Rave in a Box

Sammy Cherna, Josh Gruenstein & Matt Reeve

6.111 Project Report, Fall 2018

Abstract

This report describes the conception, design, and implementation of
Rave in a Box, an FPGA-based audio-responsive laser projection system.
The box takes in live music and performs Fourier-based signal processing
methods to identify peaks of structural novelty. It then uses a laser and
set of galvanometers to project animated vector graphics onto a nearby
surface in time with transitions in the music, such as key changes, transi-
tions from verse to chorus, and introduction of new instrumentals.

Contents
1 Overview
2 Project Logistics

3 Signal Processing

3.1 Algorithmic Approach . .

3.2 Modified Algorithm for Hardware

3.3 Module-level Implementation

4 Graphics
4.1 Path Generation

4.2 Hardware Implementation
5 Hardware
6 Lessons Learned
A Project Verilog

B Project Python

12
12
14

14

15

16

51

1 Overview

FPGAs are uniquely powerful tools for live signal processing and real-time
control. Their tight timing capacity and reconfigurability allow these categories
of computation and IO to occur with a far lower power budget than microcon-
trollers or other embedded systems.

For our 6.111 final project, we sought to capitalize on these two unique
capabilities by having an FPGA generate a live laser light show in response to
a musical soundtrack. At the highest level, our design can be summarized via
the following block diagram:

music lasers

FPGA

Figure 1: A macro view of the Rave in a Box.

Our box takes in audio via the Nexys4 DDR’s ADC, performs signal process-
ing and graphics generation, and outputs analog galvonometer control signals
and delayed audio through a set of DACs. The galvanometers have mirrors
glued onto their axles which reflect a laser beam according to their angles. We
then exploit persistence of vision to project shapes by cycling through a path
at high speeds.

The work necessary to achieve this can be broken down across signal process-
ing, graphics generation, and IO, in that order of complexity. We will discuss
the algorithms we utilized and developed for each of these domains, and specific
details as to their implementation in hardware for the FPGA.

We began this project with only an abstract conception of our goals, and only
through iterative research and development arrived at a final working device.
We hope to communicate that process of discovery propelled by a love of music
and bright shiny lights in this report.

2 Project Logistics

We divided up the responsibility for the project as follows: Sammy Cherna
was responsible for the signal processing subsystem. Josh Gruenstein was re-
sponsible for the graphics subsystem. Matt Reeve was responsible for all of the
hardware and the hardware control subsystem. Despite these delineations, all

three of us collaborated heavily on all parts. The three of us live together, so
collaborating together was natural.

Our original goals for the project were as follows. For our minimum project
goals, we wanted to compute the spectrogram of incoming audio, and based on
a feature of that spectrogram, display a certain static image (a frame) with the
laser galvonometers (controlled via DAC over SPI). Each frame would consist
of instructions representing line segments to interpolate between. For our stan-
dard project goals, we wanted to compute the spectrogram and chromagram
of incoming audio, and based on a feature of that chromagram (for example,
the most prominent pitch class), display a certain animation of images (a scene
composed of frames) with the laser galvanometers. We had originally had many
stretch goals, which can roughly be broken down as follows: more advanced
graphics generation (such as interpolating along Bezier curves instead of lines),
more advanced signal processing (using Hanning window for better FFT, fur-
ther processing on the chromagram to get more meaningful graphics selection),
implementing tempo analysis and incorporating tempo into graphics, and more
advanced hardware (potentially using 3 different colored lasers and combining
them with optics).

While we did not have time to tackle tempo analysis or multiple colored
lasers, we accomplished all of our other stretch goals, aside from all of our stan-
dard project goals, including one stretch goal that we did not even imagine: song
segmentation / structure analysis. We realized that merely selecting graphics
based on the most prominent pitch class in the chromagram would only yield
pleasing results on very simple synthetic examples, and would not work well
on actual songs. Consequently, we decided to tackle the huge endeavor of song
segmentation by creating our own real-time adaptation of a song segmentation
algorithm, the first of its kind.

Aside from the song segmentation, we implemented our stretch goals of using
a Hanning window for better FFT results, interpolating along Bezier curves for
advanced graphics (as well as implementing a system to convert raster images
to vector graphics for the laser galvos), and creating a sturdy yet stylish custom
box for our system.

3 Signal Processing

Music Information Retrieval, or MIR, is the exciting interdisciplinary study
of extracting useful features from musical data. Part of our motivation to pur-
sue a project in MIR stems from one of our members (Sammy Cherna) taking
21M.387, Fundamentals of Music Processing. Many of the processes used in our
box were adapted from material taught in that class.

In constructing an MIR system for our box, a major challenge we encoun-
tered was adapting algorithms traditionally implemented in software and run

on stored audio samples to a live system implemented in hardware. Thus, in
this section we will discuss our signal processing in three steps: the fundamen-
tal algorithms we used, the modifications and compromises we made to fit our
application, and our module-level implementation in hardware.

3.1 Algorithmic Approach

In the beginning, there were raw audio signals.

Our box takes incoming music as analog signals delivered via an aux cable,
then transcribed into digital data and delivered to the FPGA via the Nexysd
ADC. However, there is limited advanced processing that can be done on raw
audio data alone. Instead, nearly all approaches first run audio through a Fast
Fourier Transform to produce a spectrogram.

This requirement stems from the fact that the fundamental building block
of audio signals are waves of different frequencies and amplitudes. In order
to determine useful information about a given signal, we must determine its
composition across different frequencies. This representation is called a spec-
trogram, which can be computed by running an FFT across a sequence of audio
signals.

Figure 2: Spectogram from Wikipedia of a violin recording. On the horizontal
axis is time, and on the vertical axis is increasing frequencies. Additional
bands of intensity are from harmonics.

The spectrogram tells us how much fundamental waves of different frequen-
cies contribute to the signal at a given time. For example, if you were to play
a middle C on a piano and generate a spectrogram from the recorded audio,
you would expect to see high intensity at ~262hz, in addition to slightly lower
intensity at overtones 524hz and 768hz, overtones and harmonics one and two
octaves away from middle C. Thus the spectrogram is far more informative than
raw audio, which is difficult to interpret without additional processing.

In addition to the spectrogram, we can also compute the chromagram of

audio by summing all of the harmonic frequencies of each of the 12 Western
pitch classes: C, Cf, D, D, E, F, F, G, Gfi, A, A, and B. This allows us more
easily to determine the note composition of audio (the piano example from above
would clearly be far easier to classify).

5 ; 1
A#

A 08
=g

Fi 06

0.4

o#

D 0.2
c

c 0

1 5
Time (seconds)

Chroma
mmIo
Intensity

FH*

Figure 3: Chromagram from Wikipedia of a C major scale played on a piano.

Our original plan was to continuously compute the chromagram on incoming
audio, and use the highest intensity pitch class to select a graphic to project.
However, experimentation is software demonstrated that this approach on most
music would not yield scene transition timing that would make sense to a lis-
tener. Chromagrams of popular music are often very noisy and fast-changing
due to the presence of many instruments and tracks.

jinee ||.| i i .,n w\“\lwm.va i

IIHM | || ||||||'I| || ‘H IIH q ‘ } I\‘I‘

I‘I || [‘

RN L By W\ TUIE

0 1000 1200

[NETITIE TN | ’lﬂﬂl M |II L IHI

1

=]

@

o

IS

~

)

Figure 4: Chromagram of “The Bends” by Radiohead computed by our team.

While an approach like this would certainly be of sufficient technical com-
plexity, and work well for some recordings, research told us that raves rarely
play pure sin tones or classical piano pieces. Thus, this methodology would
probably be insufficient for our goal of creating a true Rave in a Box.

What we needed was an algorithm for song segmentation. Unfortunately,
song segmentation is still an open research problem, with a diverse array of pro-
posed solutions but no definitive methodology. Additionally, nearly all methods
operate on the entire song at once, and are extremely computationally intensive.

One common theme in recent song segmentation papers is the computation of
a two-dimensional self-similarity matrix, first utilized in [1]. In these approaches,
a song chromagram matrix is multiplied by its transpose to produce an ¢ X t
matrix, where ¢ is the number of columns in the chromagram. As the dot
product between two vectors is analogous to their covariance, each cell in the
self-similarity matrix is proportional to the correlation between samples at times
corresponding to the row and column that cell is in.

10
09
08
07
0.6
05
ro4

ro3

Figure 5: Self-similarity matrix of Brahms’ Hungarian Dance computed by our
team. We can see that square-shaped regions are regions of high homogeneity,
while corners between them represent strong structural changes in the song.

From the self-similarity matrix we can compute some score of structural nov-
elty by applying a checkerboard kernel to its diagonal. If the kernel is centered
at sample t, it adds correlation values on the same side of ¢, and subtracts
those on different sides. Thus, the value is always greatest if the two halves of
the music sampled by the kernel are similar to themselves but different from
each-other, making it a successful measure of novelty.

t t

Figure 6: Application of a k x k checkerboard kernel to a t x ¢ self-similarity
matrix to compute a structural novelty curve n(t).

This continuous curve of song novelty over time allows us to identify major
structural changes (and thus ideal times to change graphics for our box) by
identifying peaks in the novelty curve. We implemented this system in Python,
and found that it was succesful in identifying good scene transitions for a wide
variety of music.

3.2 Modified Algorithm for Hardware

The method of computing structural novelty based on a self-similarity matrix
presents numerous challenges for implementation on an FPGA. At first glance
the algorithm requires precomputing scene transitions on entire songs, which
would likely exceed the Nexys4’s memory capacity. Furthermore, while triv-
ial in software, implementing large matrix multiplication pipelines and kernel
applications in Verilog can be difficult.

Through a change in algorithmic perspective, we were able to implement a
fully functionally equivalent system with far less computational and memory
cost. This stemmed from the recognition that we did not need to compute the
entire self-similarity matrix, but instead directly calculate the kernel value at
any point in time. We achieved this by storing & (the kernel size) chromagram
samples in a FIFO, and at each new chromagram updating the novelty score to
reflect the updated FIFO.

To accurately reflect the value of the kernel in the original algorithm, at any
point the novelty must equal the dot product of each pair of chromagrams in
the FIFO, where pairs are added if they are from the same half of the FIFO and
otherwise subtracted. However, to recompute this value from scratch would be
unnecessary computation, as at any time-step only three sets of dot products
change: those involving the new chromagram, those involving the last, and
those involving a chromagram in the center of the FIFO which previously was

on one half and just moved to another. By only computing these three sets of
dot products and applying them as deltas to the previous novelty score, we can
do O(k) rather than O(k?) computation at every new chromagram.

While this method does entail storing k chromagrams and k/2 chromagrams
worth of audio (to replay in synchrony with the computed novelty curve), this
is far less memory intensive than storing an entire song’s worth of both audio
and chromagrams.

Interestingly, from a literature review we believe we are the first to create any
sort of live song-segmentation algorithm, let alone implement one in hardware.

3.3 Module-level Implementation

Chroma Fifo
$
FIFO Control ® Engine A Accum ¥ Accum
T T T T
Novelty Calculator Lak>
T
Chroma Bins g Chroma Calculator
T
FET IP Core
T
Hanning | — @ — 4096 Sample Audio BRAM
|
_udio | XADC |— |64x Oversampler |— | Audio FIFO |—»| DAC | audio

Our Verilog for signal processing began with the sample FFT code provided
for the class by Mitchell Gu. This included creating a 104MHz clock, sam-
pling the onboard ADC at 1MSPS, oversampling by 16x to get 14-bit samples
at 62.5KHz, storing 4096 of them in a circular BRAM, feeding them to the
FFT Mag IP Core to get the magnitude (square root of real part squared plus
imaginary part squared) of the FFT, storing the results in a BRAM, and finally
displaying a histogram of this data (the spectrogram) on the VGA output. In
order to get this code to work, we had to splice open an AUX cable and apply a
DC bias to the signal (configurable via potentiometer) for it to be read properly
by the ADC. One issue we encountered was clipping from the ADC, despite the
signal staying in the acceptable 0-1V range, so we lowered the volume of the
input music until we did not have clipping. We decided to modify this code by
oversampling by 64x instead of 16x, so that we could get 15-bit samples at a
rate of 15.625KHz. There were three reasons for this change: keeping a lower
sampling rate would give us better frequency resolution (about 4Hz per bin in
the FFT), it would let us look at a larger window in time for each FFT (about
0.26 seconds) which would help the novelty calculation be more robust, and the
extra bit of precision could help for further calculations.

We also decided to pursue one of our stretch goals by incorporating a Han-
ning window into the signal in order to get better FFT results. The standard
process of taking 4096 samples at a time from a signal consists of multiplying
the theoretically infinite signal by a rectangular window in time. This results
in spectral leakage in the FFT output, which can make computation like note
detection less accurate, especially when accumulating many frequency bins into
chromagram bins. In order to reduce spectral leakage, we can multiply the 4096
samples by a different window shape, such as the Hanning window, derived from
a sin wave. We computed 4096 16-bit samples of a single Hanning window, and
stored them in a ROM. When a new ADC sample would be ready to store in the
circular BRAM, we would use its index out of 4096 to fetch the correct Hanning
value from the ROM, multiply it by the Hanning value, and right-shift it by
16 before storing the 16-bit result in the BRAM. The ROM had a latency of 2
clock cycles, so we had to pipeline accordingly.

At this point we had working spectrogram computation. Our next step was
to turn this spectrogram into a chromagram. In order to create a chromagram,
we needed to sum up many different frequency bins for each pitch class bin.
Since every frequency bin contributes to at most 1 chromagram bin, we decided
to create a ROM which would take in a bin index and give us an integer 0-11
representing the chromagram bin that it corresponds to, or 12 indicating that
it corresponds to no chromagram bin. This ROM was 4 bits wide (to represent
the integers 0-12), and contained 1024 addresses, since we only cared about
frequencies in the first 1024 spectrogram bins. As new outputs came from the
FFT module, we would check its index using the tuser output, look up the
chroma bin, and add it to the correct chroma bin. Only after receiving all 4096
outputs would we scale down each chroma bin and update the output from the
chroma module.

10

Since our frequency resolution was only 4Hz, we did not want to consider
octaves with notes less than 4Hz apart. Additionally, while almost all software
MIR tasks include normalization of each chroma vector for increased robustness,
we could not perform meaningful normalization as division is very difficult in
hardware. Accordingly, we wanted roughly the same number of spectrogram
bins to contribute to each chromagram bin, so that each is roughly on the same
scale. We decided to only consider notes C3 (130 Hz) through E7 (2637 Hz) for
chromagram contribution. While we could not perform normalization, we found
that this chromagram computation was sufficient for our needs. We modified
the spectrogram VGA module to display a histogram of chromagram intensities
as well, so that we could observe our chromagram calculation in action.

Following the chromagram calculation for an entire window of samples, we
pushed this new chromagram onto our 32-chromagram FIFO and computed
the new novelty score for this point in time. As described above, instead of
computing every possible dot product between pairs of the 32 chromagrams in
the FIFO, we would keep a running accumulator of the novelty score, and only
compute the dot products necessary to calculate the delta from the previous
novelty score. This would require 3 sets of dot products, each one requiring a
full pass through the FIFO. To simplify the process, we wrote a FIFO Controller
module to interface with the FIFO, and a Dot Engine module to compute dot
products. Unfortunately, both of these modules required significant debugging
in order to get correct operation. For the FIFO Controller module, we had
to ensure correct timing of the read and write lines in order to cycle properly
through the FIFO. For the Dot Engine module, we had to properly pipeline
in order to leave time for the 12 16-bit multiplications and subsequent 32-bit
additions.

Once we got the FIFO Controller and Dot Engine working, we created a
Delta Accumulator to properly accumulate all of the dot products without over-
flow or underflow. Each dot product result would either be added or subtracted
from the accumulator, depending on the indices of the two chroma in the FIFO.
The Novelty Calculator module then operated with the following state machine:
push new chroma onto FIFO while storing the old chroma leaving FIFO, com-
pute the dot product between the new chroma and all other chroma in the FIFO
(by cycling through the FIFO), adding/subtracting from the Delta Accumula-
tor accordingly, compute the dot product between the old chroma and all other
chroma in the FIFO, cycle through the FIFO to retrieve the middle chroma (in
index 16), compute the dot product between this middle chroma and all other
chroma in the FIFO, and finally take the accumulated delta and add it to our
running novelty score accumulator.

Amazingly, after an eternity of debugging, we were able to analyze the results
of this novelty computation with Vivado’s Integrated Logic Analyzer and see
clear peaks in the novelty score at key transitions in song structure. In order
to detect these peaks properly, we first implemented a simple low-pass filter by
computing an exponential moving average of the novelty score. The current

11

filtered novelty would be 0.5 times the new computed novelty plus 0.5 times
the previous filtered novelty. This helped smooth out some of the bumps and
extraneous peaks in the novelty curve. Then we store three novelty values: the
new one, the one from one timestep ago, and the one from two timesteps ago.
We can then declare the one from one timestep ago a peak if it is greater than
both the new one and the one from two timesteps ago. We also check that it
is greater than a certain threshold before declaring it a peak. This resulted
in quite accurate peak detection for certain songs, giving us pulses exactly at
transitions from verse to chorus and vice versa. Unfortunately, due to our lack
of normalization at various points in our computation, a good peak threshold
for one song might not be good for a different song, and so our approach’s
robustness was limited.

The output from the Novelty Calculator Module, indicating if there is a
peak in novelty at the current timestep or not, is fed to the Graphics module,
which would trigger a scene change on a peak. However, since we expect a peak
in novelty when the chroma belonging to a structural transition in the song is
halfway through the 32-chroma FIFO, there is about a 4 second delay between
inputting audio and outputting a peak. In order to remedy this, we also store
a FIFO of audio samples corresponding to 4 seconds of audio (65536 15.625Khz
samples), before outputting the buffered audio to a DAC over SPL

4 Graphics

The Rave in a Box generates graphics by following a path and turning a
laser on and off along it. Thus, for the box to be able to project graphics and
maintain persistence of vision without obscene memory usage, it must be able
to interpolate along some compact representation of vector graphics that travel
the shortest possible path to across those graphics.

This challenge can be broken down across two domains: the generation in
software of a shortest path of Bézier curves, and the interpolation in hardware
across these curves.

4.1 Path Generation

Our team originally planned to generate line-based drawings by hand, which
would likely have near-optimal path length due to human intuition. However, we
quickly realized that even for 4 scenes, each with 16 frames, this would take an
inordinate amount of time. Thus, we sought to find a method of automatically
generating scene paths from graphics found online, most of which being in raster
form.

We built the following software pipeline to intake animated GIFs and output
.coe files containing Bézier curves and laser on/off instructions:

12

1. Split animated GIF into individual frames, and mask to black and white.
2. Trace a set of Bézier curves around each item in each frame.

3. Run a nearest-fragment greedy algorithm to find the ideal set of paths to
connect objects in frames, and refine with simulated annealing two-opt.

4. Split the largest Bézier curves in half until there is a power of 2 number
of curves in each frame.

5. Pack frames into a .coe file and output correct Verilog parameters.

Step 3 of this process is NP-Complete, as it is a close relative of the Traveling
Salesman Problem which is also NP-Complete. Thus the generation of scene .coe
files can be somewhat time consuming. However, we found this was necessary to
create short enough paths to allow persistence of vision with complex graphics.
The details of this process can be found in the Python code in Appendix B.

P3

Py

P1 P4

Figure 7: Example cubic Bézier curve with four control points.

Practically, the ROM described by the COE file is addressed by [logs(|S|)]+
[logy(max(|F|))] + [logy(maz(|I]))] bits, where |S| is the number of scenes,
max(]F|) is the maximum number of frames per instruction, and max(|I]) is the
maximum number of instructions per frame. Each line of the ROM corresponds
to a cubic Bézier curve with four control points (and thus eight 12 bit numbers)
and an additional bit to indicate whether the laser should be on or off.

13

4.2 Hardware Implementation

Instruction ROM

vt

scene
, . 2
Bézier Y | —

Interpolator —

47 laser
Bézier X | ~— .

Figure 8: Block diagram of graphics generation subsystem.

The Interpolator module cycles through instructions in the provided scene
address, and outputs instruction coordinates to two combinational modules that
interpolate along the Bézier curve. It then forwards those outputs out to the
SPI module, which in turn exports them to the DAC. This design requires no
handshaking or clock-sharing with other modules.

5 Hardware

Our physical set-up consisted of a laser galvanometer set which included
two galvanometers with mirrors on an aluminum mount, motor driver boards, a
power supply, and a 5mW red laser. The motor driver boards each took in analog
voltage inputs to control the galvanometers. Due to the fact that the Nexys can
only output digital signals, MCP4822 two channel digital-to-analog converters
were used over SPI to communicate with the motor driver boards. We also used
a MCP4822 to output buffered audio, as PWMing audio out at our relatively
low 15.625hz sampling rate yielded noticeably poor audio quality. A bipolar
amplifier circuit was built and used to increase the overall laser projection angle
(and thus picture size) and allow configurable offsets and gains for the x and y
axes.

14

Figure 9: Rave in a Box 3D render from Autodesk Fusion 360.

Manufacturing of the project enclosure was an extensive process. First,
the product was designed in computer aided design software to ensure fitment
and appearance. Thereafter DXF files were able to be made in order to waterjet
and laser cut parts. Laser cut eighth inch acrylic sheets, separated by aluminum
standoffs were used as the frame of the box. A sixteenth inch Aluminum sheet
was waterjet and formed around the outside of the frame before finally being
brushed with steel wool for a textured appearance. A plywood sheet was laser
cut and acrylic letters were laid in the sheet for the top cover of the box. It was
then stained for a darker aesthetic.

6 Lessons Learned

After many many hours of grueling debugging and toiling over small mis-
takes, we have learned many lessons. We believe that the most significant lesson
that we can share is to never assume that a module is working, despite how
simple it may seem. Instead, it is crucial to validate the correct operation of
every small module before moving on to other modules that use them. We used
Vivado’s Integrated Logic Analyzer to help us validate and debug modules, par-
ticularly ones sensitive to timing issues, and we highly recommend future 6.111
students do the same. We also learned how useful it is to utilize the module
abstraction and create small sub-modules for individual repeated tasks. This
not only allows for cleaner and more elegant code, but also helps with debugging
as it lets you validate small parts and declare them bug-free.

One big issue that we kept facing was timing. First we did not realize that
the ROM had a 2 clock cycle latency, and so we were getting incorrect values
from our ROMs. Another timing issue we faced was not properly enabling the
read and write lines for the FIFO. In particular, if the FIFO is full, and both
read and write enables are raised high, one would expect that the FIFO would
shift the new input in while shifting the old output out, remaining full. However,
this is not the case. The old output will be shifted out, but the new input will
not be shifted in while the FIFO is full, even if it is read on the same clock cycle.
Instead, one has to read from the FIFO first, and then write on the following

15

© ® N o o« oA W N =

[T S S~ Y SN SR S
© N o u ok W N R O

=
©

clock cycle, when the FIFO is not full. Lastly, we encountered a timing issue
with our Dot Engine module. We originally attempted to compute the dot
product, consisting of 12 16-bit multiplies and 11 32-bit adds, combinationally.
We did not realize that this was not possible. When inspecting the outputs
from the Dot Engine module with the ILA, we realized that we were not getting
correct dot product results. Instead, we had to pipeline the module so that each
combinational operation could fit in a single 104MHz clock cycle. We suggest
that future groups learn to use the timing report in Vivado in order to spot
these issues better than we did.

All in all, we are extremely proud of our end result and had a lot of fun
getting there. We accomplished everything we wanted and more, yielding a
great-looking project that we can show off to friends. We learned an immense
amount about Verilog and how Vivado actually synthesizes and implements
Verilog, and we learned valuable skills in regards to project management. We
would like to give a tremendous thank you to the 6.111 staff for teaching us,
giving us invaluable guidance and debugging help, and giving us the opportunity
to succeed.

References

[1] Jonathan Foote. Automatic Audio Segmentation Using A Measure of Audio
Nowelty. In Proc. ICME, volume 1, New York City, New York, USA, 2000.

A Project Verilog

parameter BEZIER_BITS = 10;
parameter FRAME_REPEAT_BITS = 1;

parameter SCENE_BITS 2;
parameter FRAME_BITS 4,
parameter INSTRUCTION_BITS = 8;

parameter COORD_BITS = 12;
parameter CHROMA_PRECISION = 16;
parameter CHROMA_WIDTH = (12*xCHROMA_PRECISION)-1;

parameter MAX_DOT_BITS = 35 - 1;

parameter MAX_DELTA_BITS = 135 - 1;
parameter MAX_TOTAL_BITS = 200 - 1;

parameter PEAK_THRESHOLD = 200°d1_0000_0000 +

200’ h8000_.0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_00;

16

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

// Generate a spectrogram histogram reading from BRAM.

module spectro_histogram(
input wire clk,

input wire [10:0] hcount,
input wire [9:0] vcount,
input wire blank,

input wire [1:0] range,
output wire [9:0] vaddr,
input wire [15:0] vdata,
output reg [2:0] pixel

)

// 1 bin per pixel, with the selected range
assign vaddr = hcount[9:0] >> range;

reg [9:0] hheight; // Height of histogram bar

reg [9:0] vheight; // The height of pixel above bottom of

reg blankl; // blank pipelined 1

always @(posedge clk) begin
// Pipeline stage 1
hheight <= vdata >> 7;
vheight <= 10’°d767 - vcount;
blankl <= blank;

// Pipeline stage 2
pixel <= blankl 7 3’b0 : (vheight < hheight)
3’°b0;
end

endmodule

// Generate a chromagram histogram from given chroma.

module chroma_histogram(
input wire clk,

input wire [10:0] hcount,
input wire [9:0] vcount,

input wire blank,

input wire [:0] chroma,
output reg [2:0] pixel

)5

// 1 bin per pixel, with the selected range
wire[3:0] bin_num = hcount[9:0] >> 6;

reg [9:0] hheight; // Height of histogram bar

? 3’b111

reg [9:0] vheight; // The height of pixel above bottom of

reg blankl; // blank pipelined 1

17

sScreen

Screen

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

always @(posedge clk) begin
// Pipeline stage 1
if (bin_num < 12) hheight <= chromal :] >> 6;
else hheight <= 0;

vheight <= 10°d767 - vcount;
blankl <= blank;

// Pipeline stage 2
pixel <= blankl ? 3°b0 : (vheight < hheight) ? 3°Db111l
3’b0;
end

endmodule

// Module to bin spectrogram values from the BRAM into a chromagram.
// The BROM chroma_bins tells us for every bin in the spectrogram what
// bin it belongs to in the chromagram.
module chroma_calculator (

input wire clk,

input wire valid_sample,

input wire [11:0] new_sample_addr,

input wire [:0] new_sample_data,
input wire last_sample,

output reg [:0] chroma,

output reg done

// We are given a spectogram which represents the intensity

// of frequencies 0-1024hz. This spectogram is stored in a

// Block RAM indexed by spectogram_address. We seek to iterate through
// spectogram indices, and add each value to one of 12 bins.

parameter INNER_CHROMA_PRECISION = 18;
parameter INNER_CHROMA_WIDTH = (INNER_CHROMA_PRECISION=*12)-1;
parameter BIT_DIFFERENCE = INNER_CHROMA_PRECISION - CHROMA_PRECISION;

regl :0] inner_chroma;
wire[3:0] chroma_bin;
integer 1ij;

reg [11:0] prev_addr;

reg [11:0] prev_prev_addr;

reg [11:0] prev_prev_prev_addr;

reg [15:0] prev_data;

reg [15:0] prev_prev_data;

chroma_bins chroma_binz (
.clka(clk), // input wire clka
.ena (1), // input wire ena

18

.addra(new_sample_addr [10:0]), // dinput wire [10
.douta(chroma_bin) // output wire [3 : 0] douta
)

always @(posedge clk) begin
prev_addr <= new_sample_addr;
prev_prev_addr <= prev_addr;
prev_prev_prev_addr <= prev_prev_addr;
prev_data <= new_sample_data;
prev_prev_data <= prev_data;

if (valid_sample && (prev_prev_prev_addr != prev_prev_addr)) begin

if (last_sample) begin
for (i=0; i<12; i=i+1) begin
chroma [
<= inner_chroma [
>> BIT_DIFFERENCE;
end

done <= 1;
inner_chroma <= 0;
end
else begin
done <= 0;

0] addra

if (prev_prev_addr < 2048 && chroma_bin < 12) begin

inner_chroma [
<= inner_chromal[
end
end
end else done <= 0;
end

endmodule

// Heavily pipelined module to perform dot products on two
// Has a 4 cycle delay.
module dot_engine (

input wire clk,

input wirel :0] dot_a,
input wirel :0] dot_b,
output wire [:01 out
)
reg [31:0] chroma_product_0 = 0;
reg [31:0] chroma_product_1 = 0;
reg [31:0] chroma_product_2 = 0;
reg [31:0] chroma_product_3 = 0;
reg [31:0] chroma_product_4 = 0;

19

chromagrams.

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg

chroma_product
chroma_product
chroma_product
chroma_product
chroma_product
chroma_product
chroma_product

Lo T e T s T e I s B e M |

chroma_sum_O
chroma_sum_1
chroma_sum_2
chroma_sum_3
chroma_sum_4 =
chroma_sum_5
chroma_sum_0O1
chroma_sum_23
chroma_sum_45
ex_chroma_sum_

L B W e T e W s B e B e I e B e W e B |
]

_5
_6
_7
_8
_9

nonon
O O O O o

_11 =

always @ (posedge clk) begin

chroma_product_0 <=

dot_al

* dot_bl[
chroma_product_1 <=

dot_al

* dot_bl[
chroma_product_2 <=

dot_al

* dot_bl[
chroma_product_3 <=

dot_al

* dot_bl[
chroma_product_4 <=

dot_al

* dot_bl[
chroma_product_5 <=

dot_al

* dot_bl[
chroma_product_6 <=

dot_al

* dot_bl[
chroma_product_7 <=

dot_al

* dot_bl[
chroma_product_8 <=

dot_al

* dot_bl[
chroma_product_9 <=

20

_10 = 0;
0

242

dot_al :]

x dot_bl[: 1;
chroma_product_10 <=
dot_al :]
* dot_bl[: 13
chroma_product_11 <=
dot_al :]
* dot_bl[: 13

chroma_sum_O <= chroma_product_0
chroma_sum_1 <= chroma_product_2
chroma_sum_2 <= chroma_product_4
chroma_sum_3 <= chroma_product_6 chroma_product_7;
chroma_sum_4 <= chroma_product_8 chroma_product_9;
chroma_sum_5 <= chroma_product_10 + chroma_product_11;
chroma_sum_01 <= chroma_sum_O + chroma_sum_1;
chroma_sum_23 <= chroma_sum_2 + chroma_sum_3;
chroma_sum_45 <= chroma_sum_4 + chroma_sum_5;
ex_chroma_sum_45 <= chroma_sum_45;
chroma_sum_0123 <= chroma_sum_01 + chroma_sum_23;

end

chroma_product_1;
chroma_product_3;
chroma_product_5;

+ 4+ 4+ 4+

assign out = chroma_sum_0123 + ex_chroma_sum_45;

endmodule

module delta_accumulator (

input wire clk,
input wire rst,
input wire new_addition,

input wire [:0] accumulate,
input wire sign,
output reg [:0] accumulated

reg state = 0;
parameter RESET = O0;
parameter COLLECT = 1;
always @ (posedge clk) begin
case (state)
RESET: begin
accumulated <= 1 << MAX_DELTA_BITS;
state <= COLLECT;
end
COLLECT: begin
if (rst) state <= RESET;
else begin
if (new_addition) begin

21

268

269

271

272

273

275

276

277

278

280

281

282

284

285

286

287

289

290

291

293

294

295

296

298

299

300

301

302

303

304

305

307

308

309

312

313

314

316

317

if (sign) accumulated <=

accumulated - {92’°b0, accumulate};

else accumulated <=

accumulated + {92°b0, accumulatel};

end
end
end
default: state <= RESET;
endcase
end
endmodule

// Module to accumulate total structural novelty.
module total_accumulator(

input wire clk,

input wire rst,

input wire new_addition,

input wire [:0] accumulate,
input wire sign,
output reg [:0] accumulated

reg state = 0;

parameter RESET = O0;

parameter COLLECT = 1;

always @ (posedge clk) begin
case (state)

RESET: begin
accumulated <= 1 << MAX_TOTAL_BITS;
state <= COLLECT;
end
COLLECT: begin
if (rst) state <= RESET;
else begin
if (new_addition) begin
if (sign) begin
if (accumulated > accumulate)
accumulated <= accumulated - {65°’b0,
else accumulated <= 0;
end
else begin
if (((1 << (MAX_TOTAL_BITS+1)) - {1’b0,
> accumulate)
accumulated <= accumulated + {65°’Db0,
else accumulated <=
(1 << (MAX_TOTAL_BITS + 1)) - 1;
end
end

22

accumulatel};

accumulatedl})

accumulatel};

358

359

360

361

362

363

364

366

367

end

end
default:
endcase
end
endmodule

state <=

RESET;

// Controller for the chromagram FIFO.

// Can load values,
module fifo_controller (

unload,

cycle,

and shift.

] new_fifo_input,
] fifo_output,

input wire clk,

input wire rst,

input wire [] mode,

input wire [

output wire [

output wire [] data_count,
output wire fifo_full,

output wire fifo_empty

reg fifo_read,

reg [

parameter
parameter
parameter
parameter
parameter

fifo_write;

] fifo_in;

FIFO_IDLE =
FIFO_LOAD
FIFO_UNLOAD

FIFO_CYCLE =
FIFO_SHIFT =

always @ (*) begin
case (mode)

FIFO_IDLE:

fifo_read
fifo_write

end

FIFO_LOAD:

fifo_in =

end

FIFO_UNLOAD: begin
fifo_read = 1;
fifo_write =

end

FIFO_CYCLE: begin
fifo_read = 1;
fifo_write =

fifo_read
fifo_write

fifo_in =

end

begin

begin

O .

0

O .

1;

3

new_fifo_input;

O .

3

1;
fifo_output;

23

368

369

371

372

373

375

376

377

378

380

381

382

384

385

386

387

389

390

391

393

394

395

396

398

399

400

401

402

403

404

405

FIFO_SHIFT:

fifo_read
fifo_writ
fifo_in =

end

endcase

end

chroma_fifo ¢ (
.srst(rst),
.clk(clk),
.din(fifo_in),
.wr_en(fifo_write),
.rd_en(fifo_read),
.dout (fifo_output),
.full(fifo_£full),
.empty (fifo_empty),
.data_count (data_count)

);

endmodule

e

begin

= 1;
= 1;
new_fifo_input;

// Controller for the audio buffer FIFO. Functions
// to the above.
module buffer_controller (
input wire clk,
input wire rst,

input wire
input wire [

[2:0] mode

3

] new_fifo_input,

output wire [11:0] fifo_output,
output wire fifo_full,
output wire fifo_empty

reg fifo_read,
] fifo_in;

reg [

parameter
parameter
parameter
parameter
parameter

FIFO_IDLE
FIFO_LOAD =
FIFO_UNLOAD
FIFO_CYCLE
FIFO_SHIFT

always @ (*) begin
case (mode)

FIFO_IDLE:

fifo_read
fifo_writ

end

FIFO_LOAD:

e

fifo_write;

0;
1;

]
- N

begin

= 0;
=O;

begin

24

identically

fifo_read

fifo_write

= 0;
= 1;

fifo_in = new_fifo_input;
end
FIFO_UNLOAD: begin
fifo_read = 1;
fifo_write = 0;
end
FIFO_CYCLE: begin
fifo_read = 1;
fifo_write = 1;

fifo_in =
end
FIFO_SHIFT:

fifo_read

fifo_write

fifo_in =
end
endcase
end

buffer_fifo b (
.srst(rst),
.clk(clk),
.din(fifo_in),
.wr_en(fifo_write),
.rd_en(fifo_read),
.dout (fifo_output),
.full(fifo_full),
.empty(fifo_empty)

)

endmodule

// Module to compute structural novelty.

module novelty_calc (
input clk,
input rst,
input wire [
input
output reg
output reg

wire
wire

wire
done,
peak,

FIFO_IDLE
FIFO_LOAD =
FIFO_UNLOAD
FIFO_CYCLE

parameter
parameter
parameter
parameter

fifo_output;

begin

= 1;
= 1;
new_fifo_input;

] new_chroma,

chroma_done,

25

The big boi.

parameter FIFO_SHIFT = 4;

parameter NOVELTY_IDLE 0;

parameter NOVELTY_LOAD 1;

parameter NOVELTY_STORE_OLDEST_INT = 2;
parameter NOVELTY_STORE_OLDEST 3;
parameter NOVELTY_DOT_NEWEST
parameter NOVELTY_DOT_OLDEST ;

parameter NOVELTY_COLLECT_MIDDLE = 6;
parameter NOVELTY_DOT_MIDDLE = 7;

parameter NOVELTY_DOT_MIDDLE_AGAIN = 8;
parameter NOVELTY_FINISH_DOTTING_MIDDLE = 9;
parameter NOVELTY_ADD_DELTA = 10;

parameter NOVELTY_MOVING_AVERAGE = 11;
parameter NOVELTY_PEAK = 12;

]
o

reg [3:0] state;
reg [2:0] fifo_mode;

reg [:0] new_fifo_input;
wire [:0] fifo_output;
wire [4:0] data_count;

wire fifo_full, fifo_empty;

reg [4:0] current_index;

reg [4:0] current_dot_index;

reg [:0] dot_a, dot_b;
wire [:0] dot_out;

reg add_to_total_novelty, add_to_delta_novelty;
reg add_to_total_novelty_sign, add_to_delta_novelty_sign;

wire [:0] accumulated_total_novelty;
wire [:0] accumulated_delta_novelty;
reg [:0] total_novelty_addition;

reg delta_novelty_reset;

reg [:0] oldest_chroma, newest_chroma, middle_chroma;
reg [:0] old_total_novelty;
reg [:0] mid_total_novelty;
reg [] average_total_novelty;
reg [4:0] current_index_ml = 0;
reg [4:0] current_index_m2 = 0;
reg [4:0] current_index_m3 = 0;
reg [4:0] current_index_m4 = 0;
always @ (posedge clk) begin
if (fifo_mode == FIFO_UNLOAD || fifo_mode == FIFO_CYCLE)

26

current_index <= current_index - 1;

current_
current_
current_
current_

index_ml <= current_index;

index_m2 <= current_index_ml;
index_m3 <= current_index_m2;
index_m4 <= current_index_m3;

case (state)
NOVELTY_IDLE: begin

end

oldest_chroma <= 0
middle_chroma <= 0;
current_index <= 0
peak <= 0;
done <= 0;

if (chroma_done) begin
newest_chroma <= new_chroma;
if (fifo_full) begin
state <= NOVELTY_STORE_OLDEST_INT;

end
else begin
state <= NOVELTY_LOAD;
end
end
else newest_chroma <= 0;

NOVELTY_LOAD: begin

end

state <= NOVELTY_IDLE;

NOVELTY_STORE_OLDEST_INT: begin

end

state <= NOVELTY_STORE_OLDEST;

NOVELTY_STORE_OLDEST: begin

end

oldest_chroma <= fifo_output;
state <= NOVELTY_DOT_NEWEST;

NOVELTY_DOT_NEWEST: begin

end

if (current_index == 0)
state <= NOVELTY_DOT_OLDEST;

NOVELTY_DOT_OLDEST: begin

end

if (current_index == 0)
state <= NOVELTY_COLLECT_MIDDLE;

27

NOVELTY_COLLECT_MIDDLE: begin
if (current_index == 16)
middle_chroma <= fifo_output;

else if

(current_index == 0)

state <= NOVELTY_DOT_MIDDLE;

end

NOVELTY_DOT_MIDDLE: begin
if (current_index == 0)
state <= NOVELTY_DOT_MIDDLE_AGAIN;

end

NOVELTY_DOT_MIDDLE_AGAIN: begin
if (current_index == 1)
state <= NOVELTY_FINISH_DOTTING_MIDDLE;

end

NOVELTY_FINISH_DOTTING_MIDDLE: begin
if (current_index_m4 == 1)
state <= NOVELTY_ADD_DELTA;

end

NOVELTY_ADD_DELTA: begin

state <=
end

NOVELTY_MOVING_AVERAGE;

NOVELTY_MOVING_AVERAGE: begin
average_total_novelty <= (
{1°b0, average_total_novelty}
+ {1°b0, accumulated_total_noveltyl}

) >> 1;

state <=
end

NOVELTY_PEAK
done <=
peak <=

&&
&&

state <=

NOVELTY_PEAK;

: begin

1;

(mid_total_novelty > average_total_novelty)
(mid_total_novelty > old_total_novelty)
(mid_total_novelty > PEAK_THRESHOLD);

NOVELTY_IDLE;

mid_total_novelty <= average_total_novelty;
old_total_novelty <= mid_total_novelty;

end

endcase

end

28

always @ (*) begin
case (state)

NOVELTY_IDLE: begin
fifo_mode = FIFO_IDLE;
new_fifo_input = O0;
add_to_total_novelty = 0;
add_to_delta_novelty = 0;
add_to_total_novelty_sign = O0;

add_to_delta_novelty_sign = O0;
dot_a = 0;

dot_b = 0;

delta_novelty_reset = 0;

end

NOVELTY_LOAD: begin
fifo_mode = FIFO_LOAD;
new_fifo_input = newest_chroma;
add_to_total_novelty = 0;
add_to_delta_novelty = 0;
add_to_total_novelty_sign = O0;

add_to_delta_novelty_sign = O;
dot_a = 0;
dot_b = 0;

delta_novelty_reset = 1;
end

NOVELTY_STORE_OLDEST_INT: begin
fifo_mode = FIFO_UNLOAD;
new_fifo_input = 0;
add_to_total_novelty 0;
add_to_delta_mnovelty = O0;
add_to_total_novelty_sign = O0;

add_to_delta_novelty_sign = O;
dot_a = 0;
dot_b = 0;

delta_novelty_reset = 0;
end

NOVELTY_STORE_OLDEST: begin
fifo_mode = FIFO_SHIFT;
new_fifo_input = newest_chroma;
add_to_total_novelty = 0;
add_to_delta_novelty = O0;
add_to_total_novelty_sign = O0;
add_to_delta_novelty_sign
dot_a = 0;

]
o

29

end

dot_b = 0;
delta_novelty_reset = O0;

NOVELTY_DOT_NEWEST: begin

end

fifo_mode = FIFO_CYCLE;

new_fifo_input = O0;

add_to_total_novelty = 0;

add_to_delta_novelty = current_index_m4 != O0;
add_to_total_novelty_sign = O0;
add_to_delta_novelty_sign = current_index_m4 > 15;
dot_a = newest_chroma;

dot_b = fifo_output;

delta_novelty_reset = 0;

NOVELTY_DOT_OLDEST: begin

end

fifo_mode = FIFO_CYCLE;

new_fifo_input = O0;

add_to_total_novelty = 0;

add_to_delta_novelty = current_index_m4 != O0;
add_to_total_novelty_sign = O;
add_to_delta_novelty_sign = current_index_m4 > 16;
dot_a = oldest_chroma;

dot_b = fifo_output;
delta_novelty_reset = 0;

NOVELTY_COLLECT_MIDDLE: begin

end

fifo_mode = FIFO_CYCLE;

new_fifo_input = O0;
add_to_total_mnovelty = O0;
add_to_delta_novelty = (current_index_m4 < 4)

&& (current_index_m4 != 0);
add_to_total_novelty_sign = O0;
add_to_delta_novelty_sign = O0;
dot_a = 0;
dot_b = 0;
delta_novelty_reset = 0;

NOVELTY_DOT_MIDDLE: begin

fifo_mode = FIFO_CYCLE;

new_fifo_input = O;
add_to_total_novelty = 0;
add_to_delta_novelty = (current_index_m4 != 16)

&% (current_index_mé4 !'= 0);
add_to_total_novelty_sign = O0;
add_to_delta_novelty_sign = current_index_m4 < 16;
dot_a = middle_chroma;

30

718

719

721

722

723

725

726

727

728

730

731

732

733

734

735

736

737

end

dot_b = fifo_output;
delta_novelty_reset = O0;

NOVELTY_DOT_MIDDLE_AGAIN: begin

end

fifo_mode = FIFO_CYCLE;

new_fifo_input = 0;
add_to_total_novelty = 0;
add_to_delta_novelty = (current_index_m4 != 16)

&% (current_index_m4 != 0);
add_to_total_novelty_sign = O0;
add_to_delta_novelty_sign = current_index_m4 < 16;
dot_a = middle_chroma;

dot_b fifo_output;
delta_novelty_reset = O0;

NOVELTY_FINISH_DOTTING_MIDDLE: begin

end

fifo_mode = (current_index_m4 == 4)
? FIFO_LOAD : FIFO_IDLE;
new_fifo_input = newest_chroma;

add_to_total_novelty = 0;
add_to_delta_novelty = 1;
add_to_total_novelty_sign = O0;

add_to_delta_novelty_sign = 1;
dot_a = 0;
dot_b = 0;

delta_novelty_reset = 0;

NOVELTY_ADD_DELTA: begin

end

fifo_mode = FIFO_IDLE;
new_fifo_input = O0;
add_to_total_novelty 1;
add_to_delta_mnovelty = O0;
add_to_total_novelty_sign

accumulated_delta_novelty

< (1 << MAX_DELTA_BITS);
add_to_delta_novelty_sign = O0;
dot_a = 0;
dot_b = 0;

delta_novelty_reset = 1
total_novelty_addition

(accumulated_delta_novelty
(1 << MAX_DELTA_BITS))

((1 << MAX_DELTA_BITS) -
accumulated_delta_novelty)
(accumulated_delta_novelty -

(1 << MAX_DELTA_BITS));

N A

NOVELTY_MOVING_AVERAGE: begin

31

768

769

771

772

773

775

776

777

778

780

781

782

783

784

785

786

787

789

790

791

792

793

794

fifo_mode = FIFO_IDLE;
new_fifo_input = O0;
add_to_total_mnovelty = O0;
add_to_delta_novelty = 0;
add_to_total_novelty_sign = O0;
add_to_delta_novelty_sign = O0;
dot_a = 0;
dot_b = 0;
delta_novelty_reset = 0
total_novelty_addition
end

0;

NOVELTY_PEAK: begin
fifo_mode = FIFO_IDLE;
new_fifo_input = O0;
add_to_total_novelty = 0;
add_to_delta_novelty = 0;
add_to_total_novelty_sign = O0;

add_to_delta_novelty_sign = O;
dot_a = 0;
dot_b = 0;

delta_novelty_reset = 0;
total_novelty_addition = O0;
end
endcase
end

dot_engine dotter(
.clk(clk),
.dot_a(dot_a),
.dot_b(dot_b),
.out (dot_out)

);

fifo_controller fifo_control(
.clk(clk),
.rst(rst),

.mode (fifo_mode),
.new_fifo_input(new_fifo_input),
.fifo_output (fifo_output),
.data_count (data_count),
.fifo_full(fifo_£full),
.fifo_empty(fifo_empty)

)

total_accumulator total_novelty(
.clk(clk),
.rst(rst),

.new_addition(add_to_total_novelty),
.accunulate(total_novelty_addition),

32

858

859

860

861

862

863

864

866

867

sign(add_to_total_novelty_sign),

.accumulated (accumulated_total_novelty)

)

delta_accumulator delta_novelty(
.clk(clk),
.rst(delta_novelty_reset),
.new_addition(add_to_delta_novelty),
.accumulate (dot_out),
.sign(add_to_delta_novelty_sign),
.accumulated (accumulated_delta_novelty)

)

endmodule

// Nice helper function to flip the bits in a wire.
on stackexchange, no idea how it works but it

// Found

function|[] bit_order (input[11:0] data);
integer ij;
begin
for (i=0; i < 12; i=i+1) begin : reverse
bit_order [] = datalil;
end
end

endfuncti

// Combinational module to compute the current position
// on a Bezier curve.
module bezier_coordinate (
input wirel[1 po,
input wirel[1 pt,
input wirel 1 p2,
input wirel[1 p3,
input wirel :01 t,
output wirel[:0] out
);
// Full equation:

// (1-t)~3 *x pO + 3*t*x(1-t)"2 * pl + 3*t"2x(1-t)*p2 + t~3*p3

wire[] t_com = (2**BEZIER_BITS-1) - t;

wirel[] t_com_2 = ({32’d0,t_com}*t_com) >> BEZIER_BITS;
wirel[] t_com_3 =

wire [1 t_2 = ({32°d0,t}*t) >> BEZIER_BITS;

wire [1 t_3 = ({32’d0,t}*t_2) >> BEZIER_BITS;
assign out = (t_com_3 * poO

on

+ ((3 * t * t_com_2 * pl)>>>BEZIER_BITS)
+ ((3 * t_2 * t_com * p2)>>>BEZIER_BITS)

33

({32°d0,t_com}*t_com_2) >> BEZIER_BITS;

884

885

886

887

889

890

891

893

894

895

896

898

899

900

901

902

903

904

905

907

908

909

912

913

914

916

917

+ t_3 *x p3) >>> BEZIER_BITS;

endmodule

// Interpolator module reads
// between bezier curves

module interpolator(

input wire clk,
input wirel

output wirel[
output wirel[

output wire laser_on

regl
regl[

wirel[
scene ,
};

wire[

wirel[

instruction_

wire[

instruction_

wire[

instruction_

wirel[

instruction_

wire[

instruction_

wirel[

instruction_

wirel[

instruction_

wire[

instruction_

assign laser_on

regl
regl
regl

instruction_rom rom (

.clka(clk),
.ena (1),

frame,

Instruction ROM,

in the given scene.

] scene,
1 x,
1y,

] frame;

instruction;

instruction

and interpolates

] address =

] instruction_out;
:0] pOx =
out [1;
:0] pOy =
out [1;
] pix =
out [1;
:0] ply =
out [1;
] p2x =
out [1;
:0] p2y =
out [1;
] p3x =
out [1;
:0] p3y =
out [1;
= instruction_out[0];
] time_in_inst = 0;

] time_in_frame

] last_scene;

.addra (address),

34

0;

934

935

936

937

939

940

941

943

944

945

946

958

959

960

961

962

963

964

966

967

.douta(instruction_out)

)

bezier_coordinate bx (
.p0(pOx),
.pl(pix),
.p2(p2x),
.p3(p3x),
.t(time_in_inst),
.out (x)

)

bezier_coordinate by (
.p0(pOy),
.p1(ply),
.p2(p2y),
.p3(p3y),
.t(time_in_inst),
.out (y)

)

always @(posedge clk) begin
last_scene <= scene;

// When the scene changes, reset variables
if (last_scene != scene) begin
time_in_frame <= 0;
time_in_inst <= 0;
frame <= 0;
instruction <= 0;
end else begin
time_in_inst <= time_in_inst + 1;

// Increment the instruction before an overflow
if (&time_in_inst) begin
instruction <= instruction + 1;

// Increment the frame if not repeating
if (&instruction) begin
time_in_frame <= time_in_frame + 1;

// Increment the frame before overflow
if (&time_in_frame) frame <= frame + 1;
end
end
end
end

endmodule

35

o6s // SPI module for MCP4822 DAC using both channels.
969 // Alternates between the X and Y channel, and thus
oro // updates each channel half as fast as audio_SPI.
971 module laser_SPI(

972 input wire clock,

973 input wire [11:0] x,

974 input wire [11:0] vy,

975 output reg cs,

976 output wire s_out // mosi

977)

978

979 reg[1:0] state;

980 reg[15:0] instruction;

981 reg[6:0] instruction_sent;

982 reg channel;

983

984 parameter IDLE = O;

985 parameter SEND = 1;

986

087 assign s_out = instruction[0];

988

989 always @(posedge clock) begin

990 case (state)

991 IDLE: begin

992 instruction[0] <= channel;
993 instruction[3:1] <= 3’b100;
994 instruction[15:4] <= channel
995 ? bit_order(x) : bit_order (y);
996 instruction_sent <= 0;

997 state <= SEND;

998 cs <= 0;

999 end

1000

1001 SEND: begin

1002 instruction[14:0] <= instruction[15:1];
1003 instruction_sent <= instruction_sent + 1;
1004

1005 if (instruction_sent >= 16) begin
1006 cs <= 1;

1007 channel = “channel;

1008 state <= IDLE;

1009 end

1010 end

1011 default: state <= IDLE;

1012 endcase

1013 end

1014
1015 endmodule
1016

1017

36

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

// Similar to laser_SPI,

but only outputs on one channel at twice

// the frequency and half the gain.
module audio_SPI(

input wire clock,
] audio,

input

wire

[

output reg cs,
output wire s_out // mosi

)

regl] state;

regl[] instruction;

regl] instruction_sent;
parameter IDLE = O;

parameter SEND = 1;

assign s_out = instruction[0];

always @(posedge clock) begin
case (state)

IDLE:

begin

instruction[3:0] <= 4°b1100;
instruction[15:4] <= bit_order (audio);
instruction_sent <= 0;

state <= SEND;
cs <= 0;
end
SEND: begin
instruction[14:0] <= instruction[15:1];

instruction_sent <= instruction_sent + 1;

if (instruction_sent >= 16) begin

end
end
default:
endcase
end
endmodule

// Main module.

module main (

input
input
input
input

wire
wire
wire
wire

cs <=

1;

state <= IDLE;

state <= IDLE;

Wires up

CLK100MHZ ,

[
BTNC ,
AD3P,

] SwA
BTNU ,
AD3N ,

all the major components.

BTNL, BTNR, BTND,
// The top pair of ports on JXADC on Nexys 4

37

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

output wire [3:0] VGA_R,

output wire [3:0] VGA_B,

output wire [3:0] VGA_G,

output wire VGA_HS,

output wire VGA_VS,

output wire AUD_PWM, AUD_SD,

output wire LED16_B, LED16_G, LED16_R,
output wire LED17_B, LED17_G, LED17_R,

output wire [15:0] LED, // LEDs above switches

output wire [] SEG, // segments A-G (0-6), DP (7)
output wire [7:0] AN, // Display 0-7

output wire [] JB

)3

// SETUP CLOCKS

// 104Mhz clock for XADC and primary clock domain

// It divides by 4 and runs the ADC clock at 26Mhz

// And the ADC can do one conversion in 26 clock cycles
// So the sample rate is 1Msps (not posssible w/ 100Mhz)
// 65Mhz for VGA Video

// 208mhz for ILA

// 15mhz for DAC SPI

// 6mhz for graphics generation

wire clk_104mhz, clk_65mhz, clk_208mhz;
clk_wiz_0 clockgen(

.clk_in1 (CLK100MHZ) ,
.clk_out1(clk_104mhz),
.clk_out2(clk_65mhz),
.clk_out3(clk_208mhz),
.clk_out4 (JB[5]),
.clk_out5(JB[1])

)

// INSTANTIATE XVGA SIGNALS (1024x768)
wire [10:0] hcount;

wire [9:0] vcount;

wire hsync, vsync, blank;
xvga xvgal(

//

.vclock(clk_65mhz),
.hcount (hcount),
.vcount (vcount),
.vsync (vsync),
.hsync (hsync),
.blank(blank));

Initiate 7seg display to show novelty value.

wire[31:0] display_novelty;
display_8hex display(

38

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1159

1160

1161

1162

1163

1164

1165

1166

1167

.clk(clk_65mhz),

.data(display_novelty),

.seg(SEG[6:0]1),
.strobe (AN));
assign SEG[7] = 1;

wire BTNC_clean, BTNU_clean,

wire [15:0] SW_clean;

debounce #(.COUNT(21)) db0 (

.clk(clk_104mhz),
.reset (1°b0),

.noisy ({SW, BTNC, BTNU,
.clean({SW_clean, BTNC_clean,
BTND_clean, BTNL_clean, BTNR_clean})

wire [15:0] sample_reg;

wire eoc, xadc_reset;

xadc_demo xadc_demo (
.dclk_in(clk_104mhz),
.di_in(0),
.daddr_in(6°h13),
.den_in (1),
.dwe_in (0),
.drdy_out (),
.do_out (sample_reg),
.reset_in(xadc_reset)
.vp_in(0),
.vn_in (0) ,
.vauxp3 (AD3P),
.vauxn3 (AD3N),
.channel_out (),
.eoc_out (eoc),
.alarm_out (),
.eos_out (),
.busy_out ()

)

>

BTND_clean, BTNL_clean,

BTND,

assign xadc_reset = BTNC_clean;

wire [14:0] osample64;

reg [14:0] prev_osample64;
reg [14:0] prev_prev_osample64;

wire done_osample64;
reg prev_done_osample64;

39

BTNL, BTNR}),
BTNU_clean,

BTNR_clean;

1168 reg prev_prev_done_osample64;

1169 oversample64 osamp64_1 (

1170 .clk(clk_104mhz),

1171 .sample (sample_reg[15:4]),

1172 .eoc(eoc),

1173 .oversample (osample64),

1174 .done (done_osample64));

1175

1176 always @ (posedge clk_104mhz) begin

1177 prev_osample64 <= osample64;

1178 prev_prev_osample64 <= prev_osample64;
1179 prev_done_osample64 <= done_osample64;
1180 prev_prev_done_osample64 <= prev_done_osample64;
1181 end

1182

1183

1184

1185 parameter FIFO_IDLE = O;

1186 parameter FIFO_LOAD = 1;

1187 parameter FIFO_UNLOAD = 2;

1188 parameter FIFO_CYCLE = 3;

1189 parameter FIFO_SHIFT = 4;

1190

1191 reg [3:0] buffer_mode;

1192 reg [11:0] new_buffer_input;

1193 wire [11:0] buffer_output;

1194 wire buffer_full, buffer_empty;

1195 buffer_controller buffer(

1196 .clk(clk_104mhz),

1197 .rst (0),

1108 .mode (buffer_mode),

1199 .new_fifo_input (new_buffer_input),

1200 .fifo_output (buffer_output),

1201 .fifo_full (buffer_full),

1202 .fifo_empty (buffer_empty)

1203)

1204

1205 parameter BUFFER_IDLE = O0;

1206 parameter BUFFER_LOAD = 1;

1207 parameter BUFFER_UNLOAD = 2;

1208 reg [1:0] buffer_state = BUFFER_IDLE;

1209 always @ (posedge clk_104mhz) begin

1210 case (buffer_state)

1211 BUFFER_IDLE: begin

1212 if (prev_prev_done_osample64) begin
1213 new_buffer_input <= prev_prev_osample64 >> 3;
1214 if (buffer_full) begin

1215 buffer_state <= BUFFER_UNLOAD;
1216 end

1217 else begin

40

1218 buffer_state <= BUFFER_LOAD;
1219 end

1220 end

1221 end

1222 BUFFER_LOAD: begin

1223 buffer_state <= BUFFER_IDLE;
1224 end

1225 BUFFER_UNLOAD: begin

1226 buffer_state <= BUFFER_LOAD;
1227 end

1228 endcase

1229 end

1230

1231 always @ (*) begin

1232 case (buffer_state)

1233 BUFFER_IDLE: begin

1234 buffer_mode = FIFO_IDLE;

1235 end

1236 BUFFER_LOAD: begin

1237 buffer_mode = FIFO_LOAD;

1238 end

1239 BUFFER_UNLOAD: begin

1240 buffer_mode = FIFO_UNLOAD;
1241 end

1242 endcase

1243 end

1244

1245 // Output audio FIFO output to DAC over SPI.
1246 audio_SPI s(

1247 .clock (JB[5]),

1248 .audio (buffer_output),

1249 .CS(JB[]),

1250 .s_out (JB[4])

1251)

1252

1253 // Instantiate audio sample block RAM, which stores
1254 // 4096 16 bit audio samples.

1255 wire fwe;

1256 reg [11:0] fhead = 0;

1257 reg [11:0] prev_fhead;

1258 reg [11:0] prev_prev_fhead;

1259 wire [15:0] fdata, fsample, fsample_regular, fsample_hanning;
1260 wire [11:0] faddr;

1261 bram_frame braml (

1262 .clka(clk_104mhz),

1263 .wea(fwe),

1264 .addra(prev_prev_fhead),

1265 .dina(fsample),

1266 .clkb(clk_104mhz),

1267 .addrb (faddr),

41

1268 .doutb (fdata)

1269);

1270

1271 // Instatiate BROM for hanning window coefficients.

1272 wire [15:0] hanning_value;

1273 hanning hanning_values(

1274 .clka(clk_104mhz),

1275 .ena(1),

1276 .addra(fhead),

1277 .douta(hanning_value)

1278);

1279

1280 // SAMPLE FRAME BRAM WRITE PORT SETUP

1281 always @(posedge clk_104mhz) begin

1282 // Move the pointer every oversample

1283 if (done_osample64) fhead <= fhead + 1;

1284 prev_fhead <= fhead;

1285 prev_prev_fhead <= prev_fhead;

1286 end

1287

1288 // Pad the oversample with zeros to pretend it’s 16 bits
1289 assign fsample_hanning = ({16’b0, prev_prev_osample64, 1°b0}
1200 * {16°b0, hanning_valuel}) >> 16;
1291 assign fsample_regular = {prev_prev_osample64, 1’°b0};
1292 assign fsample = SW_clean[3] 7?7 fsample_hanning : fsample_regular;
1293

1294 // Write only when we finish an oversample

1295 // (every 104%16 clock cycles)

1296 assign fwe = prev_prev_done_osample64;

1297

1208 // SAMPLE FRAME BRAM READ PORT SETUP

1299 wire vsync_104mhz, vsync_104mhz_pulse;

1300 synchronize vsync_synchronize (

1301 .clk(clk_104mhz),

1302 .in(vsync),

1303 .out (vsync_104mhz));

1304

1305 level_to_pulse vsync_1ltp(

1306 .clk(clk_104mhz),

1307 .level (“vsync_104mhz),

1308 .pulse(vsync_104mhz_pulse));

1309

1310 // INSTANTIATE BRAM TO FFT MODULE

1311 // This module handles the magic of reading sample frames
1312 // from the BRAM whenever start is asserted, and sending
1313 // it to the FFT block design over the AXI-stream interface.
1314 wire collected_frame;

1315 assign collected_frame = prev_prev_done_osample64

1316 && (& prev_prev_fhead);

1317

42

1318 // All these are control lines to the FFT block design

1319 wire last_missing;

1320 wire [31:0] frame_tdata;

1321 wire frame_tlast, frame_tready, frame_tvalid;

1322 bram_to_fft bram_to_fft_0(

1323 .clk(clk_104mhz),

1324 .head (prev_prev_fhead),

1325 .addr (faddr) ,

1326 .data(fdata),

1327 .start(collected_frame),

1328 .last_missing(last_missing),

1329 .frame_tdata(frame_tdata),

1330 .frame_tlast (frame_tlast),

1331 .frame_tready (frame_tready),

1332 .frame_tvalid (frame_tvalid)

1333)

1334

1335 // FFT module, implemented as a block design with
1336 // a 4096pt, 16bit FFT that outputs in magnitude by
1337 // doing sqrt(Re”2 + Im~2) on the FFT result.

1338 //

1339 // It’s fully pipelined, so it streams 4096-wide frames
1340 // of frequency data as fast as you stream in 4096-wide
1341 // frames of time-domain samples.

1342

1343 // FFT magnitude for the current index

1344 wire [23:0] magnitude_tdata;

1345

1346 // Current index being output, from O to 4096

1347 wire [11:0] magnitude_tuser;

1348

1349 // Adjusts the scaling of the FFT

1350 wire [11:0] scale_factor;

1351 wire magnitude_tlast, magnitude_tvalid;

1352 fft_mag fft_mag_i(

1353 .clk(clk_104mhz),

1354 .event_tlast_missing(last_missing),

1355 .frame_tdata(frame_tdata),

1356 .frame_tlast (frame_tlast),

1357 .frame_tready (frame_tready),

1358 .frame_tvalid(frame_tvalid),

1359 .scaling(SW_clean[15:4]),

1360 .magnitude_tdata(magnitude_tdata),

1361 .magnitude_tlast(magnitude_tlast),

1362 .magnitude_tuser (magnitude_tuser),

1363 .magnitude_tvalid(magnitude_tvalid));

1364

1365 // 0Only care about the range from index O to 1023,
1366 // which represents frequencies 0 to omega/2

1367 // where omega is the nyquist frequency (sample rate / 2)

43

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

wire in_range = " |magnitude_tuser[11:10];

// Instantiate 16x1024 bram for storing histogram data.
wire [9:0] haddr; // The read port address
wire [15:0] hdata; // The read port data
bram_fft bram2 (
.clka(clk_104mhz),
// 0Only save if in range and valid
.wea(in_range & magnitude_tvalid),
.addra(magnitude_tuser[9:0]),
.dina(magnitude_tdatal[15:0]),
.clkb(clk_65mhz),
.addrb (haddr),
.doutb (hdata)
);

// Histogram generation modules for chromagram and
// spectrogram, switchable by switch 2.
wire [2:0] hist_pizxel;
[] chroma_pixel;
wire [2:0] spec_pixel;
wire [1:0] hist_range;
wirel[:0] chroma;

wire

chroma_histogram chroma_histogram(
.clk(clk_65mhz),
.hcount (hcount),
.vcount (vcount),
.blank(blank),
.chroma(chroma),
.pixel (chroma_pixel)

)

spectro_histogram histo (
.clk(clk_65mhz),
.hcount (hcount),
.vcount (vcount),
.blank(blank),
.range (SW_clean[1:0]),
.vaddr (haddr) ,
.vdata (hdata),
.pixel(spec_pixel)

)

// Switch display to chroma or spectro.
assign hist_pixel = SW_clean[2] ? chroma_pixel : spec_pixel;

// Chroma calculation hookup.
wire chroma_done;

44

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

chroma_calculator chroma_calci(
.clk(clk_104mhz),
.valid_sample (magnitude_tvalid),
.new_sample_addr (magnitude_tuser),
.new_sample_data(magnitude_tdatal
.last_sample (magnitude_tlast),
.chroma(chroma),
.done (chroma_done)

)

wire peak_done, peak;

novelty_calc nov(
.clk(clk_104mhz),
.rst (BTNC_clean),
.new_chroma(chroma),
.chroma_done (chroma_done),
.done (peak_done),
.peak (peak)

)

reg led_reg = 0;
reg [:0] scene;

always @ (posedge clk_104mhz) begin
if (peak && peak_done) begin
led_reg <= 7 led_reg;
scene <= scene + 1;
end
end assign LED16_B = led_reg;

wire [11:0] x, y;
wire laser_on;

laser_SPI sc(.clock(JB[1]),
.x(x),
.y (y),
.cs(JB[2]),
.s_out (JB[0])
)

interpolator i(

.clk(JB[11),
.scene (scene),
.x(x),

y(y),

.laser_on(laser_on)

45

D,

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

);

assign JB[3] = !laser_on;

// VGA OUTPUT

// Histogram has two pipeline stages so we’ll

// pipeline the hs and vs accordingly

reg [] hsync_delay;

reg [] vsync_delay;

reg hsync_out, vsync_out;

always @(posedge clk_65mhz) begin
{hsync_out ,hsync_delay} <= {hsync_delay ,hsync};
{vsync_out ,vsync_delay} <= {vsync_delay,vsyncl};

end

assign VGA_R = {4{hist_pixel[0]}};

assign VGA_G = {4{hist_pixel[1]13}};

assign VGA_B = {4{hist_pixel[2]}};

assign VGA_HS = hsync_out;

assign VGA_VS = vsync_out;
endmodule

// Below are helper modules written by 6.111

// course staff or Mitchell Gu.

// BRAM to FFT interfacer,
module bram_to_fft(

written by Mitchell Gu.

input wire
input wire
output reg
input wire
input wire
input wire
output reg
output reg
input wire
output reg
);

// Get a signed version of the sample by subtracting half the max
wire signed [

// SENDING

clk,

[11:0] head,

[11:0] addr,

[15:0] data,

start,
last_missing,
[31:0] frame_tdata,

frame_tlast,
frame_tready,
frame_tvalid

] data_signed = {1°b0, data} - (1 << 15);

LOGIC

// 0Once our oversampling is done,

// Start at the frame bram head and send all 4096 buckets of bram.
// Hopefully every time this happens,

the FFT core

reg sending = O0;

reg [11:0]

send_count = 0;

46

is ready

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

always @(posedge clk) begin
frame_tvalid <= 0; // Normally do not send
frame_tlast <= 0; // Normally not the end of a frame
if (!sending) begin
if (start) begin // When a new sample shifts in
addr <= head; // Start reading at the new head
send_count <= 0; // Reset send_count
sending <= 1; // Advance to next state
end
end
else begin
if (last_missing) begin
// If core thought the frame ended
sending <= 0; // reset to state 0O
end
else begin
frame_tdata <= {16’b0, data_signed};
frame_tvalid <= 1; // Signal to fft a sample is ready
if (frame_tready) begin // If the fft module was ready
addr <= addr + 1; // Switch to read next sample
send_count <= send_count + 1; // increment send_count
end
if (&send_count) begin
// We’re at last sample
frame_tlast <= 1; // Tell the core
if (frame_tready) sending <= 0; // Reset to state 0
end
end
end
end
end

module debounce #(parameter DELAY=1000000, parameter COUNT=1) (
input wire clk,
input wire reset,
input wire [:0] noisy,
output reg [:0] clean);

genvar 1i;
generate
for (i = 0; i < COUNT; i = i + 1) begin
reg [19:0] count;
reg new;

always @(posedge clk) begin
if (reset) begin
count <= 0;
new <= noisyl[il;
clean[i] <= noisy[il;

47

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

end

end

endgenerate

endmodule

end

else if (moisy[i] !=
new <= noisyl[il;
count <= 0;

new) begin

end

else if (count == DELAY)
clean[i] <= new;

else

count <= count+1;

module level_to_pulse (

input wire clk,
input wire level,
output wire pulse);

reg last_level;
always @(posedge clk) begin

48

msb first

last_level <= level;
end
assign pulse = level & “last_level;
endmodule
module display_8hex(
input wire clk, // system clock
input wire [] data, // 8 hex numbers,
output reg [1 seg, // seven segment display output
output reg [] strobe // digit strobe
)3
localparam bits = 13;
reg [1 counter = 0; // clear on power up
wire [] segments[15:0]; // 16 7 bit memorys
assign segments [0] = 7°b100_0000;
assign segments[1] = 7’°b111_1001;
assign segments[2] = 7°b010_0100;
assign segments [3] = 7°b011_0000;
assign segments[4] = 7’°b001_1001;
assign segments[5] = 7°b001_0010;
assign segments [6] = 7’b000_0010;
assign segments[7] = 7’°b111_1000;
assign segments[38] = 7°b000_0000;
assign segments [9] = 7’°b001_1000;

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1652

1653

1654

1655

1656

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

assign
assign
assign
assign
assign
assign

segments [10] = 7°b000_
segments [11] = 7°b000_
segments[12] = 7°b010_
segments[13] = 7°b010_
segments [14] = 7’°b000_
segments[15] = 7°b000_
always @(posedge clk) begin

counter <=

counter + 1;

case (counter [

3’b000: begin
seg <= segments [
strobe <= 8’b0111
end
3’b001: begin
seg <= segments[
strobe <= 8’b1011
end
3’b010: begin
seg <= segments[
strobe <= 8’b1101
end
3’b011: begin
seg <= segments|[
strobe <=
end
3’b100: begin
seg <= segments[
strobe <=
end
3’b101: begin
seg <= segments[
strobe <=
end
3’°b110: begin
seg <= segments|[
strobe <=
end
3’bl111: begin
seg <= segments[
strobe <=
end

endcase

end

endmodule

module xvga(

input wire vclock,

output reg [
output reg [

1 hcount,
] vcount,

49

1000;
0011;
0111;
0001;
0110;
1110;

D

[
_1111

[
_1111

[
_1111

[

8’b1110_1111;

L

8’b1111_0111;

[

8’b1111_1011;

[

8’b1111_1101;

L

8’b1111_1110;

11;

11;

11

11;

11;

11

11;

11;

// pixel number on
// line number

current line

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

output reg vsync, hsync, blank);

// horizontal: 1344 pixels total

// display 1024 pixels per line

reg hblank,vblank;

wire hsyncon,hsyncoff ,hreset,hblankon;

assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

// vertical: 806 lines total
// display 768 lines
wire vsyncon,vsyncoff ,vreset,vblankon;

assign vblankon = hreset & (vcount == 767)
assign vsyncon = hreset & (vcount == 776);
assign vsyncoff = hreset & (vcount == 782)
assign vreset = hreset & (vcount == 805);

// sync and blanking
wire next_hblank ,next_vblank;

assign next_hblank = hreset ? O : hblankon ? 1 : hblank;
assign next_vblank = vreset ? O : vblankon ? 1 : vblank;

always @(posedge vclock) begin
hcount <= hreset ? 0 : hcount + 1;
hblank <= next_hblank;

hsync <= hsyncon ? 0 : hsyncoff 7?7 1 hsync; // active low
vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? O : vsyncoff 7 1 vsync; // active low
blank <= next_vblank | (next_hblank & ~hreset);
end
endmodule

module oversample64(
input wire clk,

input wire [11:0] sample,
input wire eoc,

output reg [14:0] oversample,
output reg done

)

reg [5:0] counter = O0;

reg [17:0] accumulator = O0;

always @(posedge clk) begin
done <= 0;
if (eoc) begin

50

1718 // Conversion has ended and we can read a new sample

1719 if (&counter) begin // If counter is full (64 accumulated)
1720 // Get final total, divide by 8 with (very limited) rounding.
1721 oversample <= (accumulator + sample + 3’°b100) >> 3;
1722 done <= 1;

1723 // Reset accumulator

1724 accumulator <= 0;

1725 end

1726 else begin

1727 // Else add to accumulator as usual

1728 accumulator <= accumulator + sample;

1729 done <= 0;

1730 end

1731 counter <= counter + 1;

1732 end

1733 end

1734 endmodule

B Project Python

1 import random, math, scipy, potrace

2 1import numpy as np

3 1import matplotlib.pyplot as plt

4 1import matplotlib.path as mpath

5 1import matplotlib.patches as mpatches
¢ from tqdm import tqdm

7 from PIL import Image

8 from potrace import Curve

10
11 # Convert an image to a black and white 2d array (or list for gifs).
12 def get_bw_file(filename, ratio=128):

13 img = Image.open(filename)

14

15 def handle_frame (frame):

16 new_data = np.array(frame.getdata(), dtype=np.uint8)
17 new_data = np.resize(new_data, (img.size[1], img.size[0]))
18

19 new_datal] =0

20 new_datal] =1

21

22 return np.pad/(

23 new_data,

24 (6, 5), (5, 5)),

25 ’constant’,

26 constant_values=(1,)

27)

28

29 if img.is_animated:

o1

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

el

frames = []

for frame in range(0,img.n_frames):
img.seek (frame)
frames.append (handle_frame (img.convert(’L’)))

return frames
se:

return handle_frame (img.convert(’L’))

Helper function to generate straight line bezier curves.

def straight_line_to_bezier(start,
tuple (0.666*s + 0.333*e for s,e in zip(start,end))
tuple (0.333*s + 0.666*e for s,e in zip(start,end))

def

cl
c2

re

greedy_path(lines,

#
#
#

#

turn (start, cl, c2,

end)

end) :

rand=False) :

Greedy pathing: start at an unconnected segment.

It has a source and a sink.
Repeat.

sink, and connect.

Choose the closest source or

Distance between two points in 2d
def dist(a, b):
return math.sqrt ((al0]-b[0])**2 + (al1]l-b[1])*%2)

Calculate the min distance between two paths.

def calc_distance(a,

#

return min (

dist (al0][0],b[0][01),

b):

dist(al0][0],bl[

dist(al-1]1L
dist(al-1]1L

Connect two paths,

def connect(a, b):

] b

1L
bl

D,

D,

1,v001001)

with freedom to reverse them.

d = calc_distance(a,b)
reverse = lambda x: [
tuple (reversed (k[:
for in reversed
]

if d == dist(al0][0]1,b[0]1[01):

return reverse(a) + [

[0 [o]
[o1Co]
]

+

b

92

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

elif == dist(al0][0],b[-11[-21):
return b + [

[-11[-2]
(01 [o]
1 + a
elif d == dist(al[-11[-21, b[0][0]):
return a + [
[-11[-21
(01 [o]
] + b
else:
return a + [
[-11[-21
[-11[-21
] + reverse(b)
lines = lines[:]
for _ in range(len(lines)-1):
min_d = 9999999999
min_path = None
focus = random.randrange(len(lines)) if rand else O

for other_path in lines:
if other_path == lines[1:
continue

d = calc_distance(lines[], other_path)
if d < min_d:
min_d = d

min_path = other_path

lines [] = connect(lines|[], min_path)
lines.remove (min_path)

if len(lines) > O0:
lines [0] ines[0] + [

[-110-2]
[

=1
(ol
ol rol ol

]
return lines[0]

return []

Generate bezier curves and connect them from a BW image.

93

130

131

133

134

135

137

138

139

140

142

143

144

146

147

148

149

164

165

166

167

169

170

171

173

174

175

176

178

179

def generate_bezier_curves(image, scale=False,
Create a bitmap from the array
bmp = potrace.Bitmap (image)

skip

Trace the bitmap to a path
path = bmp.trace()

objects = []

Generate initial 1list for each objects
for i, curve in enumerate(path):
if i <= skip: continue

curves = []
p0 = curve.start_point
for seg in curve:
if not seg.
Is a
curves.
else:
Is a
curves.

is_corner:

bezier curve
append ((p0, seg.cl, seg.c2,
corner,
append (

straight_line_to_bezier (p0, seg

curves . append (
straight_line_to_bezier(seg.c,

p0 = seg.end_point

objects.append(curves)
rand=True)

path = greedy_path(objects,

Get the maximum coordinate,
such that it equals 73300.

and scale everyth

b = 3300.0/max(

max (max(c) for c¢ in curvel[:-1])

for curve in path
)
scaled = [

tuple

for in [:-1]
[-1] for in

]

return scaled

o4

convert to two bezier curves

=0) :

seg.end_point, True))

(we hacky af)

.c) + (True,)

seg.end_point) + (True,)

ing

180

181

182

183

184

185

Plot a set of bezier curves with matplotlib.
def plot_bezier_curves (curves):
codes = [

fig = plt.figure()
ax = fig.add_subplot (111)
for v in curves:

if not v[-1]: continue

patch = mpatches.PathPatch(

mpath.Path(list(reversed(v[:-11)),codes),

facecolor=’none’,
lw=2, edgecolor=np.random.rand(3,)
ax.add_patch(patch)

ax.set_x1im (0, 4096)
ax.set_ylim (0, 4096)

plt.show ()

Convert a bezier curve to a .coe row.
def bezier_to_binary(curve):

flattened = (int(round(e)) for t in curvel:

return "".join(
"{0:{fil11}12b}".format (k, £ill=’0’)
for k in flattened

) + (’1’ if curve[-1] else ’07)

Output a set of bezier curves to a .coe file.
def bezier_to_coe(scenes, filename):

] for e in t)

instruction_select_bits = int(math.ceil(math.log(
max (max (len(frame) for frame in s) for s in scenes)

)/math.log(2)))

frame_select_bits = int(math.ceil(math.log(
max (len(s) for s in scenes)
)/math.log(2)))

%)

230

231

233

234

235

237

238

239

240

260

261

262

263

264

265

266

267

269

270

271

272

274

275

276

278

279

def

scene_select_bits = int(math.ceil(math.log(len(scenes))/math.log(2)))

total_size = instruction_select_bits+frame_select_bits+scene_select_bits

PTIDT " okokokok ok ook ook ok okok okok ok ok ok ok ok ok o ok ok okok Kok ok ok Rk ok 1!

print "Scene;select bits:", scene_select_bits
print "Framegselect bits:", frame_select_bits
print "Inst_select bits:", instruction_select_bits

buff

= "memory_initialization_radix=2;\nmemory_initialization_vector=\n"

print "Writing_ COEg filegnow..."

for

i in tqdm(range (2**xtotal_size)):

s = i > (total_size - scene_select_bits)

f = (i > (instruction_select_bits)) % 2**x(frame_select_bits)
ins = i % 2**(instruction_select_bits)

scene = scenes[min len]

frame = scenel len]

instruction = framel[len]

buff += bezier_to_binary(instruction) \
+ ("," if i !'= (2*%*total_size)-1 else ";") + "\n"

with open(filename, ’w’) as f:

f.write (buff)

slice_bezier (points, t):

x1,
X2,
x3,
x4 ,

x12
yi12

x23
y23

x34
y34

x123

yl = points[0]
y2 = points[1]
y3 = points[2]
y4 = points[3]

= (x2-x1)*t+x1
= (y2-yl)*t+yil

= (x3-x2)*t+x2
= (y3-y2)*t+y2

= (x4-x3)*t+x3
= (y4-y3)*t+y3

= (x23-x12)*t+x12

96

280

281

283

284

285

287

288

289

290

292

293

294

295

296

297

298

299

301

302

303

304

305

306

307

308

310

311

312

313

314

315

316

317

319

320

321

322

323

324

325

326

328

329

y123 = (y23-y12)*t+yl2
x234 = (x34-x23)*t+x23
y234 = (y34-y23)*t+y23
x1234 = (x234-%x123)*t+x123
y1234 = (y234-y123)*t+y123

return (
((x1,y1),(x12,y12),(x123,y123),(x1234,y1234), points[-1]),
((x1234,y1234),(x234,y234),(x34,y34) ,(x4,y4), points[-1])

Numerically compute the length of a bezier curve. Turns out doing this
"prettier ways" is hard af.
def bezier_length(curve):

Split curve into 1000 points, and find their sum distance

return sum(
sum ((first [k] - second[k])**2 for k in (0,1))
for first, second in (lambda x: zip(x,x[1:1)) ([

tuple
[ol [1]
[2] [21]
for in zip [:-1]
for in

D

Expand a set of bezier curves such that they are a power of two
by splitting the largest curves in half.
def expand_bezier (curves):

target = int (2**math.ceil (math.log(len(curves))/math.log(2)))

¢ = {curve: bezier_length(curve) for curve in curvesl}
for in range(target-len(curves)):

Pick the biggest curve, and split it down the middle.
max_curve, max_len, max_index = None, -1, -1

for i, curve in enumerate (curves):
1 =c[]

if 1 > max_len:
max_len = 1
max_curve = curve
max_index

]
.

o7

330
331 first, second = slice_bezier (max_curve, 0.5)

332 curves [] = first

333 curves.insert (max_index+1, second)
334

335 cl] = ¢l] =1/2

336

337 return curves

338
339
340
341 def process_gif(filename,

342 down_sample=1,

343 skip=0,

344 get_first=False,

345 pad=0,

346 ratio=128):

347

348 print "Gettinggimagesyfrom", filename

349 imgs = get_bw_file(filename, ratio=ratio)

350

351

352 imgs = [[0]1]1 if get_first else [

353 [i] for in range len

354]

355

356 imgs = imgs [:] + ([[-1]1] if pad == 0 else [])
357

358 print "Processing_initialgbezier,curves..."

359 frames = [for in
360

361 print "Expanding,bezier,curves..."

362 frames = [for in]

363

364 instruction_select_bits = int(math.ceil(math.log(
365 max (len(f) for f in frames)

366)/math.log(2)))

367

368 frame_select_bits = int(math.ceil(math.log(len(frames))/math.log(2)))
369

370 return frames

371

372

373

374 saved = [

375 ’macaroni.gif’

376 ’pear .gif’

377 ’square.gif’

378 ’dots.gif’

379]

98

380

381

bezier_to_coe(saved,

"rom.coe"

99

