into a register r_prop_raw before moving to the 

s_CALC_OVERFLOW state. This state compares the sign of i_error with the sign of the 

bottom nine bits of r_prop_raw. If the signs differ, over/underflow occurred and the 

value of r_prop_term, a register which stores the final output value, is set to the 

maximum or minimum value as set by parameters PROP_MAX and PROP_MIN. If no 

over/underflow occurred then r_prop_term is set to the bottom nine bits of r_prop_raw 

and the done signal is pulsed in the s_DONE state before the state machine returns to 

idle. 

Module: delta_term 

Inputs: 

− clock: system clock, set to 65 Mhz 

− signed [6:0] i_error: the error signal produced by the error_calc module 

− i_start : start signal 



− [9:0] i_Kd_tune: 10-bit tuning signal from ADC 

− i_reset: reset signal 

Outputs: 

− o_d_done: done signal 

− signed [8:0] o_del_term: delta term output 

− [9:0] test: testing wire for debugging 

This module is used to generate the delta term of the PD controller. The formula 

for the delta term is as follows: 

𝑑[𝑛] = Kd

𝑒[𝑛] − 𝑒[𝑛 − 1]

∆t
 

which discretely approximates a derivative. Here Kd is the gain for the delta term and t 

is the timestep. In the final implementation, the calculation was not divided by the 

timestep t, but instead this division is implicitly incorporated into the Kd gain. This 

prevented the need for a divisor module, which would slow down the computation. 

Additionally, e[n-4] was used instead of e[n-1]. This slows down the derivative calculation 

and makes it less susceptible to errors due to noise. 

Within this module the default value of the gain is hard-coded but can be manually 

tuned via a potentiometer connected to an ADC. The module uses parameters to set the 

default Kd value, the maximum and minimum Kd values, and the range of the gain tuner. 

Parameters are also used to set the maximum and minimum delta term output modules, 

as well as maximum and minimum values for intermediate calculations.  

The state machine starts in the idle state. In this state, the value of r_Kd, the delta 

gain value used in the delta term calculation, is continually set to be the default value 

KD_BASE plus an offset Kd_offset set by the potentiometer angle. A check to make sure 

r_Kd falls between its maximum and minimum values is carried out identical to that in 

the proportional term module. When the start signal is detected the module moves to the 

s_CALC state. 

In this state the value of e[n] – e[n-4] is calculated by shifting previous values of e 

into different registers and subtracting the past value of e from the current value (equal 

to i_error). This difference is placed into the r_differnce register, and in the next state 

s_CALC_OVERFLOW this register is checked for over/underflow and set to the 

appropriate value if this is the case.  

After the over/underflow check the FSM moves to s_CALC2 wherein the 

r_difference register is multiplied by r_Kd and stored in a register r_del_raw, which is 

checked for over/underflow in an identical process to r_prop_raw in the 

proportional_term module. After the second over/underflow check the r_del_term 

register, connected to the output o_del_term, is updated and the done signal is pulsed.  



While the reset wire is high, all internal registers are set to zero and the state 

machine returns to the idle state.  

Module: gain_tuner 

Inputs: 

− clock: system clock, set to 65 Mhz 

− [9:0] i_tune: 10-bit tuning value set by potentiometer angle 

− i_reset: reset signal 

−  signed [5:0] i_offset_min: minimum value for the offset 

− signed [5:0] i_offset_max: maximum value for the offset 

Outputs:  

− signed [7:0] o_offset: calculated offset value ranging from i_offset_min to 

i_offset_max 

This module takes in the 10-bit ADC value from a gain tuning potentiometer and 

converts it into a tuning offset value. This offset is then added to the hard-coded gain 

value so that it can be tuned without resynthesizing Verilog. As input the module takes 

clock and reset wires, the minimum and maximum gain offset values, and the 10-bit ADC 

output.  

  The module linearly scales the ADC value such that 0 on the ADC corresponds to 

the minimum gain offset and 1023 corresponds to the maximum gain offset. Intermediate 

ADC values are converted to offset values using the following function: 

𝑜𝑓𝑓𝑠𝑒𝑡 = ioffset min + 𝑓𝑙𝑜𝑜𝑟 (
(𝐴𝐷𝐶 + 𝑏) × 𝑑

1024
) 

where d is the offset range 𝑑 =  ioffset max − ioffset min and b is a buffer value that allows 

the system to reach the  most extreme offset values without requiring an ADC value of 

exactly 0 or 1023. b is dependent on the offset range, and an optimal b is calculated as 

follows: 

𝑏 =  𝑓𝑙𝑜𝑜𝑟 (

d + 1
d

× 1024 - 1023

2
) 

b is not calculated in the program and is instead calculated by the user and entered 

as a parameter, to avoid the use of division. When changing the minimum and maximum 

offset values, a different b will have to be calculated each time. By default it is set to 25, 

which is a healthy value for many offset ranges. The calculated offset is added to the gain 

in the appropriate proportional, sum, or delta term module. Instead of dividing by 1024 

and flooring, the Verilog simply right shifts by 10 bits. A register chain is used so that the 

calculation can be completed without propagation delay errors. When the reset input is 

high all internal registers are set to zero. 



The controller module uses a potentiometer to determine the bias point and thus 

this module is used to calculate what the bias should be.  

 

 

Figure X: This graph shows the output of the tuning module as a function of the ADC output. Here the ADC runs from 

0-1023 and the offset can range from -5 to 5. The discontinuous red lines represent the tuner output as the ADC value 

increases. Other lines represent the boundaries of the ADC and the offset output. 

Module: command_calc 

Inputs: 

− clock: system clock set to 65 Mhz 

− i_start: start signal 

− i_reset: reset signal 

− signed [8:0] i_prop: proportional term 

− signed [8:0] i_sum: sum term 

− signed [8:0] i_delta: delta term 

− signed [9:0] i_bias: bias term, ranges from 0 to 31 set by potentiometer angle 

Outputs: 

− signed [10:0] o_command: controller command signal output 

− o_u_done: done signal 

This module takes in the outputs from the proportional, sum, delta, and bias 

modules and sums them to determine the final controller output. The summation is 

carried out via a state machine where each state corresponds to a different calculation, to 

prevent propagation delay errors resulting from too many calculations being attempted 

in a single clock cycle. The bias term is multiplied by 10 so that it ranges from 0 to 310 

instead of 0 to 31. When the reset input is activated, all internal registers are set to 0 and 

the state is reset to idle. In the final implementation, the sum_term module’s output was 

not used.  

Module: pwm_generator 

Inputs: 



− clock 

− signed [10:0] i_control 

− i_reset 

Outputs: 

− o_pwm: the PWM output signal 

This module creates a PWM signal switching between 0 to 3.3 volts. The frequency 

of the signal is defined in the PWM_FREQ parameter. The signal implementation is based 

on a pair of counters. r_counter_PWM increments up to COMMAND_MAX-1. 

COMMAND_MAX is the control signal input value that corresponds to a 100% duty cycle 

PWM. By default it is set to 600, because the control signal is unlikely to ever exceed this 

value. Lowering or increasing this value will change how easily the controller output is 

able to generate a large duty cycle PWM. 

r_counter_PWM increments every 
TPWM

COMMAND MAX
 seconds,  where T_PWM is the 

period of the PWM signal, by default set to 0.001 seconds (1khz PWM signal) .This 

corresponds to approximately CLK_MAX = 108 clock cycles when the clock is running at 

65mhz. The equations used to calculate CLK_MAX are as follows, where T_65 is the 

period of the 65mhz clock. 

CLK MAX =  
TPWM COMMAND MAX⁄

T65
 =  

65 Mhz

fPWM ×  COMMAND MAX
 ≈  108 

when COMMAND_MAX = 600. r_counter_PWM is set to increment every CLK_MAX 

clock cycles, creating a PWM frequency of approximately 1khz. r_counter_clk keeps track 

of these CLK_MAX clock cycles, resetting at 108. If the value of r_counter_PWM is less 

than the  value of control input, the PWM output signal will be high. Otherwise it will be 

low. This means that a negative controller output or a controller output of 0 will give a 0% 

duty cycle PWM. A controller output of COMMAND_MAX/2 is approximately a 50% duty 

cycle, and a controller output of COMMAND_MAX is a 100% duty cycle. 

r_counter_PWM resets at COMMAND_MAX-1. 

    Because the value of CLK_MAX is hard coded (to avoid completing a division 

operation), changing COMMAND_MAX requires recalculating  the value of CLK_MAX. 

 Within the labkit module, the control signal input is liked to the output of the 

PSD_controller module and the o_pwm PWM signal output is linked to the JA[0] output 

pin on the Nexys 4.  

Module: ADC 

Inputs: 

− sysclk: the system clock, set to 65 Mhz 

− ADC_start 

− miso: SPI MISO wire, output from the ADC 



Outputs: 

− mosi, sck, cs: other SPI wires, inputs to ADC 

− [9:0] o_channel0,  o_channel1, o_channel2, o_channel3, o_channel4: wires that 

store values from channels 0-4 of the ADC 

This module uses a finite state machine to read values from channels 0-4 of the 

ADC. It is based on code originally written by Joe Steinmeyer and used with his 

permission. This module is used in conjunction with the spi_master module and serves 

as a wrapper to determine what information is sent out of and sent back to spi_master. 

The module begins by instantiating all the different wires and registers that are used to 

interface with spi_master, as well as the spi_master module itself. The rest of the module 

is dedicated to the state machine. In the labkit module, an additional clock and an 

ADC_start signal are generated, running at 1 Mhz and 1 khz respectively. The SCK, MOSI, 

and CS wires are set to the output pins JA[1], JA[2], and JA[3] respectively. 

While in the idle state, the trigger register, which activates spi_master, is held at 

zero until the ADC_start input is high. Once the ADC has been told to start, the registers 

selection, bytes_to_send, and data_to_send are set to the appropriate values to read a 

single ended reading from channel 0 on the SPI device, the MCP3008. The state machine 

then triggers spi_master in the T1 state and waits until it has finished reading data in the 

RW1 state. In this state, once the new_data wire from spi_master is high, the current 

bottom nine bits of data_receieved are set to the appropriate channel register. After 

reading channel 0, the state machine moves to the READ_NEXT_CHANNEL state, which 

sets the selection, bytes_to_send, and data_to_send registers to the necessary values to 

read from channels 1-4 on the MCP3008. selection and bytes_to_send do not change 

their values across channels, but the channel selection bits of data_to_send change each 

time. After setting each register the state machine moves back through T1 and RW1, and 

after looping through all five channels the state machine returns to idle.  

  

Module: spi_master 

Inputs: 

− sysclk: system clock, set to 65 Mhz 

− ss: for selecting slaves from input side 

− [INOUTWIDTH-1:0] data_to_send: bits sent to the SPI device 

− [15:0] how_many_bytes: if we want repeated reading/writing 

− miso: SPI MISO wire 

− rst: reset wire 

− trigger: used to start FSM 

Outputs: 

− reg sck, mosi 

− reg [7:0] cs: for selecting slaves on output side (one hot wiring) 

− reg [INOUTWIDTH-1:0] data_in, 

− reg busy  



− reg new_data  

− reg load 

This module was originally written by Joe Steinmeyer and used with his 

permission. It uses a state machine to set a series of shift registers such that the right bits 

are sent to the SPI device, in this case the MCP3008 ADC, to read data from a single 

channel. As part of the ADC module, this state machine is looped through five times to 

read data from five different channels.  

Module: IR_sensor 

Inputs: 

− clock: system clock, set to 65 Mhz 

− [9:0] i_IR: 10-bit voltage reading from the IR sensor from the ADC 

Outputs: 

− [5:0] o_height: 6-bit height signal sent to the PD controller 

This module takes the 10-bit analog voltage reading from the ADC and converts it 

to a height in centimeters, and then to the appropriate 6-bit height signal used by the 

PSD_controller module.  The IR sensor has a highly nonlinear curve mapping voltage to 

distance. Therefore to create this module the sensor was calibrated and the curve was 

linearized. The calibration was completed by carefully recording the sensor’s voltage value 

at different known distances. Due to the nature of the curve, four different linearizations 

were used depending on the input ADC values. The linearizatons were completed using 

curve fitting tools in MATLAB. 

 

Figure X: Linearization of the IR data in MATLAB 



The calibration data from the IR sensor in the plot is the green line, which can be 

seen to follow a decaying exponential curve. The four straight lines overlaying the green 

line are the different linearization curves used depending on the value of the ADC. It can 

be seen that the combination of all four linearizations matches the exponential curve very 

well. Using the linearizations, the function mapping the 10-bit ADC reading to a height in 

centimeters is as follows: 

hcm =  60 −  
𝛼 ∗ ADC - 𝛾

256
 

 Here,  and γ are parameters that define the linearization slope and y-intercept. In 

Verilog, instead of dividing by 256 the appropriate register is right shifted 8 bits. Different 

values for  and γ are used depending on the reading of the ADC, corresponding to the 

four linearizations completed. This module first uses the ADC value to determine the 

ball’s height in centimeters, which based on the height of the tower ranges from 0-50 cm. 

 After the height in centimeters is computed, the module converts that height into 

a 6-bit signal to be used as input to the PSD_controller module. This conversion follows 

this formula: 

h6bit  =  
(ℎcm − 15) ∗ 𝛽

128
 

 Here β is a separate parameter used to map the 0-50 hcm input to a 0-63 h6bit 

output. hcm is decreased by 15 so that the mapping from hcm to h6bit will only span the 

center section of the levitation tower, rather than the entire tower. This prevents the ball 

from encountering erroneous readings or dampened dynamics that occur near the top 

and bottom of the tower respectively.  

Module: sum_term 

Inputs: 

− clock: system clock, set to 65 Mhz 

− signed [6:0] i_error: the input error signal from the error_calc module 

− i_start: start signal 

− [9:0] i_Ks_tune: 10-bit tuning value from ADC 

− i_reset: reset wire 

Outputs:  

− o_s_done: done signal 

− signed [8:0] o_s_term: sum term output 

− [9:0] test: test signal for debugging 

This module was used to generate the sum term of the PSD controller according to 

the following formula: 



𝑠[𝑛] = Ki ∑ 𝑒[𝑛] ∗ ∆t

k

i=1

 

where Ki is the gain applied to the summation. The module would move through different 

states to calculated both the summation value and the final sum term, checking for 

over/underflow after each calculation. The value of the sum and the final output were 

both limited to prevent integral windup. In the final implementation this module was not 

used, as it was found to wind up too quickly, and was replaced with a constant bias point 

instead.  

Challenges and Lessons Learned 

 Successfully bridging the gap between hardware and software was the most 

difficult part of the project. Particular difficulty was encountered when calibrating the IR 

sensor. In total, three different calibration setups were used, with the third being 

successful in producing consistent readings from the sensor. This set up attached the IR 

sensor to a hardcover book such that the sensor’s line of sight would be perpendicular to 

the ground. Facing the sensor was another hardcover book covered in white paper, to 

provide a reflective parallel surface for the sensor to read. An Arduino was used to read 

values from the sensor, and after 500 values were taken the average reading was recorded. 

This average reading was used for curve fitting. The carefulness required to set up this 

calibration suggests that the use of more consistent hardware could have improved the 

performance of the final system.  

 Successfully tuning the system was also difficult. A large reason behind this was 

certain unmodeled dynamics of the fan and sensor system whose consequences did not 

become apparent until the hardware system was tested. Near the bottom of the tower, 

significantly more force is required to lift the ping-pong ball in the air. At the very bottom, 

even running the fan at full speed will not cause the ball to float. However, after the ball 

is in the air, it requires very little airflow to keep it floating. To prevent the ball from 

reaching the bottom, a spare piece of acrylic was included in the tower. Additionally, the 

IR sensor has a minimum distance reading of about 10 cm, at which the voltage from the 

sensor reaches a peak. If an object is moved closer than this distance, the output voltage 

will actually decrease. This means that if the ball accidentally moved closer than 10 cm, 

the control system would interpret this as the ball moving away from the sensor. If the 

controller was set to place the ball as close to the sensor as possible, this would mean the 

system would increase the PWM output if the ball moved closer than 10 cm, because the 

sensor reading was telling the controller the ball was much lower. Therefore the ball 

would become stuck at the top of the tower. 

 These problems were alleviated via careful tuning of the mapping from the ball’s 

height in centimeters to the 6-bit output from the IR_sensor module so that a height of 

~15 cm would produce a 0 output and a distance of ~10 cm from the sensor would provide 

a 63 output. This constrained the ball to the middle of the tower were dynamics were 

mostly linear, although excess velocity of could still shift force the ball out of this zone. 



Future implementations would benefit from a taller tower so that this linearized region 

would be extended. 

 Creating the gain_tuner module, which linearly mapped a potentiometer angle to 

a specified range of outputs, also required careful math to ensure that each value within 

the range could be easily and consistently reached using the potentiometer. To properly 

visualize, different graphing tools were used to connect ADC output to the specified range 

of outputs.  

 Finally, when the sum term was added to the final implementation, excessive 

windup occurred almost immediately, causing the value of this term to alternate between 

the maximum and minimum values respectively. One reason for this was because in 

ordinary PSD controller implementations, the sum term summation is multiplied by the 

time step, which in this case is 1/60 seconds, the update rate of the sensor. This 

significantly slows down the development of the sum term. In our implementation, we 

did not divide by 60 in order to speed up the system. It is likely that leaving out this 

division caused the sum term to accumulate too quickly to be useful. Future 

implementations could use a divisor module to complete this computation, because the 

65 Mhz clock frequency would probably allow this computation to complete before the 60 

hz sensor updated. Alternatively, the intermediate registers of the sum term calculations 

could be placed in an oversized register and then scaled back down, so that the summation 

could still accumulate but would not appear as quickly on the output due to the scale 

down.  

  



Appendix: Verilog Modules 

1. David 

Main Module: 
 

`default_nettype none 

////////////////////////////////////////////////////////////////////////////////// 

// Engineer: Mitchell Gu 

// Project Name: Nexys4 FFT Demo 

////////////////////////////////////////////////////////////////////////////////// 

 

module nexys4_fft_demo ( 

    input wire CLK100MHZ, 

    input wire [15:0] SW,   

    input wire BTNC, BTNU, BTNL, BTNR, BTND, 

    input wire M_DATA, 

    input wire [7:0] JB, 

    //input wire AD3P, AD3N,  // The top pair of ports on JXADC on Nexys 4 

    output wire [3:0] VGA_R,  

    output wire [3:0] VGA_B,  

    output wire [3:0] VGA_G, 

    output wire VGA_HS,  

    output wire VGA_VS, 

    output wire M_CLK,M_LRSEL,  

    output wire AUD_PWM, AUD_SD, 

    output wire [7:0] JA, 

    output wire LED16_B, LED16_G, LED16_R, 

    output wire LED17_B, LED17_G, LED17_R, 

    output wire [15:0] LED, // LEDs above switches 

    output wire [7:0] SEG,  // segments A-G (0-6), DP (7) 

    output wire [7:0] AN    // Display 0-7 

    ); 

 

    // SETUP CLOCKS 

    // 104Mhz clock for XADC and primary clock domain 

    // It divides by 4 and runs the ADC clock at 26Mhz 

    // And the ADC can do one conversion in 26 clock cycles 

    // So the sample rate is 1Msps (not posssible w/ 100Mhz) 

    // 65Mhz for VGA Video 

    wire clk_104mhz, clk_65mhz; 

    clk_wiz_0 clockgen( 

        .clk_in1(CLK100MHZ), 

        .clk_out1(clk_104mhz), 

        .clk_out2(clk_65mhz)); 

 



    // INSTANTIATE XVGA SIGNALS (1024x768) 

    wire [10:0] hcount; 

    wire [9:0] vcount; 

    wire hsync, vsync, blank; 

    xvga xvga1( 

        .vclock(clk_65mhz), 

        .hcount(hcount), 

        .vcount(vcount), 

        .vsync(vsync), 

        .hsync(hsync), 

        .blank(blank)); 

 

// **************** BEGIN BASIC IO SETUP *******************************// 

 

    // INSTANTIATE SEVEN SEGMENT DISPLAY 

    display_8hex display( 

        .clk(clk_65mhz), 

        .data(Display), 

        .seg(SEG[6:0]), 

        .strobe(AN)); 

    assign SEG[7] = 1;  

    wire [31:0] Display; 

    wire [9:0] scaled; 

    assign scaled = frequency - 10'd65; 

     

    assign Display = SW_clean[14] ? {2'b0,r_test,8'b0,2'b0,reference,2'b0,want} : 

{6'b0,hertz,2'b0,IR_height,2'b0,r_test}; 

     

 

     

    // Parametrized debounce module to do all 16 switches and 5 buttons 

    wire BTNC_clean, BTNU_clean, BTND_clean, BTNL_clean, BTNR_clean; 

    wire [15:0] SW_clean; 

    debounce #(.COUNT(21)) db0 ( 

        .clk(clk_65mhz), 

        .reset(1'b0), 

        .noisy({SW, BTNC, BTNU, BTND, BTNL, BTNR}), 

        .clean({SW_clean, BTNC_clean, BTNU_clean, BTND_clean, BTNL_clean, 

BTNR_clean})); 

 

 

// **************** END BASIC IO SETUP *******************************// 

 

 

 

 



    // INSTANTIATE 16x OVERSAMPLING 

    // This outputs 14-bit samples at a 62.5kHz sample rate 

    // (2 more bits, 1/16 the sample rate) 

     

    wire [13:0] osample16; 

    wire done_osample16; 

    wire [13:0] audio_data; 

     

    oversample16 osamp16_1 ( 

        .clk(clk_104mhz), 

        .sample(audio_data[13:2]), 

        .eoc(eoc), 

        .oversample(osample16), 

        .done(done_osample16)); 

         

          

////////////////////////////////////////////////////////////////////////////////////////////// 

 

    wire eoc; 

    wire low_data;   

     

 

    Audio_Interface microphone(    

        .clk_104mhz(clk_104mhz), 

        .M_DATA(M_DATA), 

        .M_CLK(M_CLK), 

        .data(audio_data), 

        .sample_ready(eoc) 

        ); 

         

    assign M_LRSEL = 0; 

     

     

 

 

///////////////////////////////////////////////////////////////////////////////////////////////////// 

    // INSTANTIATE SAMPLE FRAME BLOCK RAM  

    // This 16x4096 bram stores the frame of samples 

    // The write port is written by osample16. 

    // The read port is read by the bram_to_fft module and sent to the fft. 

    wire fwe; 

    reg [11:0] fhead = 0; // Frame head - a pointer to the write point, works as circular buffer 

    wire [15:0] fsample;  // The sample data from the XADC, oversampled 15x 

    wire [11:0] faddr;    // Frame address - The read address, controlled by bram_to_fft 

    wire [15:0] fdata;    // Frame data - The read data, input into bram_to_fft 

    bram_frame bram1 ( 



        .clka(clk_104mhz), 

        .wea(fwe), 

        .addra(fhead), 

        .dina(fsample), 

        .clkb(clk_104mhz), 

        .addrb(faddr), 

        .doutb(fdata)); 

 

    // SAMPLE FRAME BRAM WRITE PORT SETUP 

    always @(posedge clk_104mhz) if (done_osample16) fhead <= fhead + 1; // Move the pointer 

every oversample 

    assign fsample = {osample16, 2'b0}; // Pad the oversample with zeros to pretend it's 16 bits 

    assign fwe = done_osample16; // Write only when we finish an oversample (every 104*16 

clock cycles) 

 

    // SAMPLE FRAME BRAM READ PORT SETUP 

    // For this demo, we just need to display the FFT on 60Hz video, so let's only send the frame 

of samples 

    // once every 60Hz. If you want to though, you can send frames much faster, one right after 

each other. 

    // For this 4096pt fully pipelined FFT, the limit is 104Mhz/4096cycles_per_frame = 25kHz 

(approx) 

    // The next two modules just synchronize the 60Hz vsync to the 104Mhz domain and convert 

it to a 1 cycle pulse. 

    wire vsync_104mhz, vsync_104mhz_pulse; 

    synchronize vsync_synchronize( 

        .clk(clk_104mhz), 

        .in(vsync), 

        .out(vsync_104mhz)); 

 

    level_to_pulse vsync_ltp( 

        .clk(clk_104mhz), 

        .level(~vsync_104mhz), 

        .pulse(vsync_104mhz_pulse)); 

 

    // INSTANTIATE BRAM TO FFT MODULE 

    // This module handles the magic of reading sample frames from the BRAM whenever start is 

asserted, 

    // and sending it to the FFT block design over the AXI-stream interface. 

    wire last_missing; // All these are control lines to the FFT block design 

    wire [31:0] frame_tdata; 

    wire frame_tlast, frame_tready, frame_tvalid; 

    bram_to_fft bram_to_fft_0( 

        .clk(clk_104mhz), 

        .head(fhead), 

        .addr(faddr), 



        .data(fdata), 

        .start(vsync_104mhz_pulse), 

        .last_missing(last_missing), 

        .frame_tdata(frame_tdata), 

        .frame_tlast(frame_tlast), 

        .frame_tready(frame_tready), 

        .frame_tvalid(frame_tvalid) 

    ); 

//////////////////////////////////////////////////////////////////////// 

    wire empty,empty2,empty3,empty4,empty5,empty6,empty7,empty8; 

     

        xfft_0 test( 

        .aclk(clk_104mhz), 

        .s_axis_config_tdata({5'b11100,SW_clean[12:7],2'b0,1'b1}), 

        .s_axis_config_tvalid(frame_tvalid), 

        .s_axis_config_tready(empty), 

        .s_axis_data_tdata(frame_tdata), 

        .s_axis_data_tvalid(frame_tvalid), 

        .s_axis_data_tready(frame_tready), 

        .s_axis_data_tlast(frame_tlast), 

        .m_axis_data_tdata(magnitude_tdata), 

        .m_axis_data_tvalid(magnitude_tvalid), 

        .m_axis_data_tready(1'b1), 

        .m_axis_data_tlast(empty2), 

        .m_axis_data_tuser(magnitude_tuser), 

        .event_frame_started(empty3), 

        .event_tlast_unexpected(empty4), 

        .event_tlast_missing(empty5), 

        .event_status_channel_halt(empty6), 

        .event_data_in_channel_halt(empty7), 

        .event_data_out_channel_halt(empty8)); 

 

    // This is the FFT module, implemented as a block design with a 4096pt, 16bit FFT 

    // that outputs in magnitude by doing sqrt(Re^2 + Im^2) on the FFT result. 

    // It's fully pipelined, so it streams 4096-wide frames of frequency data as fast as 

    // you stream in 4096-wide frames of time-domain samples. 

    wire [31:0] magnitude_tdata; // This output bus has the FFT magnitude for the current index 

    wire [11:0] magnitude_tuser; // This represents the current index being output, from 0 to 4096 

    wire [11:0] scale_factor; // This input adjusts the scaalidling of the FFT, which can be tuned to 

the input magnitude. 

    wire magnitude_tlast, magnitude_tvalid; 

 

 

 

    // Let's only care about the range from index 0 to 1023, which represents frequencies 0 to 

omega/2 



    // where omega is the nyquist frequency (sample rate / 2) 

    wire in_range = ~|magnitude_tuser[11:10]; // When 13 and 12 are 0, we're on indexes 0 to 

1023 

 

    // INSTANTIATE HISTOGRAM BLOCK RAM  

    // This 16x1024 bram stores the histogram data. 

    // The write port is written by process_fft. 

    // The read port is read by the video outputter or the SD care saver 

    // Assign histogram bram read address to histogram module unless saving 

    wire [9:0] haddr; // The read port address 

    wire [15:0] hdata; // The read port data 

    bram_fft bram2 ( 

        .clka(clk_104mhz), 

        .wea(in_range & magnitude_tvalid),  // Only save FFT output if in range and output is valid 

        .addra(magnitude_tuser[9:0]),       // The FFT output index, 0 to 1023 

        .dina(magnitude_tdata[15:0]),       // The actual FFT magnitude 

        .clkb(clk_65mhz),  // input wire clkb 

        .addrb(haddr),     // input wire [9 : 0] addrb 

        .doutb(hdata)      // output wire [15 : 0] doutb 

    ); 

     

    reg [9:0] addr_in=0; 

    wire [9:0] addr_out; 

    wire [15:0] soundin; 

    wire [15:0] soundout;  

    always @(posedge clk_104mhz) begin addr_in<= done_osample16 ? addr_in +1 : addr_in; 

end 

    assign soundin = {audio_data,2'b0}; 

     

    bram_fft bram3 ( 

            .clka(clk_104mhz), 

            .wea(done_osample16),  // Only save FFT output if in range and output is valid 

            .addra(addr_in),       // The FFT output index, 0 to 1023 

            .dina(soundin),       // The actual FFT magnitude 

            .clkb(clk_65mhz),  // input wire clkb 

            .addrb(addr_out),     // input wire [9 : 0] addrb 

            .doutb(soundout)      // output wire [15 : 0] doutb 

        ); 

     

     

     

    // INSTANTIATE SOUND VISUAL 

    wire [2:0] sound_pixel; 

     

         

    sound aud_disp( 



        .clk(clk_65mhz), 

        .data(soundout[15:6]), 

        .hcount(hcount), 

        .vcount(vcount), 

        .blank(blank), 

        .pixel(sound_pixel),   

        .vaddr(addr_out)); 

     

     

     

     

    // INSTANTIATE HISTOGRAM VIDEO 

    // A simple module that outputs a VGA histogram based on 

    // hcount, vcount, and the BRAM read values 

    reg [14:0] data; 

    reg [9:0] addr; 

     

    always @(posedge clk_65mhz) begin  

        data<= hdata[15] ? 0 : hdata[14:0];  

        addr<=haddr; 

        end 

     

     

    wire [2:0] hist_pixel; 

    wire [1:0] hist_range; 

    histogram fft_histogram( 

        .clk(clk_65mhz), 

        .hcount(hcount), 

        .vcount(vcount), 

        .blank(blank), 

        .range({1'b1,SW_clean[15]}), // How much to zoom on the first part of the spectrum 

        .vaddr(haddr), 

        .vdata(data), 

        .pixel(hist_pixel)); 

         

         

    ///////////////////////////////////////////////////////////////////// 

     

    wire [9:0] frequency; 

     

    freq_det pitch( 

            .clk(clk_65mhz), 

            .addr(addr), 

            .data(data), 

            .thresh(4'b1110), 

            .frequency(frequency)); 



    /////////////////////////////////////////////////////////////////////// 

    wire [5:0] reference; 

    wire [5:0] want; 

    ReferenceGen Ref( 

        .clk(clk_65mhz), 

        .send(BTND_clean), 

        .mode(SW_clean[15]), 

        .freq(frequency), 

        .Ref(reference), 

        .want(want) 

        ); 

     

    wire [11:0] hertz; 

         

    dist_mem_gen_0 find( 

          .a(frequency),      // input wire [9 : 0] a 

          .clk(clk_65mhz),  // input wire clk 

          .spo(hertz)  // output wire [11 : 0] spo 

        );             

             

             

             

//    ////////////////////////////////////////////////////////// 

    wire [2:0] line; 

     

    freq_disp bar( 

            .clk(clk_65mhz), 

            .bin(frequency), 

            .hcount(hcount), 

            .vcount(vcount), 

            .blank(blank), 

            .range({1'b1,SW_clean[15]}), 

            .pixel(line)); 

             

    // INSTANTIATE PWM AUDIO OUT MODULE 

    // 11 bit PWM audio out is reasonable because otherwise, the PWM frequency would 

    // drop close to the audible and unfiltered range. 11bits -> 104Mhz/2^11=51Khz 

    wire [10:0] pwm_sample; 

    pwm11 pwm_out( 

        .clk(clk_104mhz), 

        .PWM_in(osample16[13:3]), 

        .PWM_out(AUD_PWM), 

        .PWM_sd(AUD_SD)); 

//////////////////////////////////////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////////////// 



//////////////////////////////////////////////////////////////////////////////////////////// 

 

////////////////////////////////////////////////////////////////////////////////// 

//Final Project Implementation 

 

    //testing wires 

    wire [5:0] r_test; 

    assign r_test = SW_clean[6] ? reference : SW_clean[5:0]; 

//    wire [5:0] h_test; 

//    assign h_test = SW[15:10]; 

    wire reset; 

    assign reset = BTNC; 

     

    //PSD Controller Instantiation 

    wire signed [10:0] control_signal; 

    wire [9:0] ADC_ch0, ADC_ch1, ADC_ch2, ADC_ch3, ADC_ch4; 

    wire [5:0] IR_height; 

    wire PSD_done; 

    wire [9:0] PSD_test; 

    wire [9:0] PSD_test2; 

    wire [9:0] PSD_test3; 

    PSD_controller PSD(.clock(clk_65mhz), .i_ref(r_test), .i_height(IR_height), .i_reset(reset), 

        .i_Kp_tune(ADC_ch1), .i_Ki_tune(ADC_ch2), .i_Kd_tune(ADC_ch3), 

.i_bias_tune(ADC_ch4), 

        .o_control_sig(control_signal), .o_PSD_done(PSD_done), .o_test(PSD_test), 

.o_test2(PSD_test2), .o_test3(PSD_test3)); 

     

    //PWM Generator Instantiation 

    //testing wires 

    //wire [10:0] PWM_test; 

    //assign PWM_test = SW[10:0];     

    wire PWM_signal; 

    pwm_generator PWM(.clock(clk_65mhz), .i_control(control_signal), .o_pwm(PWM_signal), 

.i_reset(reset)); 

     

    //ADC Instantiation 

    wire ADC_sck, ADC_mosi, ADC_miso, ADC_cs; 

    synchronize syn_ADC(.clk(clk_65mhz), .in(JB[0]), .out(ADC_miso)); 

    reg ADC_sysclk, ADC_start; 

    wire w_ADC_sysclk, w_ADC_start; 

     

    ADC MCP3008(.sysclk(ADC_sysclk), .ADC_start(ADC_start), .miso(ADC_miso), 

        .mosi(ADC_mosi), .cs(ADC_cs), .sck(ADC_sck),  

        .o_channel0(ADC_ch0), .o_channel1(ADC_ch1), .o_channel2(ADC_ch2), 

.o_channel3(ADC_ch3), .o_channel4(ADC_ch4));  

     



    //code for generating proper clock and start signals for ADC. MCP3008 only runs at a max of 

3.6 MHhz 

    //creates a ~1 mhz clock and a 1khz start pulse 

    reg [3:0] r_ADC_clk_counter = 4'd0; 

    reg [15:0] r_ADC_start_counter = 16'd0; 

    reg [9:0] ADC_test;//ADC testing 

    always @(posedge clk_65mhz) begin 

        //~1 mhz clock 

        if (r_ADC_clk_counter == 4'd15) begin 

            ADC_sysclk <= ~ ADC_sysclk; 

            r_ADC_clk_counter <= 4'd0; 

        end 

        else r_ADC_clk_counter <= r_ADC_clk_counter + 1; 

         

        //1 khz ADC start signal 

        if (r_ADC_start_counter == 16'd64999) begin 

            ADC_start <= 1'b1; 

            r_ADC_start_counter <= 16'd0; 

        end 

        else begin  

            r_ADC_start_counter <= r_ADC_start_counter + 1; 

            ADC_start <= 1'b0; 

        end 

     

     

        //ADC testing 

        case (SW[1:0])  

            2'b00: ADC_test <= ADC_ch0; 

            2'b01: ADC_test <= ADC_ch1; 

            2'b10: ADC_test <= ADC_ch2; 

            2'b11: ADC_test <= ADC_ch3; 

        endcase 

     

    end 

    assign w_ADC_sysclk = ADC_sysclk; 

    assign w_ADC_start = ADC_start; 

     

    //IR Sensor Module Instantiation 

    

    IR_Sensor sensor(.clock(clk_65mhz), .i_IR(ADC_ch0), .o_height(IR_height)); 

      

    //assign data = {{2'b00, PSD_test}};//, {2'b0, PSD_test3}}; 

     

    assign JA[0] = PWM_signal; 

    assign JA[1] = ADC_sck; 

    assign JA[2] = ADC_mosi; 



    assign JA[3] = ADC_cs; 

         

 

 

 

 

 

 

 

//////////////////////////////////////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////////////// 

 

////////////////////////////////////////////////////////////////////////////////// 

//   

    // VGA OUTPUT 

    // Histogram has two pipeline stages so we'll pipeline the hs and vs accordingly 

     

     

    ///////////////////////////////////////////////////////////////////////////// 

    /////////////////////Make the range bars 

    wire [2:0] tot_pixel; 

    wire [9:0] horiz; 

    reg [3:0] fence; 

    reg [3:0] fence1; 

    wire [9:0] x,x1; 

    wire [9:0] y; 

    parameter HEIGHT=100; 

    assign y=10'd500; 

    assign horiz = (hcount[9:0] >> {1'b1,SW_clean[15]}); 

    assign x=10'd65; 

    assign x1=SW_clean[15] ? 10'd125 : 10'd190; 

 

     

 

     

    always @(posedge clk_65mhz) begin  

        fence<= ((horiz >= x && horiz < (x+1)) && 

            (vcount >= y && vcount < (y+HEIGHT))) ? 3'b100 : 3'b0;  

     

        fence1<= ((horiz >= x1 && horiz < (x1+1)) && 

             (vcount >= y && vcount < (y+HEIGHT))) ? 3'b100 : 3'b0;  

        end 

    ////////////////////////////////////////////////////////////////////////////// 

    ////////////////////////////////////////////////////////////////////////////// 

    ///////////////Track location of Ball///////////////////////////////////////// 



    parameter MID=512; 

    parameter QUART=256; 

    parameter HALF=1; 

    parameter FOURTH=0; 

     

    wire [10:0] xball; 

    wire [9:0] yball; 

    wire ball_state; 

    assign ball_state=SW_clean[15]; 

     

    assign yball=10'd515; 

    assign xball=bottom; 

    reg [10:0] bottom; 

    reg [2:0] ball; 

    wire [5:0]track; 

     

    assign track =SW_clean[14] ? r_test : IR_height; 

     

     

    always @ (posedge clk_65mhz)  begin   // generate round puck 

         

        case(ball_state) 

          // compute x -xcenter and y-ycenter 

           

            HALF: begin 

                    if (SW_clean[13]) begin 

                        bottom<=(track>=6'd58) ? MID+(6'd58<<3)+11'd5 : MID+(track<<3)+11'd5;         

                        ball <=(vcount >= yball && vcount < (yball+10'd20)) && 

                                (hcount >= xball && hcount < (xball+11'd20)) ? 3'b101 : 3'b0 ; 

                     

                    end 

                    else 

                               ball <=3'b0; 

                    end 

                     

            FOURTH: begin 

                    if (SW_clean[13]) begin 

                       bottom<=(track>=6'd61) ? QUART+(6'd61<<3)+11'd5 : 

QUART+(track<<3)+11'd5;         

          

                       ball <=(vcount >= yball && vcount < (yball+10'd15)) && 

                               (hcount >= xball && hcount < (xball+11'd15)) ? 3'b101 : 3'b0 ; 

                             

                            end 

                            else 

                                       ball <=3'b0; 



                            end 

            endcase 

             

            end 

                             

    //////////////////////////////////////////////////////////////////////////////////// 

    ///////////////Instantiate actual pixels bing sent to VGA//////////////////////////                 

             

     

    assign tot_pixel = hist_pixel + sound_pixel + line+fence+fence1+ball; 

    reg [1:0] hsync_delay; 

    reg [1:0] vsync_delay; 

    reg hsync_out, vsync_out; 

    always @(posedge clk_65mhz) begin 

        {hsync_out,hsync_delay} <= {hsync_delay,hsync}; 

        {vsync_out,vsync_delay} <= {vsync_delay,vsync}; 

    end 

    assign VGA_R = {4{tot_pixel[0]}}; 

    assign VGA_G = {4{tot_pixel[1]}}; 

    assign VGA_B = {4{tot_pixel[2]}}; 

    assign VGA_HS = hsync_out; 

    assign VGA_VS = vsync_out; 

     

    // Assign RGB LEDs 

    assign {LED16_R, LED16_G, LED16_B} = 3'b000; 

    assign {LED17_R, LED17_G, LED17_B} = 3'b000; 

     

    // Assign switch LEDs to switch states 

    assign LED = SW; 

// 

////////////////////////////////////////////////////////////////////////////////// 

 

  

endmodule 

 

 

 

 
 

 

 

 

 



 

 

 Switch Debounce Module 

// use your system clock for the clock input 

// to produce a synchronous, debounced output 

 

module debounce #(parameter DELAY=1000000, parameter COUNT=1) ( 

    input wire clk, 

    input wire reset, 

    input wire [COUNT-1:0] noisy, 

    output reg [COUNT-1:0] clean); 

 

    genvar i; 

    generate 

        for (i = 0; i < COUNT; i = i + 1) begin 

            reg [19:0] count; 

            reg new; 

 

            always @(posedge clk) begin 

                if (reset) begin 

                    count <= 0; 

                    new <= noisy[i]; 

                    clean[i] <= noisy[i]; 

                end 

                else if (noisy[i] != new) begin 

                    new <= noisy[i]; 

                    count <= 0; 

                end 



                else if (count == DELAY) 

                    clean[i] <= new; 

                else 

                    count <= count+1; 

            end 

        end 

    endgenerate 

       

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

module level_to_pulse ( 

    input wire clk, 

    input wire level, 

    output wire pulse); 

 

    reg last_level; 

    always @(posedge clk) begin 

        last_level <= level; 

    end 

    assign pulse = level & ~last_level; 

 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

module display_8hex( 

    input wire clk,                 // system clock 

    input wire [31:0] data,         // 8 hex numbers, msb first 

    output reg [6:0] seg,      // seven segment display output 

    output reg [7:0] strobe    // digit strobe 

    ); 

 

    localparam bits = 13; 

      

    reg [bits:0] counter = 0;  // clear on power up 

      

    wire [6:0] segments[15:0]; // 16 7 bit memorys 

    assign segments[0]  = 7'b100_0000; 

    assign segments[1]  = 7'b111_1001; 

    assign segments[2]  = 7'b010_0100; 

    assign segments[3]  = 7'b011_0000; 

    assign segments[4]  = 7'b001_1001; 

    assign segments[5]  = 7'b001_0010; 

    assign segments[6]  = 7'b000_0010; 

    assign segments[7]  = 7'b111_1000; 

    assign segments[8]  = 7'b000_0000; 

    assign segments[9]  = 7'b001_1000; 

    assign segments[10] = 7'b000_1000; 

    assign segments[11] = 7'b000_0011; 

    assign segments[12] = 7'b010_0111; 

    assign segments[13] = 7'b010_0001; 

    assign segments[14] = 7'b000_0110; 



    assign segments[15] = 7'b000_1110; 

      

    always @(posedge clk) begin 

        counter <= counter + 1; 

        case (counter[bits:bits-2]) 

            3'b000: begin 

                seg <= segments[data[31:28]]; 

                strobe <= 8'b0111_1111 ; 

            end 

            3'b001: begin 

                seg <= segments[data[27:24]]; 

                strobe <= 8'b1011_1111 ; 

            end 

            3'b010: begin 

                seg <= segments[data[23:20]]; 

                strobe <= 8'b1101_1111 ; 

            end 

            3'b011: begin 

                seg <= segments[data[19:16]]; 

                strobe <= 8'b1110_1111;         

            end 

            3'b100: begin 

                seg <= segments[data[15:12]]; 

                strobe <= 8'b1111_0111; 

            end 

            3'b101: begin 

                seg <= segments[data[11:8]]; 

                strobe <= 8'b1111_1011; 

            end 



            3'b110: begin 

                seg <= segments[data[7:4]]; 

                strobe <= 8'b1111_1101; 

            end 

            3'b111: begin 

                seg <= segments[data[3:0]]; 

                strobe <= 8'b1111_1110; 

            end 

       endcase 

    end 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

module pwm11 (  

    input wire clk, 

    input wire [10:0] PWM_in,  

    output reg PWM_out, 

    output wire PWM_sd 

    ); 

    reg [10:0] new_pwm=0; 

    reg [10:0] PWM_ramp=0;  

    always @(posedge clk) begin 

        if (PWM_ramp==0) new_pwm <= PWM_in; 

        PWM_ramp <= PWM_ramp + 1'b1; 

        PWM_out <= (new_pwm>PWM_ramp); 

    end 

    assign PWM_sd = 1; 

endmodule 

 

// pulse synchronizer 

module synchronize #(parameter NSYNC = 2) ( // number of sync flops.  must be >= 2 

    input wire clk,in, 

    output reg out); 

 

  reg [NSYNC-2:0] sync; 

 

  always @ (posedge clk) 

  begin 

    {out,sync} <= {sync[NSYNC-2:0],in}; 

  end 



endmodule 

module xvga( 

    input wire vclock, 

    output reg [10:0] hcount,    // pixel number on current line 

    output reg [9:0] vcount,     // line number 

    output reg vsync, hsync, blank); 

 

    // horizontal: 1344 pixels total 

    // display 1024 pixels per line 

    reg hblank,vblank; 

    wire hsyncon,hsyncoff,hreset,hblankon; 

    assign hblankon = (hcount == 1023); 

    assign hsyncon = (hcount == 1047); 

    assign hsyncoff = (hcount == 1183); 

    assign hreset = (hcount == 1343); 

 

    // vertical: 806 lines total 

    // display 768 lines 

    wire vsyncon,vsyncoff,vreset,vblankon; 

    assign vblankon = hreset & (vcount == 767); 

    assign vsyncon = hreset & (vcount == 776); 

    assign vsyncoff = hreset & (vcount == 782); 

    assign vreset = hreset & (vcount == 805); 

 

    // sync and blanking 

    wire next_hblank,next_vblank; 

    assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank; 

    assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank; 



    always @(posedge vclock) begin 

        hcount <= hreset ? 0 : hcount + 1; 

        hblank <= next_hblank; 

        hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync;  // active low 

 

        vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount; 

        vblank <= next_vblank; 

        vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync;  // active low 

 

        blank <= next_vblank | (next_hblank & ~hreset); 

    end 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

module sound ( 

    input wire clk, 

    input wire [9:0] data, 

    input wire [10:0] hcount, 

    input wire [9:0] vcount, 

    input wire blank, 

    output reg [2:0] pixel,   

    output reg [9:0] vaddr); 

 

 

    reg blank1; 

    reg [10:0] hheight;  

    reg [9:0] vtop; 

    reg [9:0] vbot; 

    wire [9:0] sound; 

    

     

    always @(posedge clk) begin 

        vaddr <= hcount[9:0];  

        blank1<=blank; 

        vtop<=10'd470 - vcount; 

        vbot<=10'd475 - vcount; 

        pixel <= blank1 ? 3'b0 : (vtop < data && vbot > data) ? 3'b101 : 3'b0; 

        

    end 

    

endmodule 



 

module freq_det( 

        input wire clk, 

        input wire [9:0] addr, 

        input wire [14:0] data, 

        input wire [4:0] thresh, 

        output wire [9:0] frequency 

        ); 

         

        reg [9:0]   temp_freq; 

        reg [9:0]   N; 

        reg [14:0]  F; 

         

        parameter WAIT    =2'b00; 

        parameter MAYBE   =2'b01; 

        parameter DISP    =2'b11;   

 

         

        reg [1:0] state; 

        reg [8:0] threshhold;               

             

         

        always @(posedge clk) begin 

            threshhold<= {thresh[4:1],5'd25};   

             

            if ({data[12:0],2'b0}>threshhold && addr>50) begin  

                temp_freq<=addr; 

                F<=data; 



                end 

             

            else begin 

                temp_freq<=temp_freq; 

                end 

            end 

                   

         

        assign frequency = temp_freq; 

         

         

endmodule 

         

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

module freq_disp( 

        input wire clk, 

        input wire [9:0] bin, 

        input wire [10:0] hcount, 

        input wire [9:0] vcount, 

        input wire blank, 

        input wire [1:0] range, 

        output reg [2:0] pixel); 

         

        reg blank1; 

        reg [9:0] hheight; 

        reg [9:0] vaddr; 

        reg [9:0] vheight; 

        reg [9:0] vtop; 

        reg [9:0] vbot; 

        wire [9:0] sound; 

        reg [9:0] data; 

        wire [9:0] horiz; 

        assign horiz = (hcount[9:0] >> range); 

         

        parameter [9:0] MAX = 10'd250; 

        parameter [9:0] MIN = 10'd65; 

        always @(posedge clk) begin 

            vaddr <= hcount[9:0];  

            data<=10'd50; 

            blank1<=blank; 

            vtop<=10'd600 - vcount; 



            vbot<=10'd700 - vcount; 

             

            if (bin== horiz) begin 

                pixel <= blank1 ? 3'b0 : (vtop < data && vbot > data) ? 3'b010 : 3'b0; 

            end 

 

            else  

                pixel<=3'b0; 

              

        end 

         

         

         

endmodule 

         

 

         

 

 

 

 

 

 

 

 

 

 

 

 



 

module ReferenceGen( 

    input wire clk, 

    input wire send, 

    input wire mode, 

    input wire [9:0] freq, 

    output wire [5:0] Ref, 

    output reg [5:0] want 

    ); 

     

    reg [5:0] curr_loc; 

    wire send_pulse; 

 

     

    level_to_pulse SAMP(.clk(clk), 

                        .level(send), 

                        .pulse(send_pulse)); 

 

    parameter CONT=1; 

    parameter DISC=0; 

    parameter [9:0] MAX = 10'd190; 

    parameter [9:0] MAXL = 10'd120; 

    parameter [9:0] MIN = 10'd65; 

    always @ (posedge clk) begin 

     

    case(mode) 

        CONT: begin 

            if (freq>MIN && freq<MAXL) begin 



                curr_loc<= (freq-MIN);    

                end      

            else if (freq>=MAXL) begin curr_loc<=6'd63; end 

            else     

                curr_loc<=6'd0; 

        end 

         

        DISC: begin 

            curr_loc<= send_pulse ? want : curr_loc; 

             

            if (freq>MIN && freq<MAX) begin 

                        want<= (freq-MIN)>>1;    

                        end      

            else if (freq>=MAX) begin want<=6'd63; end 

            else     

                want<=6'd0; 

                 

        end 

         

         

    endcase 

     

    end 

     

assign Ref=curr_loc; 

     

     

endmodule 

 



 

module bram_to_fft( 

    input wire clk, 

    input wire [11:0] head, 

    output reg [11:0] addr, 

    input wire [15:0] data, 

    input wire start, 

    input wire last_missing, 

    output reg [31:0] frame_tdata, 

    output reg frame_tlast, 

    input wire frame_tready, 

    output reg frame_tvalid 

    ); 

     

    // Get a signed version of the sample by subtracting half the max 

    wire signed [15:0] data_signed = {1'b0, data} - (1 << 15); 

 

    // SENDING LOGIC 

    // Once our oversampling is done, 

    // Start at the frame bram head and send all 4096 buckets of bram. 

    // Hopefully every time this happens, the FFT core is ready 

    reg sending = 0; 

    reg [11:0] send_count = 0; 

 

    always @(posedge clk) begin 

        frame_tvalid <= 0; // Normally do not send 

        frame_tlast <= 0; // Normally not the end of a frame 

        if (!sending) begin 



            if (start) begin // When a new sample shifts in 

                addr <= head; // Start reading at the new head 

                send_count <= 0; // Reset send_count 

                sending <= 1; // Advance to next state 

            end 

        end 

        else begin 

            if (last_missing) begin 

                // If core thought the frame ended 

                sending <= 0; // reset to state 0 

            end 

            else begin 

                frame_tdata <= {16'b0, data_signed}; 

                frame_tvalid <= 1; // Signal to fft a sample is ready 

                if (frame_tready) begin // If the fft module was ready 

                    addr <= addr + 1; // Switch to read next sample 

                    send_count <= send_count + 1; // increment send_count  

                end 

                if (&send_count) begin 

                    // We're at last sample 

                    frame_tlast <= 1; // Tell the core 

                    if (frame_tready) sending <= 0; // Reset to state 0 

                end 

            end 

        end 

    end 

 

endmodule 

 



 

module histogram( 

    input wire clk, 

    input wire [10:0] hcount, 

    input wire [9:0] vcount, 

    input wire blank, 

    input wire [1:0] range, 

    output wire [9:0] vaddr, 

    input wire [14:0] vdata, 

    output reg [2:0] pixel 

    ); 

 

    // 1 bin per pixel, with the selected range 

    assign vaddr = hcount[9:0] >> range; 

 

    reg [9:0] hheight; // Height of histogram bar 

    reg [9:0] vheight; // The height of pixel above bottom of screen 

    reg blank1; // blank pipelined 1 

     

    always @(posedge clk) begin      

         

        // Pipeline stage 1 

        hheight <= vdata[14:5]<<3; 

        vheight <= 10'd767 - vcount; 

        blank1 <= blank; 

        // Pipeline stage 2 

        pixel <= blank1 ? 3'b0 : (vheight < hheight) ? 3'b001 : 3'b0;  

     end 



endmodule 

module CIC 

#(parameter width = 12) 

   (input wire               clk, 

   input wire               rst, 

   input wire        [15:0] decimation_ratio, 

   input wire signed [7:0]  d_in, 

   output reg signed [7:0]  d_out, 

   output reg      d_clk); 

 

reg signed [width-1:0] d_tmp, d_d_tmp; 

 

 

// Integrator stage registers 

 

reg signed [width-1:0] d1=0; 

reg signed [width-1:0] d2=0; 

reg signed [width-1:0] d3=0; 

reg signed [width-1:0] d4=0; 

reg signed [width-1:0] d5=0; 

 

// Comb stage registers 

 

reg signed [width-1:0] d6=0, d_d6=0; 

reg signed [width-1:0] d7=0, d_d7=0; 

reg signed [width-1:0] d8=0, d_d8=0; 

reg signed [width-1:0] d9=0, d_d9=0; 

reg signed [width-1:0] d10=0; 



 

reg [15:0] count=0; 

 

reg v_comb;  // Valid signal for comb section running at output rate 

 

reg d_clk_tmp; 

 

  

 always @(posedge clk) 

 begin 

  if (rst) 

  begin 

   d1 <= 0; 

   d2 <= 0; 

   d3 <= 0; 

   d4 <= 0; 

   d5 <= 0; 

   count <= 0; 

  end else 

  begin 

   // Integrator section 

   d1 <= d_in + d1; 

    

   d2 <= d1 + d2; 

    

   d3 <= d2 + d3; 

    

   d4 <= d3 + d4; 

    



   d5 <= d4 + d5; 

    

   // Decimation 

    

   if (count == decimation_ratio - 1) 

   begin 

    count <= 16'b0; 

    d_tmp <= d5; 

    d_clk_tmp <= 1'b1; 

    v_comb <= 1'b1; 

   end else if (count == decimation_ratio >> 1) 

   begin 

    d_clk_tmp <= 1'b0; 

    count <= count + 16'd1; 

    v_comb <= 1'b0; 

   end else 

   begin 

    count <= count + 16'd1; 

    v_comb <= 1'b0; 

   end 

  end 

 end 

  

 always @(posedge clk)  // Comb section running at output rate 

 begin 

  d_clk <= d_clk_tmp; 

  if (rst) 

  begin 

   d6 <= 0; 



   d7 <= 0; 

   d8 <= 0; 

   d9 <= 0; 

   d10 <= 0; 

   d_d6 <= 0; 

   d_d7 <= 0; 

   d_d8 <= 0; 

   d_d9 <= 0; 

   d_out <= 8'b0; 

  end else 

  begin 

   if (v_comb) 

   begin 

    // Comb section 

    d_d_tmp <= d_tmp; 

     

    d6 <= d_tmp - d_d_tmp; 

    d_d6 <= d6; 

 

    d7 <= d6 - d_d6; 

    d_d7 <= d7; 

 

    d8 <= d7 - d_d7; 

    d_d8 <= d8; 

 

    d9 <= d8 - d_d8; 

    d_d9 <= d9; 

 

    d10 <= d9 - d_d9; 



     

    d_out <= d10 >>> (width - 8); 

   end 

  end 

 end         

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

module oversample16( 

    input wire clk, 

    input wire [11:0] sample, 

    input wire eoc, 

    output reg [13:0] oversample, 

    output reg done 

    ); 

 

    reg [3:0] counter = 0; 

    reg [15:0] accumulator = 0; 

 

    always @(posedge clk) begin 

        done <= 0; 

        if (eoc) begin 

            // Conversion has ended and we can read a new sample 

            if (&counter) begin // If counter is full (16 accumulated) 

                // Get final total, divide by 4 with (very limited) rounding. 

                oversample <= (accumulator + sample + 2'b10) >> 2; 

                done <= 1; 

                // Reset accumulator 

                accumulator <= 0; 

            end 

            else begin 

                // Else add to accumulator as usual 

                accumulator <= accumulator + sample; 

                done <= 0; 



            end 

            counter <= counter + 1; 

        end 

    end 

endmodule 
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module PSD_controller( 

    input clock, 

    input i_reset, 

    input [5:0] i_ref, 

    input [5:0] i_height, 

    input [9:0] i_Kp_tune, 

    input [9:0] i_Ki_tune, 

    input [9:0] i_Kd_tune, 

    input [9:0] i_bias_tune, 

    output o_PSD_done, 

    output signed [10:0] o_control_sig, 

    output [9:0] o_test, 

    output [9:0] o_test2, 

    output [9:0] o_test3, 

    output [9:0] o_test4 

    ); 

     

    parameter s_IDLE = 0; 

    parameter s_CALC_ERROR = 1; 

    parameter s_CALC_PSD = 2; 

    parameter s_CALC_OUTPUT = 3; 

    parameter s_DONE = 4; 

    reg [1:0] state_main = 3'b000; 

     

    reg [5:0] r_ref, r_height; 

     

    //error signal calculation module 

    reg r_error_start; 



    wire error_done; 

    wire signed [6:0] error_signal; 

    calc_error error(.clock(clock), .i_start_err(r_error_start), .i_ref_err(r_ref), .i_height_err(r_height), 

.i_reset(i_reset), 

        .o_done_err(error_done), .o_error(error_signal)); 

     

    //PSD term modules 

    reg r_PSD_start; 

     

    wire p_done; 

    wire signed [8:0] prop_term; 

    reg r_p_done; 

    wire [9:0] ptest1; 

    wire [9:0] ptest2; 

    proportional_term prop_calc(.clock(clock), .i_error(error_signal), .i_start(r_PSD_start), 

.i_Kp_tune(i_Kp_tune), .i_reset(i_reset), 

        .o_p_done(p_done), .o_prop_term(prop_term), .test(ptest1), .test2(ptest2)); 

         

    wire s_done; 

    wire signed [8:0] s_term; 

    reg r_s_done; 

    sum_term sum_calc(.clock(clock), .i_error(error_signal), .i_start(r_PSD_start), .i_Ks_tune(i_Ks_tune), 

.i_reset(i_reset), 

           .o_s_done(s_done), .o_s_term(s_term)); 

     

    wire d_done; 

    wire signed [8:0] del_term; 

    reg r_d_done; 

    delta_term delta_calc(.clock(clock), .i_error(error_signal), .i_start(r_PSD_start), 

.i_Kd_tune(i_Kd_tune), .i_reset(i_reset), 



            .o_d_done(d_done), .o_del_term(del_term)); 

     

    parameter BIAS_MIN = 0; 

    parameter BIAS_MAX = 31; 

    wire signed [9:0] bias; 

    gain_tuner #(.OFFSET_BUFFER(17)) bias_point(.clock(clock), .i_reset(i_reset),.i_tune(i_bias_tune), 

.i_offset_min(BIAS_MIN), .i_offset_max(BIAS_MAX),  

    .o_offset(bias));  

     

    //command signal calculation registers 

    wire signed [10:0] control_signal; 

    reg signed [10:0] r_control_signal; 

    reg r_command_start; 

    wire command_done; 

    reg r_PSD_done; 

    command_calc command(.clock(clock), .i_reset(i_reset), .i_start(r_command_start),  

    .i_prop(prop_term), .i_sum(sum_term), .i_delta(del_term), .i_bias(bias),  

        .o_u_done(command_done), .o_command(control_signal)); 

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            case (state_main)  

                s_IDLE: begin 

                    r_error_start <= 0; 

                    r_PSD_done <= 0; 

                    //always update registers 

                    r_ref <= i_ref; 

                    r_height <= i_height; 

                    //if anything changed, run control loop 



                    if (r_ref != i_ref || r_height != i_height) begin 

                        state_main <= s_CALC_ERROR; 

                        r_error_start <= 1; 

                    end 

                    else state_main <= s_IDLE; 

                end 

                 

                s_CALC_ERROR: begin 

                    //wait until error signal is calculated, then move to next state 

                    r_error_start <= 0; 

                    if (error_done) begin 

                        state_main <= s_CALC_PSD; 

                        r_PSD_start <= 1; 

                        end                     

                    else state_main <= s_CALC_ERROR; 

                end 

                 

                s_CALC_PSD: begin 

                    r_PSD_start <= 0; 

                    if (p_done) r_p_done <= 1'b1; 

                    if (s_done) r_s_done <= 1'b1; 

                    if (d_done) r_d_done <= 1'b1; 

                    if (r_p_done && r_s_done && r_d_done) begin  

                        state_main <= s_CALC_OUTPUT; 

                    end 

                    else state_main <= s_CALC_PSD; 

                end 

                 

                s_CALC_OUTPUT: begin 



                    r_p_done <= 0; 

                    r_s_done <= 0; 

                    r_d_done <= 0; 

                    r_command_start <= 1; 

                    //r_control_signal <= prop_term + bias*10;// + prop_term; 

                    //r_control_signal <= prop_term + s_term + del_term;//prop_term+ del_term + 

(bias*10);//prop_term + del_term + (bias*10);//+ s_term + del_term; 

                    state_main <= s_DONE; 

 

                end 

                 

                s_DONE: begin 

                    r_command_start <= 1'b0; 

                    if (command_done) begin 

                        r_PSD_done <= 1'b1; 

                        state_main <= s_IDLE; 

                    end 

                    else state_main <= s_DONE; 

                end 

                 

            endcase 

        end 

        else begin 

            //r_control_signal <= 10'd0; 

            r_ref <= 6'b0; 

            r_height <= 6'b0; 

            r_PSD_start <= 1'b0; 

            r_error_start <= 1'b0; 

            r_PSD_done <= 1'b0; 



            r_p_done <= 1'b0; 

            r_s_done <= 1'b0; 

            r_d_done <= 1'b0; 

            state_main <= 3'd0; 

        end 

    end 

     

    assign o_control_sig = control_signal; 

    assign o_PSD_done = r_PSD_done; 

    assign o_test = prop_term; 

    assign o_test2 = ptest2; 

    assign o_test3 = del_term; 

    

 

endmodule 
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module calc_error( 

    input clock, 

    input i_start_err, 

    input i_reset, 

    output o_done_err, 

    output signed [6:0] o_error, 

    input [5:0] i_ref_err, 

    input [5:0] i_height_err 

    ); 

    /* 

    Uses a finite state machine to perform signed subtraction r[n]-h[n] to determine e[n], 

    the error signal. r[n] and h[n] range from 0 to 63. Therefore e[n] has a range of -63 to 

    63, represented by a 7-bit two's complement integer. Overflow is not possible and is not  

    checked for. Bit size of error signal is equal to sizes of reference/height signals plus one. 

     

    Terminology:  

        r[n] = reference command signal 

        h[n] = current levitator height 

    */ 

     

     



     

    //FSM 

    parameter s_IDLE = 0; 

    parameter s_CALC = 1; 

    parameter s_DONE = 2; 

    reg state_err = 2'b0; 

     

    //registers for error signal calc  

    reg signed [6:0] r_ref_err; 

    reg signed [6:0] r_height_err; 

    reg signed [6:0] r_error; 

    reg r_done_err; 

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            case(state_err) 

                s_IDLE: begin 

                    //at start, load signed registers with positive signed vals for r and h 

                    if (i_start_err) begin  

                        state_err <= s_CALC; 

                        r_ref_err <= {1'b0, i_ref_err}; 

                        r_height_err <= {1'b0, i_height_err}; 

                    end 

                    else state_err <= s_IDLE; 

                end 

                 

                s_CALC: begin 

                    //calculate error signal thru signed subtraction, flash done signal 

                    r_error <= r_ref_err - r_height_err; 



                    r_done_err <= 1'b1; 

                    state_err <= s_DONE; 

                end 

                 

                s_DONE:begin 

                    //stop done signal, return to idle 

                    r_done_err <= 1'b0; 

                    state_err <= s_IDLE;     

                end 

                 

            endcase 

        end 

        else begin //reset everything 

            r_error <= 7'b0000000; 

            r_ref_err <= 7'b0000000; 

            r_height_err <= 7'b0000000; 

            state_err <= s_IDLE; 

        end 

    end 

     

    assign o_done_err = r_done_err; 

    assign o_error = r_error; 

     

endmodule 
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module proportional_term( 

    input clock, 

    input signed [6:0] i_error, 

    input i_start, 

    input [9:0] i_Kp_tune, 

    input i_reset, 

    output o_p_done, 

    output signed [8:0] o_prop_term, 

    output [9:0] test, 

    output [9:0] test2 

    ); 

    /* 



    Uses a FSM to calculate the proportional control term, done by multiplying the error signal by a gain 

Kp.  

    Input is a 7-bit signed integer, ranging from -63 to 63. Output is limited to a signed 8 bit term, and 

ranges from  

    -256 to 255. Calculations that result in over or underflow are set to the most extreme values instead. 

Bit size of  

    proportional term is limited to bit size of error signal plus one. 

     

    Terminology: 

        e[n]: error signal = i_error 

        Kp: proportional gain = r_Kp 

        p[n]: proportional term = r_prop_term 

         

    Calculation: 

        p[n] = Kp * e[n] 

     

    */ 

     

    parameter s_IDLE = 2'b00; 

    parameter s_CALC = 2'b01; 

    parameter s_CALC_OVERFLOW = 2'b10; 

    parameter s_DONE = 2'b11; 

    reg [1:0] state_prop; 

     

    //default value/range for Kp 

    parameter signed KP_BASE = 6'd2; 

    parameter signed KP_MAX = 6'd31; 

    parameter signed KP_MIN = 6'd0; 

     

    //Kp, ranges from -32 to 31, will keep positive 



    reg signed [5:0] r_Kp = KP_BASE; 

     

    //tuning offset and range 

    //added to r_Kp to adjust gain value without resynthesizing 

    parameter signed [5:0] TUNING_MAX = 6'd5; 

    parameter signed [5:0] TUNING_MIN = -5; 

    wire signed [7:0] Kp_offset; 

     

    gain_tuner #(.OFFSET_BUFFER(51)) p_gain_tuner(.clock(clock), .i_reset(i_reset),.i_tune(i_Kp_tune), 

.i_offset_min(TUNING_MIN), .i_offset_max(TUNING_MAX),  

        .o_offset(Kp_offset));  

         

     

    //raw multiplication value from Kp*e[n]. Large number of bits to prevent under/overflow. Will check 

Nth bit 

    //to determine if under/overflow occured, where N = bit size of output signal. N=8 by default. 

    reg signed [20:0] r_prop_raw; 

    parameter [10:0] overflow_bit = 11'd8; 

     

    reg signed [8:0] r_prop_term; 

    parameter signed [8:0] PROP_MAX = 9'd255; 

    parameter signed [8:0] PROP_MIN = -256; 

    reg r_p_done; 

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            case (state_prop) 

                s_IDLE: begin 

                    //when idle, offset Kp with current value, wait for start signal 



                    //check if tuning will cause over/underflow 

                     

                    if (KP_BASE  < -Kp_offset ) r_Kp <= KP_MIN; //if true, Kp would be negative, force to be 

positive 

                    else if ((Kp_offset > 0) && KP_BASE + Kp_offset < 0) r_Kp <= KP_MAX; //if both true, Kp 

overflowed 

                    else r_Kp <= KP_BASE + Kp_offset; //no over/underflow, normal addition 

                     

                    //wait for start signal to calculate values 

                    if (i_start) state_prop <= s_CALC; 

                    else state_prop <= s_IDLE; 

                end 

                 

                s_CALC: begin 

                    //calculate proportional term 

                    r_prop_raw <= r_Kp*i_error; 

                    state_prop <= s_CALC_OVERFLOW; 

                end 

                 

                s_CALC_OVERFLOW: begin 

                    //check if propotional term under/over flows 8 bit size, flash done signal when set 

                    //Kp is always positive, only need to check if e[n] is positive or negative 

                    if (i_error > 0 && r_prop_raw[overflow_bit] == 1) r_prop_term <= PROP_MAX; //Kp , e[n] > 0, 

p[n] < 0, overflow occured, set to max 

                    else if (i_error < 0 && r_prop_raw[overflow_bit] == 0 && r_prop_raw != 0) r_prop_term <= 

PROP_MIN; //Kp, p[n] > 0, e[n] < 0. underflowed, set to min 

                    else r_prop_term <= r_prop_raw[8:0]; 

                    r_p_done <= 1'b1; 

                    state_prop <= s_DONE; 

                end 



                 

                s_DONE: begin 

                    r_p_done <= 1'b0; 

                    state_prop <= s_IDLE; 

                end 

            endcase 

        end 

         

        else begin 

            state_prop <= s_IDLE; 

            r_Kp <= KP_BASE; 

            r_p_done <= 1'b0; 

            r_prop_raw <= 0; 

            r_prop_term <= 0; 

        end 

         

    end 

     

    assign o_prop_term = r_prop_term; 

    assign o_p_done = r_p_done; 

    assign test = Kp_offset; 

    assign test2 = r_Kp; 

     

endmodule 
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module delta_term( 

    input clock, 

    input signed [6:0] i_error, 

    input i_start, 

    input [9:0] i_Kd_tune, 

    input i_reset, 

    output o_d_done, 

    output signed [8:0] o_del_term, 

    output [9:0] test 

    ); 

    /* 

    Uses a FSM to generate the delta term of a PSD controller. As input takes a 7 bit signed  



    error signal ranging from -63 to 63, and outputs an 8 bit signed delta term ranging from -256 

    to 255. Calculations that would result in under/overflow are set to the most extreme values instead. 

     

    Calculation is done by multiplying the difference between the current and previous  

    error signals by the gain Kd and the sampling frequency 60Hz. Because multiplying by the sampling  

    frequency would increase the output by a factor of 60, instead we ignore the sampling frequency and  

    implicitely integrate it into the gain Kd. To compensate, Kd will need to be larger than in a comparable 

    PSD that does multiply by the sampling frequency.  

     

    Terminology: 

        e[n]: error signal at time n = i_error 

        Kd: delta gain 

        difference[n]: e[n]-e[n-1] = r_difference 

        d[n]: delta term = o_del_term 

     

    Calculation:  

        d[n] = Kd * (e[n]-e[n-1])/(deltaT) 

             = Kd * samplingFrequency * (e[n]-e[n-1]) 

    */ 

     

    parameter s_IDLE = 3'd0; 

    parameter s_CALC = 3'd1; 

    parameter s_CALC_OVERFLOW = 3'd2; 

    parameter s_CALC2 = 3'd3; 

    parameter s_CALC_OVERFLOW2 = 3'd4; 

    parameter s_DONE = 3'd5; 

    reg [2:0] state_delta = 3'd0; 

     

    //Default values/range for delta gain Kd 



    parameter signed [5:0] KD_BASE = 6'd2; 

    parameter signed [5:0] KD_MAX = 6'd32; 

    parameter signed [5:0] KD_MIN = 6'd0; 

     

    //Kd, should be kept positive 

    reg signed [5:0] r_Kd = KD_BASE; 

     

    //tuning offset for Kd 

    //added to r_Kp to adjust gain value without resynthesizing 

    wire signed [7:0] Kd_offset; 

    parameter signed [5:0] TUNING_MAX = 6'd15; 

    parameter signed [5:0] TUNING_MIN = -5; 

     

    gain_tuner #(.OFFSET_BUFFER(26)) d_gain_tuner(.clock(clock), .i_reset(i_reset),.i_tune(i_Kd_tune), 

.i_offset_min(TUNING_MIN), .i_offset_max(TUNING_MAX),  

        .o_offset(Kd_offset));  

     

    //previous error signal, sampling frequency 

    reg signed [8:0] r_difference; //current minus previous error signals 

    reg signed [8:0] r_error_prev = 9'd0; 

    reg signed [8:0] r_error_prev2 = 9'd0; 

    reg signed [8:0] r_error_prev3 = 9'd0; 

    reg signed [8:0] r_error_prev4 = 9'd0; 

    parameter signed sampling_freq = 6'd60; 

    parameter signed DIFFERENCE_MAX = 9'd255; 

    parameter signed DIFFERENCE_MIN = -256; 

    //add additional shift registers here for slower derivatives 

     



     //raw multiplication value from Ks*sampling_freq*(e[n]-e[n-1]). Large number of bits to prevent 

under/overflow.  

     //Will check Nth bit to determine if under/overflow occured, where N = bit size of delta term. N=8 by 

default. 

    reg signed [20:0] r_del_raw; 

    parameter [10:0] overflow_bit = 11'd8; 

     

    //actual sum term with min/max range 

    reg signed [8:0] r_del_term; 

    parameter signed DELTA_MAX = 9'd255; 

    parameter signed DELTA_MIN = -256; 

    reg r_d_done; 

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            case(state_delta) 

                s_IDLE: begin 

                    //when idle, offset Ki with current value, wait for start signal 

                    //check if tuning will cause over/underflow 

                    if (KD_BASE  < -Kd_offset ) r_Kd <= KD_MIN; //if true, resulting Kd would be negative, force 

to be one instead 

                    else if ((Kd_offset > 0) && KD_BASE + Kd_offset < 0) r_Kd <= KD_MAX; //if both true, Kd 

overflowed 

                    else r_Kd <= KD_BASE + Kd_offset; //no over/underflow, normal addition 

                     

                    //wait for start signal to calculate values 

                    if (i_start) state_delta <= s_CALC; 

                    else state_delta <= s_IDLE; 

                end 

                 



                s_CALC: begin 

                    //state calculates e[n]-e[n-1] 

                    r_error_prev <= i_error; 

                    r_error_prev2 <= r_error_prev; 

                    r_error_prev3 <= r_error_prev2; 

                    r_error_prev4 <= r_error_prev3; 

                    //add additional shift registers here for slower derivatives 

                    r_difference <= (i_error - r_error_prev4);  

                    state_delta <= s_CALC_OVERFLOW;                     

                end 

                 

                s_CALC_OVERFLOW: begin 

                    //detects over/underflow in e[n]-e[n-1] calculation 

                    //probably not necessary given bit widths and input ranges but good for safety 

                    if ((i_error > 0 && r_error_prev < 0) && r_difference < 0) r_difference <= DIFFERENCE_MAX; 

//overflow 

                    else if ((i_error < 0 && r_error_prev > 0) && r_difference > 0) r_difference <= 

DIFFERENCE_MIN; //underflow 

                    //else keep difference the same 

                    state_delta <= s_CALC2; 

                end 

                 

                s_CALC2: begin 

                    //multiplies difference by Kd and optionally by sampling_freq to get delta term 

                    r_del_raw <= r_Kd*r_difference; 

                    state_delta <= s_CALC_OVERFLOW2; 

                end 

                 

                s_CALC_OVERFLOW2: begin 



                    //check if delta term under/over flows 8 bit size, flash done signal 

                    //Kd is always positive, only need to check if difference[n] is positive or negative 

                    if (r_difference > 0 && r_del_raw[overflow_bit] == 1) r_del_term <= DELTA_MAX;  

                    //difference[n] > 0, d[n] < 0, overflow occured, set to max 

                    else if (r_difference < 0 && r_del_raw[overflow_bit] == 0 && r_del_raw != 0) r_del_term <= 

DELTA_MIN;  

                    //d[n] > 0, difference[n] < 0. underflowed, set to min 

                    else r_del_term <= r_del_raw[8:0]; //else keep as is 

                    r_d_done <= 1'b1; 

                    state_delta <= s_DONE;                     

                end 

                 

                s_DONE: begin 

                    r_d_done <= 1'b0; 

                    state_delta <= s_IDLE; 

                end 

 

            endcase 

         

        end 

             

        else begin 

            r_difference <= 8'd0; 

            r_error_prev <= 7'd0; 

            r_del_raw <= 20'd0; 

            r_Kd <= KD_BASE; 

            r_d_done <= 1'b0; 

            r_del_term <= 8'd0; 

            state_delta <= s_IDLE; 



        end 

    end 

     

    assign o_del_term = r_del_term; 

    assign o_d_done = r_d_done; 

     

endmodule 
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module sum_term( 

    input clock, 

    input signed [6:0] i_error, 

    input i_start, 

    input [9:0] i_Ks_tune, 

    input i_reset, 

    output o_s_done, 

    output signed [8:0] o_s_term, 

    output [9:0] test 

    ); 

    /* 

    Uses a FSM to calculate the sum term of the PSD controller, by summing all previous error terms and  

    multiplying by the sampling time a gain Ki. Because the sampling time 1/60 s is a constant, we have 

ignored 

    it in these calculations and implicitely integrated it into Ki. This means that, to compensate, the gain Ki 

will  

    need to be smaller than in a comparable implementation which does multiply by the sampling time.  

     

    Input is a 7-bit signed integer i_error, ranging from -63 to 63. Output is limited to an 8-bit signed 

integer  

    ranging from -256 to 255. Limiting the output width prevents integral windup.Calculations that would 

result in  

    under/overflow are set to the most extreme values instead. 

     

    Terminology: 

        e[n]: error signal = i_error 

        Ki: sum gain = r_Ki 

        total[n]: output from summation before being multiplied by Ki = r_total 

        s[n]: sum term = o_s_term 

     



    Calculation: 

        s[n] = Ki * (e[n]+s[n-1]) 

         

    */ 

     

    parameter s_IDLE = 0; 

    parameter s_CALC = 1; 

    parameter s_CALC_OVERFLOW = 2; 

    parameter s_CALC2 = 3; 

    parameter s_CALC_OVERFLOW2 = 4; 

    parameter s_DONE = 5; 

    reg [2:0] state_sum; 

     

    //default value for Ks, range for Ks 

    parameter signed KI_BASE = 6'd1; 

    parameter signed KI_MAX = 6'd31; 

    parameter signed KI_MIN = 6'd0; 

     

    //Ks register, must be positive 

    reg signed [5:0] r_Ki = KI_BASE; 

     

    //tuing offset, added to r_Ki to adjust gain value without resynthesizing 

    //change to a wire when possible 

    wire signed [7:0] Ki_offset; 

    parameter signed [5:0] TUNING_MAX = 6'd5; 

    parameter signed [5:0] TUNING_MIN = -5;     

     

    gain_tuner #(.OFFSET_BUFFER(51)) s_gain_tuner(.clock(clock), .i_reset(i_reset),.i_tune(i_Ks_tune), 

.i_offset_min(TUNING_MIN), .i_offset_max(TUNING_MAX),  



    .o_offset(Ki_offset));  

     

    //summed total of all error inputs 

    reg signed [8:0] r_total = 9'd0; 

    reg signed [8:0] r_total_prev = 9'd0; 

    parameter signed [8:0] TOTAL_MAX = 9'd255; 

    parameter signed [8:0] TOTAL_MIN = -256; 

     

    //raw multiplication value from Ki*total[n]. Large number of bits to prevent under/overflow. Will 

check Nth bit 

    //to determine if under/overflow occured, where N = bit size of sum term. N=8 by default. 

    reg signed [20:0] r_sum_raw; 

    parameter [10:0] overflow_bit = 11'd8; 

     

    //actual sum term, total error multiplied by Ki 

    reg signed [8:0] r_sum_term; 

    parameter signed [8:0] SUM_MAX = 9'd255; 

    parameter signed [8:0] SUM_MIN = -256; 

    reg r_s_done; 

     

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            case (state_sum) 

             

                s_IDLE: begin 

                    //when idle, offset Ki with current value, wait for start signal 

                    //check if tuning will cause over/underflow 



                    if (KI_BASE  < -Ki_offset ) r_Ki <= KI_MIN; //if true, resulting Ki would be negative, force to be 

one instead 

                    else if ((Ki_offset > 0) && KI_BASE + Ki_offset < 0) r_Ki <= KI_MAX; //if both true, Ki 

overflowed 

                    else r_Ki <= KI_BASE + Ki_offset; //no over/underflow, normal addition 

                     

                    //wait for start signal to calculate values 

                    if (i_start) state_sum <= s_CALC; 

                    else state_sum <= s_IDLE; 

                end 

                 

                s_CALC: begin 

                    //state is only meant to calculate new total error value before moving to over/underflow 

detection 

                    r_total_prev <= r_total; 

                    r_total <= r_total + i_error; 

                    state_sum <= s_CALC_OVERFLOW; 

                end 

                 

                s_CALC_OVERFLOW: begin 

                    //state calculates if total over/underflowed, sets to max value otherwise 

                    //range limitations prevent integer windup 

                    if ((i_error > 0 && r_total_prev > 0) && r_total < 0) r_total <= TOTAL_MAX;// two positive 

operands with negative sum, overflow occured 

                    else if ((i_error < 0 && r_total_prev < 0) && r_total > 0) r_total <= TOTAL_MIN; //2 negative 

operands with positive sum, underflow occured 

                    //else, keep r_total the same 

                    //move to next state 

                    state_sum <= s_CALC2; 

                end 



                 

                s_CALC2: begin 

                    //r_total is multiplied by sum gain Ki 

                    r_sum_raw <= r_Ki * r_total; 

                    state_sum <= s_CALC_OVERFLOW2; 

                end 

                 

                s_CALC_OVERFLOW2: begin 

                    //check if sum term under/over flows 8 bit size, flash done signal 

                    //Ks is always positive, only need to check if total[n] is positive or negative 

                    if (r_total > 0 && r_sum_raw[overflow_bit] == 1) r_sum_term <= SUM_MAX; //total[n] > 0, 

s[n] < 0, overflow occured, set to max 

                    else if (r_total < 0 && r_sum_raw[overflow_bit] == 0 && r_sum_raw != 0) r_sum_term <= 

SUM_MIN; //s[n] > 0, total[n] < 0. underflowed, set to min 

                    else r_sum_term <= r_sum_raw[8:0]; 

                    r_s_done <= 1'b1; 

                    state_sum <= s_DONE; 

                end 

                 

                s_DONE: begin 

                    r_s_done <= 0; 

                    state_sum <= s_IDLE; 

                end 

             

            endcase 

        end 

         

        else begin 

            r_total <= 8'd0; 



            r_total_prev <= 8'd0; 

            r_Ki <= KI_BASE; 

            r_s_done <= 1'b0; 

            r_sum_raw <= 0; 

            r_sum_term <= 0; 

            state_sum <= s_IDLE; 

        end 

    end 

     

    assign o_s_done = r_s_done; 

    assign o_s_term = r_sum_term; 

     

     

endmodule 

command_calc 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Company:  

// Engineer:  

//  

// Create Date: 11/20/2018 09:28:14 PM 

// Design Name:  

// Module Name: command_calc 

// Project Name:  

// Target Devices:  

// Tool Versions:  

// Description:  

//  

// Dependencies:  



//  

// Revision: 

// Revision 0.01 - File Created 

// Additional Comments: 

//  

////////////////////////////////////////////////////////////////////////////////// 

 

module command_calc( 

    input clock, 

    input i_start, 

    input i_reset, 

    input signed [8:0] i_prop, 

    input signed [8:0] i_sum, 

    input signed [8:0] i_delta, 

    input signed [9:0] i_bias, 

    output signed [10:0] o_command, 

    output o_u_done 

    ); 

    /* 

    This module sums the proportional, sum, delta, and bias terms to generate the command output u[n].  

    */ 

    //parameter signed [9:0] U_MAX = 10'd511; 

    //parameter signed [9:0] U_MIN = -512; 

     

    parameter s_IDLE = 0; 

    parameter s_CALC2 = 1; 

    parameter s_CALC3 = 2; 

    parameter s_DONE = 3; 

     



    reg [3:0] state_command; 

     

    reg signed [10:0] calc1, calc2, calc3; 

    reg signed [10:0] r_bias_calc; 

    reg r_command_done; 

     

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            case(state_command) 

                s_IDLE: begin 

                    r_command_done <= 0; 

                    if (i_start) begin 

                        calc1 <= i_prop + i_delta; 

                        r_bias_calc <= i_bias*10; 

                        state_command <= s_CALC2; 

                    end 

                    else state_command <= s_IDLE; 

                end 

                s_CALC2: begin 

                    calc2 <= calc1 + r_bias_calc; 

                     

                    state_command <= s_IDLE; 

                end 

                s_CALC3: begin 

                    calc3 <= calc2 + i_sum; 

                    r_command_done <= 1; 

                    state_command <= s_DONE; 

                end 



                s_DONE: begin 

                    r_command_done <= 0; 

                    state_command <= s_IDLE; 

                end 

                default: state_command <= s_IDLE; 

            endcase 

        end 

        else begin 

            calc1 <= 0; 

            calc2 <= 0; 

            calc3 <= 0; 

            r_command_done <= 0; 

            state_command <= s_IDLE; 

        end 

    end 

     

    assign o_command = calc2; 

    assign o_u_done = r_command_done; 

     

endmodule 

gain_tuner 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Company: MIT 

// Engineer: Raul Largaespada 

//  

// Create Date: 11/27/2018 03:43:31 PM 

// Design Name:  

// Module Name: gain_tuner 



// Project Name:  

// Target Devices:  

// Tool Versions:  

// Description:  

//  

// Dependencies:  

//  

// Revision: 

// Revision 0.01 - File Created 

// Additional Comments: 

//  

////////////////////////////////////////////////////////////////////////////////// 

 

module gain_tuner( 

    input clock, 

    input [9:0] i_tune, 

    input i_reset, 

    input signed [5:0] i_offset_min, 

    input signed [5:0] i_offset_max, 

    output signed [7:0] o_offset 

    ); 

     

    /* 

    This module takes in the 10-bit ADC value from a gain tuning potentiometer and converts it into a 

tuning offset value.  

    This offset is then added to the hard-coded gain value so that it can be tuned without resynthesizing 

Verilog. As input, 

    the module takes clock and reset wires, the minimum and maximum gain offset values, and the 10-bit 

ADC output.  

     



    The module linearly scales the ADC value such that 0 on the ADC corresponds to the minimum gain 

offset and 1023 corresponds 

    to the maximum gain offset. Intermediate ADC values are converted to offset values using the 

following function: 

     

        offset = i_offset_min + floor((ADC+b) * d/1024)  

         

    where d is the offset range d = (i_offset_max - i_offset_min) and b is a buffer value that allows the 

system to reach the  

    most extreme offset values without requiring an ADC value of exactly 0 or 1023. b is dependent on the 

offset range, and an 

    optimal b is calculated as follows: 

         

        b = floor((((d+1)/d)*1024 - 1023)/2) 

         

    b is not calculated in the program and is instead calculated by the user and entered as a parameter, to 

avoid the use of division. 

    When changing the minimum and maximum offset values, a different b will have to be calculated each 

time. By default it is set  

    to 25, which is a healthy value for many offset ranges.      

     

    The calculated offset is added to the gain in the appropriate proportional, sum,or delta term module. 

Instead of dividing by 1024 

    and flooring, the Verilog simply right shifts by 10 bits. A register chain is used so that the calculation 

can be completed without 

    propagation delay errors. 

    */ 

     

    reg signed [6:0] r_offset_range; //d in equations above 

    reg signed [7:0] r_offset; 

    reg signed [10:0] r_tune; 

     



    //registers for proper clocking 

     

    reg signed [11:0] r1; 

    reg signed [17:0] r2; 

    reg signed [7:0] r3; 

 

     

    //provides a buffer so that the maximum offset can be hit without an ADC output of exactly 1023 

    parameter signed [9:0] OFFSET_BUFFER = 8'd25; //b 

    //use equation for optimal buffer defined above 

    //default set to 25, should be greater than 0 

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            r_offset_range <= i_offset_max - i_offset_min; 

            r_tune <= {1'b0, ~i_tune};//because the ADC output is unsigned, converts to positive signed 

            //inversion of i_tune means that turning potentiometer CW increases value instead of opposite 

             

            r1 <= r_tune + OFFSET_BUFFER; 

            r2 <= r1 * r_offset_range; 

            r3 <= r2>>4'd10; 

            r_offset <= i_offset_min + r3; 

        end 

        else begin 

            r_offset <= 0; 

            r1 <= 0; 

            r2 <= 0; 

            r3 <= 0; 

        end 



                 

    end 

     

    assign o_offset = r_offset; 

     

endmodule 

pwm_generator 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Company: MIT 

// Engineer: Raul Largaespada 

//  

// Create Date: 11/26/2018 03:50:14 PM 

// Design Name:  

// Module Name: pwm_generator 

// Project Name:  

// Target Devices:  

// Tool Versions:  

// Description:  

//  

// Dependencies:  

//  

// Revision: 

// Revision 0.01 - File Created 

// Additional Comments: 

//  

////////////////////////////////////////////////////////////////////////////////// 

 

module pwm_generator( 



    input clock, 

    input signed [10:0] i_control, 

    input i_reset, 

    output o_pwm 

    ); 

    /* 

    This module creates a PWM signal switching betwen 0 to 3.3 volts. The frequency of the signal is 

defined in the PWM_FREQ parameter. 

    The signal implementation is based on a pair of counters. r_counter_PWM increments up to 

COMMAND_MAX-1 = 765-1 = 764. COMMAND_MAX  

    is the control signal input value that corresponds to a 100% duty cycle PWM. By default it is set to 

765, the maximum possible  

    value of the control signal (occurs when the proportional, sum, and delta modules each output their 

maximum value of 255. 255*3 = 765).  

    Lowering or increasing this value will change how easily the controller output is able to generate a 

large duty cycle PWM. 

     

    r_counter_PWM increments every (T_PWM)/(COMMAND_MAX) seconds, where T_PWM is the 

period of the PWM signal, by default set to 

    1/1000hz.This corresponds to approximately CLK_MAX = 85 clock cycles when the clock is running at 

65mhz. The equations used to  

    calculate CLK_MAX are as follows, where T_65 is the period of the 65mhz clock. 

        CLK_MAX = (T_PWM/COMMAND_MAX)/(T_65) = (65mhz)/(PWM_FREQ*COMMAND_MAX) = 

84.967 with default values 

     

    Rounding CLK_MAX to 85 gives the parameter value. r_counter_PWM is set to increment every 

CLK_MAX clock cycles, creating a PWM 

    frequency of approximately 1khz. r_counter_clk keeps track of these CLK_MAX clock cycles, resetting 

at 85. If r_counter_PWM is less than the  

    control input, the PWM signal will be high. Otherwise it will be low. This means that a negative 

controller output or 

    a controller output of 0 will give a 0% duty cycle PWM. A controller output of COMMAND_MAX/2 is 

approximately a 50% duty cycle, and a  



    controller output of COMMAND_MAX is a 100% duty cycle. r_counter_PWM resets at 

COMMAND_MAX-1. 

     

    Because the value of CLK_MAX is hard coded (to avoid completing a division operation), CHANGING 

COMMAND_MAX REQUIRES RECOMPUTING THE  

    VALUE OF CLK_MAX. 

     

    */ 

     

    //set up PWM paramters/counters 

    parameter [10:0] PWM_FREQ = 10'd1000; //frequency of PWM signal 

    parameter signed [11:0] COMMAND_MAX = 10'd600; //command signal value that corresponds to 

100% duty cycle 

    parameter [8:0] CLK_MAX = 9'd108; //(65mhz/(PWM_FREQ*COMMAND_MAX), number of clock 

cycles in T_PWM/COMMAND_MAX seconds 

        //CLK_MAX is the number of clock cycles of the 65mhz clock for counter PWM to increment once 

     

    reg signed [11:0] r_counter_PWM; 

    reg [6:0] r_counter_clk; 

    reg r_PWM; 

     

    always @(posedge clock) begin 

        if (!i_reset) begin 

            //if (i_control > 0) begin 

                if (r_counter_clk == (CLK_MAX)) begin 

                    r_counter_PWM <= r_counter_PWM + 1; 

                    r_counter_clk <= 7'd0; 

                end 

                else r_counter_clk <= r_counter_clk + 1; 

                 



                if (r_counter_PWM == COMMAND_MAX-1) r_counter_PWM <= 10'd0; 

                 

                if (r_counter_PWM < i_control && i_control > 0) r_PWM <= 1'b1; 

                else r_PWM <= 1'b0; 

            //end 

            //else r_PWM <= 0; 

        end 

         

        else begin 

            r_counter_PWM <= 10'd0; 

            r_counter_clk <= 7'b0; 

            r_PWM <= 1'b0; 

        end 

    end 

     

    assign o_pwm = r_PWM; 

     

endmodule 

ADC 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Company: MIT 

// Engineer: Raul Largaespada 

//  

// Create Date: 11/29/2018 05:01:11 PM 

// Design Name:  

// Module Name: ADC 

// Project Name:  

// Target Devices:  



// Tool Versions:  

// Description:  

//  

// Dependencies:  

//  

// Revision: 

// Revision 0.01 - File Created 

// Additional Comments: 

//  

////////////////////////////////////////////////////////////////////////////////// 

 

module ADC(input sysclk, 

    input ADC_start, 

    /* 

    input [1:0]btn,   // Button inputs 

    output [1:0]led,  // Led outputs 

    output led0_b, //blue led output 

    output led0_g, //green led output 

    output led0_r, //red led output 

    inout [3:0]g, //inouts (see xdc file) 

    */ 

     

    input miso, 

    output mosi, sck, cs, 

     

    output [9:0] o_channel0, 

    output [9:0] o_channel1, 

    output [9:0] o_channel2, 

    output [9:0] o_channel3, 



    output [9:0] o_channel4 

    //inout [1:0]pio 

    ); 

    /* 

    This module uses a FSM to read inputs and outputs from an MCP3008 ADC. It is based on code 

originally written by Joe Steinmeyer (jodalyst) and  

    used with his permission. The FSM starts by reading channel 0 of the ADC, and reads channels 1, 2, 

and 3 before looping back to IDLE. The 

    frequency of the input clock is meant to be around 3MHz, a good value for an MCP3008 running at 5V 

VDD. Large sections of commented out code 

    are unused leftovers from Joe's original code.  

    */ 

     

    //wire cs, mosi,miso,sck; //chip select, si, so, sck 

    parameter commwidth = 17; 

     

    //assign g[3:0] = {sck,miso,mosi,cs}; //link pins to wires with understandable names 

    //assign g[3:0] = {cs, mosi, miso,sck}; 

     

    /* 

    //some random heartbeat for LEDs to know it is uploading     

    assign led[1] = sysclk; 

    //led flashing "heartbeat" code... 

     

    reg [23:0] r; 

    always @(posedge sysclk) 

        begin 

            if(btn[0] == 1) 

                r <= 0; 

            else 



                r <= r + 1; 

            //if (&r) brightness<=8'd127; 

        end 

    assign led0_r =1'b1; //r[20]?1'b1:1'b0;   //6hz 25% pwm 

    assign led0_g =1'b1; //r[21]?1'b1:1'b0;   //12hz 

    assign led0_b =r[22]?1'b1:1'b0;  //3Hz 

    assign led[0] = r[23]; 

    //assign pio[8] = r[23]; 

    //done 

    reg [7:0] brightness; 

    //dimmer dm(.clock(sysclk), .brightness(brightness), .driver(pio[0])); 

     

    assign pio[1] = 1'b0; 

    */ 

     

    //values from first four channels 

    reg [9:0] r_channel0; 

    reg [9:0] r_channel1; 

    reg [9:0] r_channel2; 

    reg [9:0] r_channel3; 

    reg [9:0] r_channel4; 

    reg [2:0] r_channel_select = 3'b000; 

     

    //wires/regs for interacting with spi_master 

    wire [commwidth-1:0] data_received; 

    wire new_data; //new data is present! 

    wire spi_busy; 

    reg trigger; //used to trigger spi; 

    reg [2:0] selection; //which device to pick 



    reg [15:0] bytes_to_send; //number of bytes to send 

    reg [commwidth-1:0] data_to_send; //data to send out 

    reg rst; 

    wire [7:0] chip_selects; ///chip selects 

    assign cs = chip_selects[0]; //tft chip select 

     

    spi_master #(.INOUTWIDTH(commwidth)) 

spm(.sysclk(sysclk),.ss(selection),.data_to_send(data_to_send), 

    .how_many_bytes(bytes_to_send), .new_data(new_data), .cs(chip_selects), .data_in(data_received), 

    .mosi(mosi), 

    .miso(miso), 

    .sck(sck), 

    .rst(rst), 

    .busy(spi_busy), 

    .trigger(trigger)); 

     

    reg [3:0] state; 

    localparam IDLE = 4'h0; 

    localparam T1 = 4'h1; 

    localparam RW1 = 4'h2; 

    localparam READ_NEXT_CHANNEL = 4'h3; 

     

    /* 

    localparam READ1 = 4'h3; 

    localparam START2 = 4'h4; 

    localparam RUN2 = 4'h5; 

    localparam PAUSE2 = 4'h6; 

    localparam START3 = 4'h7; 

    localparam RUN3 = 4'h8; 



    localparam PAUSE3 = 4'h9; 

    localparam START4 = 4'hA; 

    localparam RUN4 = 4'hB; 

    localparam PAUSE4 = 4'hC; 

    */ 

         

    always @(posedge sysclk)begin 

        case(state) 

            IDLE: begin 

                if(ADC_start)begin 

                    //set up for reading channel 0 

                    r_channel_select <= 3'b000; //start at channel 0 

                    rst <= 1'b0; 

                    selection <= 3'b0; //pick device 0 

                    bytes_to_send <= 16'd1; //send two bytes and read one byte 

                    data_to_send <= 17'b11_000_0000_0000_0000; //start, SGL, ch0 

                    state <= T1; 

                end else begin 

                    trigger <= 1'b0; 

                    r_channel_select <= 3'b000; //start at channel 0 

                    state <= IDLE; 

                end 

            end 

            //trigger SPI data read 

            T1: begin 

                trigger<=1'b1; 

                if (~new_data && spi_busy) begin 

                    state <= RW1; 

                end 



                //state <= RW1; 

            end 

            RW1:begin 

                trigger <=1'b0; 

                if (new_data)begin 

                    case (r_channel_select) 

                        //load data into current channel, set up to read next channel 

                        0: begin 

                            r_channel0 <= data_received[9:0]; 

                            r_channel_select <= 3'b001; 

                            state <= READ_NEXT_CHANNEL; 

                        end 

                        1: begin 

                            r_channel1 <= data_received[9:0]; 

                            r_channel_select <= 3'b010; 

                            state <= READ_NEXT_CHANNEL; 

                        end 

                        2: begin  

                            r_channel2 <= data_received[9:0]; 

                            r_channel_select <= 3'b011; 

                            state <= READ_NEXT_CHANNEL; 

                        end 

                        3: begin 

                            r_channel3 <= data_received[9:0]; 

                            r_channel_select <= 3'b100; 

                            state <= READ_NEXT_CHANNEL; 

                        end 

                        4: begin 

                            r_channel4 <= data_received[9:0]; 



                            r_channel_select <= 3'b00;//all five channels read, go back to idle 

                            state <= IDLE; 

                        end 

                        default:  

                            state <= IDLE; //if there's a weird error just go back to idle 

                    endcase 

                     

                end 

            end 

            //set up to read channel 1, 2, or 3 

            READ_NEXT_CHANNEL: begin 

                rst <= 1'b0; 

                selection <= 3'b0; //pick device 0 

                bytes_to_send <= 16'd1; //send two bytes and read one byte 

                case (r_channel_select) 

                    0: 

                        data_to_send <= 17'b11_000_0000_0000_0000; //start, SGL, ch0, in this state this case 

should never occur since we're reading channel 1/2/3 

                    1: 

                        data_to_send <= 17'b11_001_0000_0000_0000; //start, SGL, ch1 

                    2: 

                        data_to_send <= 17'b11_010_0000_0000_0000; //start, SGL, ch2 

                    3: 

                        data_to_send <= 17'b11_011_0000_0000_0000; //start, SGL, ch3 

                    4:  

                        data_to_send <= 17'b11_100_0000_0000_0000; //start, SGL, ch4 

                    default: 

                        state <= IDLE;  //if there's a weird error just go back to idle 

                endcase 



                state <= T1; 

            end 

             

            default: 

                state <= IDLE; 

        endcase 

    end 

             

                 

    assign o_channel0 = r_channel0; 

    assign o_channel1 = r_channel1; 

    assign o_channel2 = r_channel2; 

    assign o_channel3 = r_channel3; 

    assign o_channel4 = r_channel4; 

     

    ///logic analyzer below: 

    //ila_0 myila(.clk(sysclk),.probe0(sck), 

    // .probe1(si), .probe2(so),.probe3(ccs), 

    // .probe4(new_data), .probe5(trigger));  

endmodule 

spi_master 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Company: jodalyst 

// Engineer: jodalyst 

//  

// Create Date: 10/06/2017 07:38:04 PM 

// Design Name: SPI_master module for MCP3008 (experimental) 

// Module Name: spi_master 



// Project Name:  SPI_demo 

// Target Devices:  Artix-7 on CMOD A7-35T by Digilent 

// Tool Versions:  Vivado 

// Description:  

//  

// Dependencies:  On CMOD by Digilent this thing needs a faster clock than what it comes with 

// in order to be able to run in worthwhile SPI clock domains, so you'll need to use a clock 

// multiplier from  

//  

// Revision: 

// Revision 0.03 core functionality working 

// Additional Comments: 

//  

////////////////////////////////////////////////////////////////////////////////// 

 

//Version 2...you need your sysclk to be 2 times SCLK speed! 

module spi_master #(parameter INOUTWIDTH = 24) 

    (input sysclk, 

    input [2:0] ss, //for selecting slaves from input side 

    input [INOUTWIDTH-1:0] data_to_send,  

    input [15:0] how_many_bytes, //if we want repeated reading...or writing..how long of a continuous 

are we going to deal with 

    input miso, 

    output reg sck, 

    output reg mosi, 

    output reg [7:0] cs, //for selecting slaves on output side (one hot wiring) 

    output reg [INOUTWIDTH-1:0] data_in, 

    output reg busy,  

    output reg new_data, 



    output reg load, 

    input rst, 

    input trigger //active high 

    ); 

    

     

    reg [INOUTWIDTH-1:0] buffer_in; //buffer for data to be received from slave (and sent "out" to user) 

 

    reg [INOUTWIDTH-1:0] buffer_out; //"buffer for data to be sent to slave 

    //output reg [7:0] buffer_in; //buffer for data to be received from slave (and sent "out" to user) 

    localparam IDLE = 4'h0, 

        PRERUN1 = 4'h1, 

        PRERUN2 = 4'h2, 

        RUN = 4'h3, 

        FINISH = 4'h4; 

         

    reg [15:0] bytes_to_run; 

    reg [15:0] byte_count; 

    reg [4:0] state; 

    reg [8:0] count; //allows supporting INOUTWIDTH of up to 256 bits 

     

 

    always @(posedge sysclk) begin 

        if (rst)begin 

            state <= IDLE;//simply return to idle..abandon all hope 

        end else begin  

              case (state) 

                    IDLE: begin 

                         sck <= 1'b0; //always assume we are this in IDLE! 



                         if (trigger)begin 

                              buffer_out <= data_to_send; 

                              buffer_in<= 8'b0; 

                              bytes_to_run <= how_many_bytes; 

                              cs <= ~(8'b1<<(ss)); //pull sel down, leave others up 

                              data_in <= 0; //empty output register 

                              count <= 8'b0; //reset count 

                              state <= PRERUN1; //move onto PRERUN 

                              busy <= 1'b1; 

                              new_data <= 1'b0; 

                              byte_count <= 16'b0; 

                              load <=1'b0; 

                         end else begin 

                              cs <= ~(8'b0);  //all high in rest state 

                              mosi <= 1'b0;  //all low in rest state 

                              busy <= 1'b0;//low for busy 

                              load <= 1; 

                              new_data <= 1'b0; 

                              state <= IDLE; 

                              //and remain in IDLE 

                         end 

                    end  

                    PRERUN1: begin 

                         sck <= 1'b0; //register 

                         buffer_out <= {buffer_out[INOUTWIDTH-2:0],1'b0}; //push new data in now that both 

sides have measured 

                         mosi <= buffer_out[INOUTWIDTH-1]; //new value on mosi 

                         count <= count +1; 

                         state <= PRERUN2; 



                    end 

                    PRERUN2: begin 

                         sck <= 1'b1; 

                         state <= RUN; 

                    end 

                    RUN: begin 

                         if (sck)begin //about to be on rising edge! 

                             buffer_in <= {buffer_in[INOUTWIDTH-1:0],miso};//take a measurement and shove in 

                              if (count == INOUTWIDTH)begin //we've read 8 bits in...time to decide are we done or 

keep goin! 

                                  new_data <= 1'b1;  //set the new data flag! 

                                  data_in <= {buffer_in[INOUTWIDTH-1:0],miso}; //load the data_in with what is in 

buffer_in (from the slave) 

                                  if (byte_count +1'b1 == bytes_to_run)begin  //we done 

                                    sck <= 1'b0; //clock can shut off. 

                                    state <= FINISH; //we've run the number of bits we needed! 

                                  end 

                                  else begin 

                                        buffer_out <= {data_to_send[INOUTWIDTH-2:0],1'b0}; //grab fresh set of data 

                                        mosi <= data_to_send[INOUTWIDTH-1]; //new value on mosi 

                                        count <= 8'b1; 

                                        byte_count <= byte_count +1'b1; //one more byte! 

                                        state <= RUN; //not needed, but for clarity 

                                        sck <= ~sck; //keep going, child. 

                                     end 

                                 end 

                                else begin 

                                    buffer_out <= {buffer_out[INOUTWIDTH-2:0],1'b0}; //push new data in now that 

both sides have measured 

                                    mosi <= buffer_out[INOUTWIDTH-1]; //new value on mosi 



                                    sck <= ~sck; //keep clock on 

                                    count <= count +1; 

                                    new_data <= 1'b0; //deassert new_data (usually keeps at 0...coming from a  

                                end 

                            end 

                            else begin 

                                sck= ~sck; 

                            end 

                    end 

                    FINISH: begin 

                         cs <= ~(8'b0); 

                         state <= IDLE; 

                    end 

                    default: begin 

                       state <= IDLE; 

                    end 

                endcase 

            end 

        end 

endmodule 

 

//minimal only in charge of  

/* 

module spi_write_1_byte(input clock, input  

    output reg dev_trigger, 

    output reg done); 

    reg [3:0] state; 

    localparam IDLE = 4'h0, 

    localparam START1 = 4'h1; 



    localparam RUN1 

    always @(posedge fastclk)begin 

            if (clock_25mhz)begin 

                case(state) 

                    IDLE: begin 

                        dc <= 1'b1; 

                        trigger <= 1'b0; 

                        rst <=1 1'b0; 

                        if(btn[1] == 1)begin 

                            selection <= 3'b0; //pick device 0 

                            bytes_to_send <= 16'b1; //send one byte 

                            data_to_send <= SWRESET; 

                            state <= START1; 

                    end 

                    START1: begin 

                        trigger<=1'b1; 

                        state <= RUN1 

                        pause_counter <= 24'b0; 

                    end 

                    RUN1:begin 

                        trigger <=1'b0; 

                        if (data 

                    end 

                    PAUSE1:begin 

                        if (&pause_counter)begin 

                            state <= START2; 

                            data_to_send <= SLPOUT; 

                        end else begin 

                            pause_counter <= pause_counter +1; 



                        end 

                    end 

                    START2: begin 

                        trigger <=1 1'b1; 

                        state <= RUN2; 

                endcase 

            end 

     end 

endmodule 

*/ 
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module IR_Sensor( 

    input clock, 

    input [9:0] i_IR, 

    output [5:0] o_height 

    ); 

    /* 

    Module takes the 10 bit IR sensor value from the ADC and converts it to a CM hieght, and then to the 

appropriate  

    6 bit reference signal for the controller. 

    */ 

     

    parameter signed alpha1 = -6; 

    parameter signed alpha2 = -11; 

    parameter signed alpha3 = -27; 

    parameter signed alpha4 = -57; 

     

    parameter signed gamma1 = 34; 

    parameter signed gamma2 = 47; 

    parameter signed gamma3 = 77; 

    parameter signed gamma4 = 118; 

     

    reg signed [11:0] r_IR_signed; 

    reg signed [16:0] r_d_calc1;//times alpha 

    reg signed [8:0] r_d_calc2;//divided by 256 

    reg signed [8:0] r_d_calc3;//add gamma 



    reg signed [8:0] r_height_cm;//subtract from 60 

     

    reg [8:0] r_height_ref1; 

    reg [16:0] r_height_ref2; 

    reg [5:0] r_height_ref3; 

     

    parameter beta = 234; 

     

    always @(posedge clock) begin 

        r_IR_signed <= {1'b0, i_IR}; 

         

        if (r_IR_signed >= 10'd669) begin 

            r_d_calc1 <= r_IR_signed * alpha1; 

            r_d_calc2 <= r_d_calc1>>8; 

            r_d_calc3 <= r_d_calc2 + gamma1;//positive after this addition 

            r_height_cm <= 60 - r_d_calc3; 

        end 

         

        else if (r_IR_signed < 10'd669 && r_IR_signed >= 10'd481) begin 

            r_d_calc1 <= r_IR_signed * alpha2; 

            r_d_calc2 <= r_d_calc1>>8; 

            r_d_calc3 <= r_d_calc2 + gamma2;//positive after this addition 

            r_height_cm <= 60 - r_d_calc3; 

        end 

         

        else if (r_IR_signed < 10'd481 && r_IR_signed >= 10'd355) begin 

            r_d_calc1 <= r_IR_signed * alpha3; 

            r_d_calc2 <= r_d_calc1>>8; 

            r_d_calc3 <= r_d_calc2 + gamma3;//positive after this addition 



            r_height_cm <= 60 - r_d_calc3; 

        end 

         

        else if (r_IR_signed < 10'd355) begin 

            r_d_calc1 <= r_IR_signed * alpha4; 

            r_d_calc2 <= r_d_calc1>>8; 

            r_d_calc3 <= r_d_calc2 + gamma4;//positive after this addition 

            r_height_cm <= 60 - r_d_calc3; 

        end 

         

        //at this point we have the height in cm at r_height cm 

        //converting 10-50 cm height to 6 bit reference signal 

        r_height_ref1 <= r_height_cm[7:0] - 15;// 

        r_height_ref2 <= r_height_ref1 * beta; 

        r_height_ref3 <= r_height_ref2>>7; 

         

         

    end 

     

    assign o_height = r_height_ref3; 

     

endmodule 

 

 


