
RISC Processor Final Report
Bradley Jomard Quinn Magendanz

Introduction
The goal of this project was to implement a basic processor that can be used to run a reduced

instruction set assembly language to implement features such as simple applications or a file

system. Our design was based on the MIT 6.004 Beta for the initial set of instructions, and from

there we implemented extra instructions and features, as well as some complex instructions.

Summary
● RISC

● Iteration on 6.004 beta

○ More RISC commands

○ Complex commands

○ Performance optimizations

○ Hardware I/O

For our project we implemented a Reduced Instruction Set Computer (RISC) processor

based on the MIT 6.004 Beta. We started by implementing all the basic modules outlined in the

design. The modules we put together to compose our processor include the Arithmetic Logic

Unit (ALU), that handles all the operations on register values, the Control Logic (CTL) that sets

the current state of the processor with al; the wire values for the current instruction, the Register

File that stores data in registers -- the fastest type of memory, the Instruction memory which

stores the contains the read-only instructions that make up the programs the processor can run,

the Program Counter that points to the current instruction being run, and the Data Memory that

stores data which will be operated on by the current program.

We then added additional features on top of this basic implementation. We started by

implementing more RISC commands like the MOV, MOD, and ZERO instructions, as well as

adding complex commands (which take multiple clock cycles to complete) like PUSHA, that

push the first 8 register file values to memory in one instruction. Next we wanted a way to

interact with the processor and demonstrate some programs, so we added input and output

capabilities which allowed us to provide parameters to the test programs we wrote and view the

resulting output on the Nexys board. Finally we did some performance optimization, mainly with

the using fast RAM registers as our data memory since we did not have a large enough data set

to justify using DDRAM. If the total memory used by the processor were to exceed the amount

of fast block RAM provided by the Nexys (#instructions + #registers, #data_memory_words >

150,000), our modular design would allow easy transition to DDR-SDRAM.

Design

Arithmetic Logic Unit

(Bradley Jomard)

● Combinational logic

● I/O

● Operations Offered (plus selector constants)

The ALU performs basic logic computations on two 32-bit inputs. These operations are selected

via a 6-bit selector input. The operations that are supported currently are equal, less than and

less than or equal compare, add, subtract, multiply, divide, modulo, AND, OR, XOR, XNOR, shift

left, shift right, shift right arithmetic, and the default outputs zero. The ALU performs the selected

operation on two 32-bit registers that it gets as inputs from the register file, and outputs one

value based on the operation. The 6-bit selectors for each function are :

Control Logic

(Quinn Magendanz)

● Combinational logic

● I/O

● Instructions offered

The control logic module uses combinational logic to assign values to constants that tell the

register file, ALU and data memory when to read, write and what operations to do. The control

logic module takes as input the operation that is going to be run, and then outputs all the

constants listen below in the table

● ALUFN is the code for the function that the ALU needs to run, like add, substract,

divide…

● ASEL is the selector for the first register inputted to the ALU

● BSEL is the selector for the second register inputted to the ALU

● MOE is 1 when we want to output the read data from memory

● MWR is 1 when we want to enable writing to memory

● PCSEL is the program counter selector

● RA2SEL is the second read address selector for the register file

● WASEL is the write address selector for the register file

● WDSEL selects what data is to be written into the register file

● WERF is 1 when writing to the register file is enabled

Register File

(Bradley Jomard)

● 32 32-bit

● Reads are combinational

● Writes are sequential

● I/O

The register file controls access to a set of thirty two 32-bit registers. Registers are being used

for the data to be operated on by the ALU because they are the fastest type of memory

available. Data reads are combinational using wires so that they are available as fast as

possible, and writes are sequential, done in one clock cycle starting at the clock posedge.

Register 26 always stores the program selector, a value that determines what program from the

instruction memory is being run (currently we have fibonacci, sort, save, load). Registers 24 and

25 are wired to the switches on the Nexys to allow the user to input values for the different

programs that can be run, like saving an inputted value to an inputted memory address in data

memory, or finding the n number from fibonacci. Registers 0-7 are also displayed on the Nexys

to allow us to see the results of the programs we run.

Instruction Memory

(Quinn Magendanz)

● Combinational ROM

● Memory type - fast block RAM

○ Modular design allows for easy switch to DDRRAM if > 150,000

○ Clock speed (using DDR-SDRAM reduced clock speed by a factor of 3 increase)

○ Can combine with data memory to get better utilization and writable instructions

● Assembly macros

○ Instructions

○ Instruction structure (32-bit aligned)

○ Instruction constants

Instruction memory is read-only. As a result, we make it combinational logic which does not

need to wait for a clock rise to perform the read. It reads out the 32-bit instruction at the address

specified by the program counter. The instruction memory currently uses fast block RAM

(registers) to store instructions because it if the fastest type of memory given the limited amount

of instructions, data, and registers used by the processor. If the sum of those types of memory

were exceeded (#instructions + #registers, #data_memory_words > 150,000), the modular

design would allow transition to DDR-SRAM.

Program Counter

(Quinn Magendanz)

● Sequential logic

● Selection of next instruction

● Multi-counter

The heart of the PC module is the 32-bit register that holds the current value of the

program counter, which is the address in main memory of the instruction to be executed in the

current clock cycle.

The 5-input 32-bit PCSEL multiplexer selects the value to be loaded into the PC register

at next rising edge of the clock.

The PC+4 adder simply adds 4 to the output of the PC register, computing the address

of the instruction following the current instruction. The output of this adder forms the PC_INC

output of the PC module.

The branch-offset adder is responsible for computing the address of instruction specified

by the literal field in BEQ and BNE instructions. That address is (PC+4)+4*SXT(ID[15:0]), i.e.,

multiplying the sign-extended 16-bit literal field of the instruction by 4 to convert the word offset

into a branch offset, then adding that to the address of the next instruction. Specifically:

● PCSEL=0. This input is selected during "normal" execution when the next

instruction to be executed is the one after the current instruction.

● PCSEL=1. This input is selected when a branch instruction is "taken".

● PCSEL=2. This input is selected during a JMP instruction, when we use the

contents of the register selected by the RA field of the instruction as the address

of the next instruction.

● PCSEL=3. This input is selected when the current instruction has an illegal

opcode, so we want to set the next PC to 0x80000004. It's easy to create a

32-bit-wide wire with the appropriate constant value: In this case we want the

label 0x80000004'32.

● PCSEL=4. This input is selected when the Beta is taking an interrupt, so we want

to set the next PC to 0x80000008.

We added an additional register to this module to provide support for instructions which

take multiple clock cycles to complete. The Multi-Counter register increments itself every clock

cycle in order to track how far along complex instructions are. When the complex instruction

completes, its multi-counter will equal the multi value specified by the control module, and the

program counter will then move to the next instruction.

Data Memory

(Bradley Jomard)

● Reads are combinational

● Writes are sequential

● Memory type - fast block RAM

○ Modular design allows for easy switch to DDRRAM if > 150,000

The register file controls access to a set of 128 32-bit registers. Since the registers are 32-bit,

hence 4 bytes each, the indexes for the memory addresses should be multiples of 4, so that

values saved don’t overlap on each other. Originally the goal was to use DRAM for the data

memory as opposed to registers. However, we looked at the specifications for the Nexys and

saw that it had enough memory for around 150,000 32-bit instructions, data memory and

register file registers, which was more than enough for us considering the small size of the

programs we are running. However the modular design would still allow us to easily switch to

DRAM if we ever needed more memory. Data reads are combinational using wires so that they

are available as fast as possible, and writes are sequential, done in one clock cycle starting at

the clock posedge, similarly to the register file. The Save and Load programs allow the user to

save an inputted value into memory and load a value from memory into the register file. The

Sort program sorts the values from the memory addresses 0-7.

Testing
This section contains a description of each of the programs loaded into the instruction ROM as
well as the assembly code describing the exact execution of the test program and the simulation
graph showing the values of processor wires throughout its execution.

I/O

(Quinn Magendanz)

In order to directly interact with the processor, we hard-wired the first eight switches to register

24 and the next seven switches to register 25. Register 25 was used in our testing programs to

indicate a memory address that a program was to operate at. Register 24 specified the input

value to that program.

The lower four bits of the first eight registers were also hard-wired to the display panel on the

Nexys board. This allowed us to load the output of the currently running function into the first

eight registers to view the output.

Program Selector

(Quinn Magendanz)

The program selector allowed us to specify a program to run given an input from the Nexys

board. The program selector was hard-wired to register 26. Given the current programs in ROM,

the processor will spin at instruction zero until this register is changed. Once a program is

specified, the program selector will jump to the address of that program.

 // Program Selector

 // Takes in literals of the addresses of four other programs to jump to.

 // This program should be located at address 0.

 // r26 is the register linked to input specifying which function to jump to.

 // r0 copies r26 and is used to check which function to jump to.

 // r1 is used to store this address to jump.

 `d(0) `BEQ(5'd26, -16'd1, 5'd31); // Remain at first instruction until r0 != 0

 `d(1) `MOV(5'd26, 5'd0);

 `d(2) `SUBC(5'd0, 16'd1, 5'd0); // Jump to program specified in r0.

 `d(3) `BNE(5'd0, 16'd2, 5'd31);

 `d(4) `MOVC(a1, 5'd1);

 `d(5) `JMP(5'd1, 5'd31);

 `d(6) `SUBC(5'd0, 16'd1, 5'd0);

 `d(7) `BNE(5'd0, 16'd2, 5'd31);

 `d(8) `MOVC(a2, 5'd1);

 `d(9) `JMP(5'd1, 5'd31);

 `d(10) `SUBC(5'd0, 16'd1, 5'd0);

 `d(11) `BNE(5'd0, 16'd2, 5'd31);

 `d(12) `MOVC(a3, 5'd1);

 `d(13) `JMP(5'd1, 5'd31);

 `d(14) `SUBC(5'd0, 16'd1, 5'd0);

 `d(15) `BNE(5'd0, 16'd2, 5'd31);

 `d(16) `MOVC(a4, 5'd1);

 `d(17) `JMP(5'd1, 5'd31);

 `d(18) `SUBC(5'd0, 16'd1, 5'd0);

 `d(19) `BNE(5'd0, 16'd2, 5'd31);

 `d(20) `MOVC(a5, 5'd1);

 `d(21) `JMP(5'd1, 5'd31);

 `d(22) `JMP(5'd31, 5'd31); // Should never reach here.

Fibonacci

(Quinn Magendanz)

Fibonacci is a test program which takes in a number of the fibonacci sequence which we need

to calculate through register 24 and returns that number of the sequence in register 0.

 // Fibonacci

 // Generates the n'th fibonacci number.

 // r3 stores the current n fibbonacci number.

 // r0 stores the value of the current fibbonacci number.

 // r1 stores n-1.

 // r2 stores n-2.

 `f(0) `MOV(5'd24, 5'd3);

 `f(1) `BNE(5'd3, 16'd2, 5'd31); // If n == 0

 `f(2) `ZERO(5'd0);

 `f(3) `JMP(5'd31, 5'd31);

 `f(4) `SUBC(5'd3, 16'd1, 5'd3);

 `f(5) `BNE(5'd3, 16'd2, 5'd31); // If n ==1

 `f(6) `MOVC(15'd1, 5'd0);

 `f(7) `JMP(5'd31, 5'd31);

 `f(8) `ZERO(5'd2); // Init r2 = 0

 `f(9) `MOVC(16'd1, 5'd1); // Init r1 = 1

 `f(10) `SUBC(5'd3, 16'd1, 5'd3); // Loop through

 `f(11) `ADD(5'd1, 5'd2, 5'd0);

 `f(12) `MOV(5'd1, 5'd2);

 `f(13) `MOV(5'd0, 5'd1);

 `f(14) `BNE(5'd3, -16'd5, 5'd31); // End loop

 `f(15) `ZERO(5'd1);

 `f(16) `ZERO(5'd2);

 `f(17) `ZERO(5'd3);

 `f(18) `ZERO(5'd4);

 `f(19) `ZERO(5'd5);

 `f(20) `ZERO(5'd6);

 `f(21) `ZERO(5'd7);

 `f(22) `JMP(5'd31, 5'd31);

Sort

(Quinn Magendanz)

Sort is a test program which takes the first eight words in memory and sorts then with the lowest

address being the smallest value and the largest address being the largest value. Sort than

takes these values and loads them into the first eight registers so that the sorted values can be

viewed on the board.

 // Sort

 // Sort the values stored in the first 8 memory addresses..

 // r0 - c

 // r1 - d

 // r2 - d-1

 // r3 - arr[d]

 // r4 - arr[d-1]

 // r5 - comparison bit

 `s(0) `MOVC(16'd4, 5'd0); // for (c = 1

 `s(1) `MOV(5'd0, 5'd1); // d = c

 `s(2) `SUBC(5'd1, 16'd4, 5'd2); // d - 1

 `s(3) `LD(5'd1, 16'd0, 5'd3); // arr[d]

 `s(4) `LD(5'd2, 16'd0, 5'd4); // arr[d-1]

 `s(5) `CMPLT(5'd31, 5'd1, 5'd5); // d > 0

 `s(6) `CMPLT(5'd3, 5'd4, 5'd6); // arr[d-1] > arr[d]

 `s(7) `AND(5'd5, 5'd6, 5'd5); // &&

 `s(8) `BEQ(5'd5, 16'd4, 5'd31); // while

 `s(9) `ST(5'd4, 16'd0, 5'd1); // arr[d] = arr[d-1]

 `s(10) `ST(5'd3, 16'd0, 5'd2); // arr[d-1] = arr[d]

 `s(11) `SUBC(5'd1, 16'd4, 5'd1); // d = d - 1;

 `s(12) `BEQ(5'd31, -16'd11, 5'd31); // end loop

 `s(13) `ADDC(5'd0, 16'd4, 5'd0); // c++

 `s(14) `SUBC(5'd0, 16'd32, 5'd5); // c < n

 `s(15) `BNE(5'd5, -16'd15, 5'd31); // end loop

 `s(16) `LD(5'd31, 16'd0, 5'd0);

 `s(17) `LD(5'd31, 16'd4, 5'd1);

 `s(18) `LD(5'd31, 16'd8, 5'd2);

 `s(19) `LD(5'd31, 16'd12, 5'd3);

 `s(20) `LD(5'd31, 16'd16, 5'd4);

 `s(21) `LD(5'd31, 16'd20, 5'd5);

 `s(22) `LD(5'd31, 16'd24, 5'd6);

 `s(23) `LD(5'd31, 16'd28, 5'd7);

 `s(24) `JMP(5'd31, 5'd31);

Save and Load

(Bradley Jomard)

Save is a simple program that allows the user to save a value into a specific address in

data memory and zero’s the first 8 registers from the register file. The program saves the value

from register 24, that is wired to the first 8 switches on the Nexys (switches 0-7), and stores it at

the memory address from register 25, which is wired to the next 8 switches from the Nexys

(switches 8-14). This means that the memory addresses have to be mutliples of 4 since the

values are saved as 32-bits, hence 4 bytes.

Load is a simple program that allows the user to load a value from data memory into the

first register of the register file and zeros registers 1-7 of the register file. The program loads the

value that is saved at the memory address taken from register 25, that is wired to switches 8-14

on the Nexys.

The following simulation was used to test the save and load programs simultaneously. The

simulation first sets the values for registers 24 and 25, then runs the save program to save the

value into memory and then runs the load program to load it into the first register from the

register file.

// // Save and load test

// input1 = 3;

// input2 = 4;

// show_output = 1;

// #20 run_save = 1;

// #20 run_save = 0;

// #200 run_load = 1;

// #20 run_load = 0;

// #200 input1 = 6;

// input2 = 8;

// run_save = 1;

// #20 run_save = 0;

// #200 run_load = 1;

// #20 run_load = 0;

// #200 input2 = 4;

// run_load = 1;

// #20 run_load = 0;

// #500;

Pusha

(Quinn Magendanz)

