
FPGA Tuner

Jeremy Sogo

December 2018

1 Introduction

A tuner is a device musicians use to tune their musical instruments to an agreed
upon reference pitch. In its most basic form, a tuner records short samples of
sound, determines what pitch is being played, and displays the name of the note
and its intonation (i.e. how sharp or flat the note is). This display is updated
continuously in real time, giving the musician live feedback as they make music.
Many tuners are, unfortunately, can have delays exceeding half a second which
can make adjusting intonation properly difficult. By implementing this process
in hardware, note identification process can be done much faster, giving feedback
on intonation even during the swiftest musical passages.

2 About Cents

Cents are a logarithmic unit of relative pitch often used for tuning. It is defined
to have 100 cents per semitone (half-step) corresponding to an increase of fre-
quency of a factor of 12

√
2 and, thus, 1200 cents per octave which represents

an increase of frequency of a factor of 2. For the purpose of this project, all
frequency values are converted to a number of cents above C0, which has the
frequency 16.35Hz. Any given frequency f is N cents above C0 where N is
given by

N = 1200 log2

(
f

16.35Hz

)

3 Overview

The tuner finds the pitch of a musical note by taking the Fourier transform
of recorded audio samples and searching the frequency spectrum for peaks. It
finds the center of the peak with the greatest spectral intensity and converts that
frequency to a number of cents above C0. The note name, octave, and intonation
information are computed from that number of cents and are displayed on the
seven segment display.

1



Figure 1: Block Diagram

4 Recording

The input to the FPGA is a microphone with automatic gain control that out-
puts a signal that is 2 V peak-to-peak centered on 1.25 V. This voltage is cut
down by a factor of six with a resistive voltage divider before input into one
of the Nexys’s positive ADC ports. The corresponding negative port is tied to
ground.

5 ADC and FFT

This set of modules controls the input of data into the processing modules.
An IP core handles the access of data that ADC outputs. An oversampling
module sums 16 samples in a row and combines them into one sample to reduce
the effect of random noise. Those samples are saved in BRAM. An FFT IP
core transforms those samples, and another core takes the magnitude of the
complex transform and saves the result into another block of RAM at a rate of
60Hz. Due to numerous failed attempts at writing FFT modules (one of which
functioned properly with the exception of a few scaling issues, but exceeded
the hardware resources available to the FPGA by an order of magnitude) and
esoteric difficulties with the ADC on the Nexys (it only started working when
I plopped in an identical copy of the xadc core from the example code, despite
the fact that they were visually identical and no code surrounding it changed),
these modules ended up being largely based upon those presented in the FFT
demo provided by the staff. A few alterations were made, namely the following:

1. The sampling rate was changed to 96 kilosamples per second. With the
16x oversampling, this brings the actual data sampling rate to 6kHz.

2. The Fourier transform was changed to take in 1024 points to speed up
data processing.

2



3. The Fourier transform of the signal was saved in two BRAM elements,
one for producing the histogram in its own clock domain, and the other
for the data processing modules.

6 Peak Finder (pk finder)

The peak finder module begins reading the data stored in BRAM after the FFT
module completes its write stage. It scans from a set low index (see LOW BIN
parameter that determines when the start signal is asserted), to a set high
index (see HIGH BIN parameter that determines the end of the sweep; this is
intended to prevent the symmetrical nature of the FFT from interfering with
the identification of peaks). As the scan runs, it takes the running average of
the past four points the module has read. If the newest read point is a certain
value above that moving average (wire threshold is tied to the switches), that
point is considered to be a peak. Once a peak is identified, the peak finder takes
the weighted average of the current point and three points on either side of that
point. The frequency of each bin is converted to cents above C0 by a ROM
lookup table (cent table module). The value of the bin in cents is multiplied by
the magnitude of the point to find the weight of the point. These are summed
and then divided by the total magnitude of the seven points to find the center in
cent-space and output that value. The sweep continues and the module stores
the peak with the greatest area (i.e. greatest sum of magnitudes of the 7 points).
This method has difficulties with harmonics at times, especially with voice which
has unusually large harmonics. A more robust method would be to use these
harmonics and find the difference between them to find what the fundamental
frequency is.

7 Temporal Averager (temporal avg)

Before input into the intonation identifier, the temporal averaging module av-
erages the past 16 peaks (the FFT module spits out new data at 60 Hz). The
last 16 cents values are stored in BRAM and are all summed and divided by
16 (bitshift by 4) to reduce jitter and noise of the visual output. The output is
used by the Intonation Identifier.
This module could be improved by increasing the frequency at which the FFT
module computes fourier transforms (it can most assuredly process faster than
60Hz) and the number of outputs it averages.

8 Intonation Identifier (note name calc)

This module takes in the number of cents from the peak identifier and determines
the pitch class, octave, and intonation through two divisions with remainder.
The dividers were made from divider generator IP cores. There are 100 cents
to every semitone (half-step) and thus 1200 cents to every octave. The first

3



divider divides the number of cents given by the peak finder plus 50 by 1200;
the quotient is the octave number and the remainder is the number of cents
above C. The second divider takes that number and divides it by 100 to find
the number of semitones above C, and the remainder becomes the number of
cents sharp plus 50.

9 Visualization (display note)

This module maps the note name (expressed as a 4 bit register), the octave (3
bit register), and the intonation (passed in as cents sharp plus 50, so 0 is -50 and
100 is +50) to segments on the seven segment displays. The module displays
no note when no peak is detected by the peak finder.

10 Link to Verilog folder

Click here for zip file containing the Verilog for the project. Tuner is the top
module.

4

https://1drv.ms/u/s!AslX6lPUmvWYhOpMXBpE6JbCu7Xe5Q

	Introduction
	About Cents
	Overview
	Recording
	ADC and FFT
	Peak Finder (pk_finder)
	Temporal Averager (temporal_avg)
	Intonation Identifier (note_name_calc)
	Visualization (display_note)
	Link to Verilog folder

