Interactive Minecraft

Chenkai Mao Alexis Camacho

chenkair@myt. edu camachol@mat. edu

1 Overview (Chenkai)

For our project we started intending to implementing a simplified but interactive
version of Minecraft on a FPGA, in which we create and display a 3D world made
of different blocks, and the player navigates himself around under first person view
using controllers like accelerometers and gyros attached to their body, in the same
time the user make interactions with the world like mining and moving blocks,
high level block diagram is shown below, with the controller for navigation and
interaction, game logic responsible for the interaction logic, BRAM for storing
the world state and graphics information, and 3D renderer for calculation and
displaying the first person view.

A

> Controls > Game
~ Logic 3D

Renderer

BRAM

It turns out that making a 3D graphics pipeline in FPGA has many difficulties that
we didn’t foresee at the beginning, and in the end we only finished implementing
the graphics pipeline, BRAM and a controller implemented with FPGA buttons.
Still, it is quite an exciting project and in this report we’ll introduce here our
block diagram in section 2, talk about the design and implementation in detail in
section 3, and the difficulties we faced and the optmization we used in section 4
and attach some results and reference in section 5.

1

3 DESIGN AND IMPLEMENTATION (TOGETHER)

2 Block Diagram (Alexis)

The very high level block diagram is plotted here:

Matrix
Fgla;g»: Rasterization | FIFC 78T
Management To
Cub VGA
_—
v %re riangle
. erator

—m Matrix Matrix Rasterizafion FIFO
FIFO

2
2

3 Design and Implementation (together)

As shown in the block diagram, the tipical data flow can be described in the
procedures below. Where subsections (a) to (e) are implemented by Chenkai and
(f) to (j) are implemented by Alexis.

(a) World BRAM

We start encoding our world state in BRAM, with size 5 % 32768 = 163840bits =
20.48k B, where each line is 5 bits, with 3 color bits and 2 state bits, and in total
323 = 32768 lines, representing our world which is 32 by 32 by 32 blocks in size.
For color bits, 2’600 is default sky blue, and other colors incluide leaf green, grass
green, tree trunk brown, stone grey and brick brown. For state bits, 2’600 means
there is no cube in that position, 2’601 means there is a block there that we need
to dosplay, we didn’t have time to implement but intended to use 2’610, 2'b11, for
different states useful in game logic.

(b) Controller

We also have a controller module storing and updating all the user information,
like position (three coordinates), orientations (two angles) etc. It takes in the
FPGA button signals and update the user state that will change the view accord-
ingly in real time.

(c) Triangle generator

Next step is keep looping through the world and update it on the screen. We
have a counter looping through each block address in BRAM. If the state bits are

2

(d) Matrix and mat-ra8-ifPESIGN AND IMPLEMENTATION (TOGETHER)

2’601, which means there really is a block there, we read it from BRAM and pass
the cube information(color, state and address which is the position of a vertice)
to a module named triangle generater. Based on the user information(position
and orientation) and cube information, we can have simple logic calculation that
whether the block is in front of the player and lies inside the viewport. If it is then
we generate 6 triangles and pass on to matrix module for next step calculation(due
to hardware limitation we only have 2 matrix modules so we output 2 triangles
each clock cycle and pipeline for three clock cycles for outputing all of them), if
not we stop and take in next cube information. At each time the player can only
see at most 3 faces of a cube, and each cube can be represeented by 2 triangles,
which is why we generate 6 triangles for each cube. Another trick here is when
we're generating triangles, we know the normal direction of that cube and we can
encode it into a 2 bit shader that determines the brightness of that face in the
end to show simple shader effert.

(d) Matrix and mat-ras-fifo

Then each triangle is passed to the matrix module, which applies matrix opera-
tions for coordinate transformation and perspective projection, which transforms
the triangle in 3D space onto 2D screen coordinates along with the depth informa-
tion, which is the z-distance of each triangle vertice to the player. The calculation
is pipelined so that it can take in triangles at every clock cycle. Then the trans-
formed triangle is fed to a fifo between matrix and rasterization module, which
we call mat-ras-fifo. The reason we need a fifo is that we want to parallelize the
design with one matrix connected to multiple rasterization modules, so we need
a fifo in between to hold the triangle data.

(e) Distributor

In order to distribut the triangle data in fifo to different rasterization modules,
we have a counter or we call it distributer after the mat-ras-fifo that is connected
to both the fifo and multiple rasterization modules. It takes in the ready signal
of each rasterization module, along with the empty signal from fifo, distributing
the triangle data to each rasterization module.

(f) Rasterization

Before beginning talk about rasterization, it is a good idea to know what the
process is. We are given three screen points that describe a triangle and an in-
active screen, where pixels are turned off. Based on these three points, which

3

(f) Rasterization 3 DESIGN AND IMPLEMENTATION (TOGETHER)

pixels should be turned on? This problem can be solved by iterating through the
pixels and only turning on pixels that lie within the triangle. We can determined
whether a pixel lies in a triangle through cross products. Consider the following
figure.

P2

P3

P1

If (P— P)X(P;— P) z part is positive number, this means that P lies within
the right of the line. If this holds for all three of the vectors, the point must lie
within the triangle. It is important to know that this only holds if the points are
defined in a clockwise fashion, otherwise the cross product will be negative. This
is important in our implementation of Rasterization, since we must consider both
scenarios.

When we iterate through the pixels it is important to be efficient since 3D
rendering is costly. Therefore we only iterate through the bounding box of the
triangle, that reduce our area to the ranges of possible candidates.

Now that we have the mathematics down, we can implement Rasterization.

The rasterization module was implemented as a state machine, whose main
states included performing initial calculations, and returning pixel information at
every clock cycle. Initially, the Rasterization module is in a waiting mode if there
is no information being processed. Once a signal is given to the Rasterization
Module to start, inputs to the module are processed to be used in the iteration
of pixels. These initial calculations include, the bounding box of the triangle, the
edge equation coefficients, and pseudo-depth information.

We store edge equation coefficients in a register, and set h-count and v-count
values to begin with the minimum x and y values and soon after move into the
iteration phase.

During this phase, we iterate through each pixel every clock cycle to deter-
mine whether the pixel should be filled or not, and give a registered output of the

4

(g) FIFO RASTERIZATIOKIMeAND IMPLEMENTATION (TOGETHER)

pixels color. We must also consider if the points were declared counterclockwise
or clockwise and apply the right edge equations. This is done by checking the
normal-z and edge equations. Furthermore, we consider whether a h-count has
gone past x-max, so we can iterate through the next row or if we can stop iterating
(if v-count is past y-max).

Based on our decision in iteration phase, we output color information, pixel
location, depth, and whether to write (ie in triangle). Another output, done, is
asserted only after we finished iteration.

Rasterization

_— clk
[19:0]

——» reset addr
start write —»

[12:0]

—_— v0 done |————P
[12:0] [2:0]

— > v color —»
[12:0] [2:0]

R a— v2 shader ———»

[2:0]
————» shader

halt
[2:0]
—» color

(g) FIFO RASTERIZATION Design

At every clock cycle, the rasterization module gives information about a pixels
information (address, color, depth, and shade). Since the ZBT can only read one
address at a every clock cycle and there are many rasterization modules, a method
of reading many rasterizations modules is needed. Along with that, we only want
to read rasterization modules that have pixels who are on.

Considering this, we thought to improve the performance (frame rate) through
FIFO structures. Rasterization results would push data into the FIFO only when
write is asserted by rasterization. Every Rasterization has a FIFO, so the output
of the FIFO is like that of the rasterization, except only values that we care about
(filled pixels) are in.

Between the FIFO and Frame-Buffer, is a counter. This counter directs which
FIFO the Frame-Buffer should read based on a equality test. This way, the frame-
buffer only reads data one at a time.

(h) FIFO RASTERIZATIOKStGNeNiDatddRLEMENTATION (TOGETHER)

Rasterization FIFO
—_— clk {addr, shader, depth color} [35:0]
) resat addr [19:0] — w data dout
= >
— | start write 4-—-—'::[: virte full »
[12:0])) ——* read -
vl done p———>
[12:0] [2:0] empty »
—_— vi color ———>»
[12:0] [2:0]
R — v2 shader
[2:0] [7:0]
————» shader depth —»
halt
[2:0]
——» color
read

(h) FIFO RASTERIZATION Implementation

The FIFO modules were implemented using the IP Core Wizard, specified with a
36 bit width write and read, along with a 1024 depth address.

FIFO and Rasterization were combined into one module called fifo_rasterization
for abstraction. Thus, the inputs to the fifo_rasterization included the 12 bit in-
tegers denoting the coordinates of vertices, 4 bit color input to denote triangle
color, 4 bit normal input for shaders, 32 bit output for pixel information, ful-
1/empty ports for FIFO information and done output port for external modules
to know rasterization is done with processing.

Within this module, this design describe above was implemented. A 36 bit
wire was created from the outputs of the rasterization module to connect into the
din (data in) port of the FIFO. This din port is a concatenation of the address,
shader, depth, and color, in that order.The write port of the FIFO is connected
to the output write signal of the rasterization module to ensure only relevant data
is written into the FIFO.

Since there is a possibility of the FIFO being full, the FIFO must communicate
with the Rasterization module to tell it to halt. Without a halt signal from the
FIFO, we can lose some data since data will not be written into the FIFO.

For the frame-buffer to read data, we only read data if the counter corresponds
to the FIFOs assigned number and if the FIFO is not empty. Therefore the rd
port is a logical and of these two signals.

(i) ZBT-Management BesigitsSIGN AND IMPLEMENTATION (TOGETHER)

(i) ZBT-Management Design

We wanted to ensure that every frame had a continuous output of pixels, meaning
that every frame had something showing, even if it was laggy. In order to do this,
we need to read and write into our frame buffer at the same time since writes
to the ZBT are at arbitrary locations and reads are based on the xvga module.
However, ZBT cannot read and write at different addresses at the same time. To
get around this, we use one ZBT for writing, while the other is used exclusively
by the xvga module to display pixel information.

clear ZBT 2
— ZBT 1
din I din out —— din ot | —— 000000 e
> state == 21— write

write
»| addr
/{ addr
state == 2'b11 b » read
addrvVGA read
—
clk
addr clic
—
state ibﬂ |
state == 2’010

addrVGA

(j) ZBT-Management Implementation

ZBT has an address depth of 512K, with 36 bit write depth, however our screen
size requires at least 786432 addresses, the amount of pixels on screen, to store its
14 bits information (depth, shade, color). Since we only use 14 bits for each pixel,
we can therefore write information about two pixels into 1 ZBT address. This will
only take up 28 bits of information out of the 36, leaving room for expansions like
more colors.

The ZBT management system is a state machine with 4 states. Reading, Writ-
ing, Migration, and Clearing. When we are given pixel location (ie addr, depth,
shade, color), we cannot just write the information directly into the ZBT since two
pixels share the same location. Therefore we must read the address, and replace
the appropriate pixel.

Since reading a pixel takes 2 clock cycles, we read for one cycle. Then two
clock cycles later we write into the machine. In the meantime, we write previous
data using registers indicating the past data and read new data. Therefore the
state switches from reading to writing to reading etc. We switch back and forth

7

4 DIFFICULTIES AND SOLUTIONS (TOGETHER)

until ZBT-management gets a frame done signal.

Once frame done is enabled, the ZBT finishes it last write and enters the mi-
grate state. During this state, we read the future address that VGA will read (to
account delay in read) and to write the output of the first ZBT into the other ZBT
reading at the same address. Once the ZBT has looped through its addresses, the
machine enters the clearing state.

At this state, memory is cleared such that the depth of pixels is maximal and
color is default.

4 Difficulties and solutions (together)

Various obstacles pop up while we’re implementing the whole graphics pipeline,
we list the major ones below. Subsection (a) to (c) is written by Chenkai and (d)
to (f) is written by Alexis

(a) When we started to implement the matrix module at the beginning, because
we're using fisrt person view which is implemented by perspective projection, there
is division operations in the matrix module, but the build in division takes too
many clock cycles. So we implemented a look up table that takes in a divisor(9
bits) and return a multiplier and a rightshifter which makes an equivalent opera-
tion as divide by the divisor. We also need to do sinusoidal calculations for our
orientation and viewport calculation, which is also hard for hardware to calculate
in real time, so we had another loopup table for sin and cos values.

(b) Another big problem is that since we have multiple modules and FIFOs
pipelined precisely, we need to make sure the pipeline and different state works
under different situations, in perticular when the mat-ras-fifo or the rasterization
FIFO in the end is full, we need to halt all the procedure before the rasterization
and wait for the pixel data passed into ZBT and free the FIFOs. In order to
halt and restart all the procedures without loosing any information and pipeline
mismatch is quite a challenging task since we’re first time implementing the frame-
work. We came up with multiple debugging approaches including unit test each
module using modelsim, output signals through hex LED display, and drawing a
small 2D map on the corner of screen for place information. We finally made the
pipeline work by debugging each module back and forth. This is probably the
most time-consuming part of the whole project.

4 DIFFICULTIES AND SOLUTIONS (TOGETHER)

(c) The other problem that is deterministic for the whole project is the hardware
limit. Since we mentioned before that we need to display 6 faces for each triangle,
we started planning to have 6 matrix modules, for which we can process each
block in one clock cycle, but we don’t have enough logic for that and it took too
long to compile (more than 10 minutes), which makes it harder to debug. So we
decided on only having 2 matrix modules and write additional logic for triangle
generator to ouput 6 triangles in 3 cycles.

(d) Rasterization: During the rasterization processes there were edge cases that
were tricky to figure out. If a triangle lay partly out of the screen, we had to
consider this case while not iterating through the non-existent part of the screen.
When rasterization was first made it only ran at 27 mhz, I had to pipeline the
module to get it to run at 65bmhz. Since most of the heavy computation was done
in the beginning, I devoted some more clock cycles for initialization. This seemed
to have fixed the problem.

(e) FIFO Rasterization: There was this problem on the screen where the trian-
gles would have appeared to have lines on them. It took a while to figure out.
The problem did not lie in the rasterization module or the configuration of the
rasterization - fifo design, but rather that I was reading from an empty fifo at
times. After figuring this out and making the correct adjustments, the problem
disappeared. Lesson: do not read from an empty FIFO.

(f) ZBT Management: So actually, there were three iterations of the design. The
first iteration with dual port BRAM. This way we could read and write at dif-
ferent locations. However, since we used additional BRAM for LUT and FIFOs,
this led to the project running out of space. So we had to switch to ZBT.

Since we wanted parallelism, we decided to use two ZBT modules and run them
at twice the clock speed so simulate four separate ZBTs (to emulate real paral-
lelism). However, we ran into the problem of the 65mhz clock and the 130 mhz
clock being offset of one another. This issue could have been fixed, however the
bigger problem was the fact that during the writing phase we could not display
any pixels during that time. I had originally thought that this flickering would
not be noticeable since the clock was so fast, however there was flickering.

As a result, using a ZBT for writing and another one for reading, while migrat-
ing based on the address of the VGAs pixel seemed like a better option. After
implementing it, the flickering problem was solved.

5 APPENDIX

5 Appendix

(a) Results

We displaying some results we have here:

10

(b) Verilog 5 APPENDIX

(b) Verilog

We list our major verilg modules here:

(b).1 labkit.v (part)

*

11

