
1

FPGA Fruit Ninja
By Nadia Salahuddin & Lydia Sun

2

Table of Contents

Overview 3

Motivation 3

Summary 3

Block Diagram 4

Modules 5
Game FSM (Joint) 5
Random number generator (Nadia) 5
Lookup Table (Nadia) 6
Coordinate Generator (Nadia) 6
Coordinate Generator for Slices (Nadia) 7
Slice Finite State Machine (Nadia) 8
Image Drawing Modules (Joint) 9
Background (Lydia) 10
Remote (Lydia) 10
Serial data receiver (Lydia) 12
Flash (Lydia) 13
Sound effects (Joint) 14

Challenges/Difficulties 15

Potential Improvements 17

Conclusions 18

References 1​8

Appendix 19

3

Overview
Fruit Ninja is a quite popular video game developed by Halfbrick and released in 2010. Countless Android
and iOS users have played the game, and if not, have certainly heard of it. The conjunction of a
straightforward user interface and Skinner box mechanics gave rise to an extremely popular game which was
commercially successful by numerous standards.

The objective of the game is simple: drag your finger across a touch screen on a smart device of your choice
and slice as many fruit as possible. Difficulty can vary based on which mode is selected in the start menu,
and there exist various unique features to each mode. The simplicity of the design makes for an accessible
game that can be catered to players of all ages.

The translation from software to hardware is always an interesting one; the methods for performing tasks are
not always the same for both, and there are surely different problems to think about based on which medium
is being used. We wanted to see how the different challenges in developing Fruit Ninja would change when
recreating the game in hardware. The rest of this document describes the various revelations and trials we ran
into in the creation of FPGA Fruit Ninja.

Motivation
One of our motivations for making a game was its visibility. We personally find more satisfaction in a
project with visible results. It also seemed like a fun idea to recreate something that we were already familiar
with, but with our own spin. Additionally, we were especially interested in creating a remote because it
combines previous knowledge from 6.08 (Arduino, IMUs, C++) with new concepts from 6.111 (serial). We
were also eager to interface with different components like flash memory and sound creation.

Summary
Our team decided to create an FPGA version of Fruit Ninja. Instead of using a touch screen, we created a
remote with which a user could control a cursor. We loaded all the game graphics into the FPGA’s BRAM,
kept track of all time high score with flash memory, and added sound effects with a piezo buzzer. The basic
rules and mechanics of the game are similar to the original, with fruit launching at random, game over on
touching a bomb, and lives decreasing if fruits drop without being sliced.

4

Block Diagram

5

Modules

Game FSM (Joint)
module game_fsm (input [7:0] highscore, input vclock, input vsync, input serial_data, input reset,
input [10:0] hcount, input [9:0] vcount, output [23:0] pixel, output [7:0] ultimate_score, output game_state,
output apple_slice, output orange_slice, output peach_slice, output bomb_slice, output [1:0] fell_out, output
[1:0] state_out, input resetbutton);

This module does much of the heavy lifting in terms of where other modules ultimately are wired together.
There are a couple of key parts of the game FSM:

1. Dealing with game state transitions: As the name of the module implies, this module determines
when the game enters the start, play, and end states.

a. START: This is the startup screen. It displays some images; pressing the start button on the
remote whilst placing the cursor on the play button allows the user to start playing the game.

b. PLAY: The user may play the game until he loses three lives by letting three fruit fall to the
bottom of the screen unsliced, or by swiping through a bomb.

c. GAME_OVER: The user has lost the game. This screen displays the score the user
accumulated in this iteration of the game and the high score. Pressing the start button on the
remote whilst placing the cursor on the replay button allows the user to play the game once
again.

2. Score and lives display: Using the image-drawing module from lab 3 (for rectangular shapes), we
displayed the lives the user currently has using the ​fell and ​score outputs from the coordinate
generator. The high score is also displayed at the end screen based on the input from the flash to the
game FSM module.

a. The score is displayed using numerous instantiations of the rectangular image-drawing
module and displaying them or not based on what the score should be (so, a seven segment
display but displayed using VGA).

b. The location of the score shifts based on which game state the user is in, so the position
registers for the score digits are changed in game state transitions at the clock edge.

3. Graphics: The spatial precedence in the game is determined in this module as below (elements sorted
by z values):

background < fruits < bomb < cursor
The fruits have an arbitrary order. In general, order is set by checking for overlaps between elements
and assigning pixel values to the desired top image. The state machine also determines which
elements are on screen in which states.

6

Random number generator (Nadia)
module randombitsgenerator (input clk, input data, output [15:0] randomnumber);

The cyclic redundancy check is quite similar to a linear-feedback shift register in their mathematical nature.
LFSRs can seem to produce “random” bit strings if certain parameters are adjusted. This allows us to use a
CRC-16 calculation to be a good proxy for “randomness”, though not truly random ​(Rosenberg, 1997). Of
course, trying out different parameters may be useful, as some data strings work better than others, as do
different lengths of CRC generators and indexing into different bits for our lookup tables.

This module shifts in data bits to a CRC computation from an external source and outputs a 16 bit number
that we can subsequently use in our lookup table to choose parameters that seem somewhat random for fruit
motion generation.

The following is how CRC-16 is calculated:

(Lpset 6, 2018)

Lookup Table (Nadia)
module lookuptable (input clk, input [2:0] randomnumber, output reg [4:0] yvel1, output reg backwards1,
output reg [9:0] xcostart1);

This module uses the random number generator to create usable parameters for the coordinate generator
module. Based on the 3 bit input ​randomnumber​, a case statement determines an initial y-velocity,
backwards (whether the fruit moves left or right), and the initial x-coordinate for the fruit. These values are
pre-selected by the envisioner based on what looks nice on the screen. Because the the gravity is chosen to be
“2” for the duration of the game, initial velocities are chosen to be multiples of 2 to avoid overflow when
determining the peak of the parabola in the coordinate generator module.

Coordinate Generator (Nadia)
module coord_generator (input rdy, input [2:0] slice, input active, input vsync, input [4:0] yvel, input
backwards, input [9:0] xcostart, output [9:0] x_coord, output reg [2:0] fell, output [9:0] y_coord, output reg
activeconst, output reg [7:0] score, output [4:0] yvelocity, output reg new);

7

This module takes in the inputs ​slice ​, ​active ​, ​vsync ​, ​backwards ​, ​yvel ​, ​xcostart ​, and outputs
an ​x_coord ​, ​y_coord ​, ​activeconst ​, ​score ​, ​yvelocity ​, and ​new ​. It performs the coordinate
calculation that allows the fruit on the screen to rise and fall along a parabolic trajectory. Instead of using the
traditional parabolic motion equations and pipelining, the module takes advantage of sequential circuitry:
numbers can be multiplied by repeatedly adding (which is what multiplication is, in essence). The module
describes a finite state machine with two states: START and CALC. The finite state machine will only do
state transitions while a ready signal (​rdy ​) is asserted. Additionally, ​fell ​and ​y_coord are reset at the
positive edge of the ready signal (so as to restore lives at a new game and reduce a one-cycle flashing of the
fruits and bomb) and the score is reset at the negative edge of the ready signal (so as to set the score to zero
after a game is finished). Resetting the score at the positive edge proved to be an issue, if one is wondering.

START
the FSM latches on to an active bit (provided by the random number generator) and resets the y-coordinate,
while taking in various parameters that determine the path in total from a lookup table (initial y velocity,
initial x coordinate, and whether the fruit will travel backwards (​left ​)). This latched active bit is then fed
into ​activeconst ​to produce a level signal. This signal is routed to the image-drawing module to indicate
that images that are inactive should not be drawn. ​New ​is asserted. This latching mechanism is important
because the random number generator is changing at 65 MHz.

CALC
Y-coordinates and x-coordinates are generated. ​New is deasserted (this allows for a pulse signal when a new
fruit appears on the screen; this is essential for deciding slice mechanics). The x-coordinate decreases or
increases, based on the input ​backwards ​, by a fixed value:

x_coord1 <= (left)? x_coord1 - x_vel: x_coord1 + x_vel;

*left is the latched value of backwards provided as an input

The y-velocity changes every 9 (this is up to the user) cycles, as this means the fruit will move more slowly
and hence more aesthetically. The y-velocity increases or decreases based on which part of the parabola the
fruit is currently on, as does the y-coordinate:

y_coord1 <= (reachedzero && y_coord1 >768)? 768: (y_up)? (y_coord1 -

 y_vel) : (y_coord1 + y_vel);

*reachedzero goes high when the y-velocity has, you guessed it, reached zero; y_up goes low when reachedzero goes high

The ​fell ​, ​score ​, ​and ​new ​outputs are used to calculate game mechanics external to this module. ​Fell is
calculated by seeing how many fruit go past the bottom of the screen while being active and unsliced. Score
increments at the positive edge of the slice input. Finally, a state transition occurs when the fruit has traveled
an entire parabola and is now past the bottom of the screen.

Coordinate Generator for Slices (Nadia)
module coord_generator_slice (input begincalc, input vsync, input [4:0] yvel, input new, input backwards,

8

input [9:0] xcostart, input [9:0] ycostart, output [9:0] x_coord, output [9:0] y_coord);

Logically, this module is very similar to the regular coordinate generator except for the fact that it is a bit
more specialized for bottom half slices of fruit. Essentially, there are two modules that determine the
coordinates of the top (coord_generator) and bottom (coord_generator_slice) halves at all times, but control
signals such as ​active ​, ​new ​, and ​slice ​/​begincalc ​(the two are used synonymously across
coord_generator and coord_generator_slice) are used to determine how exactly these coordinates are used.

The module calculates the coordinates for a downward parabolic motion from the peak of a trajectory. Such
behavior necessitates the initial y velocity to be 0. The initial x-coordinate and y-coordinate are determined
from the current x and y coordinates of the fruit’s motion when it is unsliced. There are two states to this
module’s finite state machine: WAIT and CALC.

WAIT
In the wait state, the coordinates are such that the bottom half of the fruit is moving with the top half of the
fruit, as it is unsliced (so the x-coordinate is the same and the y-coordinate is the same as the y-coordinate
added to half the height of the picture so as to position the bottom half in the correct position). The state
machine stays in this state until ​begincalc ​is asserted, which is the equivalent of the corresponding fruit
being sliced.

CALC
In the calc state, the coordinates are generated and depend on where on the xy plane the fruit was split. The
y-velocity still changes every nine cycles, as in the regular coordinate generator, but the y-velocity is either
staying the same or incrementing. The x-coordinate depends on the ​backwards input; the bottom half
could move either way. In this case, the input is always opposite the top half, as we wanted our fruit halves to
separate in different directions for aesthetic purposes. When a new, active fruit is launched from the bottom,
the finite state machine would go back to the wait state and again, the coordinates of the bottom half of the
fruit would follow the top half of the fruit.

Slice Finite State Machine (Nadia)
module slice_dealer (input peachactive, input appleactive, input orangeactive, input clk, input apple_new,
input orange_new, input peach_new, input [23:0] applepix, input [23:0] cursorpix, input [23:0] orangepix,
input [23:0] peachpix, output applesliced, output orangesliced, output peachsliced);

This module takes in the pixel values for the different fruit on the screen and the cursor and determines
whether a slice has occurred. Separate finite machines for the different fruit allow for the ​slice ​output to
stay high for the corresponding fruit while it is still in motion. The module additionally deals with the
problem of inactive fruit and their slice status (in that inactive fruit cannot be sliced). The two states for the
finite state machine are as follows:

WAIT
This state is the idle equivalent. The state machine resides in this state until it detects an overlap between any
of the fruit pixels and the cursor pixels. ​Slice ​ is deasserted the entire time the FSM is in this state.

9

SLICE
This state asserts ​slice as long as a new, active fruit has not appeared. The consequence of this is ​slice
being a level signal as opposed to a pulse signal which allows for calculations in other modules that require
such a construct (or, really, it’s a design choice).

Image Drawing Modules (Joint)

Fruit and Bombs
Fruit and bombs are 150 x 150 8-bit bitmaps (except for the peach, which is 132x150). We used ​this site to
convert pngs to 8 bit bmp files. The coe files are generated with the MATLAB script provided under ​tools on
the website and stored in the FPGA’s BRAM. The background color on all the images is black, because the
Verilog for the game replaces black pixels with the background color - all seemingly black colors in the fruit
images are dark shades of grey.

Drawing
Fruit are only drawn if the fruit is considered active (​activeconst from coordinate generator); otherwise,
the fruit will not appear on screen or have any effect on game score/lives.

The fruits are drawn similarly to the picture_blob module provided in lab 3. However, because the fruits split
apart, the top and bottom halves are actually drawn separately. Both read from the same ROM/coe file, - the
top half of the fruit reads normally, but the bottom half of the fruit reads only from the bottom half of the coe
file. Therefore, there are two image addresses (​image_addr_1 for the top and ​image_addr_2 for the
bottom):

assign image_addr_1 = (hcount-x) + (vcount-y) * WIDTH;

assign image_addr_2 = (hcount-xslice) + (vcount-yslice) * WIDTH +

(WIDTH * HEIGHT/2);

*xslice and yslice correspond to the x and y coordinates of the bottom half of the fruit.

When a fruit is not sliced, ​image_addr_1 is used to index into the coe file. When the fruit is sliced, the
top and bottom halves are drawn separately, and a register image_addr is set to either 1 or 2 depending on
which half is being drawn. ​Image_addr_2 indexes only into the bottom half of the coe file.
Image_addr ​ is passed to the rom, which generates a signal ​image_bits ​ for mapping colors.

https://online-converting.com/image/convert2bmp/
http://web.mit.edu/6.111/volume2/www/f2018/index.html
http://web.mit.edu/6.111/volume2/www/f2018/index.html

10

The bomb is drawn exactly like the ​picture_blob module from lab 3, because it cannot be “sliced”
(except for requiring ​active ​ to be high in order for it to be drawn).

Text & logo
The text and logos are also 8-bit bitmaps. All the text images are grayscale and only required one color coe
file. These were made by downloading the font ​Juicy Fruit​ and exporting PowerPoint slides as images. These
images also have a black background that is replaced by the game background.

Background (Lydia)
module bg (input vsync, output [23:0] pixel);

The background for the game shifts between shades of pink and blue. This is achieved by fixing green and
blue values at 164 and 255, respectively, while varying red. At every pulse of ​vsync ​, red increases by 1
until it reaches 255, at which point it decreases by 1 until it reaches 0 and the cycle begins again. I chose the
fixed blue and green values by looking up an ​online RGB slider and picking which colors I thought would
look best for a background.

Remote (Lydia)

Description
The remote has two main purposes: to collect motion data from an IMU and process it, and to transmit data
to the FPGA. The first task is accomplished by retrieving angular velocity from the gyroscope, integrating it
to get position, and then translating the resulting values into a scale fit for the monitor (1024 x 768). The
second task is accomplished by writing data to a pin (code provided by Joe) according to a serial protocol.
The remote acts as the serial transmitter and the FPGA acts as the serial receiver.

http://www.fontriver.com/font/juicy_fruity/download.html
https://yuilibrary.com/yui/docs/color/rgb-slider.html

11

Components
The remote includes several components:

Teensy
The Teensy is connected to everything else on the board. It computes x and y coordinates based on data from
the IMU, and writes data to its TX pin to be sent by the transmitting BT module. Loop speed is set at 10
milliseconds.

2 buttons
The top button is meant for the user to select items, and the bottom button is meant to recalibrate the cursor
position. Both buttons are active low. The top button’s state is packaged into the data to be transmitted (see
below for serial data transmission). A press on the bottom button triggers x and y coordinates to be reset to
the center of the screen (coordinates (512, 389) on a 1024x768 screen).

MPU9250

12

This IMU is needed to retrieve angular velocity, so we used the gyroscope. The gyroscope measures 3 axes
of motion, but we only needed two - the -z and x axes on the gyroscope, which correspond to the x and y
axes, respectively, in the game and in relation to the screen. Integration is performed as so:
velocity = velocity ​-1 ​ ⨉ δt (loop speed) ⨉ leaky factor ⨉ sensitivity
The leaky factor is used to combat drift. Sensitivity helps the cursor move more with a smaller motion. The
tricky part was balancing these two variables, because a lower leak is better for reducing drift, but a higher
sensitivity is better for smoother and less constrained motion. Decreasing the loop speed also helps to create
a smoother motion.

Adafruit BT module
The Bluetooth module was part of our stretch goals. Instead of wiring a connection from the Teensy’s TX pin
directly to an I/O pin on the FPGA, we connected BT modules to each of these. The BT modules are
pre-programmed to connect to each other, and will reconnect and send data each time both are powered on.
The tricky part is wiring them up correctly - the transmitting module receives data at its RX pin from the
Teeny’s TX pin, and the receiving module is connected to the FPGA with its TX pin.

Powerboard
This board allows the remote to be truly wireless, connecting power to a battery instead of an external source
through micro-USB. As long as it is wired up correctly to supply power to the Teensy and the battery is
charged, nothing more is needed for it to work. You can charge the battery by plugging in a micro-USB to
the port on the board.

Serial data transmission
The data is packaged into 5 bytes to be sent from the Teensy - 2 bytes each for the 16 bit x and y coordinates,
and 1 byte for the button. The data is big endian at the bit level and little endian at the byte level. The button
data is only 1 bit long; the upper 7 bits are packed with 0s. The data is sent at 9600 baud.

Serial data receiver (Lydia)
This module is similar to the serial receiver from lab 5c. Every time a sample is collected from the incoming
serial data, it is shifted into a register. Instead of terminating after a certain number of bits have been received
like in lab 5c, this serial receiver terminates after a certain number of bytes have been received and re-centers
after every byte (see more in challenges and difficulties). The state machine is as follows:

HIGH (default/start state)
In this state, we wait for a certain amount of time before we transition into FALLING to wait for a falling
edge. This is to establish that the FSM will not start in the middle of a data stream. Originally, the time was
set to 2 ms. It was decreased to 200 ns after adding in Bluetooth functionality because the BT modules send
packets at unequal spacing; sometimes bytes 4 and 5 will be bunched closely to byte 1 of the next round of
data, so we shouldn’t wait for data to be high too long before looking for a falling edge.

FALLING
This state transitions into FIRST when serial data goes low.

13

FIRST
The name of this state refers to the first bit of a byte, in which the retrieval of the start bit occurs 8 sampling
clocks from the falling edge. After 8 sampling clocks, the state transitions to DATA.

DATA
In this state, a new bit is read in every 16 sampling clocks. After 8 bits have been collected, this state
transitions back to FALLING in preparation for the next byte of data. If after 8 bits have been collected, 5
bytes have been collected in total (the total amount of data sent from the Teeny for this project is 5 bytes), the
state transitions to DONE.

DONE
In the DONE state, the x coordinate, y coordinate, and button data are reconstructed from the bitstream
according to its endianness.

Flash (Lydia)
Flash memory is used in this project to store a high score that persists through shutdowns. On startup, the
system is designed to read the high score from flash and store it in a register. Every time the user enters game
over in the current power-on, if the user has gained a new high score, the register value is replaced and the
flash is rewritten.

Reading and Writing
In order to read and write to the flash, I used Lorenzo’s modules from the 6.111 website and passed in signals
from a max_score module, which determines when to read and write from flash. ​Reading ​ and ​writing

14

are the two signals which trigger their corresponding events when asserted in Lorenzo’s module. The state
machine for the max score module is as follows:

STARTUP
Reading ​ is asserted and state immediately transitions to CHECK.

CHECK
Stay in this state if flash is busy; if flash is not busy, store the data coming from flash in a register and
transition to IDLE.

IDLE
If a new high score has been achieved at game over, assert reset signals for one clock cycle, store the new
high score in our register, put the new high score as data to be written to flash, and transition to RESET. Our
project also supports the ability to reset the high score to 0, where all the signals are the same, except write
data and the register are set to 0 and the events are triggered by a button press.

RESET
Reset signals are de-asserted. As soon as the flash is not busy, we transition to the STORE state and assert
writing.

STORE
As soon as the flash is not busy, transition back to IDLE. The new score has now been written into flash.

Interface to game
All the flash modules are timed with a 27 mhz clock, while all the game modules are timed with a 65 mhz
clock. Because we need to pass signals from the game to the flash modules, all the game signals pass through
3 registers at 27 mhz before being used by the max score module.

Sound effects (Joint)
module sfx (input clk, input apple_slice, input orange_slice, input peach_slice, input bomb_slice, input [1:0]
lost_life, input busy, input [1:0] state_in, output reg sound);

This module generates the sound effects associated with certain events in the game. This is done by asserting
high at certain frequencies of choice to an I/O pin which is wired to a piezo buzzer. The module is an FSM
where states correspond to different sounds, Each state corresponds to a different sound, and each sound or
state is only played for a certain amount of time before expiring back to an IDLE state and waiting for a new
trigger. State transitions also determine play order in a logical fashion. For example, swiping a bomb is not
mutually exclusive to receiving a high score, so both sounds should be played if both events occur. This can
be done by adding conditions into the different states based on what can happen (i.e. if a bomb is hit and a
new high score is achieved, the state transitions from BOMB to HIGH_SCORE to IDLE, instead of directly
returning to IDLE after BOMB). The sounds are the following:

1. Fruit slice: This sound plays upon slicing any fruit.

15

2. Lost life: This sound plays upon losing a life. It uses the ​fell ​output from the coordinate generator
to see whether the previous number of lives is unequal to the current number of lives (naturally, if
they are different, the sound will play). The sound does not play if the lives change from 0 to 3
(when the game is restarted).

3. Bomb swipe: This sound plays upon swiping a bomb. It uses the ​bomb_slice ​input to see whether
the bomb was slashed.

4. High score: This sound plays upon achieving a high score on the “game over” screen. The module
uses the busy input to transition into playing a high score sound, because busy is asserted when a
new high score is being written into flash.

Challenges/Difficulties

We ended up changing our timeline substantially based on what would take the most amount of time. The
graphics pipeline ended up taking as much time as suspected, but there were important design decisions that
had to be made which would determine how modules ended up getting wired together and how signals had to
be defined.

Parabolic motion
The initial problem with graphics that had to be decided was how to generate the coordinates for the motion
of the fruit. Our initial conception was that we would use the equations for parabolic motion:

(TutorVista, 2018)

This would require us to multiply numbers which is expensive time-wise. This would also require pipelining
given the small period of the clock the module uses. Furthermore, we planned to have a “timer” module
which would allow us to have small, discrete time intervals to supply to these equations. This is tedious given
that iteratively adding does the same task, along with some ternary operators that allow us to determine the
direction of motion for the fruit in the game.

Slice drawing
When I (Nadia) was initially prototyping how to slice fruit for our stretch goal, I did it in a separate project
(our compilation time was getting a bit high). The downwards motion after slicing the fruit was generated
with the coord_generator_slice module that I had written, and the picture used was just an apple. Drawing a

16

separate rectangular image of uniform color and having that separate from the top half of the apple is easy:
draw the top half and when they separate, draw the bottom half as a uniformly-colored rectangle.

However, to use the actual bottom half of the picture, we had to use different image addresses for the top and
bottom halves. We thought a quick solution would be to instantiate two ROM modules: one for drawing the
top half and one for drawing the bottom half. Of course, that is quite space-inefficient, so we ended up using
the ROM module once and then varying the image address based on which part of the fruit the module
should be drawing based on the ​slice ​ input.

Serial receiver
The serial receiver was modified from lab 5c because of the Bluetooth modules we used. We originally wrote
the receiver similarly to lab 5c, where data collection starts at the falling edge for the first start bit and
continues until a certain number of bits have been collected. However, adding Bluetooth modules meant that
we needed to rewrite the receiver to terminate data collection after a certain number of bytes instead of bits,
looping back to wait for a falling edge multiple times instead of just once.

The change wasn’t difficult to make; it involved changing a few rules on state transitions, as well as keeping
track of the number of bits and bytes stored. Another problem that we encountered, though, had to do with
the sporadic nature of the BT module’s packets. The data we sent was 5 bytes long; sometimes, byte 5 would
be grouped more closely with byte 1 of the next pulse than byte 4 of its own. This meant that we had to
decrease the amount of time waiting for data to be high before transitioning to watch for a falling edge (start
bit). Otherwise, we might not have caught the start bit of byte 1 for the next pulse.

Flash memory
Flash memory was frustrating to work with. The original approach involved using our max_score module to
send signals like ​doread ​, ​dowrite ​, and ​reset ​ to the flash_manager module provided on the 6.111
website. However, we ended up using Lorenzo’s flash module as an intermediary module in between
max_score and flash_manager, because his Verilog worked for sure. We didn’t know until after using
Lorenzo’s code that two reset signals needed to be asserted to wipe flash. If we were to improve the game, it
would make sense to do away with Lorenzo’s module and pass signals directly from max_score to
flash_manager, this time asserting both reset signals instead of just one.

17

Potential Improvements

Double Dabble
The method we used for generating the score on the screen was “quick and dirty”. A nice, methodical way of
converting binary into binary-coded decimal is the double dabble algorithm. From the output from a double
dabble module, one could index into certain bits and find the ones, tens, and hundreds digit (and so on).

FIFO for sound effects
One of the challenges of implementing sound effects included the situations where multiple sounds could be
triggered. Because of the way sound was implemented, with states corresponding to each sound, it was easy
to miss out on a sound if another was triggered. Our current fix introduces extra variables and conditions to
the state transitions. To simplify the module, we could create a buffer for state transitions or sound outputs,
where each event pushes another set of values onto the queue.

Rotating fruit slices
Using the CORDIC algorithm, one can calculate the matrix transformations to rotate the halves of the fruit by
rapidly changing the coordinates of the different pixels.

Animated state transitions
When clicking play and replay, there could be some animations or movement on the buttons to make them
look clicked. To do this, we could add an extra state in between START and PLAY that triggers on a button
press and exits after completing its animation. There could also be some kind of game over animation with a
flashing screen or exploding bomb, which would involve a similar fix.

New project idea
We received a lot of compliments on the text used in our game, and that inspired the idea for a potential next
final project - a program where users can sketch out a new font, then save the font and use it to type. This
project could use a cursor like the Fruit Ninja project to write fonts, and store the data for each character in
flash. It would also involve interfacing with a keyboard, which is not something that we explored in Fruit
Ninja.

Conclusions
We had a lot of fun integrating different concepts and labs from 6.111 into this final project. We were happy
to adopt and modify certain parts of labs into our project (i.e. drawing with different image addresses from

18

lab 3, creating different sounds on a buzzer from lab 4). ​Here​ is a video Lydia made to document the process.
Below are some thoughts for future students:

The absolute number one thing to keep in mind about not only this project but projects in general is that
communication and timing are key. We found that consistently dedicating time to the project allowed for less
stress later on, and more slack when needed. Slack can be useful when a certain aspect of a project is taking
longer than expected, or for implementing more interesting features, both of which are possible situations.

We, personally, had quite a good history of communication. Though for most of the project, we worked on
entirely different aspects, there were a handful of times when we pair-programmed. This helped us spot each
other’s logical inconsistencies and actually helped us get through bugs we would not have otherwise noticed
as quickly. Asking your partner for advice is a good way to ensure that he or she knows what you are doing
while giving you new ways of thinking about problems. Although not all project partners will work as
closely as we did, it was nice to understand each other’s modules for debugging/overall familiarity with all
parts of the project.

We would also recommend making the project as modular as possible. This entails making sure there are no
internal bugs in a certain aspect of the project, so that it can be integrated with ease. We found that making
our modules fool-proof (or as much as we could) helped a lot during integration. Additionally, we would
recommend learning how to use the logic analyzer, which we used to debug the serial receiver. We also used
the hex display and LEDs a lot - the hex display was especially helpful, but had a lot of timing violations
(note for future students).

Finally, ask for help, and do it often. The lovely staff in 6.111 are dedicated to helping you understand what
you are doing, and there are many resources to help you debug. However, the prerequisite to this is not
procrastinating. Starting early and giving substantial effort at all times will mean that you will run into
problems early on, which is exactly what you want. You do not want to run into major design issues or tough
bugs when there is much else to be done, but this is a fact of life, and not necessarily something you don’t
know.

References
1. “CRC-16 Calculation.”​ 6.111 Introduction to Digital Systems Laboratory. ​October 2018.

http://web.mit.edu/6.111/volume2/www/f2018/index.html
2. Rosenberg, B. (1997, October 28). Generation of pseudorandom numbers by a shift register.

Retrieved from
http://www.cs.miami.edu/home/burt/learning/Csc609.022/random_numbers.html

 3. TutorVista. “Projectile Motion Formula.” ​TutorVista.com​. 2018. Retrieved from
https://formulas.tutorvista.com/physics/projectile-motion-formula.html

https://drive.google.com/file/d/1T4ivaEvJ_sg2Jhm2kClmwhZ-TtGu6Xly/view?usp=sharing
https://formulas.tutorvista.com/physics/projectile-motion-formula.html

19

Appendix

Game FSM

module fruit_ninja (beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in, ac97_synch,

ac97_bit_clock,

vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,

vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,

vga_out_vsync,

tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,

tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,

tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,

tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,

tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,

tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,

ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,

ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,

clock_feedback_out, clock_feedback_in,

flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,

flash_reset_b, flash_sts, flash_byte_b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

mouse_clock, mouse_data, keyboard_clock, keyboard_data,

clock_27mhz, clock1, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,

disp_reset_b, disp_data_in,

button0, button1, button2, button3, button_enter, button_right,

button_left, button_down, button_up,

switch,

led,

user1, user2, user3, user4,

daughtercard,

systemace_data, systemace_address, systemace_ce_b,

systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

analyzer1_data, analyzer1_clock,

20

analyzer2_data, analyzer2_clock,

analyzer3_data, analyzer3_clock,

analyzer4_data, analyzer4_clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;

input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;

output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,

vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;

output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,

tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,

tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;

input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,

tv_in_hff, tv_in_aff;

output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,

tv_in_reset_b, tv_in_clock;

inout tv_in_i2c_data;

inout [35:0] ram0_data;

output [18:0] ram0_address;

output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;

output [3:0] ram0_bwe_b;

inout [35:0] ram1_data;

output [18:0] ram1_address;

output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;

output [3:0] ram1_bwe_b;

input clock_feedback_in;

output clock_feedback_out;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;

input flash_sts;

output rs232_txd, rs232_rts;

input rs232_rxd, rs232_cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

input clock_27mhz, clock1, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;

input disp_data_in;

output disp_data_out;

input button0, button1, button2, button3, button_enter, button_right,

button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] user1, user2, user3, user4;

inout [43:0] daughtercard;

21

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;

input systemace_irq, systemace_mpbrdy;

output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,

 analyzer4_data;

output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

//

//

// I/O Assignments

//

//

// Audio Input and Output

assign beep= 1'b0;

assign audio_reset_b = 1'b0;

assign ac97_synch = 1'b0;

assign ac97_sdata_out = 1'b0;

// ac97_sdata_in is an input

// Video Output

assign tv_out_ycrcb = 10'h0;

assign tv_out_reset_b = 1'b0;

assign tv_out_clock = 1'b0;

assign tv_out_i2c_clock = 1'b0;

assign tv_out_i2c_data = 1'b0;

assign tv_out_pal_ntsc = 1'b0;

assign tv_out_hsync_b = 1'b1;

assign tv_out_vsync_b = 1'b1;

assign tv_out_blank_b = 1'b1;

assign tv_out_subcar_reset = 1'b0;

// Video Input

assign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b0;

assign tv_in_fifo_clock = 1'b0;

assign tv_in_iso = 1'b0;

assign tv_in_reset_b = 1'b0;

assign tv_in_clock = 1'b0;

assign tv_in_i2c_data = 1'bZ;

// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,

// tv_in_aef, tv_in_hff, and tv_in_aff are inputs

// SRAMs

assign ram0_data = 36'hZ;

assign ram0_address = 19'h0;

assign ram0_adv_ld = 1'b0;

assign ram0_clk = 1'b0;

assign ram0_cen_b = 1'b1;

assign ram0_ce_b = 1'b1;

assign ram0_oe_b = 1'b1;

assign ram0_we_b = 1'b1;

assign ram0_bwe_b = 4'hF;

assign ram1_data = 36'hZ;

assign ram1_address = 19'h0;

assign ram1_adv_ld = 1'b0;

assign ram1_clk = 1'b0;

22

assign ram1_cen_b = 1'b1;

assign ram1_ce_b = 1'b1;

assign ram1_oe_b = 1'b1;

assign ram1_we_b = 1'b1;

assign ram1_bwe_b = 4'hF;

assign clock_feedback_out = 1'b0;

// clock_feedback_in is an input

 // Flash ROM

// assign flash_data = 16'hZ;

// assign flash_address = 24'h0;

// assign flash_ce_b = 1'b1;

// assign flash_oe_b = 1'b1;

// assign flash_we_b = 1'b1;

// assign flash_reset_b = 1'b0;

// assign flash_byte_b = 1'b1;

// flash_sts is an input

// RS-232 Interface

assign rs232_txd = 1'b1;

assign rs232_rts = 1'b1;

// rs232_rxd and rs232_cts are inputs

// PS/2 Ports

// mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

// LED Displays

assign disp_blank = 1'b1;

assign disp_clock = 1'b0;

assign disp_rs = 1'b0;

assign disp_ce_b = 1'b1;

assign disp_reset_b = 1'b0;

assign disp_data_out = 1'b0;

// disp_data_in is an input

// Buttons, Switches, and Individual LEDs

//lab3 assign led = 8'hFF;

// button0, button1, button2, button3, button_enter, button_right,

// button_left, button_down, button_up, and switches are inputs

// User I/Os

assign user1 = 32'hZ;

assign user2 = 32'hZ;

assign user3 = 32'hZ;

assign user4 = 32'hZ;

// Daughtercard Connectors

assign daughtercard = 44'hZ;

// SystemACE Microprocessor Port

assign systemace_data = 16'hZ;

assign systemace_address = 7'h0;

assign systemace_ce_b = 1'b1;

assign systemace_we_b = 1'b1;

assign systemace_oe_b = 1'b1;

// systemace_irq and systemace_mpbrdy are inputs

// Logic Analyzer

assign analyzer1_data = 16'h0;

assign analyzer1_clock = 1'b1;

23

assign analyzer2_data = 16'h0;

assign analyzer2_clock = 1'b1;

assign analyzer3_data = 16'h0;

assign analyzer3_clock = 1'b1;

assign analyzer4_data = 16'h0;

assign analyzer4_clock = 1'b1;

//

//

// fruit ninja

//

//

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));

// synthesis attribute CLKFX_DIVIDE of vclk1 is 10

// synthesis attribute CLKFX_MULTIPLY of vclk1 is 24

// synthesis attribute CLK_FEEDBACK of vclk1 is NONE

// synthesis attribute CLKIN_PERIOD of vclk1 is 37

BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

// power-on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1'b0), .CLK(clock_65mhz), .Q(power_on_reset),

 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));

defparam reset_sr.INIT = 16'hFFFF;

// ENTER button is user reset

wire reset,user_reset;

debounce

db1(.reset(power_on_reset),.clock(clock_65mhz),.noisy(~button_enter),.clean(user_reset));

 assign reset = user_reset | power_on_reset;

// generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvga1(.vclock(clock_65mhz),.hcount(hcount),.vcount(vcount),

.hsync(hsync),.vsync(vsync),.blank(blank));

reg data1,data2, data3;

wire game_state;

// feed XVGA signals to fruit ninja game

wire [23:0] pixel;

// scorekeeping

wire [7:0] ultimate_score;

wire [15:0] score;

// Sounds

wire [1:0] fell;

wire apple_slice, orange_slice, peach_slice, bomb_slice;

wire [1:0] state;

game_fsm fruit_ninja(.resetbutton(~button_enter), .state_out(state), .vsync(vsync),

.serial_data(data3), .vclock(clock_65mhz),.reset(reset), .ultimate_score(ultimate_score),

.hcount(hcount), .vcount(vcount) ,.pixel(pixel), .game_state(game_state), .highscore(score[7:0]),

24

.fell_out(fell), .apple_slice(apple_slice), .orange_slice(orange_slice),

.peach_slice(peach_slice), .bomb_slice(bomb_slice));

reg [23:0] rgb;

reg b,hs,vs;

always @(posedge clock_65mhz) begin

data1 <= user2[0];

data2 <= data1;

data3 <= data2;

hs <= hsync;

vs <= vsync;

b <= blank;

rgb <= pixel;

end

// VGA Output. In order to meet the setup and hold times of the

// AD7125, we send it ~clock_65mhz.

assign vga_out_red = rgb[23:16];

assign vga_out_green = rgb[15:8];

assign vga_out_blue = rgb[7:0];

assign vga_out_sync_b = 1'b1; // not used

assign vga_out_blank_b = ~b;

assign vga_out_pixel_clock = ~clock_65mhz;

assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

wire [639:0] dots;

wire writemode;

wire [15:0] wdata;

wire dowrite;

wire [22:0] raddr;

wire [15:0] frdata;

wire doread;

wire busy;

wire [11:0] fsmstate;

wire [4:0] state_out;

wire [15:0] score_to_store;

wire writing;

wire reading;

wire flash_reset;

wire up_reset;

wire ready;

wire [15:0] current_score;

flash_manager flash(.clock(clock_27mhz), .reset(flash_reset), .dots(dots), .writemode(writemode),

.wdata(wdata), .dowrite(dowrite), .raddr(raddr), .frdata(frdata), .doread(doread), .busy(busy),

.flash_data(flash_data), .flash_address(flash_address),

.flash_ce_b(flash_ce_b),.flash_oe_b(flash_oe_b), .flash_we_b(flash_we_b),

.flash_reset_b(flash_reset_b), .flash_sts(flash_sts), .flash_byte_b(flash_byte_b),

.fsmstate(fsmstate));

flasher my_flash (.clk(clock_27mhz), .busy(busy), .fsmstate(fsmstate), .dots(dots),

.writing(writing),.reading(reading), .wdata(wdata), .writemode(writemode), .dowrite(dowrite),

.raddr(raddr), .doread(doread), .score_to_store(score_to_store), .up(up_reset));

slower slow(.clk(clock_27mhz), .r_in(game_state), .c_in(ultimate_score), .r(ready),

.c(current_score));

25

max_score my_max (.current_score(current_score), .score_from_flash(frdata), .clk(clock_27mhz),

.ready(ready), .busy(busy), .reset(flash_reset), .writing(writing), .reading(reading),

.up_reset(up_reset),.score(score), .score_to_store(score_to_store), .state_out(state_out),

.reset_score(!button_up));

wire r;

sfx sounds(.state_in(state), .clk(clock_65mhz), .apple_slice(apple_slice),

.orange_slice(orange_slice), .peach_slice(peach_slice), .bomb_slice(bomb_slice),

.busy(busy), .sound(user4[0]), .lost_life(fell), .r(r));

assign led[7] = ~r;

assign led[6] = ~busy;

assign led[5] = ~game_state;

assign led[4:0] = 5'b11111;

endmodule

module slower(input clk,

input r_in,

input [6:0] c_in,

output reg r,

output reg [6:0] c);

reg a, b, d;

reg [15:0] one;

reg [15:0] two;

reg [15:0] three;

always @ (posedge clk) begin

a <= r_in;

b <= a;

d <= b;

one <= c_in;

two <= one;

three <= two;

r <= d;

c <= three;

end

endmodule

//

//

// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

//

//

module xvga(input vclock,

 output reg [10:0] hcount, // pixel number on current line

 output reg [9:0] vcount, // line number

 output reg vsync,hsync,blank);

 // horizontal: 1344 pixels total

 // display 1024 pixels per line

 reg hblank,vblank;

 wire hsyncon,hsyncoff,hreset,hblankon;

 assign hblankon = (hcount == 1023);

 assign hsyncon = (hcount == 1047);

 assign hsyncoff = (hcount == 1183);

 assign hreset = (hcount == 1343);

 // vertical: 806 lines total

26

 // display 768 lines

 wire vsyncon,vsyncoff,vreset,vblankon;

 assign vblankon = hreset & (vcount == 767);

 assign vsyncon = hreset & (vcount == 776);

 assign vsyncoff = hreset & (vcount == 782);

 assign vreset = hreset & (vcount == 805);

 // sync and blanking

 wire next_hblank,next_vblank;

 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;

 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

 always @(posedge vclock) begin

 hcount <= hreset ? 0 : hcount + 1;

 hblank <= next_hblank;

 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;

 vblank <= next_vblank;

 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);

 end

endmodule

//

//

// game_fsm: the main game FSM

//

//

module game_fsm (

input [7:0] highscore,

input vclock, // 65MHz clock

input vsync,

input serial_data,

input reset, // 1 to initialize module

input [10:0] hcount, // horizontal index of current pixel (0..1023)

input [9:0] vcount, // vertical index of current pixel (0..767)

output [23:0] pixel, // game's pixel // r=23:16, g=15:8, b=7:0

output [7:0] ultimate_score,

output game_state,

output apple_slice,

output orange_slice,

output peach_slice,

output bomb_slice,

output [1:0] fell_out,

output [1:0] state_out,

input resetbutton);

wire [15:0] yeet; wire data;

// apple wires

wire [4:0] yvel; wire [9:0] xcostart; wire backwards;

wire [23:0] apple_pixel; wire [9:0] apple_x; wire [9:0] apple_y;

// orange wires

wire [4:0] yvel1; wire [9:0] xcostart1; wire backwards1;

wire [23:0] orange_pixel; wire [9:0] orange_x; wire [9:0] orange_y;

// bomb wires

27

wire [4:0] yvel2; wire [9:0] xcostart2; wire backwards2;

wire [23:0] bomb_pixel; wire [9:0] bomb_x; wire [9:0] bomb_y;

// peach wires

wire [4:0] yvel3; wire [9:0] xcostart3; wire backwards3;

wire [23:0] peach_pixel; wire [9:0] peach_x; wire [9:0] peach_y;

// other stuff lol

wire [23:0] game_pixel;

wire overlap;

reg [1:0] state = 0;

parameter START = 0;

parameter PLAY = 1;

parameter GAME_OVER = 2;

assign state_out = state;

// Random number generation

randombitsgenerator randos (.clk(vsync), .data(data), .randomnumber(yeet));

lookuptable appletable (.clk(vsync), .randomnumber(yeet[14:12]), .yvel1(yvel),

.xcostart1(xcostart), .backwards1(backwards));

lookuptable orangetable (.clk(vsync), .randomnumber(yeet[2:0]), .yvel1(yvel1),

.xcostart1(xcostart1), .backwards1(backwards1));

lookuptablebomb bombtable (.clk(vsync), .randomnumber(yeet[8:6]), .yvel1(yvel2),

.xcostart1(xcostart2), .backwards1(backwards2));

lookuptable peachtable (.clk(vsync), .randomnumber(yeet[3:1]), .yvel1(yvel3),

.xcostart1(xcostart3), .backwards1(backwards3));

// Coordinates

reg ready;

wire [2:0] apple_fell; wire active_apple; wire [7:0] apple_score; wire applenew; wire

applesliced; wire [4:0] yvelocity_apple;

coord_generator apple_coords(.yvelocity(yvelocity_apple), .new(applenew),

.score(apple_score), .active(yeet[0]), .activeconst(active_apple), .rdy(ready),

.slice(applesliced), .vsync(vsync), .yvel(yvel), .xcostart(xcostart),

.backwards(backwards), .x_coord(apple_x), .y_coord(apple_y), .fell(apple_fell));

wire [2:0] orange_fell; wire active_orange; wire [7:0] orange_score; wire orangenew; wire

orangesliced; wire [4:0] yvelocity_orange;

coord_generator orange_coords(.yvelocity(yvelocity_orange), .new(orangenew),

.score(orange_score), .active(yeet[1]), .activeconst(active_orange),

.rdy(ready), .slice(orangesliced), .vsync(vsync), .yvel(yvel1), .xcostart(xcostart1),

.backwards(backwards1), .x_coord(orange_x), .y_coord(orange_y), .fell(orange_fell));

wire [2:0] bomb_fell; wire active_bomb; wire [3:0] bomb_score;

coord_generator bomb_coords(.score(bomb_score), .active(yeet[2]),

.activeconst(active_bomb), .rdy(ready), .slice(0), .vsync(vsync), .yvel(yvel2),

.xcostart(xcostart2), .backwards(backwards2), .x_coord(bomb_x), .y_coord(bomb_y),

.fell(bomb_fell));

wire [2:0] peach_fell; wire active_peach; wire [7:0] peach_score; wire peachnew; wire

peachsliced; wire [4:0] yvelocity_peach;

coord_generator peach_coords(.yvelocity(yvelocity_peach), .new(peachnew),

.score(peach_score), .active(yeet[5]), .activeconst(active_peach), .rdy(ready),

.slice(peachsliced), .vsync(vsync), .yvel(yvel3), .xcostart(xcostart3),

.backwards(backwards3), .x_coord(peach_x), .y_coord(peach_y), .fell(peach_fell));

28

assign ultimate_score = apple_score + orange_score + peach_score;

// Fruit & bombs

wire [9:0] apple_x2, peach_x2, orange_x2;

wire [9:0] orange_y2, apple_y2, peach_y2;

apple appley(.active(active_apple), .slice(applesliced), .pixel_clk(vclock),

.hcount(hcount), .xslice(apple_x2), .yslice(apple_y2), .vcount(vcount), .x(apple_x),

.y(apple_y), .pixel(apple_pixel));

orange orangey(.active(active_orange), .slice(orangesliced), .pixel_clk(vclock),

.hcount(hcount), .vcount(vcount), .x(orange_x), .y(orange_y), .xslice(orange_x2),

.yslice(orange_y2), .pixel(orange_pixel));

bomb bomby(.active(active_bomb), .slice(0), .pixel_clk(vclock), .hcount(hcount),

.vcount(vcount), .x(bomb_x), .y(bomb_y), .pixel(bomb_pixel));

peach peachy(.active(active_peach), .slice(peachsliced), .pixel_clk(vclock),

.hcount(hcount), .vcount(vcount), .x(peach_x), .y(peach_y), .xslice(peach_x2),

.yslice(peach_y2), .pixel(peach_pixel));

// Flying slices

coord_generator_slice apple_slice_coords (.yvel(0), .begincalc(applesliced),

.vsync(vsync), .new(applenew), .backwards(~backwards),

.xcostart(apple_x), .ycostart(apple_y + 75), .x_coord(apple_x2), .y_coord(apple_y2));

coord_generator_slice orange_slice_coords (.yvel(0), .begincalc(orangesliced),

.vsync(vsync), .new(orangenew), .backwards(~backwards1),

.xcostart(orange_x), .ycostart(orange_y + 75), .x_coord(orange_x2), .y_coord(orange_y2));

coord_generator_slice peach_slice_coords (.yvel(0), .begincalc(peachsliced),

.vsync(vsync), .new(peachnew), .backwards(~backwards3),

.xcostart(peach_x), .ycostart(peach_y + 75), .x_coord(peach_x2), .y_coord(peach_y2));

assign apple_slice = applesliced && (state == PLAY);

assign peach_slice = peachsliced && (state == PLAY);

assign orange_slice = orangesliced && (state == PLAY);

assign fell_out = apple_fell + orange_fell + peach_fell;

// Lives

wire [23:0] pixel_life1; reg display_life1;

blob life1 (.color(24'hFF_FF_FF), .x(100), .y(100), .clk(vclock), .hcount(hcount),

.vcount(vcount), .display(display_life1), .pixel(pixel_life1));

wire [23:0] pixel_life2; reg display_life2;

blob life2 (.color(24'hFF_FF_FF), .x(170), .y(100), .clk(vclock),.hcount(hcount),

.vcount(vcount), .display(display_life2), .pixel(pixel_life2));

wire [23:0] pixel_life3; reg display_life3;

blob life3 (.color(24'hFF_FF_FF), .x(240), .y(100), .clk(vclock),.hcount(hcount),

.vcount(vcount), .display(display_life3), .pixel(pixel_life3));

// Cursor

wire [23:0] cursor_pixel;

wire [15:0] cursor_x;

wire [15:0] cursor_y;

wire [7:0] button;

cursor_coords generator (.serial_data(serial_data), .clk(vclock), .x_coord(cursor_x),

.y_coord(cursor_y), .button(button));

29

blob #(.WIDTH(10), .HEIGHT(10)) cursor (.color(24'hFF_FF_00), .clk(vclock),

.x(cursor_x[10:0]), .y(cursor_y[9:0]), .hcount(hcount), .vcount(vcount), .display(1),

.pixel(cursor_pixel));

// Slice management

slice_dealer slicey (.peachactive(active_peach), .appleactive(active_apple),

.orangeactive(active_orange), .clk(vclock), .apple_new(applenew), .orange_new(orangenew),

.peach_new(peachnew), .applepix(apple_pixel), .cursorpix(cursor_pixel),

.orangepix(orange_pixel), .peachpix(peach_pixel), .applesliced(applesliced),

.orangesliced(orangesliced), .peachsliced(peachsliced));

// Background

wire [23:0] bg_pixel;

bg background(.vsync(vsync), .clk(vclock), .pixel(bg_pixel));

// Start and end screens

wire [23:0] start_pixel;

wire [23:0] logo_pixel;

wire [23:0] play_pixel;

logo_blob logo_picture (.pixel_clk(vclock), .x(362), .y(200), .hcount(hcount),

.vcount(vcount), .pixel(logo_pixel));

play_blob play_text(.pixel_clk(vclock), .x(424), .y(400), .hcount(hcount),

.vcount(vcount), .pixel(play_pixel));

assign start_pixel = play_pixel | logo_pixel;

wire [23:0] end_pixel;

wire [23:0] replay_pixel;

wire [23:0] score_pixel;

wire [23:0] high_score_pixel;

replay_blob replay_button(.pixel_clk(vclock), .x(297), .y(244), .hcount(hcount),

.vcount(vcount), .pixel(replay_pixel));

score_blob score_text (.pixel_clk(vclock), .x(297), .y(350), .hcount(hcount),

.vcount(vcount), .pixel(score_pixel));

hi_blob high_score (.pixel_clk(vclock), .x(297), .y(425), .hcount(hcount),

.vcount(vcount), .pixel(high_score_pixel));

// number scores

wire [23:0] top_left_1; reg display_1; reg [9:0] x1; reg [8:0] y1;

blob #(.WIDTH(10), .HEIGHT(44)) s_10(.clk(vclock), .display(display_1),

.color(24'hFF_FF_FF), .x(x1), .y(y1), .hcount(hcount), .vcount(vcount),

.pixel(top_left_1));

wire [23:0] top_1; reg display_2; reg [9:0] x2; reg [8:0] y2;

blob #(.WIDTH(44), .HEIGHT(10)) s_11(.clk(vclock), .display(display_2),

.color(24'hFF_FF_FF), .x(x2), .y(y2), .hcount(hcount), .vcount(vcount), .pixel(top_1));

wire [23:0] top_right_1; reg display_3; reg [9:0] x3; reg [8:0] y3;

blob #(.WIDTH(10), .HEIGHT(44)) s_12(.clk(vclock), .display(display_3),

.color(24'hFF_FF_FF), .x(x3), .y(y3), .hcount(hcount), .vcount(vcount),

.pixel(top_right_1));

wire [23:0] bottom_left_1; reg display_4; reg [9:0] x4; reg [8:0] y4;

blob #(.WIDTH(10), .HEIGHT(44)) s_13(.clk(vclock), .display(display_4),

30

.color(24'hFF_FF_FF), .x(x4), .y(y4), .hcount(hcount), .vcount(vcount),

.pixel(bottom_left_1));

wire [23:0] bottom_right_1; reg display_5; reg [9:0] x5; reg [8:0] y5;

blob #(.WIDTH(10), .HEIGHT(54)) s_14(.clk(vclock), .display(display_5),

.color(24'hFF_FF_FF), .x(x5), .y(y5), .hcount(hcount), .vcount(vcount),

.pixel(bottom_right_1));

wire [23:0] middle_1; reg display_6; reg [9:0] x6; reg [8:0] y6;

blob #(.WIDTH(44), .HEIGHT(10)) s_15(.clk(vclock), .display(display_6),

.color(24'hFF_FF_FF), .x(x6), .y(y6), .hcount(hcount), .vcount(vcount), .pixel(middle_1));

wire [23:0] bottom_1; reg display_7; reg [9:0] x7; reg [8:0] y7;

blob #(.WIDTH(44), .HEIGHT(10)) s_16(.clk(vclock), .display(display_7),

.color(24'hFF_FF_FF), .x(x7), .y(y7), .hcount(hcount), .vcount(vcount), .pixel(bottom_1));

wire [23:0] top_left_2; reg display_8; reg [9:0] x8; reg [8:0] y8;

blob #(.WIDTH(10), .HEIGHT(44)) s_20(.clk(vclock),.display(display_8),

.color(24'hFF_FF_FF), .x(x8), .y(y8), .hcount(hcount), .vcount(vcount),

.pixel(top_left_2));

wire [23:0] top_2; reg display_9; reg [9:0] x9; reg [8:0] y9;

blob #(.WIDTH(44), .HEIGHT(10)) s_21(.clk(vclock),.display(display_9),

.color(24'hFF_FF_FF), .x(x9), .y(y9), .hcount(hcount), .vcount(vcount), .pixel(top_2));

wire [23:0] top_right_2; reg display_10; reg [9:0] x10; reg [8:0] y10;

blob #(.WIDTH(10), .HEIGHT(44)) s_22(.clk(vclock),.display(display_10),

.color(24'hFF_FF_FF), .x(x10), .y(y10), .hcount(hcount), .vcount(vcount),

.pixel(top_right_2));

wire [23:0] bottom_left_2; reg display_11; reg [9:0] x11; reg [8:0] y11;

blob #(.WIDTH(10), .HEIGHT(44)) s_23(.clk(vclock),.display(display_11),

.color(24'hFF_FF_FF), .x(x11), .y(y11), .hcount(hcount), .vcount(vcount),

.pixel(bottom_left_2));

wire [23:0] bottom_right_2; reg display_12; reg [9:0] x12; reg [8:0] y12;

blob #(.WIDTH(10), .HEIGHT(54)) s_24(.clk(vclock),.display(display_12),

.color(24'hFF_FF_FF), .x(x12), .y(y12), .hcount(hcount), .vcount(vcount),

.pixel(bottom_right_2));

wire [23:0] middle_2; reg display_13; reg [9:0] x13; reg [8:0] y13;

blob #(.WIDTH(44), .HEIGHT(10)) s_25(.clk(vclock), .display(display_13),

.color(24'hFF_FF_FF), .x(x13), .y(y13), .hcount(hcount), .vcount(vcount),

.pixel(middle_2));

wire [23:0] bottom_2; reg display_14; reg [9:0] x14; reg [8:0] y14;

blob #(.WIDTH(44), .HEIGHT(10)) s_26(.clk(vclock), .display(display_14),

.color(24'hFF_FF_FF), .x(x14), .y(y14), .hcount(hcount), .vcount(vcount),

.pixel(bottom_2));

// high score instantiations

wire [23:0] top_left_3; reg display_15;

blob #(.WIDTH(10), .HEIGHT(44)) s_30(.clk(vclock), .display(display_15),

.color(24'hFF_FF_FF), .x(x1+ 60 + 65), .y(y1 + 78), .hcount(hcount), .vcount(vcount),

.pixel(top_left_3));

wire [23:0] top_3; reg display_16;

blob #(.WIDTH(44), .HEIGHT(10)) s_31(.clk(vclock), .display(display_16),

.color(24'hFF_FF_FF), .x(x2 + 60 + 65), .y(y2 + 78), .hcount(hcount), .vcount(vcount),

.pixel(top_3));

wire [23:0] top_right_3; reg display_17;

blob #(.WIDTH(10), .HEIGHT(44)) s_32(.clk(vclock), .display(display_17),

.color(24'hFF_FF_FF), .x(x3 + 60 + 65), .y(y3 + 78), .hcount(hcount), .vcount(vcount),

.pixel(top_right_3));

wire [23:0] bottom_left_3; reg display_18;

blob #(.WIDTH(10), .HEIGHT(44)) s_33(.clk(vclock), .display(display_18),

.color(24'hFF_FF_FF), .x(x4 + 60 + 65), .y(y4 + 78), .hcount(hcount), .vcount(vcount),

.pixel(bottom_left_3));

wire [23:0] bottom_right_3; reg display_19;

blob #(.WIDTH(10), .HEIGHT(54)) s_34(.clk(vclock), .display(display_19),

.color(24'hFF_FF_FF), .x(x5+ 60 + 65), .y(y5 + 78), .hcount(hcount), .vcount(vcount),

31

.pixel(bottom_right_3));

wire [23:0] middle_3; reg display_20;

blob #(.WIDTH(44), .HEIGHT(10)) s_35(.clk(vclock), .display(display_20),

.color(24'hFF_FF_FF), .x(x6 + 60 + 65), .y(y6 + 78), .hcount(hcount), .vcount(vcount),

.pixel(middle_3));

wire [23:0] bottom_3; reg display_21;

blob #(.WIDTH(44), .HEIGHT(10)) s_36(.clk(vclock), .display(display_21),

.color(24'hFF_FF_FF), .x(x7 + 60 + 65), .y(y7+ 78), .hcount(hcount), .vcount(vcount),

.pixel(bottom_3));

wire [23:0] top_left_4; reg display_22;

blob #(.WIDTH(10), .HEIGHT(44)) s_40(.clk(vclock),.display(display_22),

.color(24'hFF_FF_FF), .x(x8+ 60 + 65), .y(y8 + 78), .hcount(hcount), .vcount(vcount),

.pixel(top_left_4));

wire [23:0] top_4; reg display_23;

blob #(.WIDTH(44), .HEIGHT(10)) s_41(.clk(vclock),.display(display_23),

.color(24'hFF_FF_FF), .x(x9 + 60 + 65), .y(y9 + 78), .hcount(hcount), .vcount(vcount),

.pixel(top_4));

wire [23:0] top_right_4; reg display_24;

blob #(.WIDTH(10), .HEIGHT(44)) s_42(.clk(vclock),.display(display_24),

.color(24'hFF_FF_FF), .x(x10 + 60 + 65), .y(y10 + 78), .hcount(hcount), .vcount(vcount),

.pixel(top_right_4));

wire [23:0] bottom_left_4; reg display_25;

blob #(.WIDTH(10), .HEIGHT(44)) s_43(.clk(vclock),.display(display_25),

.color(24'hFF_FF_FF), .x(x11 + 60 + 65), .y(y11 + 78), .hcount(hcount), .vcount(vcount),

.pixel(bottom_left_4));

wire [23:0] bottom_right_4; reg display_26;

blob #(.WIDTH(10), .HEIGHT(54)) s_44(.clk(vclock),.display(display_26),

.color(24'hFF_FF_FF), .x(x12 + 60 + 65), .y(y12 + 78), .hcount(hcount), .vcount(vcount),

.pixel(bottom_right_4));

wire [23:0] middle_4; reg display_27;

blob #(.WIDTH(44), .HEIGHT(10)) s_45(.clk(vclock), .display(display_27),

.color(24'hFF_FF_FF), .x(x13 + 60 + 65), .y(y13 + 78), .hcount(hcount), .vcount(vcount),

.pixel(middle_4));

wire [23:0] bottom_4; reg display_28;

blob #(.WIDTH(44), .HEIGHT(10)) s_46(.clk(vclock), .display(display_28),

.color(24'hFF_FF_FF), .x(x14 + 60 + 65), .y(y14 + 78), .hcount(hcount), .vcount(vcount),

.pixel(bottom_4));

reg [7:0] scoreboard; reg [7:0] hiscore;

reg [7:0] subtractor; reg [7:0] subtractorhi;

wire [23:0] score; wire [23:0] highestscore;

assign score = top_left_1 | top_1 | top_right_1 | bottom_left_1 | bottom_right_1 |

middle_1 | bottom_1 |top_left_2 | top_2 | top_right_2 | bottom_left_2 | bottom_right_2 |

middle_2 | bottom_2;

assign highestscore = top_left_3 | top_3 | top_right_3 | bottom_left_3 | bottom_right_3 |

middle_3 | bottom_3 |top_left_4 | top_4 | top_right_4 | bottom_left_4 | bottom_right_4 |

middle_4 | bottom_4;

assign end_pixel = score_pixel | score | replay_pixel | high_score_pixel | highestscore;

wire play_overlap = cursor_x > 424 && cursor_x < 589 && cursor_y > 400 && cursor_y < 442;

wire replay_overlap = cursor_x > 297 && cursor_x < 718 && cursor_y > 244 && cursor_y <

314;

// Game State Machine

reg old_up; reg oldresetbutton;

32

always @(posedge vclock) begin

hiscore <= highscore;

scoreboard <= ultimate_score;

if (scoreboard < 10) subtractor <= 0; else if (scoreboard >= 10 && scoreboard <

20)

subtractor <= 10;

else if (scoreboard >= 20 && scoreboard < 30) subtractor <= 20;

else if (scoreboard >= 30 && scoreboard < 40) subtractor <= 30;

else if (scoreboard >= 40 && scoreboard < 50) subtractor <= 40;

else if (scoreboard >= 50 && scoreboard < 60) subtractor <= 50;

else if (scoreboard >= 60 && scoreboard < 70) subtractor <= 60;

else if (scoreboard >= 70 && scoreboard < 80) subtractor <= 70;

else if (scoreboard >= 80 && scoreboard < 90) subtractor <= 80;

else if (scoreboard >= 90 && scoreboard < 150) subtractor <= 90;

case (scoreboard - subtractor)

0: begin display_6 <= 0; display_1 <= 1; display_2 <= 1; display_3 <= 1; display_4

<= 1; display_5 <= 1; display_7 <= 1; end

1: begin display_6 <= 0; display_1 <= 0; display_2 <= 0; display_3 <= 1; display_4

<= 0; display_5 <= 1; display_7 <= 0; end

2: begin display_6 <= 1; display_1 <= 0; display_2 <= 1; display_3 <= 1; display_4

<= 1; display_5 <= 0; display_7 <= 1; end

3: begin display_6 <= 1; display_1 <= 0; display_2 <= 1; display_3 <= 1; display_4

<= 0; display_5 <= 1; display_7 <= 1; end

4: begin display_6 <= 1; display_1 <= 1; display_2 <= 0; display_3 <= 1; display_4

<= 0; display_5 <= 1; display_7 <= 0; end

5: begin display_6 <= 1; display_1 <= 1; display_2 <= 1; display_3 <= 0; display_4

<= 0; display_5 <= 1; display_7 <= 1; end

6: begin display_6 <= 1; display_1 <= 1; display_2 <= 1; display_3 <= 0; display_4

<= 1; display_5 <= 1; display_7 <= 1; end

7: begin display_6 <= 0; display_1 <= 1; display_2 <= 1; display_3 <= 1; display_4

<= 0; display_5 <= 1; display_7 <= 0; end

8: begin display_6 <= 1; display_1 <= 1; display_2 <= 1; display_3 <= 1; display_4

<= 1; display_5 <= 1; display_7 <= 1; end

9: begin display_6 <= 1; display_1 <= 1; display_2 <= 1; display_3 <= 1; display_4

<= 0; display_5 <= 1; display_7 <= 0; end

default: begin display_6 <= 1; display_1 <= 1; display_2 <= 1; display_3 <= 1;

display_4 <= 0; display_5 <= 1; display_7 <= 0; end

endcase

if(scoreboard < 10) begin

display_13 <= 0; display_8 <= 1; display_9 <= 1; display_10 <= 1; display_11 <= 1;

display_12 <= 1; display_14 <= 1; end

else if (scoreboard >= 10 && scoreboard < 20) begin display_13 <= 0;

display_8 <= 0; display_9 <= 0; display_10 <= 1; display_11 <= 0; display_12 <= 1;

display_14 <= 0; end

else if (scoreboard >= 20 && scoreboard < 30) begin display_13 <= 1; display_8 <=

0; display_9 <= 1; display_10 <= 1; display_11 <= 1; display_12 <= 0; display_14 <= 1; end

else if (scoreboard >= 30 && scoreboard < 40) begin display_13 <= 1; display_8 <=

0; display_9 <= 1; display_10 <= 1; display_11 <= 0; display_12 <= 1; display_14 <= 1; end

else if (scoreboard >= 40 && scoreboard < 50) begin display_13 <= 1; display_8 <=

1; display_9 <= 0; display_10 <= 1; display_11 <= 0; display_12 <= 1; display_14 <= 0; end

else if (scoreboard >= 50 && scoreboard < 60) begin display_13 <= 1; display_8 <=

1; display_9 <= 1; display_10 <= 0; display_11 <= 0; display_12 <= 1; display_14 <= 1; end

else if (scoreboard >= 60 && scoreboard < 70)begin display_13 <= 1; display_8 <=

1; display_9 <= 1; display_10 <= 0; display_11 <= 1; display_12 <= 1; display_14 <= 1; end

else if (scoreboard >= 70 && scoreboard < 80) begin display_13 <= 0; display_8 <=

1; display_9 <= 1; display_10 <= 1; display_11 <= 0; display_12 <= 1; display_14 <= 0; end

33

else if (scoreboard >= 80 && scoreboard < 90) begin display_13 <= 1; display_8 <=

1; display_9 <= 1; display_10 <= 1; display_11 <= 1; display_12 <= 1; display_14 <= 1; end

else if (scoreboard >= 90 && scoreboard < 150) begin display_13 <= 1; display_8 <=

1; display_9 <= 1; display_10 <= 1; display_11 <= 0; display_12 <= 1; display_14 <= 0; end

if (hiscore < 10) subtractorhi <= 0; else if (hiscore >= 10 && hiscore < 20)

subtractorhi <= 10; else if (hiscore>= 20 && hiscore < 30) subtractorhi <= 20;

else if (hiscore >= 30 && hiscore < 40) subtractorhi <= 30; else if (hiscore >= 40

&& hiscore < 50) subtractorhi <= 40;

else if (hiscore >= 50 && hiscore < 60) subtractorhi <= 50; else if (hiscore >= 60

&& hiscore < 70) subtractorhi <= 60;

else if (hiscore >= 70 && hiscore < 80) subtractorhi <= 70; else if (hiscore >= 80

&& hiscore < 90) subtractorhi <= 80;

else if (hiscore >= 90 && hiscore < 150) subtractorhi <= 90;

case (hiscore - subtractorhi)

0: begin display_20 <= 0; display_15 <= 1; display_16 <= 1; display_17 <=

1; display_18 <= 1; display_19 <= 1; display_21 <= 1; end

1: begin display_20 <= 0; display_15 <= 0; display_16 <= 0; display_17 <=

1; display_18 <= 0; display_19 <= 1; display_21 <= 0; end

2: begin display_20 <= 1; display_15 <= 0; display_16 <= 1; display_17 <=

1; display_18 <= 1; display_19<= 0; display_21 <= 1; end

3: begin display_20 <= 1; display_15 <= 0; display_16 <= 1; display_17 <=

1; display_18 <= 0; display_19 <= 1; display_21 <= 1; end

4: begin display_20 <= 1; display_15 <= 1; display_16 <= 0; display_17 <=

1; display_18 <= 0; display_19 <= 1; display_21 <= 0; end

5: begin display_20 <= 1; display_15 <= 1; display_16 <= 1; display_17 <=

0; display_18 <= 0; display_19 <= 1; display_21 <= 1; end

6: begin display_20 <= 1; display_15 <= 1; display_16 <= 1; display_17 <=

0; display_18 <= 1; display_19 <= 1; display_21 <= 1; end

7: begin display_20 <= 0; display_15 <= 1; display_16 <= 1; display_17 <=

1; display_18 <= 0; display_19 <= 1; display_21 <= 0; end

8: begin display_20 <= 1; display_15 <= 1; display_16 <= 1; display_17 <=

1; display_18 <= 1; display_19 <= 1; display_21 <= 1; end

9: begin display_20 <= 1; display_15 <= 1; display_16 <= 1; display_17 <=

1; display_18 <= 0; display_19 <= 1; display_21<= 0; end

default: begin display_20 <= 1; display_15 <= 1; display_16 <= 1;

display_17 <= 1; display_18 <= 0; display_19 <= 1; display_21 <= 0; end

endcase

if(hiscore < 10) begin display_27 <= 0; display_22 <= 1; display_23 <= 1;

display_24 <= 1; display_25 <= 1; display_26 <= 1; display_28 <= 1; end

else if (hiscore >= 10 && hiscore < 20) begin display_27 <= 0; display_22 <= 0;

display_23 <= 0; display_24 <= 1; display_25 <= 0; display_26 <= 1; display_28 <= 0; end

else if (hiscore >= 20 && hiscore < 30) begin display_27 <= 1; display_22 <= 0;

display_23 <= 1; display_24 <= 1; display_25 <= 1; display_26 <= 0; display_28 <= 1; end

else if (hiscore >= 30 && hiscore < 40) begin display_27 <= 1; display_22 <= 0;

display_23 <= 1; display_24 <= 1; display_25 <= 0; display_26 <= 1; display_28 <= 1; end

else if (hiscore >= 40 && hiscore < 50) begin display_27 <= 1; display_22 <= 1;

display_23 <= 0; display_24 <= 1; display_25 <= 0; display_26 <= 1; display_28 <= 0; end

else if (hiscore >= 50 && hiscore < 60) begin display_27 <= 1; display_22 <= 1;

display_23 <= 1; display_24 <= 0; display_25 <= 0; display_26 <= 1; display_28 <= 1; end

else if (hiscore>= 60 && hiscore < 70)begin display_27 <= 1; display_22 <= 1;

display_23 <= 1; display_24 <= 0; display_25 <= 1; display_26 <= 1; display_28 <= 1; end

else if (hiscore >= 70 && hiscore < 80) begin display_27 <= 0; display_22 <= 1;

display_23 <= 1; display_24 <= 1; display_25 <= 0; display_26 <= 1; display_28 <= 0; end

else if (hiscore >= 80 && hiscore < 90) begin display_27 <= 1; display_22 <= 1;

display_23 <= 1; display_24 <= 1; display_25 <= 1; display_26 <= 1; display_28 <= 1; end

else if (hiscore >= 90 && hiscore < 150) begin display_27 <= 1; display_22 <= 1;

display_23 <= 1; display_24 <= 1; display_25 <= 0; display_26 <= 1; display_28 <= 0; end

34

old_up <= button[0];

oldresetbutton <= resetbutton;

case (state)

START: if (button[0] && ~old_up && play_overlap) begin

state <= PLAY;

display_life3 <= 1;

display_life2 <= 1;

display_life1 <= 1;

end

else begin

state <= state;

ready <= 0;

end

PLAY: if (apple_fell + orange_fell + peach_fell>= 3 || ((|cursor_pixel &&

|bomb_pixel) && active_bomb)) begin

ready <= 0;

state <= GAME_OVER; end

else if (resetbutton && ~oldresetbutton)

state <= START;

else begin

x1 <= 900; y1 <= 100; x2 <= 900; y2 <= 100; x3 <= 934; y3 <= 100; x4

<= 900; y4 <= 134; x5 <= 934; y5 <= 134; x6 <= 900; y6 <= 134; x7 <= 900; y7 <=

178;x8 <= 850; y8 <= 100; x9 <= 850; y9 <= 100; x10 <= 884; y10 <= 100; x11 <=

850; y11 <= 134; x12 <= 884; y12 <= 134; x13 <= 850; y13 <= 134; x14 <= 850; y14

<= 178;

case (apple_fell + orange_fell + peach_fell)

0: begin display_life3 <= 1; display_life2 <= 1; display_life1 <= 1; end

1: begin display_life3 <= 0; display_life2 <= 1; display_life1 <= 1; end

2: begin display_life3 <= 0; display_life2 <= 0; display_life1 <= 1; end

3: begin display_life3 <= 0; display_life2 <= 0; display_life1 <= 0; end

default : begin

display_life3 <= 1; display_life2 <= 1; display_life1 <= 1;

end

endcase

ready <= 1;

state <= state;

end

GAME_OVER: if ((button[0] && ~old_up && replay_overlap)) begin

state <= PLAY;

end

else if (resetbutton && ~oldresetbutton) state <= START;

else begin

x1 <= 572; y1 <= 325; x2 <= 572; y2 <= 325; x3 <= 606; y3 <=

325; x4 <= 572; y4 <= 359; x5 <= 606; y5 <= 359; x6 <= 572; y6 <= 359; x7 <= 572; y7 <=

403; x8 <= 512; y8 <= 325; x9 <= 512; y9 <= 325; x10 <= 546; y10 <= 325; x11 <= 512; y11

<= 359; x12 <= 546; y12 <= 359; x13 <= 512; y13 <= 359; x14 <= 512; y14 <= 403;

state <= state;

ready <= 0;

end

default: state <= START;

endcase

end

wire [23:0] fruit_pixel;

wire bomb_first;

wire apple_first;

wire peach_first;

35

assign bomb_first = ((|bomb_pixel) && (|orange_pixel)) || ((|bomb_pixel) &&

(|apple_pixel)) || ((|bomb_pixel) && (|peach_pixel));

assign apple_first = (|apple_pixel) && (|orange_pixel) || (|apple_pixel) &&

(|peach_pixel);

assign peach_first = (|peach_pixel) && (|orange_pixel);

assign fruit_pixel = bomb_first ? bomb_pixel : apple_first ? apple_pixel : peach_first?

peach_pixel: apple_pixel | orange_pixel | bomb_pixel | peach_pixel;

assign game_pixel = ((state == PLAY) ? fruit_pixel | pixel_life1 | pixel_life2 |

pixel_life3 | cursor_pixel | score : (state == START) ? start_pixel | cursor_pixel :

end_pixel | cursor_pixel);

assign overlap = ((|game_pixel) && (|bg_pixel));

assign pixel = overlap ? game_pixel : bg_pixel;

assign game_state = (state == GAME_OVER);

assign bomb_slice = (|cursor_pixel && |bomb_pixel) && active_bomb && (state == PLAY);

endmodule

Lookup Tables
module lookuptable (input clk, input [2:0] randomnumber,

output reg [4:0] yvel1, output reg backwards1, output reg [9:0] xcostart1);

always@(posedge clk) begin

case (randomnumber)

3'b00: begin yvel1 <= 16; xcostart1 <= 100; backwards1 <= 1; end

3'b01: begin yvel1 <= 12; xcostart1 <= 200; backwards1 <= 0; end

3'b10: begin yvel1 <= 16; xcostart1 <= 300; backwards1 <= 0; end

3'b11: begin yvel1 <= 14; xcostart1 <= 400; backwards1 <= 0; end

3'b100: begin yvel1 <= 10; xcostart1 <= 500; backwards1 <= 1; end

3'b101: begin yvel1 <= 14; xcostart1 <= 600; backwards1 <= 0; end

3'b110: begin yvel1 <= 14; xcostart1 <= 250; backwards1 <= 1; end

3'b111: begin yvel1 <= 14; xcostart1 <= 300; backwards1 <= 1; end

endcase

end

endmodule

module lookuptablebomb (input clk, input [2:0] randomnumber,

output reg [4:0] yvel1, output reg backwards1, output reg [9:0] xcostart1);

always@(posedge clk) begin

case (randomnumber)

3'b00: begin yvel1 <= 16; xcostart1 <= 500; backwards1 <= 0; end

3'b01: begin yvel1 <= 14; xcostart1 <= 400; backwards1 <= 0; end

3'b10: begin yvel1 <= 16; xcostart1 <= 200; backwards1 <= 1; end

3'b11: begin yvel1 <= 14; xcostart1 <= 300; backwards1 <= 0; end

3'b100: begin yvel1 <= 10; xcostart1 <= 300; backwards1 <= 0; end

3'b101: begin yvel1 <= 14; xcostart1 <= 510; backwards1 <= 1; end

3'b110: begin yvel1 <= 14; xcostart1 <= 300; backwards1 <= 0; end

3'b111: begin yvel1 <= 14; xcostart1 <= 300; backwards1 <= 0; end

endcase

end

endmodule

Random Bits Generator
module randombitsgenerator(

36

input clk,

input data,

output [15:0] randomnumber);

 reg [15:0] shift_reg = 16'hFF_FF; // initial value

 always @(posedge clk) begin // reset all counters

 shift_reg[0] <= shift_reg[15] ^ data;

 shift_reg[1] <= shift_reg[0];

 shift_reg[2] <= shift_reg[1] ^ shift_reg[15] ^ data;

 shift_reg[14:3] <= shift_reg[13:2];

 shift_reg[15] <= shift_reg[14] ^ shift_reg[15] ^ data;

 end

 assign randomnumber = shift_reg;

endmodule

Coordinate Generator and Slice Coordinate Generator
module coord_generator (input rdy,

 input [2:0] slice,

 input active,

 input vsync,

 input [4:0] yvel,

 input backwards,

 input [9:0] xcostart,

 output [9:0] x_coord,

 output reg [2:0] fell,

 output [9:0] y_coord,

 output reg activeconst,

 output reg [7:0] score,

 output [4:0] yvelocity,

 output reg new);

 parameter START = 0;

 parameter CALC = 1;

 reg [9:0] x_coord1;

 reg [9:0] y_coord1;

 reg [4:0] y_vel;

 reg [3:0] x_vel;

 reg y_up;

 reg change;

 reg left;

 reg reachedzero;

 reg [3:0] counter;

 reg state;

 reg oldrdy;

 reg oldslice;

 always @(posedge vsync) begin

 oldrdy <= rdy;

 if (~rdy && oldrdy) begin

 fell <= 0;

 state <= START;

 y_coord1 <= 768;

 end

37

 if (rdy && ~oldrdy) score <= 0;

 if (rdy) begin

 case (state)

 START: begin

 activeconst <= active;

 y_coord1 <= 700;

 counter <= 0;

 y_vel <= yvel;

 x_coord1 <= xcostart;

 reachedzero <= 0;

 state <= CALC;

 x_vel <= 5;

 left <= backwards;

 new <= 1;

 end

CALC: begin

 new <= 0;

 oldslice <= ~(slice == 0) && (activeconst);

 // change every 8 cycles

 if (counter == 7) begin counter <= 0; change <= 1; end

 else begin counter <= counter + 1; change <= 0; end

 // has the velocity reached zero

 if (y_vel == 0) reachedzero <= 1;

 // which way does velocity change

 y_vel <= (change && !reachedzero)? y_vel - 2: (change && reachedzero)?

y_vel +

2: y_vel;

 // does it move up our down

 y_up <= ~reachedzero;

 y_coord1 <= (reachedzero && y_coord1 >768)? 768: (y_up)?

(y_coord1 - y_vel) : (y_coord1 + y_vel);

 // wraps around so user has more time to be able to cut the

// fruit

 x_coord1 <= (left)? x_coord1 - x_vel: x_coord1 + x_vel;

 state <= (reachedzero && y_coord1 > 768)? START: CALC;

 fell <= (reachedzero && (y_coord1 > 768) && (slice == 0) &&

(activeconst)) ? fell + 1: fell;

 score <= ((~(slice == 0) && (activeconst)) && ~oldslice)? score

+ 1: score;

 end

 default: state <= START;

 endcase

 end

 end

 assign x_coord = x_coord1; assign y_coord = y_coord1; assign yvelocity = y_vel;

endmodule

38

module coord_generator_slice (input begincalc,

 input vsync,

 input [4:0] yvel,

 input new,

 input backwards,

 input [9:0] xcostart,

 input [9:0] ycostart,

 output [9:0] x_coord,

 output [9:0] y_coord);

 parameter START = 0;

 parameter CALC = 1;

 reg [9:0] x_coord1;

 reg [9:0] y_coord1;

 reg [4:0] y_vel;

 reg [3:0] x_vel;

 reg y_up;

 reg change;

 reg left;

 reg reachedzero;

 reg [3:0] counter;

 reg state = 0;

 always @(posedge vsync) begin

 case (state)

 START: begin

 counter <= 0;

 y_vel <= 0;

 x_coord1 <= xcostart;

 y_coord1 <= ycostart;

 reachedzero <= 1;

 state <= (begincalc) ? CALC: START;

 x_vel <= 4;

 left <= backwards;

 end

 CALC: begin

 // change every 8 cycles

 if (counter == 8) begin counter <= 0; change <= 1; end

 else begin counter <= counter + 1; change <= 0; end

 y_vel <= (change)? y_vel + 2: y_vel;

 if (new) state <= START;

 else y_coord1 <= (y_coord1 > 768) ? 768 : y_coord1 + y_vel;

 x_coord1 <= (left)? x_coord1 - x_vel: x_coord1 + x_vel;

 end

 default: state <= START;

 endcase

 end

 assign x_coord = x_coord1;

 assign y_coord = y_coord1;

endmodule

39

Slice Dealer (aka Slice Manager/Slice Finite State Machine)
module slice_dealer(input clk,

input appleactive,

input orangeactive,

input peachactive,

input apple_new,

input orange_new,

input peach_new,

input [23:0] cursorpix,

input [23:0] applepix,

input [23:0] orangepix,

input [23:0] peachpix,

output reg applesliced,

output reg orangesliced,

output reg peachsliced);

 parameter WAIT = 0;

 parameter SLICE = 1;

 reg state_apple;

 reg state_orange;

 reg state_peach;

 always@(posedge clk) begin

 case (state_apple)

 WAIT: begin

 if (|cursorpix && |applepix) begin

applesliced <= 1;

state_apple <= SLICE;

end

 else applesliced <= 0;

 end

 SLICE: begin

 if (apple_new && appleactive) begin

state_apple <= WAIT;

applesliced <= 0;

end

 else applesliced <= 1;

 end

 default: state_apple <= SLICE;

 endcase

 case (state_orange)

 WAIT: begin

state_orange <= (|cursorpix && |orangepix)? SLICE: WAIT;

orangesliced <= 0;

end

 SLICE: begin

orangesliced <= 1;

state_orange <= (orange_new && orangeactive)? WAIT: SLICE;

end

 default: state_orange <= WAIT;

 endcase

 case (state_peach)

 WAIT: begin

state_peach <= (|cursorpix && |peachpix)? SLICE: WAIT;

peachsliced <= 0;

end

 SLICE: begin

40

peachsliced <= 1;

state_peach <= (peach_new && peachactive)? WAIT: SLICE;

end

 default: state_peach <= WAIT;

 endcase

 end

endmodule

Sound Effects
module sfx(

 input clk,

 input apple_slice,

 input orange_slice,

 input peach_slice,

 input bomb_slice,

 input [1:0] lost_life,

 input busy,

 input [1:0] state_in,

 output reg sound,

 output reg r);

 reg old_apple_slice, old_orange_slice, old_peach_slice, old_state;

 reg old_bomb_slice;

 reg [1:0] old_lost_life;

 reg [7:0] old_high_score;

 reg [24:0] counter= 0;

 reg [2:0] state = 0;

 reg [17:0] freq_counter = 0;

 parameter WAIT = 0;

 parameter PLAY_FRUIT = 1;

 parameter PLAY_BOMB = 2;

 parameter PLAY_LIFE = 3;

 parameter PLAY_HIGHSCORE0 = 6;

 parameter PLAY_HIGHSCORE1 = 4;

 parameter PLAY_HIGHSCORE2 = 5;

 always @(posedge clk) begin

 old_apple_slice <= apple_slice;

 old_orange_slice <= orange_slice;

 old_peach_slice <= peach_slice;

 old_bomb_slice <= bomb_slice;

 old_lost_life <= lost_life;

 old_state <= state_in;

 case (state)

 WAIT: begin

 if (~old_bomb_slice && bomb_slice) state <= PLAY_BOMB;

 else if (((~old_apple_slice && apple_slice) || (~old_orange_slice &&

orange_slice) || (~old_peach_slice && peach_slice)) && (old_state ==

state_in)) state <= PLAY_FRUIT;

 else if (old_lost_life != lost_life && old_lost_life != 3)

state <= PLAY_LIFE;

 else state <= WAIT;

 sound <= 0;

 counter <= 0;

 freq_counter <= 0;

 end

 PLAY_FRUIT: begin

41

 if (counter < 6500000) counter <= counter + 1; // play for 0.1 sec

 else begin

 freq_counter <= 0;

 counter <= 0;

 state <= WAIT;

 end

 if (freq_counter < 30000) begin

 freq_counter <= freq_counter + 1;

 end

 else begin

 freq_counter <= 0;

 sound <= ~sound;

 end

 end

 PLAY_BOMB: begin

 if (busy) r <= 1;

 if (counter < 30000000) counter <= counter + 1; // play for 0.5 sec

 else begin

 counter <= 0;

 freq_counter <= 0;

 state <= r ? PLAY_HIGHSCORE0 : WAIT;

 end

 if (freq_counter < 150000) begin

 freq_counter <= freq_counter + 1;

 end

 else begin

 freq_counter <= 0;

 sound <= ~sound;

 end

 end

 PLAY_LIFE: begin

 if (busy) r <= 1;

 if (counter < 6500000) counter <= counter + 1; // play for 0.5 sec

 else begin

 counter <= 0;

 freq_counter <= 0;

 state <= (r && lost_life == 3) ? PLAY_HIGHSCORE0 : WAIT;

 end

 if (freq_counter < 150000) begin

 freq_counter <= freq_counter + 1;

 end

 else begin

 freq_counter <= 0;

 sound <= ~sound;

 end

 end

 PLAY_HIGHSCORE0: begin

 if (counter < 30000000) counter <= counter + 1;

 else begin

 counter <= 0;

 freq_counter <= 0;

 state <= PLAY_HIGHSCORE1; end

 end

 PLAY_HIGHSCORE1: begin

 r <= 0;

 if (counter < 15000000) counter <= counter + 1; // play for 0.1 sec

 else begin

 freq_counter <= 0;

 counter <= 0;

 state <= PLAY_HIGHSCORE2;

42

 end

 if (freq_counter < 110670) begin

 freq_counter <= freq_counter + 1;

 end

 else begin

 freq_counter <= 0;

 sound <= ~sound;

 end

 end

 PLAY_HIGHSCORE2: begin

 if (counter < 30000000) counter <= counter + 1; // play for 0.1 sec

 else begin

 freq_counter <= 0;

 counter <= 0;

 state <= WAIT;

 end

 if (freq_counter < 82909) begin

 freq_counter <= freq_counter + 1;

 end

 else begin

 freq_counter <= 0;

 sound <= ~sound;

 end

 end

 default: state <= WAIT;

 endcase

 end

endmodule

Max Score
module max_score(

 input [15:0] current_score,

 input [15:0] score_from_flash,

 input clk,

 input ready,

 input busy,

 input reset_score,

 output reg reset,

 output reg writing,

 output reg reading,

 output reg up_reset,

 output [15:0] score,

 output reg [15:0] score_to_store,

 output [4:0] state_out);

 parameter STARTUP = 7'b00001;

 parameter READ_LOOP = 7'b00011;

 parameter CHECK = 7'b00010;

 parameter RESET = 7'b00100;

 parameter STORE = 7'b01000;

 parameter IDLE= 7'b10000;

 reg [4:0] state = STARTUP;

 reg [15:0] high_reg = 0;

 reg [8:0] counter = 0;

 reg old_reset_score;

 always @(posedge clk) begin

43

 old_reset_score <= reset_score;

 case (state)

 STARTUP: begin

 reading <= 1;

 state <= READ_LOOP;

 end

 READ_LOOP: begin

 if (counter < 200) counter <= counter + 1;

 else begin

 counter <= 0;

 state <= CHECK;

 reading <= 0;

 end

 end

 CHECK: begin

 if (~busy) begin

 high_reg <= score_from_flash;

 state <= IDLE;

 end

 end

 RESET: begin

 up_reset <= 0;

 reset <= 0;

 if (~busy) begin

 state <= STORE; // if done resetting, go to store state

 writing <= 1;

 end

 end

 STORE: begin

 if (~busy) state <= IDLE; // done storing new score

 end

 IDLE: begin

 if ((current_score > high_reg) && ready) begin

 writing <= 0;

 state <= RESET;

 reset <= 1;

 up_reset <=1;

 score_to_store <= current_score;

 high_reg <= current_score;

 end

 else if (~old_reset_score && reset_score) begin

 writing <= 0;

 state <= RESET;

 reset<= 1;

 up_reset <= 1;

 score_to_store <= 0;

 high_reg <= 0;

 end

 end

 default: state <= IDLE;

 endcase

 end

 assign score = high_reg;

 assign state_out = state;

endmodule

44

Cursor Coordinates

module cursor_coords

(input serial_data,

input clk,

output [15:0] x_coord,

output [15:0] y_coord,

output [7:0] button);

parameter HIGH_STATE = 0;

parameter FALLING = 1;

parameter FIRST = 2;

parameter DATA = 3;

parameter DONE = 4;

reg [17:0] high = 0; // hold all 20 ms between serial data pulses

reg [12:0] counter = 0;

reg [39:0] data = 0;

reg [15:0] x = 507;

reg [15:0] y = 379;

reg [7:0] b;

reg [2:0] state = 0;

reg [3:0] num_bits;

reg [2:0] num_bytes;

always @(posedge clk) begin

case (state)

HIGH_STATE: begin

if (high == 1300) begin

high <= 0;

state <= FALLING;

end

else begin

if (serial_data) high <= high + 1;

else high <= 0;

end

end

FALLING:

if (~serial_data) begin

state <= FIRST;

counter <= 0;

end

else begin

state <= FALLING;

num_bits <= 1; // have stored the start bit

end

FIRST:

if (counter == 3384) begin

state <= DATA;

counter <= 0;

num_bits <= 1; // have stored the start bit

end

45

else counter <= counter + 1;

DATA:

if (counter == 6769) begin // 16x 16 cycles

if (num_bits < 9) begin

counter <= 0;

data <= {data[38:0], serial_data};

num_bits <= num_bits + 1;

end

else if (num_bits == 9) begin // have stored 9 bits

if (num_bytes == 4) begin // about to get last byte

state <= DONE;

num_bytes <= 0;

end

else begin

state <= FALLING;

num_bytes <= num_bytes + 1;

end

end

end

else counter <= counter + 1;

DONE: begin

state <= HIGH_STATE;

x <= {data[31:24],data[39:32]};

y <= {data[15:8], data[23:16]};

b <= data[7:0];

high <= 0;

end

default: state <= HIGH_STATE;

endcase

end

assign x_coord = x;

assign y_coord = y;

assign button = b;

endmodule

Background
module bg(

 input clk,

input vsync,

output [23:0] pixel

);

 wire [7:0] green = 164;

 wire [7:0] blue = 255;

 reg [7:0] red = 0;

 reg up = 1;

 reg old_vsync;

 always @(posedge clk) begin

 old_vsync <= vsync;

 if (~old_vsync && vsync) begin

 if (up) red <= red + 1;

 else red <= red - 1;

 if (red + 1 == 255 && up) up <= 0;

 else if (red == 1 && ~up) up <= 1;

46

 end

 end

 assign pixel = {red, green, blue};

endmodule

Bomb
module bomb

 #(parameter WIDTH = 150, // default picture width

 HEIGHT = 150) // default picture height

(input pixel_clk,

input [2:0] slice,

input [10:0] x,hcount,

input [9:0] y,vcount,

input active,

output reg [23:0] pixel);

 wire [14:0] image_addr; // num of bits for 256*240 ROM

 wire [7:0] image_bits, red_mapped, green_mapped, blue_mapped;

 reg currentinactive;

 reg oldnotinair;

 // calculate rom address and read the location

 assign image_addr = (hcount-x) + (vcount-y) * WIDTH;

 bomb_rom bomb(.clka(pixel_clk), .addra(image_addr), .douta(image_bits));

 // use color map to create 8 bits R, 8 bits G, 8 bits B

 // since the image is greyscale, just replicate the red pixels

 // and not bother with the other two color maps.

 // use color map to create 8bits R, 8bits G, 8 bits B;

 bomb_red_rom rcm (.clka(pixel_clk), .addra(image_bits), .douta(red_mapped));

 bomb_green_rom gcm (.clka(pixel_clk), .addra(image_bits), .douta(green_mapped));

 bomb_blue_rom bcm (.clka(pixel_clk), .addra(image_bits), .douta(blue_mapped));

 parameter SLICE_WIDTH = 10;

 // note the one clock cycle delay in pixel!

 always @ (posedge pixel_clk) begin

 if (active) begin

 if ((hcount >= x && hcount < (x+WIDTH)) && (vcount >= y && vcount <

(y+HEIGHT)))

 pixel = {red_mapped, green_mapped, blue_mapped};

 else pixel = 0;

 end

 end

endmodule

Apple (same for peach and orange with different ROMs)
module apple

 #(parameter WIDTH = 150, // default picture width

 HEIGHT = 150) // default picture height

(input pixel_clk,

input [2:0] slice,

input [10:0] x, xslice, hcount,

input [9:0] y, yslice, vcount,

input active,

output reg [23:0] pixel);

 reg [14:0] image_addr;

47

 wire [14:0] image_addr_1; wire [14:0] image_addr_2; // num of bits for 256*240 ROM

 wire [7:0] image_bits, red_mapped, green_mapped, blue_mapped;

 reg currentinactive; reg oldnotinair;

 // calculate rom address and read the location

 assign image_addr_1 = (hcount-x) + (vcount-y) * WIDTH;

 rom2 apple_rom2(.clka(pixel_clk), .addra(image_addr), .douta(image_bits));

 assign image_addr_2 = (hcount-xslice) + (vcount-yslice) * WIDTH + (WIDTH * HEIGHT/2);

 // use color map to create 8 bits R, 8 bits G, 8 bits B

 // since the image is greyscale, just replicate the red pixels

 // and not bother with the other two color maps.

 // use color map to create 8bits R, 8bits G, 8 bits B;

 apple_red_rom rcm (.clka(pixel_clk), .addra(image_bits), .douta(red_mapped));

 apple_green_rom gcm (.clka(pixel_clk), .addra(image_bits), .douta(green_mapped));

 apple_blue_rom bcm (.clka(pixel_clk), .addra(image_bits), .douta(blue_mapped));

 parameter SLICE_WIDTH = 10;

 // note the one clock cycle delay in pixel!

 always @(posedge pixel_clk) begin

 if (active) begin

 if ((hcount >= x && hcount < (x+WIDTH)) && (vcount >= y && vcount <

(y+HEIGHT)))

 case (slice)

 0: begin

 pixel <= {red_mapped,green_mapped, blue_mapped};

 image_addr <= image_addr_1;

 end

 1: begin

 if (((vcount >= y + HEIGHT/2)) && (hcount >= x && hcount < (x+WIDTH)))

pixel <= 0;

 else begin

 pixel <= {red_mapped,green_mapped, blue_mapped};

 image_addr <= image_addr_1;

 end

 end

 default: begin

 pixel <= {red_mapped,green_mapped, blue_mapped};

 image_addr <= image_addr_1;

 end

 endcase

 else pixel <= 0;

 if ((hcount >= xslice && hcount < (xslice+WIDTH)) && (vcount >= yslice &&

vcount < (yslice+HEIGHT)))

 if (slice == 1) begin

 if (((vcount < yslice + HEIGHT/2) && (vcount > yslice)) &&

(hcount >= xslice && hcount < (xslice+WIDTH))) begin

 pixel <= {red_mapped,green_mapped,blue_mapped};

 image_addr <= image_addr_2;

 end

 end

 end

 else pixel <= 0;

 end

endmodule

