FPGA Camera Controlled Traffic Lights
Jessica Quaye & Premila Rowles
6.111 Fall 2018

Table Of Contents

Table Of Contents

1 Project Summary

2 Project Goals

3 System Block Diagram

4 Subsystems

4.1 Camera Input and Color Space Conversion - Premila

4.2 Chroma Key Compositing - Premila
4.3 Object Detection - Premila

4.4 Traffic FSM Logic

4.5 LED Strip - Jessica

4.6 Collision Detection - Jessica

4.7 VGA Output - Jessica

4.8 Audio - Jessica

4.9 Video Playback Module - Jessica

5 Testing and Debugging
6 Challenges

7 Design Decisions

8 Reflections

9 Conclusion

10 Acknowledgements

Appendix I - System Usage
User Inputs
Hex Display Information
Instructions for using the system

Appendix II - Matlab Code

Appendix III - Verilog Source Files

'S

1% §

O 1 O v

10
12
12

16
18
21
23
25
27
28

29
29
30
30

31

32

1 Project Summary

According to the World Health Organization, almost 1.25 million people die every year
as a result of road accidents. Out of this horrifying number, 90% of these accidents occur in
low- and middle-income countries which don’t have resources for managing such accidents;
those with resources prioritize other issues over road safety. For example, in Ghana, one
cannot call any emergency service without airtime on your phone. This means that if there is
an accident, people don’t have immediate access to help unless somebody with airtime is
present and can reach the ambulance services in time. Even in the event of successfully
reaching the personnel, it is sometimes difficult to communicate the location of the
emergency to them until it’s too late.

In addition, almost everybody interacts with traffic lights on a daily basis; whether in
the capacity of a pedestrian or of a driver, we use traffic lights in our daily commute. Most
people have had unpleasant experiences with traffic lights when they are stuck in traffic for
long periods of time but the signals don’t move to balance the number of cars on both roads.
This inability to effectively handle rush hour coupled with large volumes of traffic causes
frustration on the road.

In order to optimize traffic on roads and help bridge the emergency communication
gap, we have created a traffic light controller that takes in information from cameras
observing the road and synthesizes the information using an FPGA (field-programmable gate
array). This data is processed, analyzed, and sent to a finite state machine (FSM) that controls
the traffic light signals based on the traffic direction that has more cars.

We wanted to create a system that was reliable for use in countries which have
communication challenges when a road accident occurs, as well as improve traffic light
efficiency for road users.

In addition to controlling the traffic light signals, the camera information is also shown
as a live display (mirroring the street) on the Video Graphics Array (VGA) monitor. The system
has playback functionality and can be used to review what happened after an accident or road
danger occured. This paper provides a detailed description of our project, including an
exposition on how the project was implemented and can be replicated, information on our
design process and challenges, as well as reflections and lessons learned.

http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

2 Project Goals

Minimum Product

- Given camera input, identify cars on a two-way street and provide information
about their location.

- Convert the output of the NTSC camera to YCrCb space, then to RGB space, and
finally to HSV space to simplify object detection.

- Implement traffic logic on a two-way street which changes car signal based on
where there is a larger number of cars.

- Implement pedestrian push-to-walk signal for traffic lights.

- Draw visualization of camera input on the screen with signals changing in sync
with traffic signals.

Expected Functionality
- Model collision of cars in visualization. When there is a collision, ambulance
appears on screen and moves towards the location where the collision was
detected. Before integration, this collision is simulated by a car that is
continually moving on the screen, and a mouse input which controls the blob of
“another car”.
- Add sound effects for ambulance.

Stretch Features
- Store the frames of images being shown on the VGA monitor and make it
possible to playback a downsampled video.
- Detect reckless driving by using image processing to analyze car movement
(swerving, overspeeding, etc).

3 System Block Diagram

control signal

ntsc clk
NTSC ;
NTSC NTSC to write data
Camera ZBT
decoder ZBT
Feed YCrCh
. Addr mux
write addr
YCrCh to addr
RGB gb
read addr
blank Memory
XVGA Access
hcount, vcount
Region Image HSV
module Selector : : threshold
pixel_color Is_blue, is_green
X,Y coordinates for
each car :
_ Draw traffic
D light, car is_collision—| Sound
Visualization ' '
aid Sk ambulance
T y_lower, y_upper,
X1,y1,x2y2 —p] . i_e_c L x_left, x_right,
width, height ‘ Rll=ion is_collision
and visualization_pixel
direction . q "
" main_road coun ;
calculation — ’ : Main color,
i Traffic FSM .
side_road count, affic FS e
pedestrian_main_signal
write ZBT video

T playback —»-video_pixel

4 Subsystems

4.1 Camera Input and Color Space Conversion - Premila

Modules: (All provided by staff but modified - see description below) zbt_6111, vram_ display,
adv7185init, ntsc_decode*, YCrCbh2RGB, ntsc_to_zbt
Files: zbt_6111.v, ntsc_decode.v, ycrcbargb.v, ntsc_to_zbt.v

Basically, we take the raw NTSC (National Television Standards Committee) output
which is in the form of analog signals and convert it to a digital format via the adv7185 module.
The three main signals coming from the camera output include
i) I (Field): 1 indicates even field, o indicates an odd field
ii) V: vertical sync signal indicating the start of a new frame
iii) H: the horizontal sync signal indicating the start of a new horizontal line

We need to store these digital bits in ZBT memory on the labkit in order to process the
NTSC video data. The staff provided us with sample verilog that takes black and white NTSC
video, stores it into ZBT and then displays it on the monitor with a screen size approximately
700 pixels wide x525 pixels tall.

We had to make several changes in order to display color on the monitor. The camera
output is in YCrCb space; Y component: green is dominant but red and green have some input
as well, Cr component: chromared (so in an image the red lights would be bright), and Cb :
chromablue,(so blue objects will be bright). The sample code stores the Y value for four pixels
in vr_pixel, which outputs a grayscale image. Since the ntsc_decode module provides a 30 bit
YCrCb signal, and a location in ZBT memory is 36 bits wide, we can store 6 bits for each of Y,
Cr, and Cb per pixel, allowing us to store 2 pixels in one location. Now we are extracting 18 bits
from ntsc_decode instead of 8 bit pixels for the Y value and ntsc2zbt is now writing two 18 bit
pixels, instead of four 8 bit pixels. vr_pixel is now 18 bits instead of 8 bits. Before, we were
writing to memory when hcount|1:0] = 2 because we were storing four 8 bit pixels. Now we
write to memory when hcount|o] = 1 because each pixel data is 18 bits wide. When we were
sending four 8 bit pixels, the lower order two bits were not used, so the memory address
changes every four pixels. Now each memory location contains only two pixels so memory
addressing is twice as fast and only the LSB is not used. We adjusted myaddrz2 to only ignore
the Isb instead of ignoring two lower order bits. Specifically, in the ZBT address computation
section, we remove the higher bit o and change x_addr to [9:1] from [9:2], in order to save
every 2 addresses instead of every 4. We changed vram_display to read a new address every 2
pixels instead of every 4 as well.

The address signal for the vram_display module needs to be muxed since we are using
this port for both read and write addresses. (read requests are interleaved between write
requests using the write enable signal). We then pass in the YCrCb values to the yercbzrgh
module. Once we have our rgb output, we can send those pixels to ntse_to_zbt to store using
zbt_6111 and the vram_display module sends pixels to the VGA display.

. mm— cm—

by

Figure 1: Bird eye camera view of street

4.2 Chroma Key Compositing - Premila

Modules: hsv_threshold, image_selector
Files: hsv_threshold.v, image selector.v

The hsv_threshold module sets upper and lower bounds for thresholds on hue and
value. We found the bounds by adjusting first the upper bound until the car was distinct from
the rest of the image and most noise was filtered out. The module can detect green and blue
cars. Pixels that have HSV values within the corresponding bounds are assigned to either the
colors blue or green.

We used HSV space instead of RGB space because HSV ranges are used for chroma
keying. In HSV space, the hue components of images are most likely to be similar. Unlike RGB,
HSV can separate luma from chroma. The main characteristics of a color are better
understood through the hue, value and saturation components, in that order. Saturation is the
amount of gray in the color, from o to 100 percent(high saturation means the color is very
apparent, low means it’s washed out). Value works in conjunction with saturation and
describes the brightness or intensity of the color, from o-100 percent, where o is completely
black, and 100 is the brightest and reveals the most color. Hue is the color portion of the color
model, expressed as a number from o to 360 degrees.

Figure 2: Diagram illustrating meaning of hue, saturation and value

It is much more feasible to adjust these HSV thresholds by looking at the image than to
adjust thresholds in RGB space. RGB components are specific to an exact value for red, green
and blue components and it’s very difficult to guess those numbers. For example, in HSV
space, you can guess the hue range for yellow to be between 60 and 120, while the RGB
components are (251,253,124). To get rid of noise and ensure we are solely detecting the car we
can adjust value and then saturation. Yellow is a ‘washed out’ color so it’s half saturated and
it’s a bright color so it has a high value. The HSV diagram above shows how this combination
of parameters leads to the color yellow in HSV space.

4.3 Object Detection - Premila

Modules: region_module
Files: region_module.v, final _proj.v

Now that we have converted to HSV space, we can leverage thresholding to do ‘object
detection’ on our images. We created 9 regions in our traffic intersection (in figure below).
This allows us to detect cars in each region based on hue and value ranges. We worked with
blue and green cars in this project because most of the hot wheels we purchased were green
and blue. We could have chosen to use other colors, but it’s best if the shade of color we use is
fairly saturated.

The cars are detected using a center of mass method, where we accumulate the sums
of the x and y values per green/blue pixels and then divide by the number of pixels found,
essentially taking an average of where a green or blue car is located. We can use this
information to determine where the center point of the cars are and if there is a collision
between a blue and green car in a given region. Because we are using this center of mass
method we can only detect one car of each color in a given region because when we
accumulate ‘green’ pixels, we are limiting our search to a specific region, so if there were two
green cars we would end up getting the center point between those two cars.

Given more space in ZBT, we could have convolved the image with a template of a
horizontal and vertical car. This would give us a single center point for each car in the image
and then we would not need to limit our averaging method to specific regions. The issue is
that this requires multiple line buffers in order to convolve, (about 20 line buffers the size of
the image and one the size of the car). We also implemented erosion and dilation but did not
include it in the pipeline because we were able to detect cars very well using only chroma
thresholding and we didn’t want to take up extra unnecessary space. Erosion and dilation are
similar to the previous convolution method described. A 3x3 kernel is convolved with the
image. For erosion, it’s a kernel of all o’s and for dilation, all 1’s. Basically we shift in one pixel
at a time to 3 line buffers, two the size of the image and one the size of the kernel and then
‘and’ or ‘or’ the first ‘X’ elements of each line buffer. This result gives us the value of the
current pixel we are operating on. This would help rid of noise and essentially do a form of
blob tracking for the cars. Erosion is basically getting rid of pixels that are not really
representing cars and are background noise, and dilation expands the real blobs back out so
we can see them more easily. The template method described earlier is basically erosion,
except our kernel is the size of the cars instead of a 3x3.

Figure 4: Ilustration of cross hairs detecting cars

4.4 Traffic FSM Logic

Modules: traffic_fsm, led _controller
Files: traffic_fsm.v, led _controller.v
The main aim of our project was to have the traffic logic change based on which road
(main road or side road) had a larger number of cars. The FMS works by checking consistently
if the count on the other road is larger or smaller. If the main road has more cars, the traffic
signal for the main road turns green and that of the side road turns red and vice versa.
However, pedestrians have the highest precedence. Thus, our pedestrian signal will
cause a change ignoring everything happening on the road. If the push-to-walk button is
pressed in one cycle, the lane that the pedestrian is in will be given precedence and will turn
green on the next cycle. The FSM has the following states:
O MAIN_RED_SIDE_GREEN (default mode of traffic light if there are no cars or an equal
number of cars) - 5 seconds
a MAIN RED_SIDE YELLOW - 2 seconds
a MAIN_GREEN_SIDE RED -5 seconds
a MAIN YELLOW _SIDE_RED - 2 seconds

Within each state, a check is made for the pedestrian signal while the countdown timer
is running. In the states where either traffic light is on yellow, no comparisons of cars are
made because it is a meta-state on it’s way to a stable state. That is to say, when a traffic light
is on yellow, it is definitely moving to red after the timer is up so there is no need to check for
anything. When the timer runs out, the current cycle also completes comparison of cars and if
necessary, moves to a next state.

counter ==5 &&
main_road_count > side_road_count

counter == 2

Main Red,
Side Yellow

Main Red,
Side Green

Main Green,
Side Red

counter < 15 counter < 15

side_road_count > main_road_count >

main_road_count side_road_count
Main Yellow,
Side Red

counter == 2 counter == 5 &&

side_road_count > main_road_count

Figure 5: FSM illustrating operation of traffic lights

For easier debugging, we decoupled the output of the FSM from the individual signals.
So the traffic_fsm module only outputs main_road_output as RED, BLUE or GREEN (these
values are declared as constants in the params.v file and used universally). The led_controller
module then takes those inputs and fans out the information into different signals,
interpreting main_road output == RED as main_road_red = ON, main_road_yellow = OFF,
main_road_green = OFF, and same for the other colors.

4.5 LED Strip - Jessica

Modules: led_strip
File: led_strip.v

We used two LED strips to represent the outputs of our traffic signals on the “street”
we had set up. The LED strip we used is an APA102 LED strip which uses a standard two wire
SPI(serial peripheral interface) protocol. There are four inputs to the strip; the data wire, clock
wire, ground and power (V).

— e
e i P 4
sl » JCLK i .:. N |A : y ;
: < g = R,
=) DATA 919 x30 Y |l& 1
e GND :;B;;: V‘-rv; oS

Figure 6: Wiring diagram of APA102 LED

To communicate with the FPGA labkit, we used the useri|1:0] pins - useri|o| drives
clock and useri1[1] drives data. We then grounded the ground pin and connected the V. pin to
a wall power outlet. The datasheet stated that we needed to drive the LEDs with a clock of
frequency 1IMHz, a special start frame, and a specific end frame. The clock we use is generated
from the MSB of a 6 bit counter which runs on a 65MHz clock and has a 50% duty cycle.

>
l 0*32

SDI

[Lep1 JLep2 [Leps JLED4A =—=TLeoy [1*32]
v<“ »< » -) »

| sl Date Field >
Start Frame 32 Bits

<« e e §
8Bits'T 8Bits| 8Bits| 8Bits

LED Frame 32 Bits
MSB LSBMSB 1.SB

I:f‘ l “l B [J-‘l"\]w'lw |

8Bits B8Bits 8Bits

LED Frame 32 Bits
T EEE) e
< = = < >
8Bits 8Bits 8Bits 8Bits

Figure 7: Diagram of APA102 LED protocol
The image above shows the breakdown of bits that are sent to the LEDs and what they
mean. These bits are always sent in the form [32-bit START FRAME, 32-bit for each LED,
32-bit END_FRAME]. On every rising edge of the clock, the value in the data register data bit is

10

https://cdn-shop.adafruit.com/datasheets/APA102.pdf

sent to the strip. Thus, after the end frame is sent, it is important to turn off the LED clock
otherwise garbage data values will be sent across the strip.

For each LED , the “global” field within the frame is used to control the brightness so it
can be tuned as desired. Since we were working on traffic lights, we focused on three colors -
red, yellow (combination of red and green), and green. We had a 30 strip LED and needed only
18 LEDs (6 LEDs for each color) so the remaining 12 were sent blank (0,0,0 for R,G,B) frames.

Our led_strip module uses a state machine to send the frames. The four color frames
we were using (red, yellow, green, blank) were pre-defined as registers so at each clock cycle,
the index into the the register is updated to select a different bit from the current frame. The
states are

< SEND_ START FRAME

< SEND_COLORED_FRAME

% SEND_ BLANK_ FRAME (used as filler because we are not using all the leds)
< SEND_END_FRAME

< READ_TRAFFIC_SIGNALS

The start and end frames are already defined in registers so we index into them just
like the other colors. However, for the READ TRAFFIC _SIGNALS state, we take input signals
from the led_controller module. This will determine which LEDs are lit up in the
SEND COLORED_ FRAME state. After this, blank frames are sent for the LEDs which are not
used.

Each time, after the SEND_END_ FRAME state is complete, the FSM goes to the
READ_TRAFFIC_SIGNALS mode to check which color the traffic light currently has on. This is
read into an array with the values [RED, YELLOW, GREEN]. The only possible values of this
array are [1,0,0], [0,1,0] and [0,0,1]. If RED was 1, then only the strip allocated to the color red
will be turned on in the SEND COLORED_ FRAME module. If RED was o, then we send blank
frames instead. We do same for the yellow and green LEDs. Afterwards, there are LEDs that
we don’t use so we fill them with blank frames.

We had to frequently update the LEDs because they were supposed to change in real time with
the traffic signals. This means that as long as the system is running, the LED strip is constantly
reading the traffic signals and updating colors. Thankfully, it does this so quickly that the
human eye cannot perceive the individual signals being sent.

11

4.6 Collision Detection - Jessica

Modules: collision_detector, calc_ambulance params, get_amb_xy
Files: collision detector.v

After the locations of the cars are detected and passed over from the image processing
module, the values are analysed to determine if any pair of cars has collided. The (x,y) values of
the top-left corner, as well as the width and height of the car, are sent into the
collision_detector module which checks for overlap of values and interprets them as a
collision. All these values are used to determine the top and right limits of the car. There is a
check for an overlap in coordinates and if there is an overlap, the is_collision signal is turned
on.

If there is a collision, the upper, lower, left and right limits of the cars involved in the
accident are determined and sent to the calc_am. In a real life situation, this should be enough
information for the ambulance to know where to go. However, because we were simulating the
arrival of the ambulance in our visualization, we had to determine what direction the
ambulance should appear from. Using the four directional limits computed from the collision,
the ambulance determines what direction to come from in the calc_ambulance_params and
then what direction to move towards in the get_amb_xy module. When the is_collision
variable is TRUE, the ambulance calculations are made; the ambulance appears on the screen
and starts moving towards the area where the collision occurred. The ambulance is treated
like a car for the purposes of drawing on the screen, except that it reads the pixel bits from a
different coe file if the is_ambulance variable is set to TRUE whenever it needs to be rendered
on the screen.

4.7 VGA Output - Jessica

Modules: visualization, draw_car, draw_street, draw_traffic_light, xvga
Files: BMPtoCOE.m, visualization.v

The VGA module runs on a 65MHz clock. Since there were many different components
that we needed to ensure were working, we started out by drawing a street on the VGA, using
colored rectangular blobs to represent cars, and drawing out traffic lights to test the traffic
FSM. All the pixel by pixel calculations are done in the visualization module and in the main
module, these pixels are passed into the xvga module. To keep the code modular, we used
different modules for each purpose.

Before we transitioned to using real life images from coe files, we drew out traffic
lights as seen in the image below.

12

Figure 8: Initial drawings used for testing and FSM functionality verification

After we had adequately tested collisions and stress-tested the traffic light FSM, we
updated the VGA output to use real-life images.

To draw images of the car, we took a .JPG image of a car, and used GIMP (a graphics
editor pre-installed on the Athena) to scale it down and export it to .BMP format with only R,G
and B components (no alpha). Then, using the BMPtoCOE.m file, we scaled the .bmp down to
an 8 bit bitmap. However, the VGA monitor needs R,G and B values. The 8 bit bitmap includes
a table which specifies the rgb values for each of the 8 bits in the image. So, each pixel in the
image’s coe file is represented by one byte, and that byte is an index into a table where each
index specifies an R,G and B value separately. Thus, we loaded the image’s pixel values as well
as the R,G and B values which those indices map to. The image pixels (stored as indices)
measure 8 bits in width by (image_width * image _height) in length and are loaded into a coe
file. This coe file is loaded into ISE as a block of ROM memory which can be addressed into
during image rendering on the VGA monitor.

In order to make good use of memory, we came up with different addressing equations
to read out pixels from the memory block to obtain different orientations. For example, the

original image we loaded for cars was oriented horizontally as seen in the image below.
|

Figure 9: JPEG image of car used for visualization

13

However, if you want to rotate the image without changing the x and y input, you can achieve
this by computing a different address. The table below illustrates the different directions and
how the address calculation is done for each image using only one block of memory.

Orientation, Direction Equation Resulting Image

Horizontal, facing right | address = (hcount - x) + (vcount - y) * WIDTH;
(original)

Horizontal, facing left address = (WIDTH - (hcount - x)) + (vcount - y) *
WIDTH;

Vertical, facing up address = (HEIGHT - (vcount - y)) +(WIDTH -
(hcount - x)) * HEIGHT;

Vertical, facing down address = (vcount - y) + (hcount-x)*HEIGHT;

In the .COE file, the original car color is red, but when the program is running, any
color car may be displayed. This is achieved by thresholding on where the red concentration is
high in the image and replacing that with whatever color of the car on the screen. Using the
color pointer in GIMP, we played around with the different shades of red in the image and
realized that the color of the car can be changed by replacing any region with a concentration
of RED > 60 and BLUE < 50 and GREEN < 50 with a new color. Below are examples of Figure 8
shaded with new colors (blue and green).

Figure 10: Figure 8 colored green Figure 11: Figure 8 colored blue

14

The traffic lights are also implemented with the same idea. The original image of the
traffic light looks like this:

Figure 12: JPEG image of traffic lights used in visualization

We use a similar method as above to obtain different orientations of the traffic light.
For our project, the traffic light signal on the screen only shows one color at a time, as is the
case in real life. In order to accomplish this, we take signal outputs from the traffic FSM logic
and gray out the signals that should be off using thresholding. For example, if the red light
should be on, that means yellow and green should be off. Using thresholding, we determine
that an area with GREEN > 150 is a green region and replace it with a gray pixel, and do
similarly for yellow. The desired result is seen below.

ot

Figure 13: Traffic lights on Figure 14: Traffic lights on Figure 15: Traffic lights on
red yellow green

4.8 Audio - Jessica

Modules: (All provided by staff - modified recorder) sound, recorder
Files: sound.v, WAVtoCOE.m

When a collision occurs, a signal is sent to the ambulance with information about
where on the street the accident occured so that the ambulance drives onto the scene. To
make the ambulance which appears on the screen more real, we added audio while it is in
motion. We did this by converting an .mp3 file to a .wav file using an online converter.
We took the staff code which was used to playback a recorded audio and instead replaced the
audio with the discrete sine wave values we had generated from the .wav file. After the
conversion to .wav, we used the WAVtoCOE.m to write the discrete sine wave values into a coe
file which is loaded as a block of ROM. The online converter produces unsigned integer (only
positive numbers) values which shift the sine wave up and center it around 128. Thus, in the
recorder module, a signed register is used to offset each of the discrete values by 128 to
produce a value that is centered about o. These values then drive the speakers to produce the
siren sound.

15

https://audio.online-convert.com/convert-to-wav

4.9 Video Playback Module - Jessica

Modules: write _to_zbt, read from_zbt, video
Files: video.v

When accidents occur, we would like to playback the accidents to determine the driver who
caused them. Thus, we implemented a video playback module which worked by going across
the screen and recording each pixels value into ZBT memory. On the labkit there are two ZBT
banks which each have 512, ooo lines of 36 bits available for storage. The NTSC camera used
the ZBT o bank so the video playback used ZBT 1 bank.

Each image on the screen is represented by a pixel. Since each image on the VGA
monitor is 1024 wide * 768 tall, we need to store 1,024 *768 = 786,432 pixels. The VGA monitor
takes in a 24-bit pixel value - (8R, 8G, 8B).

This means that we need to store (786,432 pixels * 24 bits

pixel
each image. To simplify the Mathematics, we considered pixels and not bits. Each ZBT address
can hold 36 bits on one line. Instead of storing only one pixel (24 bits) per line and wasting the
remaining 8 bits, we decided to store 18 bits for each pixel so that we can store 2 pixels on 1
line of ZBT memory.

This enables us to reason in terms of pixels and lines. We have 512,000 lines so we can

)= 18,874,368 bits in ZBT memory for

. ixel, . .
store 512,000 lines * 2 %? = 1,024,000 pixels. The goal here is to store MULTIPLE IMAGES

(since we want to show a video) as time progresses. If we were Lo store the entire image on the

screen into ZBT, that would require 768,432 pixels for one image on screen which means we

1,024,000 pixels
768,432 Gk

frame

can store = 1.33 frames. However, we need about 20 to 60 frames. Thus, we

decided to downsample the images we were reading from the frames by reading every 4th

vertical pixel and every 4th horizontal pixel.

This will shrink down our image size to %‘ wide * 7%8 tall = 256 wide * 192 tall BUT we will

be able to store more frames.

pixels

Now, we are writing 256*192 = 49,152 pixels and there are 2 == , meaning we are using

49,152 pixels

pixels
2 ine

512,000 lines ~ 20 frames
24,576 Huss :

frame

Thus, we implemented video playback to record 20 frames, recording a new frame each
second. To illustrate how the playback works, consider the timeline for a minute. From o to 20
seconds, we record 20 frames, recording one frame per second. From 20 to 40 seconds, we
overwrite those 20 frames. From 40 to 60 seconds, we overwrite those frames.
Our implementation accounts for the two pixels per line reading; on each address line, we
read the first 18 bits, then move to read the next 18 bits for another pixel (on the same address
line). We then increase the address and repeat. While increasing the address, we had to keep

= 24, 576 lines for each frame. We have 512,000 lines available so we can store

16

track of which frames we were reading because after reading the 20 frames that were written,
there is noise in the .833 unwritten frames. Hence, we had to cycle back to address o after
reading the 20th frame.

One tricky situation we had to deal with was handling a user request to watch a video
in the middle of writing a frame. We needed to finish writing that frame so that we don’t store
partially written frames in memory. So, we designed the write module to detect the rising edge
of the read_control variable (which signals a switch to video), completes the current frame it is
writing, and sends a now_read signal from the write_to_zbt module to the read_from_zbt
module. This now_read signal is then detected in the read_from_zbt module and the display
switches to show the video playback.

Figure 16: Downsampled video playback on Figure 17: Actual display on VGA monitor
monitor (cropped to focus on image)

17

5 Testing and Debugging

Image Processing: Color thresholding

To test color thresholding, we adjusted the upper and lower bounds of the hue and
value ranges using the buttons. We worked on hue, then value, and then saturation. This order
is important because separating the hue component is easiest to perceive visually and has the
most significant effect(it’s the actual ‘color’ component of the image). Adjusting the value helps
get rid of noise in the background and corners due to weird lighting or other objects(this is
done in conjunction with saturation). We didn’t adjust saturation for the cars because that
component didn’t make much difference. We tweaked the upper and lower bounds until we
got ranges to distinguish the object (in our case, car) from the rest of the image. Once we got
the best range, we parameterized the values we found for the objects we were working with
and used them in the object detection algorithm.

Image Processing: Center of Mass

To test the algorithm for finding the center of mass of objects, we created crosshairs
that centered on the cars that had been detected. We spent several hours debugging the
crosshairs jumping around randomly, and not centering on any of the cars as we had
expected. It turns out that we were reading the color of the vga_pixel variable, which was the
output being sent to ZBT. The issue was that the accumulation was being done on pixels that
the ZBT was outputting. Instead, we should have been using the output of ZBT, which is
vr_pixel, to make the comparison.

Another major issue we ran into was dealing with noise from other parts of the screen.
The crosshairs were being generated somewhat correctly but weren’t consistent and partial
correctness was certainly not enough for performing calculations based on these averages.
Having many “pixel” variables was difficult to keep track of. We originally blacked out the
pixels on the monitor that were not part of the camera output, so that we wouldn’t have to
worry about random noise from those parts of the screen. When calculating averages, we were
using vr_pixel, which was the output from ZBT and NOT the camera output pixel. The bug was
even harder to find because we had blacked out the part of the screen that had noise and that
significantly affected our average values.

Traffic FSM

Our default mode for debugging and testing was using the LED display as well as the
hex display. For example, when we implemented the traffic FSM, we segmented the LED
display from o-2 and from 4-6 to show the changing signals. We had the (traffic light - LED)
outputs red-o, yellow-1, green-2 for the main road, and then for the side road, we had (traffic
light - LED) outputs red -3, yellow-4, green-5.

18

So when that signal was off or on, we knew whether the FSM was working or not. We
used switches to control the number of cars on each road: switch[7:6] was used for the main
road count and switch[1:0] for the side road count. Thus, after we set the main_road_count <
side_road_count using the switches, we would observe the impact of the change on the traffic
lights via the LEDs. After incorporating pedestrian signals, we used the LEDs to once again
view the different traffic signals and how they responded to different pedestrian signals.

Visualization

For the visualization, it was very convenient to have the VGA monitor showing what
was being sent to it. That way, we could tell that something was off and saw the problem more
easily. Addressing was definitely the most difficult to test because one couldn’t tell what
exactly made the image off but it just seemed off. Thus, we invested more time into drawing
many different images and reasoned about the projection of points extensively to minimize
error. We also chose to use a car that had a white strip in the middle so that it could guide us
on what was wrong in the image as opposed to a solid colored car.

Collisions

Collisions were easiest to test with visual information. Since we wanted to be able to
test all directions very easily, we drew a blob which was supposed to represent a car and
connected the (x,y) top left corner of the blob to a mouse input. This allowed us to move the
“car” blob around easily and simulate collisions from left, right, top and bottom and ensure
that the is_collision variable was only triggered for collisions. The visual information also
helped us to determine if the ambulance had detected the correct location of the collision
because it would move towards the left, right, upwards or downwards based on the
coordinates of the cars involved in the accident.

Audio

The audio was pretty straightforward to test; we had a pair of speakers that we drove
with sound and could tell easily if the sound was off. While debugging, we found it useful to
visualize the sine wave values that had been converted to COE file in Matlab because for a very
long time the sound was just horrible. After visualizing the sound wave, we found that the
online audio converter produced only uint(unsigned integer) values for the wave so it was
centered around 128. Without visualizing the sine wave and understanding what was being
loaded into the block memory, it would have been almost impossible to determine the
problem since the audio module had a lot of different pieces.

19

Video Playback

The video playback interfacing with ZBT was one of the most difficult things to debug.
Unfortunately, it is not as easy to see what is happening in the memory because you can’t just
drive the signal to an LED or hex display. Also, we are reading pixels so you also can’t display
ALL of them as they are rendered to the screen.

Since writing and reading both have very specific protocols that involve a lot of
nuances, it was difficult to tell what was going wrong. The visual feedback was helpful but for a
very long time, the screen was blank (which was due to some default setup values which hadn’t
been set to o in the main module). Thus, we had to do a lot of isolation of all the connected
modules and set hardcoded values until we realized that the ZBT was actually not working
after about 4 days of debugging.

After the ZBT started working, we tested with multiple images. First, with a screen of
color red and to see the downsampled screen entirely red, then with a checkerboard pattern
to see the downsampled checkerboard screen. Finally, we used the image of a car moving
across the screen and verified that the downsampled video screen replicated that motion
correctly. We then moved on to testing the visualization screen.

20

6 Challenges

Color Thresholding

We needed to threshold on hue and value, not just hue. This helped tremendously when
trying to get the cars to be distinct on the screen. At first, it was impossible to get rid of all the
noise because we were only adjusting hue. However, we found that hue is the most important
component when identifying the general color, but does not help account for other objects
with similar saturation/brightness levels. We were able to adjust value after optimizing the hue
bounds and it helped get rid of most noise in the other parts of the image that may have been
due to lighting or other objects with similar saturation levels to our object of interest.

Using the divider module to perform multiple divisions quickly

Another challenge was understanding the divider module and knowing how to use it to
do many calculations at once. We needed to calculate the average for 6-10 cars every frame in
order for the right information to be passed to the visualization and traffic_fsm modules. The
division part of calculating the average, however, needed to happen after all the sums were
calculated. This is because we are getting pixels one at a time, row by row, meaning we don’t
necessarily have the sums for each car in an orderly manner. We have a camera output size on
the monitor of about 700x525 pixels. Thus, we used the time that would be used to render the
remaining pixels on the monitor - (1024-700)x(768-525) - to perform divisions. We asserted the
start signal as soon as we reach the end of the camera output, and have a state machine that
runs through each division, one after the other. It is important to note that the start signal is
held, so we have to deassert it on the next clock cycle. Otherwise, the average will be
calculated over and over, causing the crosshairs to jump around.

/BT

The hardest thing to debug was the ZBT interface because it was heavily reliant on staff
code. Since ZBT was a stretch goal, we implemented everything before we worked on it. When
we implemented ZBT, we were under the impression that it was staff code so it would work
seamlessly. Unfortunately, there were a number of bugs in the way the default value settings
which were found only after everything else in the code was commented out. ZBT works such
that if any of the ram (A,B,C,D) values are driven with a 1, it is confused for both reads and
writes and does nothing. Hence, all those values need to be defaulted to zero. ZBT was very
difficult to debug but it was a great learning experience in dealing with memory.

21

Changing integration protocol due to object detection issues

Our original idea for integration was for the image processing module to send a
start_frame pulse, iterate through the entire frame, and then send an end_frame pulse when it
was done scanning through an image on the screen. While scanning over the image, if a car is
detected, then a new_car_detected pulse is sent along with the new_car_x and new_car_y
indicating the position of the new car on the screen.

Unfortunately, debugging the integration of both components of the project took a very
long time and we did not have the bandwidth to implement that protocol. Instead, we decided
to create instances of multiple cars (13) which would not be showed on the screen until their x
and y values became non zero. We had to limit the number of cars to 13 because we had
memory issues otherwise.

Effects of long wires for LEDs

When we tested our LED Strip and it was working, we assumed that it would be fine
when integrated into the system which was true. However, when we created our physical
set-up on the street, the LEDs had to be placed at a farther distance from the FPGA. We
realized late that using longer wires for the LED strips caused very weird behaviour of glitchy
blue signals instead of the colors that we had previously seen. We needed to frequently update
our traffic signals so we shortened the wire which solved the problem.

Audio
It was much easier to load a COE file at the desired frequency and pitch that we wanted
than to create the desired ambulance siren with a Direct Digital Synthesizer.

22

7 Design Decisions

Modularizing code

One thing we did early on which was very helpful throughout the project was to create
a separate project for each new subsystem and test it working separately before moving it into
the final_project module. This made it very easy to test things when we had put all the code
together. If we were driving the LEDs in the final_project module and they were flickering, we
could easily switch to the project which contained only the led implementation and test the
code whose functionality we were certain of. This helped us to determine if the malfunction
resulted from the integration, a hardware malfunction, or some other factor. It also helped us
to keep things neatly segmented and narrow down sources of bugs when we saw unexpected
behaviour.

Object Detection Algorithm

There were a few different ways we could have designed the algorithm for detecting
cars in the image. We could have used a ‘center of mass’ method, a counting pixels method, or
convolved with a template. The counting pixels method would involve hardcoding the size of
the cars that should be known beforehand and then looking for a ‘1’ in HSV space to start
counting until we saw a zero again. We would do this for however many rows there were for a
car and count that as one car. The tricky thing is that it’s very difficult to know the exact
number of pixels of a car and for this method to work, we need to have a pretty accurate
number. This method also seemed like a hack and would not work well with larger scale
versions of this project.

Our next idea was to create a template image of a horizontal and vertical car and
convolve it with our image from the camera. This is ultimately the best method, would work
on large scale versions of the project and would allow more complexity in object detection.
Convolving the image with a template image containing a car of the same size would result in
an image with a single pixel for each car. The issue is convolution in verilog requires line
buffers to be the same size of the image and we didn’t have the space in memory for this. In
addition, creating a template the exact size of the car may have been tricky because that
heavily depends on the camera angle and distance from the road.

Our last idea, which we ended up implementing, was to calculate the center of mass of
each car and pass that information on to the other modules. This method worked very well
and was intuitive. The downside of this method is that it forced us to use cars of different
colors. We worked around this by compartmentalizing the road into regions and only
searching for chroma keyed pixels in certain regions. This is a limitation of our project and
given more time and space, we would recommend using the convolution with a template
method.

23

Filtering

When deciding how to best calculate the center of mass, we had to take noise into
consideration. We used a median filtering method instead of a mean filtering method in order
to avoid noise from random specks on the monitor. A median filter avoids this by only taking
the center value and ignoring random noise. Another method of filtering that would solve this
is erosion/dilation. This two step process, which we implemented but did not use, would help
distinguish actual cars from random noise elsewhere on the screen. Our color thresholding
ended up working really well and our cars were very distinguishable from other parts of the
screen, so we didn’t need to use any other filtering methods. If we had different lighting
conditions and other potential sources of noise, these methods would definitely be necessary.

Memory Tradeoffs

Since there were a lot of different components of our project, we had to optimize for
memory in every way possible. Rather than loading multiple images oriented in different
directions and reading them out for the car, we decided to use only one image and use
addressing to index in the image in different ways, to obtain different orientations and
directions of the same image. This helped to create more space for loading other images for
other uses instead. We would have liked to incorporate angled turns into the indexing but the
timing of the pixel motion across the screen made it difficult to do so. Also, instead of loading
different color maps, we chose to use thresholding to replace the colors of the images we had
loaded in block ROM.

Demonstrating motion of cars from street to VGA monitor

When we were trying to replicate what was happening on the street on the VGA
monitor, we spent time thinking about how we wanted to move the cars and if we would pass
information about the speed of cars between modules. After considerable deliberation, we
realized that at any point in time, we the position of the car was known so a car that would be
moving fast would have larger displacement between two timestamps and a slower car would
have smaller displacement between those timestamps; this would be captured by the camera
when it detects the position of the cars so that wasn’t something we needed to worry about.

Scaling

The field of view of the camera and the screen size were not proportional, so we had to
make a decision as to whether we wanted to multiply the values by a factor to shift them to the
correct location on the screen or wanted to shift them manually. After considering the impact
on our system as a whole, we chose to modify the x and y values that were passed from the
image processing module to the visualization module by adding and subtracting offsets. We
chose not to use multiplication for scaling the images because that would introduce pipelining
delays. We also made the decision of standardizing the size of the car on the screen (regardless

24

of its size on the street). Further work can be done to improve this design and reflect the size
of the car on the street.

8 Reflections

Premila

This has been the most exciting thing I've worked on at MIT. I learned so much in such
a short amount of time about Verilog, image processing, debugging, and about working on a
team. This project has sparked my interest in firmware development and image processing.
My debugging skills improved so much and I gained the ability to look for the root of a bug,
step by step, whether it was by outputting signals to the led or hex display or by breaking
down the code into super small pieces and testing each and every one.

I learned the important principles of verilog and now have a solid understanding of
how to write an algorithm in verilog using the pipelining methodology. I also learned how to
modularize my code and put it together carefully, testing each piece before doing so. The most
interesting part of this was the fact that everything I did was on a pixel by pixel basis, and I had
to write all of my algorithms to match this.

The image processing part was the coolest thing I worked on in this project by far. I
gained insight into working with camera output and sending that information one pixel at a
time to ZBT. I enjoyed learning about the different color spaces and how to work in each of
them as well as their benefits and downsides. This project definitely inspired me to think
about future object detection work as well as potentially bringing machine learning principles
into the algorithm.

Working with Jessica on this project was a very fun experience. We definitely had our
disagreements and had to compromise when making design decisions, but I learned a ton
from her debugging skills and algorithm knowledge as well as from her work ethic and
organizational skills. We were able to successfully complete the project because we worked
together so well and it would have been much more difficult otherwise.

Jessica

This project was a great learning experience which I learned many valuable lessons
from. I came into the project seeking to learn how many different things work as much as
possible; in other words, to cover much more breadth than depth. Thus, although I didn’t
work on the image processing directly, I gained experience working extensively with the VGA
monitor, audio, ZBT, LEDs, etc.

While working on the project, my biggest takeaway was learning how to effectively
debug a system. Sometimes, I would design something and when I didn’t have the expected
behavior, I found it difficult tracing the source of the issue. There are multiple ways to debug,
but this class helped me gain the skill of knowing the most efficient way to debug a particular
issue. Sometimes you’re better of using visual cues but other times a display of the values

makes more sense. Other times, using the switch to control multiple states in real time is the
best way to go.

I did a lot of work related to reading from block memory and designing addresses to
produce specific results so I learned more in-depth how the Core Generator works. I also
learned how to think creatively as an engineer and to do more with less because the BRAM
space was limited. This comes at a cost; your ability to create a solution to a limitation is highly
dependent on the depth of your understanding of the system. So for every work around
created, I had to invest more time learning,.

Because we designed our project in a very modular way, one of the things I had to learn
to balance was the trade off between having very modular and self-explanatory code versus
the overhead cost associated with instantiating registers and passing them between multiple
modules. This was especially crucial when we were adding new features because many things
needed to be passed between submodules.

In addition, I learned a lot about reading documentation and understanding other
people’s code and how to alter it to achieve a desired outcome, which I think is an important
skill not only for digital systems but for engineers.

Overall, this project was a great learning and growth experience for me. I learned a lot
from working with Premila; though we had stressful times, we learned how to speak each
other’s language which helped us especially when we were headed towards the finish line.

26

o Conclusion

This project was overall very successful. We hit all of our baseline and expected goals,
and a few of our stretch goals. We predicted and thought through many of the issues we would
run into at the beginning of the project, but not all of them. Thus, we had to think quickly and
adapt every time we found a major bug or flaw in our design. There are a few key takeaways
that we think would be helpful for future students to know.

We started working very early on our project and we believe this helped greatly and
allowed us to pivot without fear of running out of time. We also received a great deal of
assistance and feedback from the staff early because most of the time there was no one else
around when we were in lab.

The biggest lesson we learned is that when you are stressed and tired, your attention to
detail suffers greatly. On the Saturday before the project was due, we had spent so much time
working in lab that we made the mistake of writing the boolean statement “ if (x+60 > 0)”. We
were lucky enough to have our LA, Mike Wang, help us catch this error because we were both
too exhausted from looking through hundreds of lines of code unable to understand what was
going wrong.

We also learned the importance of taking things one step at a time. We started
integration by combining both our labkit files by copying and pasting, and came to deeply
regret it after spending a day and half debugging. In hindsight, it was naive for us to assume
that blackboxing integration in one step would work. We ended up reverting everything and
moving pieces of code in one step at a time, making sure things still worked at every step
along the way. This was much easier to debug and we had a better understanding of what was
2oing on.

The last key lesson we took away is to look at the bigger picture during every step of
the project. It’s very important to have a clear, detailed block diagram and to outline each
module before coding anything. There were several times during the image processing
component of the project when we had to re-do algorithms differently. We were trained to
adapt and be flexible throughout the entire project and had to backtrack several times because
we didn’t think through the next steps. This made integration challenging because I (Premila)
changed my implementation many times because it was hard to predict how things would play
out. This affected the way I was passing information to Jessica, which would often involve
redoing work she had done with the assumption that I was doing something different. Upon
reflection, this was all all part of the process and contributed greatly to our learning
experience as a whole.

27

10 Acknowledgements

We spent many hours in lab while working on our project and are very grateful to all
the staff who pushed through many challenges with us. We are grateful to our mentor, Diana
Wofk, who was very invested in our project and helped us creatively brainstorm whenever we
needed to navigate roadblocks. We really appreciate your assistance scoping our project and
constantly giving feedback as we progressed.

We are also grateful to Professor Steinmeyer for his help debugging many different
parts of our project and equipping us with the skill of probing to find bugs.

Thanks to Professor Hom for helping work through many painful bugs over the course
of this project! It was extremely helpful when lab was opened on Saturdays and he would sit
through hours of debugging, helping to get us to the finish line.

Our LA, Mike Wang, was of incredible help throughout the project; he helped us solve
many tough bugs and plan the design for the image processing algorithms which took a lot of
time and careful thought. We appreciate your patience and willingness to work with us!

Thank you to the rest of the TAs and staff for encouraging us to do our best and helping
us learn so much this semester.

28

Appendix I - System Usage

User Inputs

Switches
Signal Parameter Function
switch|o] read_control Switches to video playback mode
when turned on, shows visualization
otherwise
switch[1] - Selects between test bar periods;
these are stored to ZBT during
blanking periods
switch[2] - Used for testing the NTSC decoder
switch|[3] - Selects between display of NTSC
video and test bars
switch|4] ntsc_to_vga Shows camera output when turned
on, displays visualization otherwise
Buttons
BUTTON Parameter Function
up ped_cross_up Used to cross road vertically
- moving north
down ped_cross_down Used to cross road
vertically-moving south
left ped_cross_left Used to cross road
horizontally-moving west
right ped_cross_right Used to cross road
horizontally-moving east
enter system_reset Resets the entire system

29

Hex Display Information

The hex display shows the current state of our traffic FSM as well as the number of cars on the
main road and the number of cars on the side road in the form {traffic_fsm_state,
main_road_count, side_road_count}.

Value FSM State

1 main_red_side_ green
2 main_red_side_yellow
3 main_green_side_red
4 main_yellow_side red

Instructions for using the system

N

Turn off all switches and turn off the FPGA.

Make sure that the LEDs, the NTSC camera and the labkit are all connected to power.
Program the labkit using the bitfile.

The system is by default in the MAIN _GREEN_SIDE_RED FSM. Based on the input from
the camera about the cars on the different sides of the road, the traffic signals will
change and these can be seen on the LED strips as well as on the VGA monitor.

To view what the camera is seeing, flip switch[4] on . To return to the visualization
screen, flip switch|4] off.

To view video playback, flip switch[o] on. To return to visualization screen, flip
switch|s] off.

30

Appendix II - Matlab Code

e BMP to COE Conversion in Matlab (BMPtoCOE.m)
e WAV to COE Conversion in Matlab (WAVtoCOE.m)

31

Appendix III - Verilog Source Files

clock _divider.v
collision_detector.v
debounce.v
display _16hex.v
divider.v
erosion.v
erosion_shift.v
final proj.v
hsv_threshold.v
image_selector.v
led controller.v
led_strip.v
ntsc2zbt.v
ntsc_decoder.v
params.v
region.v
rgbzhsv.v
sound.v

video.v
visualization.v
ycrcbarghb.v
7zbt_6111.v

32

BMPtoCOE.m Page 1

%% How to use this file

$Notice how %% divides up sections? If you hit ctrl+enter, then MATLAB

8will execute all the lines within that section, but nothing else. You can

¢also navigate quickly through the file using ctrl+arrow_key

%% Getting 8 bit data

$§When you store an 8 bit bitmap, things get a little complicated. Now

geach pixel in the image only gets one 8 bit value. But, you need to send

$the monitor an r,g, and b (each 8 bits long)! How can this work?

3

$8 bit bitmaps include a table which specifies the rgb values for each of

$the 8 bits in the image.

3

$So each pixel is represented by one byte, and that byte is an index into a

$table where each index specifies an r, g, and b value separately.

3

$Because of this, now we need to load both the image and it's colormap.
[picture color_ table] = imread('car.bmp');

$% Displaying without the color table
$If we try to display the picture without the colormap, the image does not
3make sense

figure

image(picture)

title('Per pixel values in 8 bit bitmap')

%% Displaying WITH the color table

$So to display the picture with the proper color table, we need to tell
$MATLAB to set its colormap to be in line with our colorbar. The image
$quality is somewhat reduced compared to the 24 bit image, but not too bad.

figure

image(picture)

colormap(color_ table) $This command tells MATLAB to use the image's color table

colorbar $This command tells MATLAB to draw the color table it is u
sing

title('8 bit bitmap displayed using color table')

%% More about the color table
¢The color table is in the format:

3

gcolor table(color index,l=r 2=g 3=b)

g

8So to get the r g b values for color index 3, we only need to say:
disp(' r g b for color 3 is:')
disp(color_ table(3,:)) 8disp = print to console

$Although in the bitmap file the colors are indexed as 0-255 and each rgb
$value is an integer between 0-255, MATLAB images don't work like that, so
8MATLAB has automatically scaled them to be indexed 1-256 and to have a
$floating point value between 0 and 1. To turn the floats into integer
$values between 0 and 256:

color_table 8bit = uint8(round(*color_ table));

disp(' r g b for color 3 in integers is:')
disp(color_ table 8bit(3,:))

8Note that this doesn't fix the indexing (and it can't, since MATLAB won't
glet you have indexes below 1)

8another way to look at the color table is like this (don't worry about how

$to make this graph)
figure
stem3 (color table 8bit)
set(gca, 'XTick',1:3);
set(gca, 'YTick',[1,65,]
set(gca, 'YTickLabel',[' 0';"' 64"';
set(gca, 'zTick',[0,64,]

)i
'128';'192"';'255']);
)i

xlabel('red = 1, green = 2, blue = 3")
ylabel('color index')

zlabel('value')

title('Another way to see the color table')

BMPtoCOE.m Page 2

$% Writing data to coe files for putting them on the fpga

$You can instantiate BRAMs to take their values from a file you feed them
8when you flash the FPGA. You can use this technique to send them
gcolortables, image data, anything. Here's how to send the red component
$¢of the color table of the last example

red = color_table(:,1); $grabs the red part of the colortable
scaled_data = red* ; ¢scales the floats back to 0-255
rounded_data = round(scaled data); $%rounds them down

data = dec2bin(rounded_data,8); gconvert the binary data to 8 bit binary #s

Sopen a file
output_name = 'car red.coe';
file = fopen(output name, 'w');

$write the header info
fprintf(file, 'memory initialization radix=2;\n'");
fprintf(file, 'memory initialization vector=\n'");
fclose(file);

gput commas in the data
rowxcolumn = size(data);
rows = rowxcolumn(l);
columns = rowxcolumn(2);
output = data;
for i = 1l:(rows—1)
output(i, (columns+1)) = ', "';
end
output(rows, (columns+1)) = ';';

$append the numeric values to the file
dlmwrite(output name,output, '—-append', 'delimiter','', 'newline', 'pc');

$ create color table for green (2) and blue (3) and you're done!

%% Turning a 2D image into a 1D memory array

$The code above is all well and good for the color table, since it's 1-D
$(well, at least you can break it into 3 1-D arrays). But what about a 2D
8array? We need to turn it into a 1-D array:

picture size = size(picture); $figure out how big the image is
num _rows = picture size(1l);
num_columns = picture size(2);

pixel columns = zeros(picture size(l)*picture size(2),1, 'uint8'); $8pre—allocate a
space for a new column vector

for r = l:num rows
for ¢ = l:num columns
pixel columns((r—1)*num columns+c) = picture(r,c); $pixel# = (y*numColu
mns)+x
end
end

$so now pixel columns is a column vector of the pixel values in the image
rounded _data = round(pixel columns); $%rounds them down
data = dec2bin(rounded data,8); gconvert the binary data to 8 bit binary #s

gopen a file
output name = 'smaller car.coe';
file = fopen(output name, 'w');

Swrite the header info
fprintf(file, 'memory initialization radix=2;\n');
fprintf(file, 'memory initialization vector=\n');
fclose(file);

$put commas in the data
rowxcolumn = size(data);
rows = rowxcolumn(l);
columns = rowxcolumn(?2);
output = data;
for i = 1:(rows—1)

BMPtoCOE.m Page 3

output(i, (columns+1)) = ', "';
end
output(rows, (columns+1)) = ';';

$append the numeric values to the file
dlmwrite(output name,output, '—-append', 'delimiter','', 'newline',

pc');

$just to make sure that we're doing things correctly

regen picture = zeros(num_rows,num columns, 'uint8');
for r = l:num rows
for ¢ = l:num columns
regen picture(r,c) = pixel columns((r-1)*num columns+c,l);
end
end
figure
subplot ()
image(picture)

axis square
colormap(color_table)
colorbar

title('Original Picture')

subplot ()
image(regen_picture)

axis square
colormap(color_table)
colorbar

title('Regenerated Picture')

WAVtoCOE.m

%% Read file

[yv,Fs] = audioread('amb.wav', 'native');

a = audioplayer(y, Fs);

play(a); Y%l ay the sound to nmake sure that it is the sound you are expecting
plot(y); Y%l ot the sine wave (hel ps debuggi ng weird sound)

%% Writing data to coe files for putting them on the fpga

%rou can instantiate BRAMs to take their values froma file you feed t hem
%when you flash the FPGA. You can use this technique to send them

%ol ortabl es, image data, anything including sound bits.

data = dec2bin(y,8); %onvert the decinal data to 8 bit binary #s

%open a file
output name = 'ambulance siren.coe';
file = fopen(output name, 'w');

%wite the header info
fprintf(file, 'memory initialization radix=2;\n');
fprintf(file, 'memory initialization vector=\n');
fclose(file);

%ut commas in the data
rowxcolumn = size(data);

rows = rowxcolumn(l);
columns = rowxcolumn(?2);
output = data;
for i = 1:(rows—1)
output(i, (columns+1)) = ', "';
end
output(rows, (columns+1)) = ';"';

%append the nuneric values to the file
dlmwrite(output name,output, '—-append', 'delimiter','', 'newline', 'pc');

Page 1

cl ock_divider.v Page 1

“timescale 1lns / lps

LEEEEEEEE bbb r bbb bbb
/I Conpany:

/1 Engi neer: Jessica Quaye

/'l Create Date: 13: 07: 07 11/05/2018

/1 Design Namne:

/1 Modul e Name: di vi der

FEEEEEEEE bbb bbb bbb

[l assunes use of 65MHz cl ock, creates one second pul se each second
nodul e clock divider(

i nput clk,

out put reg one_hz enable);

reg [:0] counter = ;
al ways @ (posedge clk) begin

counter <= counter + 1;
/l generate 1lhz signal

if (counter == - 1)
begi n
counter <= 0;
one_hz enable <= 1;
end
el se one_hz_enable <= 0;
end
endnodul e

/Il creates 50% duty cycle 1nmhz cl ock
nodul e led divider(

i nput clk,

out put reg one mhz enable

14
reg [5:0] counter = H

al ways @ (posedge clk) begin
counter <= counter + 1;
if (counter[5] ==) begin //send a clock when the 2**6 bit is 1
one_mhz_enable <= 1;
end

el se one mhz enable <= 0;
end

endnmodul e

col lision_detector.v Page 1

“timescale 1lns / lps
FEEELETEPEE bbb bbb rrrirrrrri
/I Conpany:
/1 Engi neer: Jessica Quaye
/1
/'l Create Date: 21:21:17 11/18/2018
/1 Design Name:
/1 Modul e Nane: col l'i sion_detector
FEEEPEEEEEE bbb bbb bbb bbb rrrrrrrrr
nodul e collision_detector
i nput clk,
input [10:0] carl leftx,car2 leftx, street leftx,
input [10:0] carl rightx,car2 rightx, street rightx,
input [9:0] carl_topy, car2 topy, street topy,
input [9:0] carl bottomy, car2 bottomy, street bottomy,

out put reg direction,

output reg is_collision,

out put reg[:0] leftx threshold, rightx threshold,
output reg[9:0] uppery_threshold, lowery threshold);

“include "params.v"

/1 TO DO

al ways @ (posedge clk) begin

//determne the ranges of the car to tell you if this will be VERTICAL or HORI ZO
NTAL col lision

//determine if its on the HORI ZONTAL street

if ((street_topy <= car2 topy) && (car2 bottomy <= street bottomy)) direction <=

else if ((street leftx <= car2 leftx) && (car2 rightx <= street rightx)) directi
on <= ;

//determine if a collision has occured
if ((carl_leftx < car2 rightx) && (carl rightx > car2 leftx) && (carl topy < car
2_topy) && (carl_bottomy > car2_ topy))
begi n
is_collision <= ;
end

else if ((car2_leftx < carl rightx) && (car2_rightx > carl leftx) && (car2_ topy <
carl_topy) && (car2_bottomy > carl_ topy))
begi n
is_collision <= ;
end

el se is_collision <= ;

//determ ne threshol ds or stopping points for anbul ances
//determine y threshol ds

if (car2 topy < carl topy) uppery threshold <= car2 topy;
el se uppery threshold <= carl topy;

if (car2 bottomy > carl bottomy) lowery threshold <= car2 bottomy;
el se lowery_threshold <= carl_bottomy;

//determine x thresholds
if (car2_leftx < carl_leftx) leftx threshold <= car2 leftx;
el se leftx threshold <= carl leftx;

if (car2 rightx > carl rightx) rightx threshold <= car2 rightx;
el se rightx threshold <= carl rightx;

end //end al ways

endnodul e

nodul e calc_ambulance params (i nput clk,
input [10:0] leftx threshold, rightx threshold, street_leftx, street rightx,
input [9:0] uppery threshold, lowery threshold, street topy, street bottomy,
i nput direction,
i nput is _collision,

col lision_detector.v Page 2

output reg[l:0] ambulance_move_dir,
output reg[10:0] ambulance_dest_x,
output reg[9:0] ambulance _dest y);

“include "params.v"

al ways @(posedge clk) begin

if (direction == && is_collision ==)

begi n
if (lowery threshold < street topy) //anbul ance nove up to | ower
begi n

ambulance move dir <=
ambulance dest y <= lowery threshold
end

else if (uppery threshold > street bottomy) //anbul ance nove down to upper
begi n

ambulance move dir <=

ambulance dest _y <= uppery__ threshold

end

end

if (direction == && is_collision ==)

begi n
if (leftx threshold > street rightx) //anbul ance nove |eft towards | eftnost
begi n

ambulance move dir <=
ambulance dest x <= leftx__ threshold
end

else if (rightx threshold < street leftx) // anbul ance nove right towards r
i ght nost edge
begi n
ambulance move dir <=
ambulance dest x <= rightx threshold
end
end

end //end al ways

endnmodul e

nodul e get _amb_xy (i nput clk,
i nput one hz enable,
i nput is _collision,

input [1:0] ambulance move dir,

input [10:0] ambulance dest x,

input [9:0] ambulance dest_y,

output reg[10:0] ambulance leftx, ambulance width,
output reg[2:0] ambulance topy, ambulance height);

“include "params.v"
reg amb_state = 0;

al ways @ (posedge clk)begin

//determne if an anbul ance is needed, ie, collision has occured
if (is_collision == 1) begin
begi n
case (ambulance _move dir)

begi n
ambulance_width <= ;
ambulance _height <= :
ambulance_ topy <= ;

if ((one_hz enable == 1) é& ((ambulance_leftx -) > am
bulance_dest_x)) ambulance leftx <= ambulance leftx - ;
end
begi n

ambulance width <= ;

col lision_detector.v

ambulance_height <=
ambulance_topy <=

if ((one_hz enable == 1) && ((ambulance leftx +
bulance dest x — ambulance width)) ambulance leftx <= ambulance leftx +
end
begi n

ambulance_width <=
ambulance height <=
ambulance_leftx <=

.
14

.
4

.
14

if ((one_hz enable == 1) && ((ambulance topy -
ulance_dest_y)) ambulance_topy <= ambulance_topy - ;
end
begi n

ambulance_width <=
ambulance height <=
ambulance_leftx <=

if ((one_hz enable == 1) && ((ambulance topy +
bulance dest_y — ambulance height))) ambulance topy <= ambulance_ topy +
end
defaul t :;
endcase

end //end of nove anb state
end //end if collision ==

el se begin
case (ambulance move dir)

begi n
ambulance width <=
ambulance height <=
ambulance_leftx <=
ambulance topy <=
end

begi n
ambulance width <=
ambulance height <=
ambulance_leftx <=
ambulance_topy <=
end

begi n
ambulance width <=
ambulance height <=
ambulance leftx <=
ambulance_topy <=
end

begi n
ambulance width <=
ambulance height <=
ambulance_leftx <=
ambulance topy <=
end
defaul t :;
endcase
end
end //end al ways

endnodul e

.
4

.
14

— ambulance_ width;

.
4

.

4

— ambulance_height;

Page 3

) < am

) > amb

) < (am

debounce. v Page 1

/1 Switch Debounce Modul e

/1 use your systemclock for the clock input

/1 to produce a synchronous, debounced out put

nodul e debounce #(par anet er =) /1 .01 sec with a 100Whz cl ock
(i nput reset, clock, noisy,
out put reg clean);

reg [19:0] count;
reg new,

al ways @ posedge cl ock)
if (reset)
begi n
count <= 0;
new <= noi sy;
cl ean <= noi sy;

end
else if (noisy != new
begi n
new <= noi sy;
count <= 0;
end
else if (count ==)
cl ean <= new,
el se

count <= count +1;

endnodul e

di spl ay_16hex. v Page 1

L1777 7 7777777 7SS S S
//
// 6.111 FPGA Labkit —— Hex display driver

// File: display l6hex.v
// Date: 24-Sep-05

// Created: April 27, 2004
// Author: Nathan Ickes

// 24-Sep-05 Ike: updated to use new reset-once state machine, remove clear
// 28-Nov—-06 CJT: fixed race condition between CE and RS (thanks Javier!)

// This verilog module drives the labkit hex dot matrix displays, and puts

// up 16 hexadecimal digits (8 bytes). These are passed to the module

// through a 64 bit wire ("data"), asynchronously.

//

LI1777 7777777 S

nodul e display l6hex (reset, clock 27mhz, data,
disp blank, disp clock, disp rs, disp ce b,
disp reset b, disp data out);

i nput reset, clock 27mhz; // clock and reset (active high reset)
input [63:0] data; // 16 hex nibbles to display

out put disp blank, disp clock, disp data out, disp rs, disp ce b,
disp reset b;

reg disp data_out, disp rs, disp ce b, disp reset b;
;;//
// Display Clock

//

// Generate a 500kHz clock for driving the displays.

//
L1777 77 77777777777 7777777 7777777 77

reg [4:0] count;
reg [7:0] reset count;
reg clock;

W re dreset;

al ways @(posedge clock 27mhz)
begi n
if (reset)
begi n
count ;
clock ;
end
else if (count ==)
begi n
clock = ~clock;
count = ;
end
el se
count = count+l;

end

al ways @(posedge clock 27mhz)
if (reset)
reset_count <= :
el se
reset count <= (reset_count==0) ? : reset count-1;

assign dreset = (reset _count != 0);
assign disp clock = ~clock;

;;//

di spl ay_16hex. v Page 2
// Display State Machine
//
L1777 777 7777777777777 777 /7SS S

reg [] state; // FSM state

reg [] dot_index; // index to current dot being clocked out
reg [] control; // control register

reg [3:0] char_ index; // index of current character

reg [] dots; // dots for a single digit

reg [] nibble; // hex nibble of current character

assign disp blank = ; // low <= not blanked

al ways @(posedge clock)
if (dreset)
begi n
state <= 0;
dot_index <= 0;
control <= ;
end
el se
casex (state)

begi n
// Reset displays
disp data out <= ;
disp rs <= ; // dot register
disp ce b <= ;
disp reset b <= ;
dot _index <= 0;
state <= state+l;
end

begi n
// End reset
disp_reset_b <= ;
state <= statet+l;

end

begi n
// Initialize dot register (set all dots to zero)
disp ce b <= ;
disp data out <= ; // dot_index[0];
if (dot_index ==)
state <= state+l;
el se
dot_index <= dot_index+1;
end

begi n
// Latch dot data
disp ce b <= 7

dot_index <= ; // re-purpose to init ctrl reg
disp rs <= ; // Select the control register
state <= state+l;

end

begi n

// Setup the control register
disp ce b <= ;
disp data out <= control[31];
control <= {control[30:0], Y: // shift left
if (dot_index == 0)
state <= state+l;
el se
dot_index <= dot_index-1;
end

di spl ay_16hex. v Page

begi n
// Latch the control register data / dot data
disp ce b <= 1'bl;

dot_index <= 39; // init for single char
char_index <= 15; // start with MS char
state <= state+l;
disp rs <= 1'b0; // Select the dot register
end
8'h06:
begi n

// Load the user's dot data into the dot reg, char by char
disp ce b <= 1'b0;
disp_data out <= dots[dot_index]; // dot data from msb
if (dot_index == 0)
if (char_index == 0)
state <= 5; // all done, latch data
el se
begi n
char index <= char index - 1; // goto next char
dot_index <= 39;

end
el se
dot index <= dot_ index-1; // else loop thru all dots
end
endcase

al ways @ (data or char_index)
case (char index)

4'h0: nibble <= data[3:0];

4'hl: nibble <= data[7:4];

4'h2: nibble <= data[11:8];
4'h3: nibble <= data[15:12];
4'h4: nibble <= data[19:16];
4'h5: nibble <= data[23:20];
4'h6: nibble <= data[27:24];
4'h7: nibble <= data[31:28];
4'h8: nibble <= data[35:32];
4'h9: nibble <= data[39:36];
4'hA: nibble <= data[43:40];
4'hB: nibble <= data[47:44];
4'hC: nibble <= data[51:48];
4'hD: nibble <= data[55:52];
4'hE: nibble <= data[59:56];
4'hF: nibble <= data[63:60];

endcase

al ways @(nibble)
case (nibble)
4'h0: dots <= 40'b00111110 01010001 01001001 01000101 00111110;
4'hl: dots <= 40'b00000000_01000010 01111111 01000000 _00000000;
4'h2: dots <= 40'b01100010 01010001 01001001 01001001 01000110;
4'h3: dots <= 40'b00100010_01000001 01001001 01001001 00110110;
4'h4: dots <= 40'b00011000_00010100_ 00010010 01111111 00010000;
4'h5: dots <= 40'b00100111 01000101 01000101 01000101 00111001;
4'h6: dots <= 40'b00111100_ 01001010 01001001 01001001 00110000;
4'h7: dots <= 40'b00000001 01110001 00001001 00000101 00000011;
4'h8: dots <= 40'b00110110 01001001 01001001 01001001 00110110;
4'h9: dots <= 40'b00000110_ 01001001 01001001 00101001 00011110;
4'hA: dots <= 40'b01111110_ 00001001 00001001 00001001 01111110;
4'hB: dots <= 40'b01111111 01001001 01001001 01001001 00110110;
4'hC: dots <= 40'b00111110 01000001 01000001 01000001 00100010;
4'hD: dots <= 40'b01111111 01000001 01000001 01000001 00111110;
4'hE: dots <= 40'b01111111 01001001 01001001 01001001 01000001;
4'hF: dots <= 40'b01111111 00001001 00001001 00001001 00000001;
endcase

endnodul e

di vider.v Page 1

//Engineer: Premila Rowles
//Module name: divider.v

// The divider module divides one number by another. It

// produces a signal named "ready" when the quotient output
// is ready, and takes a signal named "start" to indicate
// the the input dividend and divider is ready.

// sign ——- 0 for unsigned, 1 for twos complement

// It uses a simple restoring divide algorithm.
// http://en.wikipedia.org/wiki/Division (digital)#Restoring division

nodul e divider #(paraneter =)
(input clk, sign, start,

i nput [—1:0] dividend,

i nput [—-1:0] divider,
output reg [—-1:0] quotient,
out put [—-1:0] remainder,

out put ready);

reg [—-1:0] quotient temp;
reg [*2-1:0] dividend copy, divider copy, diff;
reg negative output;
assign remainder = (!negative output) ?
dividend copy]| -1:0] : ~dividend_copy| -1:0] + ;
reg [5:0] bit;
reg del _ready = 1;
assign ready = (!bit) & ~del ready;
wre [—-2:0] zeros = 0;
initial bit = 0;

initial negative output = 0;
al ways @(posedge clk) begin
del ready <= !bit;
if(start) begin

bit = :
quotient = 0;
quotient temp

dividend copy (! sig || !'dividend[-171) 2
{ ,zeros,dividend} :
{ ,zeros,~dividend + ¥
divider copy = (!sign || !divider] -171) 2
{ ,divider, zeros}
{ ,~divider + ,Z€eros};
negative output = sign &&
((divider]| -1] && !dividend][-11)
|| (tdivider] -1] && dividend] -11));
end
else if (bit >) begin

diff = dividend copy - divider copy;
quotient temp = quotient temp << 1;
i f('diff] *2-1]1) begin
dividend copy = diff;
quotient temp[0] = ;
end
quotient = (!negative output) ?
quotient temp
~quotient temp + :
divider copy = divider copy >> 1;
bit = bit - ;
end
end
endnodul e

erosi on.v Page 1

“tinmescale 1ns / 1ps

L1177 77 7777777777777 77
// Company:

// Engineer: Kevin Zheng Class of 2012

// Dept of Electrical Engineering & Computer Science
//

// Create Date: 18:45:01 11/10/2010

// Design Name:

// Module Name: erosion

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:
// Revision 0.01 - File Created
// Additional Comments:

//

LILLLLSSSSSSS LSS S
nodul e erosi on(

nput wire clock,

nput wire reset,

nput reg a8,

nput reg a7,

nput reg aé,

nput reg a5,

nput reg a4,

nput reg a3,

nput reg a2,

nput reg al

nput reg ao,

nput binarized_val ue,

nput reg [19:0] count,

nput reg [23:0] pixel_value,
out put reg pixel _eroded,

out put reg frane_end);

reg [19:0] numbits_per_frame; //345600

al ways @ (posedge cl ock) begin

//output if frame ended if we have counted total number of p
ixels in a frame

if (count >) frame_end <= 1;

//pixel eroded will be the first 3 elements of each line buf
fer to get a total of

//9 elements, we can logically 'and' these because the kerne
1 is all 0's

pi xel _eroded <= (a8 & a7 & a6 & ab & a4 & a3 & a2

& al & a0) ? . pixel _val ue; //and 9 elements

end

endnodul e

erosion_shift.v Page 1
“tinmescale 1ns / 1ps
FEEEPEEEEEE i bbb rrrrrrnr
Conmpany:
Engi neer: Kevin Zheng C ass of 2012
Dept of Electrical Engineering & Conputer Science

Create Date: 18:45: 01 11/10/ 2010
Desi gn Nane:
Modul e Narme: er
[HEEEErrrrrrrrrr
nodul e erosion_shift(
i nput wire clock,
i nput wire reset,
i nput reg binarized val ue,

t
/1
11
/1
/1
11
/1
/1
11
/1

0si on
[HETELEE i iririrrrri

input reg [23:0] pixel_val ue,
out put reg [19:0] count_out,
out put reg [23:0] pixel_out,

output reg a8,
out put reg a7,
output reg a6,
output reg a5,
out put reg a4,
output reg a3,
output reg a2,
output reg al
out put reg ao0);

reg buffer_one | 1 0],
reg buffer two | 0]
reg pixel _buffer | 0],

reg buffer_three [2:0];

reg [19: 0] num.bits_per_frane; //345600
reg [19:0] count;

al ways @ (posedge cl ock) begin

count_out <= count +

/'l new pixel <= {h,s,vVv};
buf fer _one <= {binarized val ue, buffer_one[2113
buf fer _two <= {buffer_one[0], buffer_one[:
buffer three <= {buffer_two[0], buffer_one[

—_—
i

/1shift pixel values in
pi xel _buffer <= {pixel _val ue, pi xel buffer]| S
pi xel _out <= pixel _buffer[0];

a8 <= buffer_one |
a7 <= buffer_one |
a6 <= buffer_one |
ab <= buffer_two |
a4 <= buffer_two |
a3 <= buffer_two |
a2 <= buffer_three [2];
al <= buffer _three [1];
a0 <= buffer_three [0];

end
endnodul e

final _project.v Page 1

LI17/7 77777777 S S S S
//

// 6.111 FPGA Labkit —- Template Toplevel Module

//

//

// Created: December 1, 2018

// Authors: Jessica Quaye and Premila Rowles

//
nodul e final project(beep, audio reset b,
ac97 sdata out, ac97_ sdata_in, ac97_ synch,

ac97_bit clock,
vga_out_red, vga_out_green, vga_out_blue, vga out_sync b,
vga_out blank b, vga out pixel clock, vga out hsync,
vga_out_vsync,
tv_out ycrcb, tv_out reset b, tv_out clock, tv _out i2c clock,
tv_out_i2c_data, tv_out_pal ntsc, tv_out_hsync_b,
tv_out _vsync_b, tv_out_blank b, tv_out_subcar reset,
tv_in_ycrcb, tv_in data_valid, tv_in_line_clockl,
tv_in line clock2, tv_in aef, tv_in hff, tv_in aff,
tv_in i2c _clock, tv_in i2c_data, tv_in fifo read,
tv_in fifo clock, tv_in iso, tv_in reset b, tv_in_clock,

ram0_data, ram0_address, ramO_adv_1d, ram0 _clk, ram0 cen b,
ram0_ce_ b, ram0_oe b, ram0_we b, ram0_bwe b,

raml data, raml address, raml adv_1d, raml clk, raml cen b,
raml ce_b, raml _oe_b, raml we b, raml_bwe_b,

clock feedback out, clock feedback in,

flash data, flash address, flash ce b, flash oe b, flash we b,
flash reset b, flash sts, flash byte b,

rs232_txd, rs232 rxd, rs232_rts, rs232_cts,
mouse_clock, mouse_data, keyboard clock, keyboard data,
clock 27mhz, clockl, clock2,

disp blank, disp data out, disp clock, disp rs, disp ce b,
disp reset b, disp data in,

button0, buttonl, button2, button3, button enter, button right,
button left, button down, button up,

switch,

led,

userl, user2, user3, user4,
daughtercard,

systemace_data, systemace address, systemace ce b,
systemace we b, systemace oe b, systemace irq, systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,
analyzer4 data, analyzer4 clock);

out put beep, audio_reset_b, ac97_synch, ac97_sdata_out;
I nput ac97_bit clock, ac97 sdata in;

output [7:0] vga out red, vga out green, vga out blue;
out put wvga_out_sync_b, vga out blank b, vga out pixel clock,
vga_out_hsync, vga out_vsync;

output [9:0] tv_out_ycrcb;

final _project.v Page 2

out put tv_out_reset b, tv_out clock, tv_out i2c_clock, tv_out i2c_data,
tv out pal ntsc, tv out _hsync_b, tv out _vsync_b, tv out _blank_b,
tv out_ subcar reset

input [19:0] tv_in ycrcb;

input tv_in data valid, tv_in line clockl, tv_in line clock2, tv_in aef,
tv_in hff, tv_in aff;

output tv_in i2c_clock, tv_in fifo read, tv_in fifo clock, tv_in iso,
tv_in reset b, tv_in clock;

inout tv_in i2c_data;

inout [35:0] ram0 data;

output [18:0] ram0_address;

out put ram0_adv_1d, ram0_clk, ram0_cen b, ram0_ce b, ram0 _oe b, ram0 _we b;
output [3:0] ramO_bwe b;

inout [35:0] raml data;

output [18:0] raml address;

out put raml_adv_1ld, raml clk, raml cen b, raml ce b, raml oe b, raml we b;
output [3:0] raml_bwe b;

i nput clock feedback in;
out put clock feedback out;

inout [15:0] flash data;

output [23:0] flash address;

out put flash ce b, flash oce b, flash we b, flash reset b, flash byte b;
i nput flash_sts;

out put rs232 txd, rs232 rts;
i nput rs232 rxd, rs232 cts;

i nput mouse clock, mouse data, keyboard clock, keyboard data;

i nput clock 27mhz, clockl, clock2;

out put disp blank, disp clock, disp rs, disp ce b, disp reset b;
i nput disp data_in;

out put disp data out;

i nput button0, buttonl, button2, button3, button enter, button right,
button left, button down, button_ up;

input [7:0] switch;

output [7:0] led;

i nout [:0] userl, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

out put systemace_ce_ b, systemace we b, systemace oe b;
i Nnput systemace irq, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,
analyzer4 data;
out put analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock;

N VN Ve
/7

// I/O Assignments
//
L1777 777/

// Audio Input and Output
aSS|gn beep=
// a551gn audio_ reset b = 1'b0; //unused because sound module drives these outputs
// assign ac97 synch = 1'b0;
// assign ac97 sdata out = 1'b0;
// ac97 sdata in is an input

// Video Output
assign tv_out_ycrcb = ;

final _project.v

/*

/*

assign tv_out reset b = ;
assign tv_out_clock = ;
assign tv_out_i2c _clock = ;
assign tv_out i2c data =
assign tv_out pal ntsc = ;
assign tv_out hsync b =
assign tv_out_vsync b = ;
assign tv_out blank b = ;
assign tv_out subcar reset = ;

// Video Input

//assign tv_in i2c clock = 1'b0; //used by NTSC
assign tv_in_fifo_read = ;

a55|gn tv in_ flfO clock = ;

assign tv_in iso = ;

//assign tv_in reset b = 1'b0; //used by NTSC
assign tv_in clock = clock_27mhz;//1'b0;
//assign tv_in_i2c data = 1'bZ; //used by NTSC

// tv_in ycrcb, tv_in data_ Valld tv_in line clockl, tv_in line clock2,

// tV in aef, tv _in hff, and tv_in_ aff are inputs

// SRAMs

change lines below to enable ZBT RAM bank0 */
assign ram0 data = :

assi gn ram0_address = ;

assign ram0_clk = ;

assign ram0 we b = ;

assign ram0_cen b = ; // clock enable

enable RAM pins */

assign ram0 _ce b = ;
assign ram0 _oe b = ;
assign ram0_adv_1d = ;
assign ram0 _bwe b = ;

VAZZZZ 222 S V4

/*

*/

//These values have to be set to 0 like ram0 since raml is used.
assign raml adv _1d = ;

assign raml ce b ;

assign raml oe b ;

assign raml bwe b = ;

// clock feedback out will be assigned by ramclock
// assign clock feedback out = 1'b0; //2011-Nov-10
// clock feedback in is an input

// Flash ROM

assign flash data = ;
assign flash address ;
assign flash ce b
assign flash oe b
assign flash we b ;
assign flash reset b H
assign flash byte b = ;
// flash sts is an input

// RS-232 Interface

assign rs232_txd = ;

assign rs232 rts =

// rs232 rxd and rs232_ cts are inputs

// LED Displays

USED in hex display

assign disp blank = 1'bl;
assign disp clock = 1'b0;
assign disp rs = 1'b0;
assign disp ce b = 1'bl;
assign disp reset b = 1'b0;
assign disp data out = 1'b0;

// disp data in is an input

Page

final _project.v Page 4

// Buttons, Switches, and Individual LEDs

// assign led = 8'hFF;

// button0, buttonl, button2, button3, button enter, button right,
// button_ left, button down, button up, and switches are inputs

// User I/Os
// assign userl
assign user2 = ;
// assign user3 = 32'hZ; //used to drive LEDs
assign user4d = ;

32'nZ; //used to drive LEDs

// Daughtercard Connectors
assi gn daughtercard = ;

// SystemACE Microprocessor Port
a55|gn systemace_data = ;

assign systemace address = ;
assi gn systemace ce b
assign systemace_we_b
assign systemace_oe b
// systemace irqg and systemace mpbrdy are inputs

.
14

.
4

// Logic Analyzer

assign analyzerl data =
assign analyzerl clock =
assign analyzer2 data =
assign analyzer2 clock =
assign analyzer3 data =
assign analyzer3 clock =
assign analyzer4 data =
assign analyzer4 clock =

VA A A A A a A

// Demonstration of ZBT RAM as video memory

Ne Ne Ne Neo Ne N “e ~o

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

Wi re clock 65mhz_unbuf,clock 65mhz;
velkl(. (clock 27mhz), . (clock 65mhz_unbuf));

// synthesis attribute CLKFX DIVIDE of vclkl is 10

// synthesis attribute CLKFX MULTIPLY of vclkl is 24

// synthesis attribute CLK_FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN_PERIOD of vclkl is 37
vclk2(.0(clock_65mhz),.I(clock 65mhz_ unbuf));

W re locked;
//assign clock feedback out = 0; // gph 2011-Nov-10

ramclock rc(.ref clock(clock_65mhz), .fpga clock(clk),
.ram0_clock(ram0_clk),
.raml_clock(raml_clk),
.clock feedback in(clock_ feedback in),
.clock feedback out(clock_ feedback out),
.locked(locked));

// power-on reset generation
Wi re power on_reset; // remain high for first 16 clocks
reset _sr (.D(), - (clk), .Q(power_on reset),

. ()r - ()r - (), - ()) i
def param reset_sr. = ;

// ENTER button is user reset

Wi re reset,user reset;

debounce dbl(power on reset, clk, ~button_enter, user_ reset);
assign reset = user_reset | power on_reset;

// display module used for debugging
reg [63:0] dispdata;

display l6hex hexdispl(reset, clk, dispdata,
disp blank, disp _clock, disp rs, disp ce b,

to

final _project.v Page 5
disp_reset_b, disp data_out);
// generate basic XVGA video signals
wire [10:0] hcount;
wWre [9:0] wvcount;
Wi re hsync,vsync,blank;
xvga xvgal(clk,hcount,vcount,hsync,vsync,blank);
// wire up to ZBT ram
wire [35:0] vram_write data;
wire [35:0] vram read data;
wire [18:0] vram addr;
wire vram we;
Wi re ram0 clk not used;
zbt 6111 zbtO0(clk, , vram _we, vram_addr,
vram write data, vram read data,
ram0_clk not used, //to get good timing, don't connect ram clk
zbt 6111
ram0_we_b, ram0_address, ramO_data, ram0_cen_b);
// generate pixel value from reading ZBT memory
wire [17:0] vr_pixel; //change
wire [18:0] vram addrl;
vram display vdl(reset,clk,hcount,vcount,vr pixel,
vram _addrl,vram read data);
// ADV7185 NTSC decoder interface code
// adv7185 initialization module
adv7185init adv7185(.reset(reset), .clock 27mhz(clock 27mhz),
.source (), -tv_in reset b(tv_in reset b),
.tv_in i2c_clock(tv_in i2c_clock),
.tv_in_i2c_data(tv_in_ i2c_data));
wire [29:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] fvh; // sync for field, vertical, horizontal
W re dv; // data valid
wire [23:0] rgb out;//change
wire [7:0] h,s,v;
Wi re binarized pixel;
wire [23:0] vga pixel;
wire [23:0] pixel out;
wire is_red;
wire is blue;
wire is_green;
//convert NTSC raw analog output to digital
ntsc_decode decode (.clk(tv_in line clockl), .reset(reset),
.tv_in yecrcb(tv_in ycrcb[19:10]),
.ycrcb(ycreb), .f(fvh[2]),
.v(fvh[1]), .h(fvh[0]), .data valid(dv));
//convert from YCrCb space (camera output) to RGB color space
YCrCb2RGB ycrcb2rgb module(.R(rgb_out] 1),.G(rgb_out|
.B(rgb_out|]),.clk(tv_in line clockl),.rst(reset),
.Y(ycreb[29:20]), .Cr(ycrcb[19:10]1),.Cb(ycrcb[1))

//convert from rgb to hsv space for optimal color thresholding
rgb2hsv rgb2hsv_module(.clock(tv_in line clockl), .reset(reset),
1), .b(rgb_out|

//define upper and lower bounds for testing during chroma keying

.r(rgb _out[23:16]),.9(rgb_out]
-h(h),.s(s),.v(v));

reg [7:0] h_upper bound = ;
reg [7:0] h_lower_bound = 0;
reg [] s_upper bound = ;
reg [] s_lower bound = 0;
reg [] v_upper_ bound = ;
reg [] v_lower bound = 0;
reg [] counter = 0;

wire [23:0] vga _pixel output;

1),

final _project.v Page 6

//hsv_threshold determines if a given pixel is within the bounds of hue and value
ranges
hsv_threshold #(. (), - (),
. (s_upper_bound),
(s_lower bound),
()r - ()
()
()/ - (s_upper_bound),
(s_lower_bound),
(

) - ()

hsv_threshold module(.rgb pixel(rgb out),.hsv_pixel({h,s,v}),
.pixel out(pixel out), .is_blue(is_blue),
.is _green(is_green));

//image selector outputs a color for each pixel depending on hsv_threshold output

image selector image selector module(.pixel(pixel out),.is blue(is_blue),
.is_green(is_green), .vga pixel(vga_ pixel),
.binarized pixel(binarized pixel));

//code to write NTSC data to video memory

W re [18:0] ntsc_addr;
wre [35:0] ntsc_data;
wre ntsc_we;

//pass in 18 bit pixel to store in zbt memory

ntsc_to_zbt n2z (clk, tv_in line clockl, fvh, dv, {vga pixel[23:18],
vga_pixel[15:10], vga pixel[7:2]},
ntsc_addr, ntsc_data, ntsc_we, switch[2]);

//code to write pattern to ZBT memory

reg [31:0] count;
al ways @(posedge clk) count <= reset ? : count + 1;
wire [18:0] vram_addr2 = count[0+18:0];
Wre [35:0] wvpat = (switch[1l] ? {4{count[3+3:3],)
: {4{count[3+4:4], Py)i
//mux selecting read/write to memory based on which write—enable is chosen
W re sw_ntsc = ~switch[3];
wre my we = sw_ntsc ? (hcount[0]==) : blank;
wire [18:0] write addr sw_ntsc ? ntsc_addr vram_addr2;

wire [35:0] write data sw_ntsc ? ntsc_data vpat;
assign vram_addr = my we ? write addr : vram_addrl;
assign vram _we = my_we;

assign vram write data = write data;

Wrerl7:0] pixel;

reg b,hs,vs;
W re sign = 0;
reg start = 0;

//define output wires for each instance of the region module

wre [] state center;
wre [] state one;
wre [] state two;
wre [] state three;
wre [] state four;
wre [] state five;
wre [] state six;
wire [] state seven;
wre [] state eight;
Wi re end frame;

Wi re start frame;

//Clock Divider Outputs
Wi re one_hz enable;

final _project.v

Wi re one_mhz_ enable;

reg[l:0] disp_state = 0;
regr23:0] rgb;
Wi re display;

W re display_controller;
assign display controller = switch]

wre [

wire [23:0]

video pixel;

Wi re use_video_pixel;

//assign read control to switches here

Wi re read_control;

assign read_

al ways @(pos

control = switch[0];

edge clk) begin

b <= blank;
hs <= hsync;
vs <= vsync;

if (display controller ==

] visualization pixel;

14

1,

1.

]-

) begin

4

if (display == 1) begin
rgb[23:16] <= {pixel]
rgb[15:8] <= {pixel]
rgb[7:0] <= {pixel][
end
el se rgb <= :
end
el se begin
if (use_video pixel ==
el se rgb <= visualization pixel;
end
end
wire [23:0] x_avg green center;
wire [23:0] y _avg green center;
wire [23:0] x_avg blue center;
wire [23:0] y_avg blue center;
wire [23:0] x_avg green one;
wire [23:0] y_avg_green_one;
wire [23:0] x _avg blue one;
wire [23:0] y_avg blue one;
wire [23:0] x_avg green two;
wire [23:0] y_avg green two;
wire [23:0] x_avg blue two;
wire [23:0] y_avg blue two;
wire [23:0] x_avg green three;
wire [23:0] y _avg green three;
wire [23:0] x_avg blue three;
wire [23:0] y_avg_blue three;
wire [23:0] x_avg_green_ four;
wire [23:0] y_avg_green_four;
wire [23:0] x_avg blue four;
wire [23:0] y_avg blue four;
wire [23:0] x_avg green five;
wire [23:0] y_avg green five;
wire [23:0] x_avg blue five;
wire [23:0] y _avg blue five;
wire [23:0] x_avg_green_six;
wire [23:0] y _avg green six;
wire [23:0] x_avg _blue six;
wire [23:0] y_avg_blue six;

) rgb <= video_ pixel;

Page 7

final _project.v Page 8

wire [23:0] X _avg green_seven;
wire [23:0] y_avg_green seven;
wire [23:0] x_avg blue seven;
wire [23:0] y_avg blue seven;
wire [23:0] x_avg_green_ eight;
wire [23:0] y _avg green eight;
wire [23:0] x_avg blue eight;
wire [23:0] y_avg_blue eight;

//instance of region module for each region on the road
region #(. (360), (300), . (445), . (345))
region center module(. clk(clk) .clock(clock_65mhz),.vr pixel(vr pixel),

.display(display), .hcount (hcount), .vcount (vcount),
.X_avg_green(x_avg_green_center),
.y_avg green(y_avg_green_center),
.X_avg blue(x_avg blue center),
.y_avg blue(y_avg_blue center),
.state(state_center));

region #(. (360), (70), - (395), - (285+35))
region one module(. clk(clk) .clock(clock_65mhz),.vr pixel(vr pixel),

.display(display), .hcount (hcount), .vcount (vcount),
.X_avg_green(x_avg_green_one),
.y_avg _green(y_avg_green_one),
.X_avg blue(x_avg blue one),
.y_avg blue(y_avg_blue one),
.state(state_one));

region #(. (420), (95), - (455), . (265+35))
region_ two _module(. clk(clk) .clock(clock_65mhz),.vr pixel(vr_ pixel),

.display(display), .hcount (hcount), .vcount (vcount),
.X_avg_green(x_avg_dgreen_two),
.y_avg green(y_avg _dgreen_two),
.X_avg blue(x_avg blue two),
.y_avg blue(y_avg_blue two),
.state(state_two));

region #(. (50), (275), . (330), . (305))

region three module(. clk(clk) .clock(clock _65mhz),.vr pixel(vr_ pixel),
.display(display), .hcount (hcount), .vcount (vcount),
.X_avg_green(x_avg_green_three),
.y_avg _green(y_avg _green_three),
.X_avg blue(x_avg blue three),
.y_avg blue(y_avg_blue_ three),
.state(state_three));

region #(. (40), (330), . (338), . (360))

region four module(. clk(clk), clock(clock 65mhz),.vr pixel(vr pixel),
.display(display), .hcount (hcount), .vcount (vcount),
.X_avg_green(x_avg _green_four),
.y_avg_green(y_avg green_ four),
.X_avg_blue(x_avg blue_ four),
.y_avg blue(y_avg_blue four),
.state(state four));

region #(. (465), (275), . (740), . (305))

region five module(. clk(clk), clock(clock 65mhz),.vr pixel(vr pixel),
.display(display), .hcount (hcount), .vcount (vcount),
.X_avg_green(x_avg_green five),
.y_avg_green(y_avg green five),
.X_avg_blue(x_avg blue five),
.y_avg _blue(y_avg blue five),
.state(state five));

region #(. ()r . ()r o ()i ())
region six module(.clk(clk), .clock(clock 65mhz),.vr_ pixel(vr_pixel),
.display(display), .hcount (hcount), .vcount(vcount),
.X_avg_green(x_avg dgreen_six),
.y_avg_green(y_avg_dgreen_six),

final _project.v Page 9

.X_avg_blue(x_avg blue_six)
,.y_avg blue(y_avg blue six),
.state(state_six));

region #(. (360), (368-40), . (395), . (550))

region seven module(. clk(clk), clock(clock 65mhz),.vr_ pixel(vr pixel),
.display(display), .hcount (hcount), .vcount(vcount),
.X_avg _green(x_avg_green_seven),
.y_avg green(y_avg _dgreen_seven),
.X_avg_blue(x_avg blue_seven),
.y_avg blue(y_avg_blue_seven),
.state(state_seven));

region #(. (420), (368-40), . (455), . (550))

region eight module(. clk(clk),.clock(clock_65mhz),.vr_pixel(vr_pixel),
.display(display), .hcount (hcount), .vcount (vcount),
.X_avg_green(x_avg_dgreen eight),
.y_avg _green(y_avg _green eight),
.X_avg_blue(x_avg blue_eight),
.y_avg blue(y_avg blue _eight),
.state(state _eight),
.new_car(new_car),
.end_frame(end_frame), .start frame(start frame));

//create crosshairs for center of mass for each car to debug averaging method

assign pixel = ((hcount == x avg green center vcount == y_avg_green_center
hcount == x_avg green_one
vcount == y avg green one
hcount == x_avg green_two
vcount == y avg dgreen_two
hcount == x avg_green three
vcount == y avg green_three
hcount == x_avg green_ four
vecount == y avg green_ four
hcount == x_avg green_ five
vcount == y avg green five
hcount == x_avg green six
vcount == y avg green six
hcount == x_avg green_seven
vcount == y avg green_seven
hcount == x_avg _green_eight
vcount == y avg green eight
hcount == X _avg blue one
vcount == y_avg _blue_one
hcount == x_avg blue _two
veount == y_ avg | blue two
count == x_avg_blue three
vcount == y avg_| blue _three)

?) | vr_pixel;

//must include a check for display to ensure we don't have external noise
//when calculating center of mass
assi gn display = ((hcount > && hcount <) && (vcount > && vcount <))

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clk.

assign vga_out _red = rgb[23:16];

assign vga_out _green = rgb[15:8];

assign vga_out blue = rgb[7:0];

assign vga_out_sync b = ; // not used
assign vga_out pixel clock = ~clk;

assign vga_out blank b = ~b;

assi gn vga_out_hsync = hs;

assign vga_out_vsync vSs;

L1777 77 777777777777
// End of Image Processsing
// Beginning of Integration

final _project.v Page 10
L1/ 7777 7777777777777 /77 S/ 7SS

//Traffic FSM Input

wire[2:0] main road_count;
Wire[2:0] side road count;
Wi re ped cross main road;
Wi re ped _cross_side road;

wire [1:0] carl direction, car2 direction, car3 direction, car4 direction,
car5 direction, car6_direction, car7_direction, car8 direction,
car9 direction, carl0 _direction, carll direction,carl2 direction,
carl3 direction;

//calculate number of cars on each road (using vertical and horizontal)

assign main road count = (x_avg green one[10:0] > 0) +
(x_avg_green_two|[:0] > 0) +
(x_avg_blue_one[])
(x_avg blue two[10:0])
(x_avg_green_seven[10:0] >
(x_avg_green eight[10:0] >

assign side road count = (x_avg green three[10:0] >
(x_avg_blue three[10:0] > 0) +
(x_avg _green_ four[10:0] > +
(x_avg _blue four[10:0] > 0) +
(x_avg_green five[10:0] > 0) +
(x_avg_blue five]]
(x_avg green six[10:0]

//debouncing signals for buttons

Wi re ped cross up, ped cross down, ped cross right, ped cross left;

debounce upbtn(.reset(power on reset),.clock(clock 27mhz),.noisy(~button up),.cle
an(ped_cross_up));

debounce downbtn(.reset(power on reset),.clock(clock 27mhz),.noisy(~button down),
.clean(ped_cross_down)) ;

debounce rightbtn(.reset(power_ on reset),.clock(clock 27mhz),.noisy(~button right
), .clean(ped _cross_right));

debounce leftbtn(.reset(power on reset),.clock(clock 27mhz),.noisy(~button left),
.clean(ped_cross_left));

//use buttons to simulate pedestrian signals
assign ped_cross_main_road = ped_cross_right | ped_cross_left;
assi gn ped cross _side road = ped cross up | ped cross_down;

//Traffic FSM Outputs

wire[l:0] main_out;
Wre[l:0] side_out;
wre[2:0] out_state;

//LED Outputs
ire main_red;
re main_yellow;
re main_green;
re side_red;
re side_yellow;
re side_green;

£

//Set hex display values
al ways @(posedge clock 65mhz) begin

dispdata <= { , out_ state, , main_ out, , side out};
end

//LED strip Outputs

//Main Road LED

Wi re main led data;

wire main_led clock;

Wi re main_enable_led clock;

assign main_ led clock = one mhz enable;

//Side Road LED

Wi re side led data;

wire side led clock;

Wi re side enable led clock;

final _project.v Page 11

assign side_led clock = one _mhz_enable;

//Instantiate all modules

traffic fsm traffic(.clk(clock 27mhz), .main road count(main_road count),
.side_road count(side road count),
.ped_cross_main road(ped_cross main_road),
.ped cross_side road(ped _cross_side road),
.reset(reset), .one hz enable(one hz enable),
.main_out(main_out), .side out(side_out),
.out_state(out state));

clock divider one_hz(.clk(clk), .one_hz enable(one _hz enable));
led divider one mhz(.clk(clk), .one mhz enable(one_mhz enable));

led controller led out(.clk(clock 27mhz),.main out(main out),
.side_out(side_out),
.main_red(main_red), .main yellow(main_ yellow),
.main_green(main_green),
.side_red(side_red), .side yellow(side_yellow),
.side green(side green));

led strip main led strip(.clk(clk), .led clock(main led clock),
.red_signal(main red),.yellow signal(main yellow),
.green_signal(main_green),
.main_led data(main led data),
.main_enable led clock(main enable led clock));

led strip side led strip(.clk(clk), .side led clock(side_ led clock),
.red_signal(side_red), .yellow signal(side_yellow),
.green_signal(side_green),
.side_led data(side led data),
.side enable led clock(side enable led clock));

//send traffic signals to led strip

//1 is data (yellow wire)

//0 is clock (blue wire)

assign userl[1:0] = {main led data, (main led clock && main enable led clock)}
=)

b

assign user3[1:0] {side led data, (side led clock && side enable led clock

//Visualization signals

//send signals to visualization module

Wi re viz hsync, viz_ vsync, viz blank;

//declare car inputs

wire [10:0] carl leftx, car2 leftx, car3 leftx, card leftx, car5 leftx,
car6_leftx,car7 leftx, car8 leftx, car9 leftx, carl0_leftx;

wire [10:0] carll leftx, carl2 leftx, carl3_leftx;

wire [9:0] carl topy, car2 topy, car3 topy, caré4 topy, car5 topy, car6_topy,

_ car7_topy, car8 topy, car9 topy, carl0_topy;

wre [9:0] carll_topy, carl2 topy, carl3_topy;

wire [10:0] carl width, car2 width, car3 width, car4 width, car5 width,
car6_width, car7 width,car8 width, car9 width, carl0 width;

wire [10:0] carll width, carl2 width, carl3_width;

wire [9:0] carl height, car2 height, car3 height, car4 height, car5 height,
car6_height, car7 height, car8 height, car9 height, carl0 height;

wire[9:0] carll_height, carl2 height, carl3_height;

//REGIONS 1 To 3 FOR GREEN

assign carl_leftx = (x_avg_green one[l10:0] > 0) ? (x_avg_green one[l0:0] +)

assign carl topy = (y_avg _green one[9:0] > 0) ? (y_avg green one[9:0]) : 0;

assign car2 leftx = (x_avg green two[10:0] > 0) ? (x_avg green two[10:0] +)

assign car2 topy = (y_avg_green two[9:0] > 0) ? (y_avg green two[9:0]) : 0;

assign car3 leftx = (x_avg green three[10:0] > 0) ? (x_avg green three[10:0] +

) ¢ 0; //HORIZ
assign car3 topy = (y_avg green three[9:0] > 0) ? (y_avg green three[9:0] +)

; //HORIZ

final _project.v Page 12

//REGIONS 1 TO 3 FOR BLUE

assign car4 leftx = (x_avg blue one[10:0] > 0) ? (x_avg blue one[10:0] +) = 07
assign car4 _topy = (y_avg blue one[9:0] >) ? (y_avg_blue one[2:0]) : 0;
assign car5 leftx = (x_avg blue two[10:0] > 0) ? (x_avg blue two[10:0] +) = 03
assign car5 topy = (y_avg blue two[10:0] > 0) ? (y_avg blue two[10:0]) : 0;
assign caré6_leftx = (x_avg blue three[10:0] > 0) ? (x_avg blue three[10:0] +)
; //HORIZ
assign caré_topy = (y_avg blue three[9:0] > 0) ? (y_avg blue three[9:0] +)
; //HORIZ
//REGIONS 4 TO 6 FOR GREEN
assign car7_leftx = (x_avg _green four[10:0] > 0) ? (x_avg _green four[10:0] +)
; //HORIZ
assign car7_topy = (y_avg _green four[9:0] > 0) ? (y_avg green four[9:0] +)
; //HORIZ
assign car8 leftx = (x_avg green five[10:0] > 0) ? (x_avg green five[10:0] +)
; //HORIZ
assign car8 topy = (y_avg green five[9:0] > 0) ? (y_avg green five[0:0] +)
; //HORIZ
assign car9 leftx = (x_avg green six[10:0] > 0) ? (x_avg green six[10:0] +)
; //HORIZ
assign car9 _topy = (y_avg green six[9:0] > 0) ? (y_avg_green six[9:0] +) = 03
//HORIZ

//REGIONS 7 AND 8 GREEN

assign carl0 leftx = (x_avg green seven[10:0] > 0) ? (x_avg green seven[10:0] +
) = 0;
assign carl0 _topy = (y_avg _green seven[9:0] > 0) ? (y_avg green seven[9:0] +)
assign carll leftx = (x_avg green eight[10:0] > 0) ? (x_avg green eight[10:0] +
) = 05
assign carll topy = (y_avg _green eight[9:0] > 0) ? (y_avg _green eight[9:0] +)

.
4

//REGIONS 4 TO 6 BLUE

assign carl2 leftx = (x_avg blue four[10:0] > 0) ? (x_avg blue four[10:0] + 0)
; //HORIZ

assign carl2 topy = (y_avg _blue four[9:0] > 0) ? (y_avg blue four[9:0] +) + 03
//HORIZ

assign carl3_leftx = (x_avg blue five[10:0] > 0) ? (x_avg blue_ five[10:0] +)

; //HORIZ

assign carl3 topy = (y_avg blue five[9:0] > 0) ? (y_avg blue five[9:0] +) ¢ 0;
//HORIZ

//calculate width, height and direction of car

w_and_h calc wcalcl(clk(clk),.car _x(carl leftx),.car_y(carl topy),.car height(ca
rl helght) .car_width(carl width),.car direction(carl direction));

w_and_h calc wcalc2(.clk(clk),.car_x(car2 leftx),.car y(car2 topy),.car_height(ca
r2 helgh .car_width(car2_width),.car _direction(car2 direction));

)

w_and h calc wcalc3(.clk(clk),.car x(car3_leftx),.car y(car3 topy),.car_height(ca
r3 height),.car width(car3 width),.car direction(car3 direction));

w_and h calc wcalc4(.clk(clk),.car x(card4 leftx),.car y(caré4d topy),.car_height(ca
r4 height),.car width(car4 width),.car direction(car4 direction));

w_and h calc wcalc5(.clk(clk),.car x(car5 leftx),.car y(car5 topy),.car_height(ca
r5 height), .car _width(car5 width),.car direction(car5 direction));

w_and h calc wcalc6(.clk(clk),.car x(car6_ leftx),.car y(car6_topy),.car_height(ca
r6_height), .car width(car6 _width),.car direction(car6 direction));

w_and h calc wcalc7(.clk(clk),.car x(car7_leftx),.car y(car7_topy),.car_height(ca
r7_height),.car width(car7_width),.car direction(car7 direction));

w_and_h calc wcalc8(.clk(clk),.car x(car8 leftx),.car y(car8 topy),.car_height(ca
r8 helght) .car_width(car8 width),.car _direction(car8 direction));

w_and h calc wcalc9(.clk(clk),.car x(car9 leftx),.car y(car9 topy),.car_height(ca
r9 height),. car_w1dth(car9_w1dth),.car_direction(car9_direction));

w_and h calc wcalclO(.clk(clk),.car x(carl0_leftx),.car y(carlO_topy),.car height

final _project.v

(carl0_height),
w_and_h calc
(carll _height),
w_and_h calc
(carl2_height),
w_and_h calc
(carl3_height),
w_and_h calc
(carl4 height),

Page 13
.car_width(carl0_width), .car_direction(carl0_direction));
wcalcll(.clk(clk),.car x(carll leftx),.car_y(carll topy),.car_height
.car_width(carll width),.car direction(carll direction));
wcalcl2(.clk(clk),.car x(carl2 leftx),.car_y(carl2 topy),.car_height
.car_width(carl2 width), .car direction(carl2 direction));
wcalcl3(.clk(clk),.car x(carl3 leftx),.car_y(carl3 topy),.car_height
.car_width(carl3_width), .car_direction(carl3_direction));
wcalcl4(.clk(clk),.car x(carl4 leftx),.car_y(carld topy),.car_height
)i

.car _width(carl4 width),.car direction(carl4 direction)

//detect pairwise collision

is _collision = is collisionl4 || is_collisionl5 || is_collision24 || is_coll

rightx thresholdl4;
lowery thresholdl4;

rightx thresholdl5;
lowery_thresholdl5;

rightx threshold24;
lowery threshold24;

rightx threshold25;
lowery_threshold25;

rightx threshold36;
lowery_threshold36;

W re is_collisionl4;
Wwire is collisionl5;
wire is collision24;
Wwire is collision25;
wire is collision36;
wre
ision25 || is_collision36;
wire [9:0] street topy, street bottomy;
wire [10:0] street leftx, street rightx;
wire [10:0] leftx thresholdl4,
wire [9:0] uppery thresholdl4,
wire [10:0] leftx thresholdls,
wire [9:0] uppery thresholdl5,
wire [10:0] leftx threshold24,
wire [9:0] uppery threshold24,
wWre [10:0] leftx_threshold25,
Wwre [9:0] uppery threshold25,
wWre [10:0] leftx_threshold36,
Wwre [9:0] uppery threshold36,
//calculate ambulance params

re [
re [
ref] ambulance move dir;
re directionlé;
re directionl5;
re direction24;
re direction25;
re direction3é6;

] ambulance dest x,

£22222:2%

assign
assign
assign
assign

street leftx = ;
street_rightx = ;
street_topy = ;
street bottomy = ;

//draw visualization
visualization street viz(.vclock(clk),

ambulance_leftx, a
] ambulance dest_ y, ambulance_ topy, ambulance_height;

ambulance width;

.one_hz enable(one_hz enable), .hcount (hcou

nt), .vcount(vcount),

.hsync(hsync),

.vsync(vsync),

rection),

rection),

.carl leftx(carl leftx),

.blank(blank),
.carl_topy(carl_topy),

.car2 leftx(car2 leftx), .car2 topy(car2 topy),
.car3_leftx(car3_leftx), .car3_topy(car3_topy),

.car4 leftx(card4_leftx),
.car5 leftx(car5 leftx),
.car6_leftx(car6_leftx),
.car7_leftx(car7_leftx),
.car8 leftx(car8 leftx),
.car9 leftx(car9 leftx),

.car4_topy(car4_topy),
.car5_topy(car5_ topy),
.car6_topy(car6_topy),
.car7_topy(car7_topy),
.car8_ topy(car8 topy),
.car9_topy(car9_topy),

.carl0_leftx(carl0_leftx), .carl0_topy(carlO_topy),
.carll leftx(carll leftx), .carll topy(carll topy),
.carl2_ leftx(carl2_ leftx), .carl2 topy(carl2 topy),
.carl3_leftx(carl3_leftx), .carl3_topy(carl3_topy),
.carl direction(carl direction), .car2 direction(car2 di

.car3_direction(car3_direction), .car4 direction(car4 di

.car5_direction(car5_direction), .car6_direction(car6_di

final _project.v Page 14

rection),

.car7_direction(car7_direction), .car8 direction(car8 di
rection),

.car9_direction(car9_direction), .carl0_direction(carlO_
direction),

.carll direction(carll direction), .carl2 direction(car

12 _direction),
.carl3 direction(carl3 direction),

.carl width(carl width), .car2 width(car2 width),

.car3_width(car3_width), .car4 width(car4 width),
.car5 width(car5 width), .car6 width(car6 width),
.car7_width(car7_width), .car8 width(car8 width),
.car9_width(car9 width), .carl0 _width(carl0_width),
.carll width(carll width), .carl2 width(carl2 width),

.carl3 width(carl3_ width),

.carl _height(carl height),.car2 height(car2 height),
.car3_height(car3_height),.car4 height(car4 height),
.car5_height(car5 height),.car6_height(car6 height),
.car7_height(car7 height), .car8 height(car8 height),
.car9 _height(car9 height), .carl0_height(carl0_height),
.carll _height(carll height), .carl2 height(carl2_ height)

.carl3 height(carl3 height),
.is_collision(is_collision),

.ambulance leftx(ambulance leftx), .ambulance width (amb
ulance width),

.ambulance_topy(ambulance topy), .ambulance_ height (ambul
ance_height), .ambulance direction(ambulance move dir),

.main out(main out), .side out(side out), .viz hsync(viz
_hsync),

.viz_vsync(viz_vsync), .viz blank(viz_blank), .pixel(vis
ualization pixel));

collision_detector coll detectl4(.clk(clk), .carl leftx(carl leftx),.carl rightx

(carl leftx + carl width),
.carl_topy(carl topy),.carl bottomy(carl topy +
carl height),
.car2_leftx(car4 leftx),.car2 rightx(card leftx
+ car4_width),
.car2_topy(car4_topy), .car2 bottomy(car4_ topy
+ car4_height),
.street_topy(street topy), .street bottomy(stre
et _bottomy),
.street leftx(street leftx), .street rightx(str
eet rightx),
.leftx threshold(leftx thresholdl4), .rightx th
reshold(rightx thresholdl4),
.uppery_ threshold(uppery_ thresholdl4), .lowery
threshold(lowery thresholdl4),
.direction(directionl4),.is collision(is_collis
ionl4));

collision detector coll detectl5(.clk(clk), .carl leftx(carl leftx),.carl rightx
(carl_leftx + carl_width),
.carl_topy(carl_ topy),.carl bottomy(carl topy +
carl_height),
.car2_leftx(car5_leftx),.car2_rightx(car5_leftx
+ car5_width),
.car2_topy(car5 topy), .car2 bottomy(car5 topy
+ car5_height),
.street topy(street topy), .street bottomy(stre
et bottomy),
.street_leftx(street_leftx), .street rightx(str
eet rightx),
.leftx threshold(leftx thresholdl5), .rightx th
reshold(rightx thresholdl5),
.uppery_ threshold(uppery thresholdl5), .lowery
threshold(lowery thresholdl5),
.direction(directionl5),.is _collision(is_collis
ionl5));

collision_detector coll detect24(.clk(clk), .carl leftx(car2 leftx),.carl rightx

final _project.v
(car2_leftx + car2_width),
car2_height),
+ car4_width),
+ car4_height),
et bottomy),
eet rightx),
reshold(rightx threshold24),
threshold(lowery threshold24),
ion24));

collision_detector coll detect25(
(car2_leftx + car2 width),

car2_height),

+ car5_width),

+ car5_height),

et bottomy),
eet rightx),
reshold(rightx threshold25),
threshold(lowery_ threshold25),
ion25));

collision_detector coll detect36(
(car3_leftx + car3 width),

car3_height),

+ car6_width),

+ car6_height),

et _bottomy),

eet rightx),

reshold(rightx threshold36),

threshold(lowery threshold36),

ion36));
regl] leftx threshold;
regl] rightx_ threshold;
regl] uppery_threshold;
regl] lowery threshold;

reg direction;

al ways @ (posedge clk) begin
if (is_collision) begin
if ((leftx thresholdl4 > 0)

Page 15

.carl_topy(car2_topy),.carl bottomy(car2_ topy +
.car2_leftx(car4 leftx),.car2 rightx(card4 leftx
.car2_topy(car4 topy), .car2 bottomy(car4 topy
.street topy(street topy), .street bottomy(stre

.street_leftx(street leftx), .street rightx(str

.leftx threshold(leftx threshold24), .rightx th
.uppery_ threshold(uppery threshold24), .lowery
.direction(direction24),.is _collision(is_collis

.clk(clk), .carl leftx(car2 leftx),.carl rightx
.carl topy(car2 topy),.carl bottomy(car2 topy +
.car2_leftx(car5 leftx),.car2 rightx(car5 leftx
.car2_topy(car5_topy), .car2 bottomy(car5_topy
.street topy(street topy), .street bottomy(stre
.street leftx(street leftx), .street rightx(str
.leftx threshold(leftx threshold25), .rightx th
.uppery threshold(uppery threshold25), .lowery

.direction(direction25),.is _collision(is_collis

.clk(clk), .carl leftx(car3_ leftx),.carl rightx
.carl_topy(car3_topy),.carl bottomy(car3_topy +
.car2_leftx(car6_ leftx),.car2 rightx(car6 leftx
.car2_topy(car6_topy), .car2 bottomy(car6_topy
.street_topy(street topy), .street bottomy(stre
.street leftx(street leftx), .street rightx(str
.leftx threshold(leftx threshold36), .rightx th
.uppery_ threshold(uppery_ threshold36), .lowery

.direction(direction36),.is collision(is_collis

&& (rightx thresholdl4 > 0)) begin

leftx_ threshold <= leftx thresholdl4;

rightx threshold <= rightx thresholdl4;
uppery_threshold <= uppery_thresholdl4;
lowery threshold <= lowery_ thresholdl4;

direction <= directionlé;
end

if ((leftx thresholdl5 > 0)

&& (rightx thresholdl5 > 0)) begin

final _project.v Page 16

leftx_threshold <= leftx_ thresholdl5;
rightx threshold <= rightx thresholdl5;
uppery threshold <= uppery thresholdl5;
lowery_threshold <= lowery thresholdl5;
direction <= directionl5;

end

if ((leftx threshold24 > 0) && (rightx threshold24 > 0)) begin
leftx threshold <= leftx_ threshold24;
rightx threshold <= rightx threshold24;
uppery_threshold <= uppery_threshold24;
lowery threshold <= lowery threshold24;
direction <= direction24;
end

if ((leftx threshold25 > 0) && (rightx threshold25 > 0)) begin
leftx threshold <= leftx threshold25;
rightx threshold <= rightx threshold25;
uppery_threshold <= uppery_threshold25;
lowery_threshold <= lowery threshold25;
direction <= direction25;
end

if ((leftx threshold36 > 0) && (rightx threshold36 > 0)) begin
leftx_threshold <= leftx_ threshold36;
rightx threshold <= rightx threshold36;
uppery threshold <= uppery threshold36;
lowery_threshold <= lowery threshold36;
direction <= direction36;

end

end
end

//Calculate thresholds and other factors that will affect ambulance direction
calc_ambulance params ambulance calc(.clk(clk), .leftx threshold(leftx threshold)
, .rightx threshold(rightx threshold), .street leftx(street leftx), .street rightx(s

treet rightx),
.uppery_ threshold(uppery threshold), .lowery

_threshold(lowery threshold), .street topy(street topy), .street bottomy(street bott

omy) ,
.direction(direction),

.is_collision(is_collision),

.ambulance move dir(ambulance move dir),
.ambulance_dest_ x(ambulance dest_x),
.ambulance_dest_y(ambulance dest_y));

//Use the ambulance parameters to determine where the ambulance should
//start from and its destination limit

get _amb_xy ambxny(.clk(clk), .one hz enable(one hz enable), .is collision(is_coll
ision),
.ambulance move dir(ambulance move dir), .ambulance_ leftx(ambul

ance leftx), .ambulance dest x(ambulance dest x), .ambulance width(ambulance width)

14
.ambulance_topy(ambulance_ topy), .ambulance dest y(ambulance_de

st y), .ambulance_height(ambulaﬁce_height));

//Video playback
//variables declared in RGB place

video video stuff(.clk(clk), .one_hz enable(one hz enable),
.visualization pixel(visualization pixel),
.hcount (hcount), .vcount(vcount),

.read_control(read_control),
.video pixel(video pixel),

.raml_we_b(raml_we_b), .raml_address(raml_address), .raml_data(
raml data), .raml cen b(raml cen b), .use video pixel(use_video pixel));
//Audio
wre [7:0] from ac97 data, to_ac97 data;

Wi re ready;

final _project.v Page 17
Wi re[4:0] volume = ;

// AC97 driver

audio a(clk, reset, volume, from ac97 data, to_ac97 data, ready,
audio_reset b, ac97 sdata out, ac97 sdata in,
ac97_synch, ac97 bit clock);

// record module

recorder r(.clock(clk), .reset(reset), .ready(ready),
.play sound(is_collision), .from ac97 data(from ac97 data),
.to_ac97_data(to_ac97 _data));

assign led = ~{main_red, main yellow, main green, side _red, side yellow, side gre
en, , is_collision};
endnodul e

VI A A NN A A A VA A A A A A N A A A A N A N N A A A A N S N N N A N A A S A N N A A A A A A A A A A A A A S N A A A A 4
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

nodul e xvga(vclock,hcount,vcount, hsync,vsync,blank);
i nput vclock;

output [10:0] hcount;

output [9:0] vcount;

out put vsync;

out put hsync;

out put blank;

reg hsync,vsync,hblank,vblank,blank;

reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; // line number

// horizontal: 1344 pixels total
// display 1024 pixels per line

wre hsyncon, hsyncoff,hreset,hblankon;
assign hblankon = (hcount ==);
assign hsyncon = (hcount ==);
assign hsyncoff = (hcount ==);
assign hreset = (hcount ==);

// vertical: 806 lines total
// display 768 lines

Wre vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount ==)
assign vsyncon = hreset & (vcount ==);
assign vsyncoff = hreset & (vcount ==);
assign vreset = hreset & (vcount ==)

// sync and blanking

wre next hblank,next vblank;

assi gn next_hblank = hreset ? : hblankon ? : hblank;

assi gn next vblank = vreset ? : vblankon ? : vblank;

al ways @(posedge vclock) begin
hcount <= hreset ? : hcount + 1;
hblank <= next_hblank;
hsync <= hsyncon ? : hsyncoff ? : hsync; // active low
vcount <= hreset ? (vreset ? : vecount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon °? : vsyncoff ? : vsync; // active low
blank <= next vblank | (next hblank & ~hreset);

end

endnodul e

L1777 77 7777777777777/ 7777 7 7 7777
// generate display pixels from reading the ZBT ram

// note that the ZBT ram has 2 cycles of read (and write) latency

//

// We take care of that by latching the data at an appropriate time.

//

// Note that the ZBT stores 36 bits per word; we use only 32 bits here,

final _project.v Page 18

// decoded into four bytes of pixel data.

//

// Bug due to memory management will be fixed. The bug happens because

// memory is called based on current hcount & vcount, which will actually
// shows up 2 cycle in the future. Not to mention that these incoming data
// are latched for 2 cycles before they are used. Also remember that the
// ntsc2zbt's addressing protocol has been fixed.

// The original bug:
// —. At (hcount, vcount) = (100, 201) data at memory address(0,100,49)

// arrives at vram read data, latch it to vr_data latched.

// —. At (hcount, vcount) = (100, 203) data at memory address(0,100,49)
// is latched to last vr data to be used for display.

// —. Remember that memory address(0,100,49) contains camera data

// pixel(100,192) — pixel(100,195).

// —. At (hcount, vcount) (100, 204) camera pixel data(100,192) is shown.
// —. At (hcount, vcount) (100, 205) camera pixel data(100,193) is shown.
// —. At (hcount, vcount) (100, 206) camera pixel data(100,194) is shown.
// —. At (hcount, vcount) (100, 207) camera pixel data(100,195) is shown.

// Unfortunately this means that at (hcount == (0) to (hcount == 11) data from

// the right side of the camera is shown instead (including possible sync signals).

// To fix this, two corrections has been made:

// —. Fix addressing protocol in ntsc_to_zbt module.
// —. Forecast hcount & vcount 8 clock cycles ahead and use that
// instead to call data from ZBT.

nodul e vram display(reset,clk,hcount,vcount,vr pixel,
vram_addr,vram read data);

i nput reset, clk;

input [10:0] hcount;

input [9:0] wvcount;

output [17:0] vr pixel;//CHANGE
output [18:0] vram addr;

input [35:0] vram read data;

//forecast hcount & vcount 8 clock cycles ahead to get data from ZBT

wire [10:0] hcount f = (hcount >=) ? (hcount -) ¢ (hcount + 8);
wire [9:0] vcount f = (hcount >=) ? ((vcount ==) ? : veount + 1)
unt;
wire [18:0] vram addr = {vcount f, hcount f[9:1]}; //CHANGE
W re hc2 = hcount|[0];//CHANGE
reg [17:0] vr_pixel; //CHANGE
reg [35:0] vr_data_latched;
reg [35:0] last_vr_data;
al ways @(posedge clk)
last_vr data <= (hc2==) ? vr_data_ latched : last_vr_data;//CHANGE
al ways @(posedge clk)
vr_data latched <= (hc2==) ? vram read_data : vr_data_latched;//CHANGE
al ways @(*) // each 36-bit word from RAM is decoded to 4 bytes
case (hc2) //CHANGE
// 2'd3: vr pixel = last vr data[l7:0];

// 2'd2: vr pixel = last vr data[7+8:0+8];
vr_pixel = last vr _data[l17:0];
vr pixel = last vr data[35:18];

endcase

endnodul e // vram display

L1777 77 7777777777 777

// ramclock module

;;///

: Vco

final _project.v Page
// 6.111 FPGA Labkit —— ZBT RAM clock generation

//

//

// Created: April 27, 2004
// Author: Nathan Ickes

//

L1777 7777 7777777777777 777
//

// This module generates deskewed clocks for driving the ZBT SRAMs and FPGA

// registers. A special feedback trace on the labkit PCB (which is length

// matched to the RAM traces) is used to adjust the RAM clock phase so that

// rising clock edges reach the RAMs at exactly the same time as rising clock
// edges reach the registers in the FPGA.

// The RAM clock signals are driven by DDR output buffers, which further
// ensures that the clock-to-pad delay is the same for the RAM clocks as it is
// for any other registered RAM signal.

// When the FPGA is configured, the DCMs are enabled before the chip-level I/O
// drivers are released from tristate. It is therefore necessary to

// artificially hold the DCMs in reset for a few cycles after configuration.

// This is done using a l6-bit shift register. When the DCMs have locked, the
// <lock> output of this mnodule will go high. Until the DCMs are locked, the
// ouput clock timings are not guaranteed, so any logic driven by the

// <fpga clock> should probably be held inreset until <locked> is high.

//

L1777 77 77777777 7SS S

nodul e ramclock(ref clock, fpga clock, ram0 clock, raml clock,
clock feedback in, clock_ feedback out, locked);

i nput ref clock; // Reference clock input

out put fpga clock; // Output clock to drive FPGA logic

out put ram0_clock, raml clock; // Output clocks for each RAM chip

i nput clock feedback in; // Output to feedback trace

out put clock feedback out; // Input from feedback trace

out put locked; // Indicates that clock outputs are stable

wire ref clk, fpga clk, ram clk, fb clk, lockl, lock2, dcm reset;
L1777 7777777777777/ S

//To force ISE to compile the ramclock, this line has to be removed.
//IBUFG ref buf (.0(ref clk), .I(ref clock));

assign ref _clk = ref clock;
int buf (.0(fpga clock), .I(fpga_clk));

int dem (. (fpga_clock),
. (ref _clk),
(dem_reset),
(fpga_clk),
. (lockl));
// synthesis attribute DLL FREQUENCY MODE of int dcm is "LOW"
// synthesis attribute DUTY CYCLE CORRECTION of int_dcm is "TRUE"
// synthesis attribute STARTUP WAIT of int dem is "FALSE"
// synthesis attribute DFS FREQUENCY MODE of int dcm is "LOW"
// synthesis attribute CLK_FEEDBACK of int dcm 1is "1X"
// synthesis attribute CLKOUT PHASE SHIFT of int dcm is "NONE"
// synthesis attribute PHASE SHIFT of int decm is 0

ext buf (.0(ram clock), .I(ram clk));
fb buf (.0(fb_clk), .I(clock feedback in));

ext dem (. (fb_clk),
. (ref_clk),
(dem_reset),
(ram_clk),
. (lock2));
// synthesis attribute DLL FREQUENCY MODE of ext dcm is "LOW"
// synthesis attribute DUTY CYCLE CORRECTION of ext_dcm is "TRUE"

19

final _project.v Page

// synthesis attribute STARTUP_WAIT of ext_dcm is "FALSE"

// synthesis attribute DFS_FREQUENCY MODE of ext dcm is "LOW"
// synthesis attribute CLK FEEDBACK of ext dem is "I1X"

// synthesis attribute CLKOUT PHASE SHIFT of ext dcm is "NONE"
// synthesis attribute PHASE SHIFT of ext_dcm is 0

dem_rst_sr (.D(), - (ref_clk), .Q(dcm_reset),

)r . ()/ ()) i

.)r -
// synthesis attribute init of dcm rst sr is "000F";

ddr_reg0 (.Q(ram0 clock), .CO(ram clock), .Cl(~ram clock),

. ()r - (roe () s -R() s -S()) i
ddr _regl (.Q(raml_clock), (ram_clock), .Cl(~ram clock),

.)r -DO()r DI)r -R() +S()i
ddr reg2 (.Q(clock feedback out), .CO(ram_clock), .Cl(~ram clock),

. ()r - ()r - ()r -R()r +S());

assign locked = lockl && lock2;

endnmodul e

20

hsv_t hreshol d. v Page 1

i mescal e 1ns / 1ps

FEEEEEEEE bbb r bbb bbb
Conpany:
Engi neer: Prenmi|a Row es

t
/
/
;
/| Create Date: 14:34:10 11/19/2018
/ Design Nane:
/ Modul e Nane: hsv_t hreshol d
/ Additional Coments:
/
[HEEPETEEEL i bbb rrrrrrrr
nodul e hsv_t hreshol d

#(paranmeter H UPPER BOUND = 24' hFFFFFF,

H LONER BOUND = 24' hFFFFFF,

S UPPER BOUND = 24' hFFFFFF,

S LONER BOUND = 24' hFFFFFF,

V_UPPER _BOUND = 24' hFFFFFF,

V_LONER BOUND = 24' hFFFFFF,

CAR_UPPER_BOUND 24" hFFA500,

CAR_LOVWER_BOUND 24" hFFA500)

(input [23:0] rgb_pixel
i nput [23:0] hsv_pixel
out put [23:0] pixel_out,
out put is_blue,

out put is_green

wire h_satisfied,

wire s_satisfied,

wire v_satisfied,

/I pi xel s are assigned a col or dependi ng on upper and | ower bounds of hue an
d val ue paraneters

assign is_blue = ((hsv_pixel [23:16] >= H LOAER BOUND BLUE) && (hsv_pixel [23:
16] <= H UPPER BOUND BLUE)) &&

((hsv_pixel [15:8] >= S LOAER BOUND BLUE) && (hsv_pixel [15:8] <= S UPPER BOUN
D BLUE)) &&

((hsv_pixel [7:0] >= V LONER BOUND BLUE) && (hsv_pixel[7:0] <

= V_UPPER_BOUND BLUE));

assign is_green = ((hsv_pixel[23:16] >= H LONER BOIND GREEN) && (hsv_pixel [2
3:16] <= H _UPPER BOUND GREEN)) &&

((hsv_pixel [15:8] >= S LONER BOUND GREEN) && (hsv_pixel [15:8] <= S UPPER BCU
ND GREEN)) &&

((hsv_pixel [7: 0] >= V_LOAER BOUND CREEN) && (hsv_pixel[7:0]

<= V_UPPER_BOUND_ GREEN)) :

/1 keep passing rgb pixel along so we can assign a pixel to either its rgb ou
tput or its hsv output

assign pixel _out = rgb_pixel

endnmodul e

i mage_sel ector.v Page 1

“tinmescale 1ns / 1ps

LI/ 777777777777 7SS S S
// Company:

// Engineer: Premila Rowles

//

// Create Date: 14:35:44 11/19/2018
// Design Name:

// Module Name: image selector

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
L1777 777777777777 77777777 S
nodul e i mage_sel ect or (

i nput [23:0] pixel,

i nput 1s_blue

i nput is_green,
out put [23:0] vga_pi xel,
out put binarized_pi xe

//assign pixels to be the color detected in hsv space and determined
by the bounds of hue and value
assign vga_pixel =is_blue ? : is_green ? ©opi
xel

endnodul e

led controller.v Page 1

timescale 1ns / 1ps
LEEEEEEEE bbb bbb r e
/I Conpany:
/1 Engi neer: Jessica Quaye
/1
/'l Create Date: 13:32:18 11/05/2018
/1 Design Name:
/1 Modul e Nane: | ed controller
FEEEEEEEE bbb bbb bbb r e rrrnr g

//default convention for color output. RED = 0, YELLOW= 1, GREEN = 2
nodul e 1 ed_control | er(
i nput clk,
input [1:0] main_out,
i nput [1:0]side_out,
out put reg main_red,
out put reg main_yell ow,
out put reg main_green
out put reg side_red,
out put reg side_yell ow,
out put reg side_green);

“include "parans.v"
al ways @ posedge cl k)
begi n
case(mmin_out) //determ ne outputs for main traffic lights

begi n
main_red <= ;
mai n_yel [ow <= :
mai n_green <= ;
end
begi n
main_red <= ;
mai n_yel | ow <=
mai n_green <=
end
begi n
mai n_red <= X
mai n_yel | ow <=
mai n_green <= ;
end
defaul t:;
endcase

case(side _out) //determ ne outputs for side traffic lights

begi n
side_red <= ;
side_yel l ow <= :
side_green <= ;
end
begi n
side red <= ;
side_yel l ow <=
side_green <=
end
begi n
side red <=
side_yel l ow <=
side_green <= ;
end
defaul t:;
endcase

end //end al ways

led controller.v Page 2

endnodul e

led strip.v Page 1

“timescale 1lns / lps

L1177 77 7777777777777 77
// Company:

// Engineer: Jessica Quaye

//

// Create Date: 22:38:34 11/27/2018
// Design Name:

// Module Name: led strip

LILLLLSSSS LSS S
nodul e led strip(

i nput clk,

i nput led clock,

i nput red signal,

i nput yellow signal,

i nput green_signal,

out put reg main led data,

output reg main enable led clock

)i
“include "params.v"
//at each rising edge of the clock we have a new frame to send

//initialize frames of different colors with format 3 intro bits, 5 global bits,
8'bB, 8'bG, 8'bR

regp31:0] red_frame = ; //3 intro b
its, 5 global bits, 8'bB, 8'bG, 8'bR

reg[31:0] green_ frame = ; //3 intro b
its, 5 global bits, 8'bB, 8'bG, 8'bR

reg[31:0] yellow_ frame = ; //3 intro b
its, 5 global bits, 8'bB, 8'bG, 8'bR

reg[31:0] blank frame = ; //3 intro bi

ts, 5 global bits, 8'bB, 8'bG, 8'bR

//FSM parameters

reg [2:0] state = ;

//counters

reg [4:0] start counter = ; //initialize counter to count 32 bits for start

reg [1:0] frame color; //determine which color frame we are sending according to
RED = 0, YELLOW = 1, GREEN = 2

reg [4:0] led frame counter = ; //initialize counter to count 32 bits for ea
ch frame

reg [4:0] same_ frame counter = ; //need to send 27 frames of each color so us
ed to send same frame till 27

reg [7:0] blank counter = ; //send blank bits

//used to control whether (RED, YELLOW, GREEN) LEDs will be on or off
reg [2:0] switch control values = ;

//store prev led clock
reg prev_led clock;

al ways @(posedge clk) begin
prev_led clock <= led clock;

if (prev_led clock == && led clock == 1) begin //begin at rising edge of led cl
ock
case(state)
//send 32'b0 to wire as start frame
begi n
main_ led data <= ;
main_ enable led_clock <= 1;
if (start_counter ==)
begi n
start counter <= ;
frame color <= ; //initialize all these parameters for followi
ng state
led frame counter <= ;
same_frame_counter <= ;
state <= ; //move to next frame when the 31st bit is sen
t

end

led strip.v Page 2

el se start counter <= start counter + 1;

end
begi n
//choose which color to send
if (frame color ==) //current focus is on RED section
begi n
if (switch control values[0] == l)main led data <= red frame[led £

rame counter]; //if signal for RED is on, turn on RED
el se main led_data <= blank frame[led_frame counter]; //else suppl
y blank frames

end
else if (frame color ==) //current focus is on YELLOW section
begi n
if (switch control values[l] == 1) main led data <= yellow frame[l

ed frame counter]; //if signal for YELLOW is on, turn on YELLOW
el se main led data <= blank frame[led frame counter]; //else suppl
y blank frames

end
else if (frame color ==) //current focus is on GREEN section
begi n
if (switch control values[2] == 1l)main led data <= green frame[led

_frame counter]; //if signal for GREEN is on, turn on GREEN
el se main led data <= blank frame[led frame counter]; //else suppl
y blank frames

end
el se state <= :
if (led frame counter ==) //when you are done with one frame (one L
ED)
begi n
led_frame_counter <= ;
if (same_frame counter ==) //if all LEDs for one section a
re handled, move to another color's frame
begi n

same_frame_counter <= ;

i f (frame color ==) state <= 0/
/after GREEN, just fill blank frames
el se frame color <= frame color + 1;

end
el se same frame counter <= same frame counter + 1; //else stay
in same frame and keep sending more
end
el se led frame counter <= led frame counter - 1; //otherwise continue it
erating through the frame reg to index frame values
end
begi n

main_led _data <= blank frame[led_ frame counter];

if (led frame counter ==)
begi n
led_frame_counter <= ;

if (blank counter ==) //after sending 2 full blank LEDs, sen
d end frame
begi n
state <= H
blank_counter <= 0;
end

el se blank counter <= blank counter + 1;
end

led strip.v Page 3

el se led frame_ counter <= led_frame counter -

;
end

begi n
start _counter <= start counter + 1;
main_ led data <= ;

if (start counter ==)

begi n
main_enable led clock <= 0; //turn off main enable led clock to avoid
sending data after all frames have ended
state <= ; //time to check switches
end
end
begi n

switch control values <= {green_signal, yellow signal, red signal}; //in
vert what you expect because of how signals are sent - actually {r,y,g}
state <=
end

I

default: state <=
endcase

end //end if one_mhz enable
end // end always

endnodul e

ntsc2zbt.v Page 1

//

// File: ntsc2zbt.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

// Example for MIT 6.111 labkit showing how to prepare NTSC data
// (from Javier's decoder) to be loaded into the ZBT RAM for video
// display.

// The ZBT memory is 36 bits wide; we only use 32 bits of this, to
// store 4 bytes of black-and-white intensity data from the NTSC
// video input.

// Bug fix: Jonathan P. Mailoa <jpmailoa@mit.edu>
// Date : 11-May-09 // gph mod 11/3/2011

// Bug due to memory management will be fixed. It happens because
// the memory addressing protocol is off between ntsc2zbt.v and
// vram display.v. There are 2 solutions:

// —-. Fix the memory addressing in this module (neat addressing protocol)
// and do memory forecast in vram display module.

// —. Do nothing in this module and do memory forecast in vram display
// module (different forecast count) while cutting off reading from
// address(0,0,0).

//

// Bug in this module causes 4 pixel on the rightmost side of the camera
// to be stored in the address that belongs to the leftmost side of the
// screen.

// In this example, the second method is used. NOTICE will be provided
// on the crucial source of the bug.

//
LI1777 7777777777
// Prepare data and address values to fill ZBT memory with NTSC data

nodul e ntsc_to _zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we, sw);

i nput cl k; // system clock

i nput vcl k; // video clock from camera

i nput [2:0] fvh;

i nput dv;

i nput [17:0] di n;

out put [18:0] ntsc_addr

out put [35:0] ntsc_data,;

out put ntsc_we; // write enable for NTSC data
i nput SwW, // switch which determines mode (for debugging)
par anet er = ;

par amet er = ;

// here put the luminance data from the ntsc decoder into the ram
// this is for 1024 * 788 XGA display

reg [9:0] col = 0;
reg [9:0] row = 0;
reg [17: 0] vdata = 0;
reg VWE;
reg ol d_dv;
reg ol d_frane; // frames are even / odd interlaced
reg even_odd; // decode interlaced frame to this wire
wire frame = fvh[2];
W re frane_edge = frane & ~old_frane;
al ways @ (posedge vcl k) //LLC1 is reference
begi n
ol d _dv <= dv;
vwe <= dv && !fvh[2] & ~old _dv; // if data valid, write it

old frane <= frane;
even_odd = frane_edge ? ~even_odd : even_odd;

if (1fvh[2])

ntsc2zbt.v

begi n
col <= fvh[0O] ? :
('fvh[2] && !'fvh|] && dv && (col <)) ? col +
row <= fvh[1] ?
('fvh[2] && fvh[O] && (row <)) ? row + row,
vdata <= (dv && !'fvh[2]) ? din : vdata;

end

// synchronize with system clock

reg [9:0] x[1:0],y[1:0];
reg [17:0] data]1l:0]; //change
reg we[1: 0] ;
reg eo[1: 0] ;
al ways @ posedge cl k)
begi n
{x[1], x[0]} <= {x[0O],col};
fy[1].y[0]} <= {y[0],row:
{data[1] ,data[0]} <= {data[0], vdata};
{we[1], we[O] } <= {we[O], vwe};
d{eo[],eo[]} <= {eo[0], even_odd};
en

// edge detection on write enable signal

reg ol d_we;
wire we edge = we[1l] & ~old we;
al ways @ posedge cl k) old we <= we[1];

// shift each set of four bytes into a large register for the ZBT

reg [31:0] mydata; //change
al ways @ posedge cl k)
if (we_edge)
nydata <= { nydata[17:0], data[l] }; //change

// NOTICE : Here we have put 4 pixel delay on mydata. For example, when:

// (x[1], y[1]) = (60, 80) and eo[l] = 0, then:

Page 2

col ;

// mydata[31 0] = (pixel(56,160), pixel(57,160), pixel(58,160), pixel(59,160))

// This is the root of the original addressing bug.

// NOTICE : Notice that we have decided to store mydata, which

// contains pixel(56,160) to pixel(59,160) in address

// (0, 160 (10 bits), 60 >> 2 = 15 (8 bits)).

//

// This protocol is dangerous, because it means

// pixel(0,0) to pixel(3,0) is NOT stored in address

// (0, 0 (10 bits), 0 (8 bits)) but is rather stored

// in address (0, 0 (10 bits), 4 >> 2 =1 (8 bits)). This
// calculation ignores COL START & ROW_START.

//

// 4 pixels from the right side of the camera input will
// be stored in address corresponding to x = 0.

//

// To fix, delay col & row by 4 clock cycles.

// Delay other signals as well.

reg |] x_del ay;

reg [39:0] y_delay;

reg [3:0] we_del ay;

reg [3:0] eo_del ay;

al ways @ (posedge cl k)
begi n

x_delay <= {x_delay[29:0], x[1]};
y_delay <= {y delay[29:0], y[1]};
we_del ay <= {we_delay[2: 0], we[1]};
eo_delay <= {eo_delay[2:0], eo[1]};

end

ntsc2zbt.v Page 3

// compute address to store data in

wire [8:0] y_addr = vy del ay[38: 30];
wire [9:0] x_addr = x_del ay[39: 30];
wire [18:0] nmyaddr = {y_ addr[8:0], eo_delay[3], x_addr[9:1]};

// Now address (0,0,0) contains pixel data(0,0) etc.

// alternate (256x192) image data and address

wire [35:0] nydata2 = {data[l],data[l],data[l],data[l]}; //no change{data[l],data[
l],data[l],data[l]};
wire [18:0] myaddr2 = { , y_addr[8:0], eo_delay[3], x_addr[7:0]}; //no CHANGE//

{1'b0, y addr[8:0], eo delay[3], x addr[7:0]};

// update the output address and data only when four bytes ready

reg [18:0] ntsc_addr;
reg [35:0] ntsc_data;
wre ntsc_we = sw ? we_edge : (we_edge & (x_del ay[==)

al ways @ posedge cl k)
if (ntsc_we)

begi n
ntsc_addr <= sw ? nyaddr2 : nyaddr; // normal and expanded modes
ntsc _data <= sw ? { , mydat a2} : nydat a;

end

endnodul e // ntsc_to_zbt

paramns. v Page 1

i mescal e 1ns / 1ps

~ —

Modul e Name: par
//

RN NNy
/1 Conpany:

/'l Engi neer: Jessica Quaye

/1

/] Create Date: 22:21:57 12/ 05/2018

/1 Design Name:

/1

I

/1 Street Dinmensions
paranmeter STREET LEFTX = 11'd420;
parameter STREET RI GHTX = 11' d600;
parameter STREET VERT M D = 11' d512
par aneter STREET TOPY = 10' d344;
par anet er STREET BOTTOW = 10' d464;
parameter STREET HORI Z M D = 10' d402;

[/ Car Directions
parameter MOVE LEFT = 2' b01;
paranmeter MOVE Rl GHT = 2' b00;
paranmeter MOVE UP = 2'bl0;
parameter MOVE DO/ = 2' bl1;

/] General Constants
paranmeter TRUE = 1;
paranmeter FALSE = 0O;
paranmeter ON = 1;
paranmeter O-F = 0,

//Line Directions
parameter VERTI CAL = 1' b1,
par amet er HORI ZONTAL = 1' bO;

/1 Traffic Light Colors
paranmeter RED = 2' b0O;
paranmeter YELLOW = 2' b01;
parameter CGREEN = 2' bl0;

[l Traffic Light FSM States
paramet er MAI N _RED SI DE_GREEN = 3' b00O;
parameter MAIN RED SIDE YELLOW = 3' b001;
par anet er MAI N_GREEN SI DE_RED = 3' b010;
parameter MAIN YELLOW S| DE_RED = 3' bOll

/] Screen Limts
paranmet er SCREEN Y

| Y_ 10" d768;
par anmet er SCREEN X

LIMT
LIMT 11' d1024;

//LED Strip States
par anmet er SEND START FRAME = 3' b00O;
par amet er SEND FRAVE = 3' b001;
par amet er SEND BLANK FRAVE = 3 b010;
par anet er SEND END FRAME = 3' b011;
par anet er READ TRAFFI C SI GNALS = 3 b100;

/1 Anmbul ance Speed
par amet er CSPEED = 4' d10;

/1 Vi deo Paraneters
par armet er NUMBER OF_FRAMES = 6' d20;
paranmeter NUM FRAVES X LI NES = 19 d491520; [/24576*20f r anes
par amet er NUM LI NES PER FRAME = 19' d24576;

/lsmall franme parans

parameter FRAVE W DTH = 11" d256;
par amet er FRAVE HEI GHT = 10' d192;

region.v

“tinmescale 1ns / 1ps
L1777 7777 777777777777 777

// Company:

// Engineer: Premila Rowles

//

// Create Date:
// Design Name:
// Module Name:

18:16:21 12/01/2018

region

Page 1

L1777 77 77777777777 777777 77777777777 777777 77777777777 777777777777777777777777777777

nodul e region

#(par anet er

(i nput clk,

i nput cl ock,

i nput [17: vr_pi xel
i nput [10: hcount ,

i nput [9:0] vcount,

i nput displ ay,
out put reg
out put reg
out put reg
out put reg

] x_avg_green,
] y_avg_green,
| x_avg_bl ue,
] y_avg_ bl ue,

out put reg new_car,

out put reg |

] state,

out put reg end_frane,
output reg start_frane

wire sign

reg start - 5

reg : X_sum g;

reg : y_sum g;

reg : X_sum b;

reg : y_sum b;

reg X_sum gr een;
reg y_sum green
reg count _green
reg X_sum bl ue;

reg y_sum bl ue;

reg count bl ue

reg [] count _avg_g;
reg |] count _avg_b;
reg started _division

wire [11:0] x_quotient g;
wire [11:0] y _quotient g;
wire |] remainder_x_g;
wire | | remainder_y g;
wire ready x g;

wire ready_vy_g;

reg x_done_g;
reg y_done_g;

re |
re |
re |

re |
re ready_ X

—_—

£ 22222

X_quoti ent _b;

y_quotient _b;
remai nder _x_b;
remai nder _y_b;
b;

re ready_y_b;

region.v

reg x_done_b;
reg y_done_b;

par amet er = 0;

par amet er = 1;

par amet er =

par amet er = 3;

par amet er =

par amet er = b5;
par amet er =

al ways @ posedge clk) // cross hairs

begi n

generation

if (hcount == && vecount ==
X_sum green <= 0;
y_sum.green <= 0;
count _green <=
X_sum bl ue <= 0;
y_sum bl ue <= 0;
count _blue <= 1;

) begin

end

Page 2

// start accumulations based on bounds and based on color (vr_pixel[l1:6] i

s green)
if ((display) && (hcount >) && (hcount <
) &&
(vcount <) && (vr_pixel[] ==
one and green
//
X_sum green <= x_sum.green + hcount;
y_sumgreen <= y_sumgreen + vcount;
count _green <= count_green + 1;
end
//vr pixel[5:0] is blue
if ((display) && (hcount >) && (hcount <
) &&

(vcount <) && (vr_pixel]] ==

one and green

X_sum bl ue <= x_sum bl ue + hcount;
y_sum blue <=y sumblue + vcount;
count _blue <= count_blue + 1;

end

//state machine for dividing
case(state)
//reset state to set all values to 0 at start of frame
: begin
if (hcount ==
start <=)
X_sumg <= 0;
y_sumg <= 0;
count _avg_g<= 0;
X_sumb <= 0;
y_sumb <= 0;
count _avg_b <= 0;
// once we reach the end of the frame, we

&% vecount == 0) begin

sums
// and we can start dividing
if (hcount == && vcount ==) begin
state <= ;

started_division <= ;

end el se started_division <= 0;

) && (vcount >

)) begin //region

) && (vcount >

)) begin //region

have calculated all of our

region.v
end
//load data- pass

t for a clock cycle
begi n

Page 3

in sums and count to dividend and divisor and assert star

if (started_division) begin

start <=

X_Sum g <= x_sum green
y_sumg <= y_sum green;
count _avg_g<= count _green

X_sumb <= x_sum bl ue;
y_sumb <=y sum bl ue
count _avg_b<= count bl ue;

started division <= 0;

state <=

end el se start <= 0;

end

// wait for divisions to end
// set averages to 0 if count is less than 300 (most likely due to noise)

begi n
start <= 0;
if (ready_x_g) begin
if (count_green <) X_avg_green <= 0;
el se begin
new car <= 1;
X_avg_green <= x_quotient g;
end
x_done_g <= 1;
end
if (ready_y g) begin
if (count_green <) y_avg_green <= 0;
el se begin
new_car <= 1;
y_avg_green <= y_quotient_g;
end
y _done_g <= 1;
end
if (ready_x_b) begin
if (count_blue <) x_avg bl ue <=
el se begin
new_car <= 1;
x_avg_bl ue <= x_quotient _b;
end
x_done_b <= 1;
end
if (ready_y b) begin
if (count_blue <) y_avg blue <=
el se begin
new_car <= 1;
y_avg_blue <= y_quotient _b;
end
y_done_b <= 1;
end

if (x_done_g & y done_g && x_done_b && y done_b) begin

state <=

end frame <= 1;

end
end

// all averages calculated so we restart the FSM

begi n

state <=

started division <= 1;

region.v Page 4

x_done_g <=

y_done_g <=
x_done_b <=
y_done_b <=
end
default : state <=
endcase
end

//instantiate divider module for x and y sums for two different colors to h
appen in parallel

di vider divider _nodule(.clk(clk), .start(start), .sign(), .dividend(x_s
umgg), .divider(count_avg Qg),

.quotient(x_quotient_g), .remainder(remnmainder_x_g), .ready(ready_x g));

di vider divider_nodul e2(.clk(clk), .start(start), .sign(), .dividend(y_
sum g), .divider(count_avg_g),
.quotient(y_quotient_g), .remainder(renainder_y g), .ready(ready_y g));

di vi der divider_nodul e3(.clk(clk), .start(start), .sign(), .dividend(x_
sum b), .divider(count_avg b),
.quotient(x_quotient_b), .remainder(renainder_x _b), .ready(ready x b));

di vider divider_noduled4(.clk(clk), .start(start), .sign(), .dividend(y_

sum b), .divider(count_avg b),
.quotient(y_quotient_b), .remainder(renmainder_y b), .ready(ready_y b));

endnmodul e

rgb2hsv. v Page 1

“timescale 1lns / lps

A N VN N A aada

// Company:

// Engineer: Kevin Zheng Class of 2012

// Dept of Electrical Engineering & Computer Science
//

// Create Date: 18:45:01 11/10/2010

// Design Name:

// Module Name: rgb2hsv

// Project Name:
// Target Devices:
// Tool versions:
// Description:

// Dependencies:

// Revision:
// Revision 0.01 - File Created
// Additional Comments:

//
L1777 7777777777/ S S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSS
nodul e rgb2hsv(clock, reset, r, g, b, h, s, v);

i nput wire clock;

i nput wire reset;

input wire [7:0] r;

input wire [7:0] g;

input wire [] b;

output reg [] h;

output reg [7:0] s;

output reg [7:0] wv;

reg [7:0] my_r delayl, my_g delayl, my b _delayl;
reg [] my r delay2, my_g delay2, my b delay2;
reg [] my_r, my g, my_b;
reg [] min, max, delta;
reg [:0] s_top;

reg [15:0] s_bottom;

reg [] h_top;

reg [] h_bottom;

wire [15:0] s_quotient;
wire [15:0] s_remainder;
wire s rfd;

wire [15:0] h_quotient;
wire [15:0] h_remainder;
wire h rfd;

reg [7:0] v_delay [19:07];
reg [18:0] h _negative;

reg [15:0] h_add [18:07];
reg [4:0] 1i;

// Clocks 4-18: perform all the divisions
//the s _divider (16/16) has delay 18
//the hue div (16/16) has delay 18

divider hue divl(
.clk(clock),
.dividend(s_top),
.divider(s_bottom),
.quotient(s_quotient),
// note: the "fractional" output was originally named "remainder" in
this
// file —— it seems coregen will name this output "fractional" even
if
// you didn't select the remainder type as fractional.
.remainder(s_remainder),
.ready(s_rfd)
)i
divider hue div2(
.clk(clock),
.dividend(h_top),
.divider (h_bottom),
.quotient (h_quotient),
.remainder (h_remainder),
.ready(h_rfd)
)i

rgb2hsv. v Page 2
al ways @ (posedge clock) begin

// Clock 1: latch the inputs (always positive)
{my_r, my g, my b} <= {r, g, b};

// Clock 2: compute min, max
{my_r delayl, my_g delayl, my b delayl} <= {my r, my g, my_ b
}i

iIf((my_r > my_g) & (my_r >= my_b)) //(B,S,S)
max <= my_r;

else if ((my g > my r) & (my g >= my b)) //(S,B,S)
max <= my_g;

el se max <= my_b;

If((my_r <= my_g) & (my_r <= my_b)) //(S,B,B)
min <= my r;

else if ((my g <=my r) & (my g <= my b)) //(B,S,B)
min <= my g;

el se
min <= my b;

// Clock 3: compute the delta

{my r delay2, my g delay2, my b delay2} <= {my r delayl, my_
g_delayl, my_b delayl};

v_delay[0] <= max;

delta <= max - min;

// Clock 4: compute the top and bottom of whatever divisions
we need to do

s_top <= * delta;
s_bottom <= (v_delay[0]>0)?{ , v_delay[O0]}: ;
i f (my r delay2 == v_delay[0]) begin
h top <= (my_g_delay2 >= my b delay2)?(my_g delay2 -
my b delay2) * :(my_b delay2 - my g _delay2) *
h negative[0] <= (my_g_delayz >= my b delay2)?0:1;
h add[0] <= ;
end
else if (my g delay2 == v_delay[0]) begin
h top <= (my_b_ delay2 >= my r delay2)?(my_b delay2 -
my r delay2) * :(my_r delay2 — my_ b _delay2) *
h negative[0] <= (my_b_delayz >= my_ r delay2)?0:1;
h add[0] <= ;
end
else if (my b delay2 == v_delay[0]) begin
h top <= (my_r delay2 >= my g _delay2)? (my_r delay2 -
my g delay2) * :(my_g delay2 — my_ r_ delay2) *
h negative[0] <= (my_r_delayz >= my_ g delay2)?0:1;
h add[0] <= ;
end

h bottom <= (delta > 0)?delta * : ;

//delay the v and h negative signals 18 times
for (i=1; i<19; i=i+1) begin

v_delay[i] <= v_delay[i-1];

h negative[i] <= h_negative[i-1];

h add[i] <= h_add[i-1];
end

v_delay[19] <= v_delay[18];

//Clock 22: compute the final value of h

//depending on the value of h delay[18], we need to subtract
255 from it to make it come back around the circle

i f (h_negative[18] && (h_quotient > h add[18])) begin
h <= — h quotient[7:0] + h_add[18];
end
el se if (h_negative[18]) begin
h <= h add[18] - h_quotient[7:0];

end

rgb2hsv. v

endnmodul e

end

el se begin
h <= h quotient[7:0] + h_add]
end

//pass out s and v straight
s <= s_quotient;
v <= v_delay[19];

17

Page 3

sound. v Page 1

“timescale 1lns / lps

L1177 77 7777777777777 77
// Company:

// Engineer: Jessica Quaye

//

// Create Date: 18:16:14 12/05/2018
// Design Name:

// Module Name: sound

L1777 77 777777777777 7777 777777777777 7777777777777/ 7777777777 7777777/7/77777/7/7777777

;?///
// bi-directional monaural interface to AC97

//

L1777 77777 S S S S

nodul e audio (

i nput wire clock_ 27mhz,

i nput wre reset,

input wire [4:0] volume,

output wire [7:0] audio_in data,

input wire [7:0] audio_out data,

out put wire ready,

out put reg audio_reset_b, // ac97 interface signals
output wire ac97 sdata out,

input wire ac97 sdata in,

output wire ac97 synch,

input wire ac97 _bit clock

)i

[] command_address;

[] command_data;

command_valid;

[] left in data, right in data;

[] left out data, right out data;

SE55%E
Co00n

// wait a little before enabling the AC97 codec
reg [9:0] reset count;
al ways @(posedge clock_ 27mhz) begin
if (reset) begin
audio reset b = ;
reset_count = 0;
end else if (reset count ==)
audio _reset b = ;
el se
reset count = reset count+l;
end

Wi re ac97 ready;

ac97 ac97(.ready(ac97 ready),
.command_address (command_address),
.command_data(command_ data),
.command_valid(command valid),

.left _data(left out_data), .left_valid(),
.right data(right out data), .right valid(),
.left in data(left in data), .right in data(right in data),

.ac97_sdata_out(ac97_sdata_out),
.ac97_sdata in(ac97_sdata_ in),
.ac97_synch(ac97 synch),
.ac97_bit _clock(ac97_bit_clock));

// ready: one cycle pulse synchronous with clock 27mhz

reg [2:0] ready_sync;

always @ (posedge clock 27mhz) ready sync <= {ready sync[1:0], ac97 ready};
assign ready = ready sync[l] & ~ready sync[2];

reg [7:0] out_data;

always @ (posedge clock 27mhz)
if (ready) out data <= audio out data;
assign audio _in data = left in data[19:12];
assign left out data = {out data, }i
assign right out data = left_out_data;

sound. v

// generate repeating sequence of read/writes to AC97 registers

ac97commands cmds(.clock(clock 27mhz),

.ready(ready),

.command_address (command_address),

.command_data(command_data),

.command_valid(command valid),

.volume (volume),
.source ());

endnmodul e

// assemble/disassemble AC97 serial frames
nodul e ac97 (

);

out put reg ready,

input wire [] command_ address,

input wire [] command data,

i nput W re command valid,

input wire [] left data,

input wire left valid,

input wire [] right data,

input wire right valid,

output reg [] left in data, right in data,
output reg ac97_sdata_out,

input wire ac97_sdata in,
out put reg ac97_synch,
input wire ac97_bit_clock

reg [] bit count;
reg [] 1_cmd_addr;
reg [] 1 _cmd data;
reg [] 1_left data, 1_right data;
reg 1 emd v, 1 left v, 1 right v;
initial begin

ready <=

// synthesis attrlbute init of ready is "0";
ac97_sdata_out <=

// mic

// synthesis attrlbute init of ac97 sdata out is "0";

ac97 synch <=

// synthesis attrlbute init of ac97_ synch is

bit count <= ;
// synthesis attribute init of bit count is
l emd v <= ;

1!0 u;

1!000011;

4
// synthesis attribute init of 1 cmd v is "0";

1 left v <=

7
// synthesis attribute init of 1 left v is "0";

1l right v <= H
// synthesis attribute init of 1 _right v is

left in data <=

1!0 u;

// synthesis attribute init of left in data is "00000";

right in data <= ;

// synthesis attribute init of right in data is "00000";

end

al ways @(posedge ac97 bit clock) begin
// Generate the sync signal
if (bit_count ==)
ac97 synch <= ;
if (bit_count ==)
ac97_synch <= ;

// Generate the ready signal
if (bit_count ==)

ready <= ;
if (bit_count == 2)

ready <= H

// Latch user data at the end of each frame.
// first frame after reset will be empty.
if (bit_count ==) begin

1l cmd _addr <= {command_address, Y

This ensures that the

Page 2

sound. v Page 3

1 cmd data <= {command data, }r
1 cmd v <= command valid;
1 left data <= left data,
1 left v <= left valid;
1 right data <= right data;
1l right v <= right valid;
end

if ((bit_count >= 0) && (bit_count <=))
// Slot 0: Tags
case (blt count[3:0])

ac97 sdata out <= ; // Frame valid
ac97 sdata out <= 1 cmd v; // Command address valid
ac97 sdata out <= 1 _cmd v; // Command data valid

ac97 sdata out <= 1 left v; // Left data valid
ac97 sdata out <= 1 right v; // Right data valid
default ac97_sdata out <=

I

endcase
else if ((bit_count >=) && (bit_count <=))

// Slot 1: Command address (8-bits, left justified)

ac97 sdata out <= 1 cmd v ? 1 cmd addr[35-bit count] : ;
else if ((bit_count >=) && (bit_count <=))

// Slot 2: Command data (l6-bits, left justified)

ac97 sdata out <= 1 cmd v ? 1 cmd data[55-bit count] : ;
else if ((bit_count >=) && (bit_count <=)) begin

// Slot 3: Left channel
ac97 sdata out <= 1 left v ? 1 left data[l9] :

.
4

1 left data <= { 1 left data[:01, 1_left dataf 1 };
end
else if ((bit_count >=) && (bit _count <=))

// Slot 4: Right channel

ac97 sdata out <= 1 right v ? 1 right data[95-bit count] : ;
el se

ac97_sdata_out <= ;

bit count <= bit count+1;
end // always @ (posedge ac97 bit clock)

al ways @(negedge ac97 bit clock) begin
if ((bit_count >=) && (bit_count <=))
// Slot 3: Left channel
left in data <= { left in data[18:0], ac97 sdata_in };
else if ((bit_count >=) && (bit_count <=))
// Slot 4: Right channel
right in data <= { right in data[18:0], ac97 sdata in };
end
endnodul e

// issue initialization commands to AC97
nodul e ac97commands (

i nput wire clock,

i nput wre ready,

output wire [7:0] command address,
output wire [15:0] command data,
out put reg command valid,
input wire [4:0] volume,
input wire [2:0] source
)i
reg [23:0] command;
reg [3:0] state;

initial begin
command <=
// synthesis attrlbute init of command is "0";
command_valid <=
// synthesis attrlbute init of command valid is "0";
state <=
// synthesis attrlbute init of state is "0000";

end

assign command_address = command[23:16];
assi gn command data = command[15:0];

sound. v Page

wire [4:0] vol;
assign vol = -volume; // convert to attenuation

al ways @(posedge clock) begin
if (ready) state <= state+l;

case (state)
// Read ID
begi n
command <= ;
command_valid <= ;
end
// Read ID
command <=
// headphone Volume
command <= { , , vol, , vol };
// PCM volume
command <= ;
// Record source select
command <= { , , source,
// Record gain = max
command <=
// set +20db mic galn
command <=
// Set beep Volume
command <=
// PCM out bypass m1x1
command <= ;
defaul t :
command <= ;
endcase // case(state)
end // always @ (posedge clock)
endnodul e // ac97commands

, source};

nmodul e recorder (

i nput wire clock, // 27mhz system clock

i nput wire reset, // 1 to reset to initial state

i nput wire play sound, // 1 for playback, 0 for record
i nput wre ready, // 1 when AC97 data is available
input wire [7:0] from ac97 data, // 8-bit PCM data from mic

output reg [7:0] to_ac97 data // 8-bit PCM data to headphone

);

// read sound bits from rom address and send to ac97 module

reg[17:0] sound_addr = 0;

Wire[7:0] sound bits;

wire signed [7:0] signed_sound bits;

sound coe roml(.clka(clock), .addra(sound addr), .douta(sound bits));
assi gn signed_sound bits = { , sound bits} - ;

al ways @ (posedge clock) begin
if (ready) begin

// get here when we've just received new data from the AC97

to_ac97 _data <= play_sound ? signed_sound bits : ;
if (play_sound == 1) begin
if (sound_addr ==) sound_addr <=

el se sound_addr <= sound addr + 1;
end
end //ready
end //always @
endnodul e

vi deo. v Page 1

imescale 1lns / lps
/

R NNy

Tt

/1

/I Conpany:

/1 Engi neer: Jessica Quaye

/1

/'l Create Date: 14:58:18 12/05/2018
/1 Design Name:

/1 Modul e Nane: vi deo

/1

(EEEEEEEEEr i bbb rr i rrrrrrr i
nodul e video(i nput clk,
i nput one hz enable,

input [23:0] visualization pixel,
input [10:0] hcount,

input [9:0] vcount,

i nput read control,

output [23:0] video pixel,

out put raml_we_ b,

output [18:0] raml address,

inout [35:0] raml data,

out put raml_cen b,
out put reg use video pixel
)i

/I WRI TE TO ZBT

W re write vram we;

wire [18:0] write vram addr;

wire [35:0] vram read data;

wire [35:0] vram_write data;

wire [1:0] write state;

Wi re out write position;

Wi re now_read;

write to_ zbt writing section(.clk(clk), .one hz enable(one hz enable), .visualiza

tion pixel(visualization pixel),
.write state(write_state), .read control(read control),
.out write position(out write position),
.we(write_vram we), .addr wire(write vram addr), .write d
ata(vram write data),
.hcount (hcount), .vcount(vcount),
.now_read(now_read)) ;

/| READ FROM ZBT

Wi re start read;

Wi re read vram we;

wire [18:0]read vram addr;
Wi re read_state;

Wi re out reading state;

read from zbt reading section(.clk(clk), .pixel out(video pixel), .start read(rea
d control), .one _hz enable(one hz enable),
.data_in(vram read data), .we(read vram we), .addr out(read vram addr),
.hcount (hcount), .vcount(vcount),
.read_state(read _state) , .out reading state(out reading state), .right(
right));

/' NTERFACE W TH STAFF ZBT MODULE
reg[18:0] vram addr;
reg zbt vram we;

/luse read_control and now read signal to determ ne when to read from nenory
al ways @(posedge clk) begin

if (read_control == 1) begin
/lset everything to reading state
if (now read == 1) begin

vram_addr <= read_vram_addr;
zbt_vram we <= 0;
use_video pixel <= 1;
end
end

el se begin

vi deo. v
vram_addr <= write vram addr;
zbt_vram we <= 1;
use _video pixel <= 0;
end
end

zbt 6111 zbtl(.clk(clk), .cen(), .we(zbt_vram we),
ata(vram write data), //REPLACE VRAM WRI TE DATA

.read_data(vram read_data), .ram we b(raml _we b),
m data(raml_data), .ram cen_b(raml cen b));

endnmodul e //end of video nodul e

nodul e write to_zbt (i nput clk, input one_hz enable, input |
i nput read control,
out put reg we, output]|
] write_state,
out put out write position,
out put reg now_read,

ata, output [

i nput [] hcount,
i nput [] vcount);

reg first = 0;

reg [] addr_counter;

reg placeholder;

“include "params.v"

regl] state;

par amet er = H

par amet er = ;

reg write position = 0;

par anmet er = ;

par anmet er = 1;

reg [] addr = {19 }}i

al ways @ (posedge clk) begin

/1 /I have a reg that assigns 1 when one_hz_enable

until idle has seen it
if (one_hz enable == 1) placeholder <= 1;
case(state)
begi n
if (read_control == 1) now read <= 1;
el se begin
if ((placeholder == 1) && (hcount == 0) &&
we <= ;
placeholder <= 0;
state <= ; //each second, record
is full

addr_counter <= ;
write position <= :
now_read <= 0;
end
end
end

begi n
if (hcount[1:0] == && vecount[1:0] ==
)) begin

case(write position)

) && (vcount <

begi n
write datal
],visualization pixel][
write position ;
we <= ;

on pixel|

.addr (vram_addr),

.ram_address(raml_address),

] addr_wire, output

] <= {visualization pixel]|
1} ; //wite 18 pixels of data to the |hs
<= .

Page 2

.write d

.ra

] visualization pixel,

] write d

regl

1 and don't turn it off

(vecount)) begin

a frane till the buffer

&& (hcount <

],visualizati

vi deo. v Page 3

end //end of first

begi n
write data[17:0] <= {visualization pixel[23:18],visualizatio
n pixel[15:10],visualization pixel[7:2]} ;
write position <= ; //go to first because you need to h
ave data =(first, second)
we <= ; //send a wite enabl e because we have a full add
ress
/lat end of one frame, nove to idle state and wait for
/1 one second before conmng to wite another frane
i f (addr_counter == (- 1)) begin //keep
track of address of nmultiple 24576 = 256 * 192 [/ (2 pixels per line)
addr_ counter <= 0;
state <= ;
end

el se addr_counter <= addr_counter + 1;

//wrap around address when you hit the end of 20 franes

if (addr ==) addr <= 0; //24576*20franes
el se addr <= addr + 1; //increnent address by 1

end //end of SECOND
endcase
end // if hcount and vcount are a multiple of 4

end //end of WRITING state
endcase //end of state nachine
end //end al ways

assign write_state = state;
assign out write position = write position;

assign addr wire = addr;

endnodule //wite to_zbt

nodul e read from zbt(i nput clk, output reg[23:0] pixel out, input start read, input
one_hz_enable,
input [35:0] data_in, output we, output reg[18:0] addr out,
input [10:0] hcount,
input [9:0] vcount,

i nput right,
out put read_state,
out put out reading state);

“include "params.v"

assign we = 0; //indicate we are readi ng
reg place holder;

reg state = 0;

par amet er = H

par anet er = 1;

reg[2:0] readlng state = ;
par anmet er = ;
par amet er = ;
reg [:0] addr_counter;

reg [5:0] frames so far =
reg [18:0] addr held for allgn,

al ways @ (posedge clk) begin
if (one_hz enable == 1) place holder <=

case(state)
begi n
addr_out <= ;

vi deo. v Page 4

pixel out <= ;
if ((start read == 1) && (hcount == 0) && (vcount == 0))begin
//wait for another cycle before noving to read because you need 2
cycles of delay and this applies

state <= ;
end
end
begi n
case(reading state)
: begin
/1 read_data[35:18]is 18 bits so append Os after each 6
pixel out <= {{data in[35:30], } , {data_in[29:24], Y,
{data_in[23:18], }}i
reading state <= ;
end
: begin
/1 read_data[17:0]is 18 bits so append Os after each 6 bits
pixel out <= {{data in[17:12], } , {data_in[11:6], Yoo {
data in[5:0], Y
if ((hcount <) && (vcount <)) begin //
if within region & hcount is even
i f (addr_counter == (- 1)) begin
if ((place holder == 1)) begin
place _holder <= 0;
addr_out <= addr_out + 1;
addr_counter <= 0;
reading state <= ;
end

el se begin
addr_out <= addr_out - (-

addr_counter <=0;
reading state <= ;
end
end

el se begin //otherwi se, it's business as usual. increm
ent address by 1 and progress
addr_counter <= addr_counter + 1;
addr out <= addr out + 1; //increment address by 1
reading_state <= ;
end

end //hcount == FRAVE W DTH
el se pixel out <= ;
end //end SECOND
endcase// endcase for reading state

if (start read == 0) state <= ;
end //end READI NG

endcase
end //end al ways

assign read_state = state;
assi gn out_reading state = reading state;

endnodul e //read_from zbt

vi sual i zati on. v[4] Page 1

“timescale 1lns / lps

L1177 77 7777777777777 77
// Company:

// Engineer: Jessica Quaye

//

// Create Date: 19:17:09 11/12/2018
// Design Name:

// Module Name: visualization

L1777 77 777777777777 7777 777777777777 7777777777777/ 7777777777 7777777/7/77777/7/7777777

//draws vertical line on the screen
nodul e vertical line
#(par anet er =)

(input [10:0] x,hcount,
input [9:0] y,vcount,
input [9:0] y_length,
input [9:0] thickness,
output reg [23:0] pixel);
always @ * begin
if ((hcount >= x && hcount <= (x+thickness)) && (vcount >= y && vc
ount <= (y + y_length + thickness))) pixel = ; //we are at the same x but same

or greater y
el se pixel = 0;
end //end always
endnodul e

//draws dotted vertical line on screen
nodul e vertical dotted
#(par anet er = 3,
=)

(input [10:0] x,hcount,
input [9:0] y,vcount,
output reg [23:0] pixel);
al ways @ * begin
if ((hcount >= x && hcount < (x+)) &&
(vcount >= 0 && vcount <= |
vcount >= && vecount <=
vcount >= && vcount <=
vcount >= && vcount <=
vcount >= && vcount <=)) pixel = ;

el se pixel = 0;
end //end always

endnodul e
//draws horizontal line on screen

nodul e horizontal line
#(par anet er =)

(input [10:0] x,hcount,
input [9:0] y,vcount,
input [10:0] x_length,
input [10:0] thickness,
output reg [23:0] pixel);
always @ * begin
if ((vcount >= y && vcount <= (y + thickness)) && (hcount >= x && h
count <= (x + x length + thickness))) pixel = ; //we are at the same x but same

or greater y
el se pixel = 0;
end //end always
endnodul e

//draws dotted horizontal line on screen
nodul e horizontal dotted
#(par aneter = ,
=)
(input [10:0] x,hcount,
input [9:0] y,vcount,
output reg [23:0] pixel);

vi sual i zati on. v[4] Page 2

always @ * begin

if ((vcount >= y && vcount < (y+)) &&
(hcount >= 0 && hcount <= |
hcount >= && hcount <=
hcount >= && hcount <=
hcount >= && hcount <=)) pixel = ;

el se pixel = 0;
end //end always

endnodul e

//draws traffic light given color that should be turned on
nodul e draw_traffic_light
(i nput clk,
input [10:0] x,hcount,
input [9:0] y,vcount,
input [1:0] signal,
i Nnput orientation,
output reg [23:0] traffic pixel);

“include "params.v"

reg [15:0] image_addr; //num of bits for 8*6000 ROM
wire [7:0] image bits, red mapped, green mapped, blue mapped;

//vertical w = 68, h = 180

Wire[l10:0] = (orientation ==) ? : ;
W re[9:0] = (orientation ==) ? : ;

al ways @ (posedge clk) begin
case(orientation)

begi n
image addr <= (hcount-x + 3) + (vcount-y) * ;
end
begin //rotate 90deg
image _addr <= (- (vecount-y)) + (— (hcou
nt - x))* ;
end
endcase
end
traffic _image rom traffic rom(.clka(clk), .addra(image addr), .douta(image
_bits));
// use color map to create 8bits R, 8bits G, 8 bits B;
traffic red coe traffic rem (.clka(clk), .addra(image bits), .douta(red mapped));
traffic green coe traffic gem (.clka(clk), .addra(image bits), .douta(green mappe
d));
traffic blue coe traffic bcem (.clka(clk), .addra(image bits), .douta(blue mapped)
)i
al ways @ (posedge clk) begin
if ((hcount >= x && hcount < (x+)) &&
(veount >= y && vcount < (y+)))
begi n
if (signal ==) begin
//yellow off and green off
if ((red_mapped >) && (green_mapped >
)) traffic pixel <= { , , y; //yellow off
else if (green mapped >) traffic pixe
1 <= { , . }; //green off

el se traffic pixel <= {red mapped, green map
ped, blue mapped};

end
if (signal ==) begin
//red off and green off
if ((red_mapped >) && (green_mapped <
)) traffic pixel <= { , , Y; //red off
else if (green mapped > && (red _mappe

d <)) traffic pixel <= { , , }: //green off

vi sual i zati on. v[4] Page 3

el se traffic pixel <= {red mapped, green map
ped, blue mapped};

end
if (signal ==) begin
//red off, yellow off
if ((red_mapped >) && (green_mapped <
)) traffic pixel <= { , , Y; // red off
else if ((red mapped >) && (green_ map
ped >)) traffic pixel <= { , , y; //yellow off
el se traffic pixel <= {red mapped, green map
ped, blue mapped};
end
end
el se traffic pixel <= 0;
end
endnodul e
//draws street on screen
nodul e draw_street
(input clk,
i nput [10:01hcount,
input [9:0] vcount,
output [23:0] street pixel);
“include "params.v"
//DRAW MAIN ROAD
//generate left line
wire [23:0] left line pixel;
vertical line #(. ())
left line(.x(), Y () » -hcount (hcount), .vcount (vcount),
y_length(), .thickness(),//x = (1024/2) - width/2, y = (768/2) -
height/2
.pixel(left line pixel));
//generate right line
wire [23:0] right line pixel;
vertical line #(. ())
right line(.x()Y () » -hcount (hcount), .vcount (vcount),
.y_length(), -thickness(),//x = (1024/2) - width/2, y = (768/2) -

height/2
.pixel(right line pixel));

//generate mid dotted vertical line

wire [23:0] vert mid dot pixel;
vertical dotted #(. (4), . ())
mid dot(.x() s Y (), -hcount (hcount), .vcount (vcount), //x =

(right-left/2) — width/2
.pixel(vert mid dot pixel));

//DRAW SIDE ROAD
//generate top line

wire [23:0] top_line pixel;
horizontal line #(. ())
top_line(.x()Y () » -hcount (hcount), .vcount (vcount), .x_
length(), .thickness(),//y = (right-left/2) - width/2

.pixel(top_line pixel));

//generate bottom line

wire [23:0] bottom line pixel;
horizontal line #(. ())
bottom line(.x() s Y () » -hcount (hcount), .vcount (vcount),
.X_length(), .thickness(),//y = (right-left/2) - width/2

.pixel (bottom line pixel));

//generate mid dotted horizontal line

wire [23:0] horiz_mid dot_pixel;
horizontal dotted #(. (4),. ())
horiz mid dot(.x()Y (), -hcount (hcount), .vcount (vcount)

, //y = (top-bottom/2) — height/2

vi sual i zati on. v[4] Page 4
.pixel (horiz mid dot pixel));

assign street pixel = left line pixel | vert mid dot pixel | right line pixe
1 | top line pixel | bottom line pixel | horiz mid_dot pixel;
endnodul e

//draws a car given its color
nodul e draw_car
#(par anet er =)

(i nput clk,
input [10:0] x,hcount, width,
input [9:0] y,vcount, height,
input [1:0] car_direction,
i nput is_ambulance,
output reg [23:0] pixel);
(* ram style = ‘"registers" *) reg [15:0] image addr, amb _addr; //num of bit
s for 8*6000 ROM
wire [7:0] image bits, red mapped, green mapped, blue mapped;
wire [7:0] amb bits, amb red mapped, amb_green mapped, amb blue mapped;

“include "params.v"

al ways @ (posedge clk) begin
case(car_direction)

begi n
amb_addr <= (hcount-x + 3) + (vcount-y) * width;
image _addr <= (hcount-x + 3) + (vcount-y) * width;
end
begi n
amb_addr <= (width-(hcount-x) - 4) + (vcount-y) * w
idth;
image addr <= (width-(hcount-x) - 4) + (vcount-y) *
width;
end
begi n

amb_addr <= (height - (vcount-y)) + (width— (hcount
- x))* height;

image addr <= (height - (vcount-y)) + (width— (hcou
nt - x))* height;

end

begi n
amb_addr <= (vcount-y) + (hcount - x)* height;
image addr <= (vcount-y) + (hcount - x)* height;

end
endcase
end
smaller car car_rom(.clka(clk), .addra(image addr), .douta(image bits)); /
/CHANGE
amb image rom amb rom(.clka(clk), .addra(amb addr), .douta(amb_bits));

// use color map to create 8bits R, 8bits G, 8 bits B;
smaller car red coe car_rcm (.clka(clk), .addra(image bits), .douta(red mapped));
//CHANGE
smaller car green coe car_gcm (.clka(clk), .addra(image bits), .douta(green_ mappe
d)); //CHANGE
smaller car blue coe car bcm (.clka(clk), .addra(image bits), .douta(blue_mapped)
); //CHANGE

//use color map to create 8bits R, 8bits G, 8 bits B;

amb_red coe amb_rcm(.clka(clk), .addra(amb bits), .douta(amb red mapped));

amb _green coe amb gcm (.clka(clk), .addra(amb bits), .douta(amb green mapped
)i
amb_blue coe amb _bcm (.clka(clk), .addra(amb bits), .douta(amb_blue mapped));

al ways @(posedge clk) begin

if ((hcount >= x && hcount < (x+width)) &&
(vcount >= y && vcount < (y+height)))
begi n
if (is_ambulance ==) pixel <= {amb_ red mapped,

amb_green mapped, amb blue mapped};
el se begin

vi sual i zati on. v[4] Page 5
if ((x > 0) && (y >0))begin

if ((red_mapped >) && (green_ma
pped <) && (blue_mapped <)) pixel <= ;

el se pixel <= {red mapped, green map
ped, blue mapped};

end
el se pixel <= 0;
end
end
el se pixel <= 0;
end
endnodul e
nodul e visualization(
i nput vclock,
i nput one hz enable,
input [10:0] hcount,
input [9:0] vcount,
i nput hsync, vsync, blank,
input [1:0] main_out,
input [1:0] side out,
input [1:0] carl direction,car2 direction, car3 direction, car4 direction, car5_
direction,

car6_direction, car7_direction, car8 direction, car9 direction,
carl0_direction,

input [1:0] carll direction, carl2 direction, carl3 direction,

input [1:0] ambulance direction,

input [10:0] carl leftx,car2 leftx, car3 leftx,card4 leftx, car5 leftx, caré6 left
x, car7_leftx, car8_leftx, car9_leftx, carl0_leftx,

input [10:0] carll leftx, carl2 leftx, carl3 leftx,

input [10:0] carl width, car2 width, car3 width, car4 width, car5 width, car6 wi
dth, car7 width, car8 width, car9 width, carl0_width,

input [10:0] carll width, carl2 width, carl3 width,

input [9:0] carl topy, car2 topy, car3 topy, car4 topy, car5 topy, caré6 topy, ca
r7_topy, car8_topy, car9_topy, carl0_topy,

input [9:0] carll topy, carl2 topy, carl3_ topy,

input [9:0] carl height,car2 height, car3 height, car4 height, car5 height,caré6_
height, car7_ height, car8 height, car9 height, carl0_height,

input [9:0] carll height,carl2 height, carl3 height,

i nput is collision,

input [10:0] ambulance_leftx, ambulance_width,

input [9:0] ambulance topy, ambulance height,

out put viz_ hsync,
out put viz_vsync,
out put viz_blank,

output [23:0] pixel

)

assign viz_hsync = hsync;
assign viz_vsync = vsync;
assign viz blank = blank;

“include "params.v"

//draw street

wire [23:0] street pixel;

draw_street streetl(.clk(vclock), .hcount(hcount), .vcount(vcount),
.street pixel(street pixel));

//draw main traffic light

wire [23:0] trafficl pixel;
draw _traffic light trafficl(.clk(vclock), .x(),-y¥(0), .hcount (hcount), .vcou
nt(vcount), .signal(main out), .orientation(),

.traffic pixel(trafficl pixel));

//draw side traffic light

wire [23:0] traffic2 pixel;
draw _traffic light traffic2(.clk(vclock), .x()Y () » -hcount (hcount), .vc
ount (vcount), .signal(side out), .orientation(),

.traffic pixel(traffic2 pixel));

vi sual i zati on. v[4] Page 6

//draw car — GREEN

wire[r23:0] carl pixel;

draw _car #(. ())

carl(.clk(vclock), .x(carl leftx), .y(carl topy), .hcount(hcount), .vcount(v
count), .height(carl height), .width(carl width), .pixel(carl pixel), .car_direction
(carl direction), .is_ambulance());

//draw car — GREEN

Wire[23:0] car2 pixel;

draw_car #(. ())

car2(.clk(vclock), .x(car2 leftx), .y(car2 topy), .hcount(hcount), .vcount(v
count), .height(car2 height), .width(car2 width), .pixel(car2 pixel), .car_direction
(car2_direction), .is_ambulance());

//draw car — GREEN

Wire[23:0] car3 pixel;

draw _car #(. ())

car3(.clk(vclock), .x(car3_leftx), .y(car3_topy), .hcount(hcount), .vcount(v
count), .height(car3 height), .width(car3 width), .pixel(car3 pixel), .car_direction
(car3_direction), .is_ambulance());

//draw car — BLUE

Wire[23:0] car4 pixel;
draw_car #(. ())
car4 (.clk(vclock), .x(car4 leftx), .y(car4 topy), .hcount(hcount), .vcount(
vcount), .height(car4 height), .width(car4 width), .pixel(car4 pixel), .car_directio
n(car4_direction), .is_ambulance());

//draw car — BLUE

Wire[23:0] car5 pixel;
draw car #(. ())
car5(.clk(vclock), .x(car5 leftx), .y(car5 topy), .hcount(hcount), .vcount(
vcount), .height(car5 height), .width(car5 width), .pixel(car5 pixel), .car_directio
n(car5 direction), .is_ambulance());

//draw car — BLUE

Wi re[23:0] car6_pixel;

draw _car #(. ())

car6(.clk(vclock), .x(car6_leftx), .y(car6_topy), .hcount(hcount), .vcount(v
count), .height(car6 _height), .width(car6 width), .pixel(car6 pixel), .car_direction
(car6_direction), .is_ambulance());

//draw car — GREEN

Wire[23:0] car7_pixel;

draw_car #(. ())

car7(.clk(vclock), .x(car7_leftx), .y(car7_topy), .hcount(hcount), .vcount(v
count), .height(car7_height), .width(car7_width), .pixel(car7 pixel), .car_direction
(car7_direction), .is_ambulance());

//draw car — GREEN

W re[23:0] car8 pixel;

draw _car #(. ())

car8(.clk(vclock), .x(car8 leftx), .y(car8 topy), .hcount(hcount), .vcount(v
count), .height(car8 height), .width(car8 width), .pixel(car8 pixel), .car_direction
(car8 direction), .is_ambulance()):

//draw car — GREEN

Wire[23:0] car9 pixel;

draw_car #(. ())

car9(.clk(vclock), .x(car9 leftx), .y(car9 topy), .hcount(hcount), .vcount(v
count), .height(car9 height), .width(car9 width), .pixel(car9 pixel), .car_direction
(car9_direction), .is_ambulance());

//draw car — GREEN

Wire[23:0] carl0_pixel;

draw_car #(. (

carl0(.clk(veclock), .x(carl0_leftx), .y(carl0_topy), -.hcount(hcount), .vcoun
t(vcount), .height(carl0_height), .width(carl0 _width), .pixel(carl0_pixel), .car_dir
ection(carl0 _direction), .is_ambulance());

//draw car — GREEN

vi sual i zati on. v[4] Page 7

wire[r23:0] carll pixel;

draw_car #(. (

carll(.clk(vclock), .x(carll leftx), .y(carll topy), .hcount(hcount), .vcoun
t(vcount), .height(carll height), .width(carll width), .pixel(carll pixel), .car dir
ection(carll direction), .is_ambulance());

//draw car — BLUE

Wire[23:0] carl2 pixel;

draw car #(. (

carl2(.clk(vclock), .x(carl2 leftx), .y(carl2_ topy), .hcount(hcount), .vcoun
t(vcount), .height(carl2 height), .width(carl2 width), .pixel(carl2 pixel), .car dir
ection(carl2 direction), .is_ambulance());

//draw car — BLUE

Wire[23:0] carl3 pixel;

draw_car #(. ())

carl3(.clk(vclock), .x(carl3 leftx), .y(carl3 topy), -.hcount(hcount), .vcoun
t(vcount), .height(carl3 _height), .width(carl3 width), .pixel(carl3 pixel), .car dir
ection(carl3 direction), .is_ambulance());

//draw ambulance

wire [23:0] ambulance pixel;

draw_car ambulance(.clk(vclock), .x(ambulance leftx), .y(ambulance topy), .h
count (hcount), .vcount(vcount), .height(ambulance height), .width(ambulance width),
.pixel (ambulance pixel), .car_ direction(ambulance direction), .is_ambulance());

reg [23:0] dom pixel;

always @ * begin
if (is_collision == 1) dom pixel = street pixel | carl pixel | car2_pixe
1 | car3 pixel | car4 pixel |
car5 pixel| car6 pixel| car7 pixel| c
ar8 pixel| car9 pixel | carl0_pixel |
carll pixel | carl2 pixel | carl3 pix
el | ambulance pixel;
el se dom pixel = street pixel | carl pixel | car2_pixel | car3_pixel | ¢
ar4 pixel | car5 pixel |
car6 pixel | car7 pixel| car8 pixel | car9 pixel | carl0
_pixel | carll pixel |
carl2 pixel | carl3 pixel;
end //end always

assign pixel = dom pixel| trafficl pixel | traffic2 pixel;
endnodul e

//module to determine the height, width and direction of a car
nodul e w_and h calc(

i nput clk,

input [10:0] car_x,

input [9:0] car_y,

output reg[2:0] car_ height,
output reg[l10:0] car_width,
output reg[l:0] car direction);

“include "params.v"
al ways @ (posedge clk) begin

//determine if orientation 1is vertical or horizontal
if (car_x < || car x >) //should be horiz
ontal
begi n
car_height <= ; //CHANGE
car_width <= ; //CHANGE

//given horizontal orientation, check if mov
ing left or moving right
if < car_ y && car_y <
) car_direction <= ;
el se car direction <= ;
end

vi sual i zati on. v[4] Page 8

//else vertical orientation

el se begin
car_height <= ; //CHANGE
car_width <= ; //CHANGE

//given vertical orientation, check if movin
g up or moving down
ifo(< car_x && car_x <
) car_direction <= H
el se car_direction <= ;
end
end //end always

endnmodul e

L1777 77777777777/77777/77/77777/

////UNUSED CODE: previously used blobs and ORed pixels before transitioning to
//COE files

/177777777

//module draw_car

// #(parameter COLOR = 24'h22 8B 22)
// (input clk,

// input [10:0] x,hcount, width,
// input [9:0] y,vcount, height,

// output [23:0] pixel);

//

// wire [23:0] rectangle pixel;

//

// //draw car rectangle

// draw _filled rectangle #(.COLOR(COLOR))

// car skeleton(.x(x), .y(y), .hcount(hcount), .vcount(

vcount), .height(height), .width(width), .pixel(rectangle pixel));

// //draw four wheels all of radius 10

// //draw top left wheel

// wire [23:0] top left wheel pixel;

// draw_round puck #(.RADIUS(10), .COLOR(24'hFF _FF FF))

// top left wheel(.clk(clk), .hcount(hcount), .vcount(vcount), .x(x —10
), -Y(y — 5), .pixel(top left wheel pixel));

//

// //draw top right wheel

// wire [23:0] top right wheel pixel;

// draw_round puck #(.RADIUS(10), .COLOR(24'hFF _FF FF))

// top right wheel(.clk(clk), .hcount(hcount), .vcount(vcount), .X(x+wi
dth-15), .y(y-5), .pixel(top right wheel pixel));

//

// //draw bottom left wheel

// wire [23:0] bottom left wheel pixel;

// draw_round puck #(.RADIUS(10), .COLOR(24'hFF _FF FF))

// bottom left wheel(.clk(clk), .hcount(hcount), .vcount(vcount), .X(x-—
10), .y(y+theight-10), .pixel(bottom left wheel pixel));

//

// //draw bottom right wheel

// wire [23:0] bottom right wheel pixel;

// draw_round puck #(.RADIUS(10), .COLOR(24'hFF _FF FF))

// bottom right wheel(.clk(clk), .hcount(hcount), .vcount(vcount), .x(X

+width-15), .y(y + height-10), .pixel(bottom right wheel pixel));
//

// assign pixel = rectangle pixel | top left wheel pixel | top right wheel pix
el | bottom left wheel pixel [bottom right wheel pixel;
//endmodule

//module used to create a circle of given radius on the screen by coloring pixels wi
th given color

//module draw_round puck

//#(parameter RADIUS = 10'd30,

// COLOR = 24'hFF _00_00)

vi sual i zati on. v[4] Page 9

//(input clk,

// input[10:0]x, hcount,

// input[9:0] y, vcount,

// output reg[23:0] pixel);

//

// reg[l00:0] radiussquared;

// reg[l0:0] deltax;

// reg[9:0] deltay;

// reg[l120:0] deltaxsquared;

// reg[80:0] deltaysquared;

//

// always @(posedge clk)

// // compute x-xcenter and y-ycenter

// begin

// radiussquared <= RADIUS*RADIUS;

//

// // RADIUS is a paramater

// deltax <= (hcount > (x+RADIUS)) ? (hcount—-(x+RADIUS)) : ((xX+RADIUS)-hcount);
// deltay <= (vcount > (y+RADIUS)) ? (vcount—-(y+RADIUS)) : ((y+RADIUS)-vcount);
//

// deltaxsquared <= deltax * deltax;

// deltaysquared <= deltay * deltay;

//

// // check if distance is less than radius squared

// if(deltaxsquared + deltaysquared <= radiussquared) pixel <= COLOR;
// else pixel <= 0;

// end //end always block

//endmodule

//module used to overwrite pixels of a larger circle.
//module draw_inner circle
//#(parameter RADIUS = 10,

//

COLOR = 24'h00_00_00)

//(input clk,

/7
//

//

input[10:0] x,hcount,
input[9:0] y,vcount,
input activate inner,
input [23:0] outer pixel,
output [23:0] pixel);

reg[100:0] radiussquared;
reg[10:0] deltax;
reg[9:0] deltay;
reg[120:0] deltaxsquared;
reg[80:0] deltaysquared;

//alpha blending initialization
wire[2:0] m = 3'b010;
wire[2:0] n = 3'b100;

//inner register

reg[23:0] internal pixel;

always @(posedge clk)

// compute x-xcenter and y-ycenter
begin

radiussquared <= RADIUS*RADIUS;

// RADIUS is a paramater
deltax <= (hcount > (x+RADIUS)) ? (hcount-(x+RADIUS)) : ((X+RADIUS)-hcount);
deltay <= (vcount > (y+RADIUS)) ? (vcount-(y+RADIUS)) : ((y+RADIUS)-vcount);

deltaxsquared <= deltax * deltax;
deltaysquared <= deltay * deltay;

// check if distance is less than radius squared
if(deltaxsquared + deltaysquared <= radiussquared && activate inner == 1)
begin
internal pixel[23:16] <= (outer pixel[23:16] * m >>

n) + (COLOR[23:16] * (2**n — m) >>n);

/7

internal pixel[15:8] <= (outer pixel[15:8] * m >> n

) + (COLOR[15:8] * (2**n — m) >> n);

vi sual i zati on. v[4] Page 10

// internal pixel[7:0] <= (outer pixel[7:0] * m >> n)
+ (COLOR[7:0] * (2**n — m) >> n);

// end

// else internal pixel <= outer pixel; //otherwise, maintain outer pixel color

// end //end always block

//

// assign pixel = internal pixel;

//

//endmodule

//module draw traffic light

// #(parameter THICKNESS = 5,

// HORIZONTAL LENGTH = 90,
// VERTICAL LENGTH = 180,
// STICK LENGTH = 120,

// LIGHT RADIUS = 20,

// COLOR = 24'h22 8B 22)
// (input clk,

// input [10:0] x,hcount,

// input [9:0] y,vcount,

// input [1:0] signal,

// output [23:0] traffic pixel);

//

// //draw main box

// wire [23:0] main box pixel;

// draw_empty rectangle main box(.x(x),.y(y),.hcount(hcount),.vcount(vcount),

.thickness (THICKNESS), .vertical length(VERTICAL LENGTH), .horizontal length(HORIZON
TAL LENGTH), .pixel(main box pixel));

//

// //draw support stick

// wire [23:0] support stick pixel; //x = x + (horiz len/2 — thickness/2)
// vertical line #(.COLOR(COLOR))

// support stick(.x(x + 42),.y(y+VERTICAL LENGTH),.hcount (hcount),.vc
ount(vcount), .y length(STICK LENGTH), .thickness(THICKNESS), .pixel(support stick p
ixel));

//

// //determine coordinates for circles

// wire[10:0] circle x = x + 20;

// wire[9:0] red y =y + 9'd20;

// wire[9:0] yellow y = red y + 9'd50;

// wire[9:0] green y = yellow y + 9'd50;

//

// //declare switches to control lights. if light should be off, activate the
inner circle

// reg activate inner r;

// reg activate inner y;

// reg activate inner g;

//

// //constants

// wire[1:0] red = 2'b00;

// wire[1:0] yellow = 2'b01;

// wire[1:0] green = 2'b10;

// wire on = 1;

// wire off = 0;

//

// always @ * begin

// if (signal != red) activate inner r = on;

// else activate inner r = off;

//

// if (signal != yellow) activate inner y = on;

// else activate inner y = off;

//

// if (signal != green) activate inner g = on;

// else activate inner g = off;

// end

//

// //DRAW PUCKS FOR TRAFFIC LIGHTS

//

// //DRAW RED PUCK

// wire [23:0] red puck pixel;

// draw_round puck #(.RADIUS(LIGHT RADIUS), .COLOR(24'hFF 00 _00))

// red puck(.clk(clk), .hcount (hcount), .vcount(vcount), .x(circle x),

vi sual i zati on. v[4] Page 11

.y(red y), .pixel(red puck pixel));
//

// //IF RED LIGHT IS OFF, DRAW A DARK INNER CIRCLE

// wire [23:0] red inner pixel;

// draw_inner circle #(.RADIUS(15))

// r black (.clk(clk), .hcount(hcount), .vcount(vcount), .x(circle x + 5), .y

(red y + 5), .activate inner(activate inner r), .outer pixel(red puck pixel), .pixel
(red inner pixel));

//

// //DRAW YELLOW PUCK

// wire [23:0] yellow puck pixel;

// draw_round puck #(.RADIUS(LIGHT RADIUS), .COLOR(24'hFF _FF 00))

// yellow puck(.clk(clk), .hcount(hcount), .vcount(vcount), .x(circle x
), -y(yellow y), .pixel(yellow puck pixel));

//

// //IF YELLOW LIGHT IS OFF, DRAW A DARK INNER CIRCLE

// wire [23:0] yellow inner pixel;

// draw_inner circle #(.RADIUS(15))

// y black (.clk(clk), .hcount(hcount), .vcount(vcount), .x(circle x + 5), .y(

yellow y + 5), .activate inner(activate inner y), .outer pixel(yellow puck pixel),
pixel(yellow inner pixel));

// //DRAW GREEN PUCK

// wire [23:0] green puck pixel;

// draw_round puck #(.RADIUS(LIGHT RADIUS) , .COLOR(24'h00 _FF 00))

// green puck(.clk(clk), .hcount(hcount), .vcount(vcount), .x(circle x)

, .y(green y),.pixel(green puck pixel));
//

// //IF GREEN LIGHT IS OFF, DRAW A DARK INNER CIRCLE

// wire [23:0] green inner pixel;

// draw_inner circle #(.RADIUS(15))

// g black (.clk(clk), .hcount(hcount), .vcount(vcount), .x(circle x + 5), .y(

green y + 5), .activate inner(activate inner g), .outer pixel(green puck pixel), .pi
xel(green inner pixel));

//

// assign traffic pixel = main box pixel | support stick pixel | red inner pixe
1l | yellow inner pixel | green inner pixel;

//endmodule

//module draw_empty rectangle

// #(parameter COLOR = 24'h22 8B 22)
// (input [10:0] x,hcount,

// input [9:0] y,vcount,

// input [10:0] thickness,

// input [7:0] vertical length, horizontal length,

// output [23:0] pixel);

//

// //DRAW VERTICAL BARS

// //draw left bar

// wire [23:0] vert left pixel;

// vertical line #(.COLOR(COLOR))

// vert left(.x(x),.y(y),.hcount(hcount),.vcount(vcount), .y length(v

ertical length), .thickness(thickness), .pixel(vert left pixel));

// //draw right bar

// wire [23:0] vert right pixel;

// vertical line #(.COLOR(COLOR))

// vert right(.x(x + horizontal length),.y(y),.hcount(hcount),.vcount
(vcount), .y length(vertical length), .thickness(thickness), .pixel(vert right pixel
));:

//

// //DRAW HORIZONTAL BARS

// //draw top bar

// wire [23:0] horiz top pixel;

// horizontal line #(.COLOR(COLOR))

// horiz top(.x(x),.y(y),.hcount(hcount),.vcount(vcount), .x le

ngth(horizontal length), .thickness(thickness), .pixel(horiz top pixel));
//

// //draw bottom bar

// wire [23:0] horiz bottom pixel;

// horizontal line #(.COLOR(COLOR))

// horiz bottom(.x(x),.y(y + vertical length),.hcount(hcount),.

vcount (vcount), .x length(horizontal length), .thickness(thickness), .pixel(horiz bo

vi sual i zati on. v[4] Page 12

ttom pixel));

//

// assign pixel = vert left pixel | vert right pixel | horiz top pixel | horiz bot
tom pixel;

//

//endmodule

//module draw_filled rectangle

// #(parameter COLOR = 24'hFF 45 00)
// (input [10:0] x,hcount, width,

// input [9:0] y,vcount, height,

// output reg [23:0] pixel);

//

// always @ * begin

// if ((hcount >= x && hcount < (x+width)) && (vcount >= y && vcount <
(y+height))) pixel = COLOR;

// else pixel = 0;

// end

//endmodule

ycrch2rgb. v Page 1

/**
* *

** Module: ycrcb2rgb
* %

** Generic Equations:
***/

nmodul e YCrCb2RGB (R, G, B, clk, rst, Y, Cr, Cb);

output [7:0] R, G, B;

i nput clk,rst;

input[9:0] ¥, Cr, Cb;

wre [7:0] R,G,B;

reg [20:0] R_int,G_int,B_int,X int,A int,Bl_int,B2_int,C_int;
reg [9:0] constl,const2,const3,const4,const5;

reg[9:0] Y reg, Cr_reg, Cb reg;

//registering constants
al ways @ (posedge clk)

begi n
constl = ; //1.164 = 01.00101010
const2 = ;7 //1.596 = 01.10011000
const3 = ; //0.813 = 00.11010000
const4 = ; //0.392 = 00.01100100
const5 = ; //2.017 = 10.00000100
end
al ways @ (posedge clk or posedge rst)
if (rst)
begi n
Y reg <= 0; Cr_reg <= 0; Cb_reg <= 0;
end
el se
begi n
Y reg <= Y; Cr_reg <= Cr; Cb_reg <= Cb;
end
always @ (posedge clk or posedge rst)
if (rst)
begi n
A int <= 0; Bl _int <= 0; B2_int <= 0; C_int <= 0; X int <= 0;
end
el se
begi n
X int <= (constl * (Y _reg -))
A int <= (const2 * (Cr_reg -));
Bl int <= (const3 * (Cr_reg -));
B2_int <= (const4 * (Cb_reg -));
C_int <= (const5 * (Cb _reg -));
end

al ways @ (posedge clk or posedge rst)
if (rst)
begi n
R int <= 0; G int <= 0; B_int <= 0;
end
el se
begi n
R int <= X int + A _int;
G _int <= X int - Bl int - B2_int;
B int <= X int + C_int;

end
/* limit output to 0 — 4095, <0 equals o and >4095 equals 4095 */
assign R = (R_int[20]) ? : (R _int[19:18] ==) 2 R int[17:10] : :
assign G = (G_int[20]) ? : (G _int[19:18] ==) ? G_int[17:10] : :
assign B = (B _int[20]) ? : (B_int[19:18] ==) 2 B int[17:10] : ;

endnodul e

ycrch2rgb. v Page 2

zbt _6111.v

//

// File: zbt 6111.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

//

// Simple ZBT driver for the MIT 6.111 labkit, which does not hide the

// pipeline delays of the ZBT from the user. The ZBT memories have

// two cycle latencies on read and write, and also need extra-long data hold
// times around the clock positive edge to work reliably.

//

L1177 777 77777777 /7SS S
// Ike's simple ZBT RAM driver for the MIT 6.111 labkit

//

// Data for writes can be presented and clocked in immediately; the actual

// writing to RAM will happen two cycles later.

//

// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.

//

// A clock enable signal is provided; it enables the RAM clock when high.

nodul e zbt _6111(cl k, cen, we, addr, wite data, read_data,
ramclk, ramwe_ b, ram address, ramdata, ramcen_b);

i nput clk; // system clock

i nput cen; // clock enable for gating ZBT cycles
i nput we; // write enable (active HIGH)

i nput [18:0] addr; // memory address

input [35:0] wite_data; // data to write

out put [35:0] read_data; // data read from memory

out put ram cl k; // physical line to ram clock

out put ramwe_b; // physical line to ram we_ b

out put [18:0] ram address; // physical line to ram address
inout [35:0] ramdata; // physical line to ram data

out put ram cen_b; // physical line to ram clock enable

// clock enable (should be synchronous and one cycle high at a time)
wre ramcen_b = ~cen;

// create delayed ram we signal: note the delay is by two cycles!
// ie we present the data to be written two cycles after we is raised
// this means the bus is tri-stated two cycles after we is raised.

reg [1:0] we_del ay;
al ways @ posedge cl k)
we_del ay <= cen ? {we_delay[0],we} : we_del ay;
// create two-stage pipeline for write data
reg [35:0] wite data oldl
reg [35:0] wite data ol d2;
al ways @ posedge cl k)
if (cen)

{write data old2, wite data oldl} <= {wite data oldl, wite _data};

// wire to ZBT RAM signals

assign ramwe b = ~we;
assign ramclk = i // gph 2011-Nov-10
// set to zero as place holder
// assign ram clk = ~clk; // RAM is not happy with our data hold

// times if its clk edges equal FPGA's
// so we clock it on the falling edges
// and thus let data stabilize longer

assign ram address = addr

assign ramdata = we_delay[1l] ? wite_data_old2 : {36{ 1}

assign read_data = ramdata

endnodul e // zbt_6111

Page 1

