

6.111 Final Project: Spherical Persistence of Vision Display

Luis Torres and Noah Moroze

Table of Contents
Introduction

BOM

Hardware

Electronics

Verilog Modules
SPI Driver
Image mapper
Rotation sensor

Final Notes

Appendices
Verilog

main.v
image_mapper.v
spi_driver.v
rotationModule.v
Cmod-A7-Master.xdc

Introduction

For our final project we developed an FPGA-controlled spherical persistence of vision display.
The concept behind the display is that by spinning a single strip of lights at high speed and
precisely controlling which LEDs are lit at any given position, we can take advantage of the
eye’s slow response time to create the illusion of a continuous display.

Our device features a strip of 52 individually controllable RGB LEDs mounted around the edge
of a rotating ring. We have a resolution of 52 pixels tall and 256 pixels around, and the device
can be programmed to display any arbitrary 256x52 bitmap file.

BOM
Item Link/Source Cost

Frame Scrap stock from MIT makerspaces n/a

LED strip https://www.adafruit.com/product/2241 $50

https://www.adafruit.com/product/2241

IR break beam sensor https://www.adafruit.com/product/2168 $6.50

Motor Already had n/a

Cmod A7 Borrow from staff
(​https://store.digilentinc.com/cmod-a7-
breadboardable-artix-7-fpga-module/​)

n/a

Battery pack https://www.amazon.com/gp/product/B
01CU1EC6Y

$20

Hardware
Luis

The hardware design consists of an inner ring that is held in place by an external frame. The
inner ring holds all the electronics with the exception of the motor and the infrared emitter for
detecting the rotational speed.

All of the hardware was sourced from scrap materials. The frame is constructed with aluminum
extrusions and the inner ring and battery clamps were water jetted out of aluminum sheet. We
machined bearing plates and pulleys out of aluminum stock as well.

https://www.adafruit.com/product/2168
https://store.digilentinc.com/cmod-a7-breadboardable-artix-7-fpga-module/
https://store.digilentinc.com/cmod-a7-breadboardable-artix-7-fpga-module/
https://www.amazon.com/gp/product/B01CU1EC6Y?pf_rd_p=c2463b52-1139-4aba-9ac9-26d103f6c586&pf_rd_r=9804WDNAGVMJ25B0NYYW
https://www.amazon.com/gp/product/B01CU1EC6Y?pf_rd_p=c2463b52-1139-4aba-9ac9-26d103f6c586&pf_rd_r=9804WDNAGVMJ25B0NYYW

The main challenge with designing the hardware for this project was ensuring that the rotating
ring was balanced. To do this, we designed the ring to be symmetrical, and mounted our
cylindrical battery pack inline with the axis of rotation of the ring. All other components were
mounted as close to the center of the ring as possible, such that the weight was evenly
distributed.

The only other challenge we faced was making sure the assembly was rotating fast enough to
produce the effect. Our prior work research found that we need a refresh rate somewhere
between 13Hz-16Hz. The disk refreshes every time it completes a full revolution. This translates
to a rotational speed of 13-16 rotations per second or 780-960 revolutions per minute. We also
found that there is no benefit from refresh rates above 60Hz, so there is no point in going faster
than 3600 rpm.

Electronics

Our project posed a unique challenge in that every electrical component had to be mounted to
the spinning ring. We considered using a slip ring while initially planning the project, which is a
component that would allow us to pass electric signals through a rotating joint. However, most
commercially available slip rings can support only a limited rate of speed, and even if they can
be rotated quickly they often make for fairly noisey connections that can’t support high-speed
signals.

Since it seemed infeasible to build a mechanism that could spin our Labkit, the course staff
loaned us a Cmod A7, a lightweight and minimalist dev board for the Artix 7 FPGA. Although it’s
much smaller than the Labkit FPGAs, we figured that the Cmod A7 had more than enough
space to hold our design and so it was the perfect device for our needs. In addition, it features
onboard flash storage to enable configuration on power up, necessary since we would have to
turn off the FPGA between programming and starting up the device.

Mounting everything on our spinning disk meant we could have absolutely no wires coming from
our FPGA, and therefore we also had to power it via a battery. Since the Cmod board is
powered off a standard micro USB connector, we decided to get an off-the-shelf battery pack
from Amazon meant for charging cell phones. This ended up being the ideal choice since it was
an all-in-one unit that provided a nice regulated 5V over USB and charging capability built in.
We searched for a battery that was optimal in terms of low weight, high capacity, and high peak
current. We ended up choosing a battery with 5000 mAh capacity, 2A peak current, and a 4.8oz
weight. Given this capacity, at continual max current draw (which is worst case) our battery lasts
2.5 hours, which we figured would be more than enough for our purposes.

According to the datasheet, each LED draws 60mA at max current, for 52 * 60 mA = 3.12 A
total. In order to fit within the battery’s current limit, we used a scheme to light only half of the
LEDs at once (described in more detail in the “Image mapper” module section). With max LED
current cut in half, we were left with plenty of overhead for the battery to also power the FPGA
and sensor.

In order to determine our rotation speed, we needed some sort of sensor feedback. We
considered a few different options, including hall effect sensors, some sort of glancing touch
feedback, or a gyroscope. However, we ultimately settled on using an IR break beam sensor
from Adafruit. This two piece sensor includes both an emitter and a detector. The emitter is
mounted to the stationary frame of the project (since it just requires power and doesn’t need to
be connected to the FPGA), and the detector was mounted to the spinning ring opposite the
LEDs. Every time this side of the ring passes by the emitter, the detector detects the IR beam
coming from the emitter and sends a logic 1 to the FPGA. This proved to be a simple and
effective setup.

One challenge we encountered was level shifting the 3.3V digital outputs from the Cmod A7 to
the 5V required for the LED strip inputs (we did try without level shifting just in case the LEDs
were more tolerant than documented, but this didn’t work). We initially tried using a simple
level-shifter board from Sparkfun, but unfortunately it was much too slow for our use case. We
then tried a SN74LS04 from lab 1, since TTL logic has a very forgiving input high range that will
read a 3.3V signal as high but then will output fairly close to 5V. This did work for testing
purposes, but we were only able to clock our LED strip somewhere on the order of KHz.

Ultimately, we ended up using a 74AHCT125 IC, which is a buffer chip that Adafruit markets as
a level shifter. Using this chip, we were able to clock our LEDs at 12 MHz.

To light all the LEDs on the strip requires a 32 bit start sequence, a 32 bit end sequence, and 32
bits per each of the 52 LEDs for a total of 54 * 32 = 1,728 bits of data. At 12 MHz, you can then
update the LED strip approximately 12*10​6​/1,728 = ​6,944 times per second. Given that we want
to rotate at least 800 RPM (or ~13 rotations per second), then we are able to update 6,944/13 =
534 times per rotation. This means we are easily able to meet our desired angular resolution of
256.

We debugged our electronics on a breadboard, and then soldered them to perfboard for the
final prototype.

Schematic of final circuit

Both the IR sensor emitter and motor (which are mounted statically to the frame of the device)
were powered by a lab power supply. We powered the motor via the supply’s variable output
and the sensor via its fixed 5 V output.

Verilog Modules

Overall block diagram.

SPI Driver
Noah

Inputs: ​clock, reset, en, data[31:0]
Outputs: ​mosi, sck, latched

The SPI Driver module is responsible for outputting data over SPI to the LED strips. When ​en is
high and ​reset is low, the module will continuously latch the 32 bits presented at its ​data input
and output them from MSB to LSB. Each time it finishes outputting its 32 bits of data, the
module will latch the next 32 bits presented on ​data and then assert ​latched high for one clock
cycle. This tells whichever module is presenting the data that it is okay to present the next 32
bits to be output.

We decided to clock ​sck ​at one half ​our system clock speed so that we have one in-between
cycle to update the data presented on ​mosi ​before sck ​goes high. This clocking scheme
proved to work out perfectly.

Image mapper
Noah

Inputs: ​clock, reset, en, angle[7:0], latched
Outputs: ​data_out[31:0]
Parameters: ​LED_COUNT

The image mapper is responsible for sending the correct data to the SPI driver given an input
describing the angle of the spinning ring. We wanted our project to be able to display any

arbitrary bitmap file we provide it, so this module contains the ROM necessary to store the
image. We ended up using four generated Block ROM IP cores: ​image_rom to store the main
image COE file, and then three more to store the red, green, and blue color tables. The
image_rom ​size is 256x52x8 bits (~13,312 KB), and each of the color tables is 256x8 bits (256
bytes).

The x coordinates of the image are mapped linearly with the angle of the ring and each y
coordinate is mapped 1:1 to each LED on the arc. This removes the need for any complicated
math.

The image mapper is structured as a simple finite state machine with three states. Here’s the
state transition diagram:

The state transitions are designed to follow the specifications of the LED strip. Before sending
out data, the master device must send out a reset packet of 32’b0. Following this, one 32 bit
packet is sent out for each LED, which we index using the variable ​v_idx​. We originally had
v_idx counting up from zero, but reversed the direction when we realized our images were
appearing upside down on the display. Finally, in the END state we output a single end packet
of 32{1’b1}. This actually corresponds to lighting an LED white, but doesn’t actually display
since we’ll have sent colors to every LED in the chain already. Rather, it just gives the strip one

extra LED’s worth of clock cycles to finish propagating, which is necessary due to some delays
in the spec.

Each transition occurs on an assertion of ​latched​, which is wired to the ​latched ​output of the
SPI driver. This tells the image mapper to go ahead and output the next packet of data each
time the SPI driver latches the current one. The data to output is determined combinatorially
based on the current state, ​v_idx​, and ​angle​.

In addition, the image mapper actually outputs data to every other LED, cycling between every
even LED and every odd LED. This effectively acts as a PWM technique to reduce current draw
at any given time (so that we don’t max out the current output of our battery). We determined we
had plenty of leeway to do this both in terms of timing and brightness. This is controlled by
comparing the LSB of ​v_idx ​with a one bit register called ​cycle that flips with every packet
outputted.

Block diagram for image mapper module internals

Rotation sensor
Luis

Inputs: ​clock, reset, enable, sensor
Outputs: ​current_angle[7:0]

The rotation module is responsible for interpreting the synchronized and debounced sensor
input and generating the current angular position of the rotating assembly. The strategy for
generating the current angle, is to count how many clock cycles it takes for the ring to complete
a full revolution and divide that quantity by the total number of degrees. This calculation gives us
the number of clock cycles we need to wait between each degree. To simplify the division, we

decided to divide the circle into 256 degrees instead of 360. By doing this, the calculation
becomes a simple bit shift instead of a full division.

A design choice that we needed to make was the width of counter register. The smaller it is, the
faster the assembly needs to be rotating in order for this module to work. We ended up with a
width of 22 bits. This restricts the maximum number of clock cycles per full rotation to 4194304
cycles. With a 24MHz clock, this means that we need to complete a full revolution at least every
0.1747 seconds (~344rpms).

In order to decrease noise and increase the robustness of the module, we keep a running
average of the clock cycles per rotation and use that in our calculation instead of the last
measurement. We calculate our average using the following equation:

counter_average ​<=​ ​7​​*​(clock_counter ​>>​ ​3​​) ​+​ (counter_average ​>>​ ​3​​);

By averaging using this equation, we effectively average over every single counter_average
value since the system was turned on. It assigns geometrically decreasing weights to
sequentially older values, thereby wighting new values higher than old values. The beauty of
this method is that we can consider all of these values without needing to store them.

This module allows the device to rotate at any speed (above 344rpms) while still maintaining a
static image. Even when the sensor is completely disconnected, as long as the motor speed is
constant, the image remains still. This is because we use the counter_average in calculating the
clocks per degree value and don’t update theregister until we receive a new pulse from the
sensor.

Final Notes
Here are a few lessons we learned that may be helpful for future teams:

● Pair programming and commenting are both helpful for working through tricky modules
and making sure that your logic is sound from the very start.

● However, it’s also useful to design your system so that you and your partner can work on
different components in parallel.

● Simulations are super helpful for testing. Writing test benches was really important for
our project so that we could (A) work on the hardware in parallel with the Verilog and (B)
debug modules without having to come up with a debugging scheme that works when
your system is rotating at 1000 RPM.

Appendices

Verilog

main.v
module​​ main(
 ​input​​ sysclk,
 ​input​​ [​0​​:​0​​] btn,
 ​input​​ [​7​​:​0​​] ja,
 ​output​​ led0_b,
 ​output​​ led0_g,
 ​output​​ led0_r,
 ​output​​ pio1,
 ​output​​ pio2
);

 ​wire​​ reset;
 ​wire​​ rotation_sensor;
 ​wire​​ mosi;
 ​wire​​ sck;
 ​wire​​ clock_24mhz;
 ​wire​​ latched;
 ​wire​​ [​7​​:​0​​] angle;
 ​wire​​ [​31​​:​0​​] data;

 debounce rotation_sensor_debounce(.reset(reset), .clock(clock_24mhz),

.noisy(ja[​3​​]), .clean(rotation_sensor));
 ​assign​​ pio1 ​=​ mosi;
 ​assign​​ pio2 ​=​ sck;
 ​assign​​ reset ​=​ btn[​0​​];

 clk_wiz_0 clock_multiplier(.reset(reset), .clk_in1(sysclk),

.clk_out1(clock_24mhz));

 rotationSensor sensor(.reset(reset), .clk(clock_24mhz), .enable(​1​​'b1​​),
.sensor(rotation_sensor), .current_angle(angle));

 image_mapper #(.​LED_COUNT​​(​72​​)) mapper(.reset(reset), .clock(clock_24mhz),
.en(​1​​'b1​​), .angle(angle), .latched(latched), .data_out(data));
 spi_driver spi(.reset(reset), .clock(clock_24mhz), .en(​1​​'b1​​), .data(data),
.latched(latched), .mosi(mosi), .sck(sck));

endmodule

image_mapper.v
module​​ image_mapper(
 ​input​​ clock,
 ​input​​ reset,
 ​input​​ en,
 ​input​​ [​7​​:​0​​] angle,
 ​input​​ [​7​​:​0​​] image_data,
 ​input​​ latched,
 ​output​​ [​15​​:​0​​] image_addr,
 ​output​​ ​reg​​ [​31​​:​0​​] data_out
);

 ​parameter​​ ​LED_COUNT​​ ​=​ ​72​​;

 ​parameter​​ ​S_START​​ ​=​ ​2​​'b00​​;
 ​parameter​​ ​S_LEDS​​ ​=​ ​2​​'b01​​;
 ​parameter​​ ​S_END​​ ​=​ ​2​​'b11​​;
 ​reg​​ [​1​​:​0​​] state ​=​ ​S_START​​;

 ​reg​​ [​6​​:​0​​] v_idx ​=​ ​0​​;

 ​// currently harcoded to display LEDS in banks of LED_COUNT/4 to reduce current
draw

 ​// TODO: parameterize this
 ​reg​​ cycle ​=​ ​0​​;

 ​// color maps
 ​wire​​ [​7​​:​0​​] red_mapped, green_mapped, blue_mapped;
 red_coe rcm (.clka(clock), .ena(​1​​'b1​​), .addra(image_data), .douta(red_mapped));
 green_coe gcm (.clka(clock), .ena(​1​​'b1​​), .addra(image_data),
.douta(green_mapped));

 blue_coe bcm (.clka(clock), .ena(​1​​'b1​​), .addra(image_data), .douta(blue_mapped));

 ​// select data based on vertical index and current angle
 ​assign​​ image_addr ​=​ v_idx ​<<​ ​8​​ ​|​ angle;
 image_rom my_image(.clka(clock), .ena(​1​​'b1​​), .addra(image_addr),
.douta(image_data));

 ​// multiplex data output depending on state
 ​always​​ @(​*​)
 ​begin
 ​case​​(state)
 ​S_START:​​ data_out ​=​ ​32'h00000000​​;

 ​// add in image map for color data
 ​S_LEDS:​​ data_out ​=​ (v_idx ​&​ ​5​​'b1​​) ​==​ cycle ​?​ {​8'hFF​​, blue_mapped,
green_mapped, red_mapped} ​:​ {​3​​'b111​​, ​29​​'b0​​};
 ​S_END:​​ data_out ​=​ ​32'hFFFFFFFF​​;
 ​default​​:​ data_out ​=​ ​32'h0000​​;
 ​endcase
 ​end

 ​// state machine to output SPI frame
 ​always​​ @(​posedge​​ clock)
 ​begin
 ​if​​(reset)
 ​begin
 state ​<=​ ​S_START​​;
 v_idx ​<=​ ​0​​;
 cycle ​<=​ ​0​​;
 ​end
 ​else​​ ​if​​(en)
 ​begin
 ​case​​(state)
 ​S_START:
 ​begin
 ​if​​(latched)
 ​begin
 state ​<=​ ​S_LEDS​​;
 ​end
 ​end
 ​S_LEDS:
 ​begin
 ​if​​(latched ​&&​ v_idx ​<​ (​LED_COUNT​​-​1​​))
 ​begin
 v_idx ​<=​ v_idx ​+​ ​1​​;
 ​end
 ​else​​ ​if​​(latched ​&&​ v_idx ​==​ (​LED_COUNT​​-​1​​))
 ​begin
 state ​<=​ ​S_END​​;
 v_idx ​<=​ ​0​​;
 cycle ​<=​ cycle ​+​ ​1​​;
 ​end
 ​end
 ​S_END:
 ​begin
 ​if​​(latched)
 ​begin
 state ​<=​ ​S_START​​;

 ​end
 ​end
 ​endcase
 ​end
 ​end

endmodule

spi_driver.v
module​​ spi_driver(
 ​input​​ clock,
 ​input​​ reset,
 ​input​​ en,
 ​input​​ [​31​​:​0​​] data,
 ​output​​ ​reg​​ mosi,
 ​output​​ ​reg​​ sck,
 ​output​​ latched
);

 ​reg​​ [​31​​:​0​​] data_reg ​=​ ​32​​'b0​​;
 ​reg​​ [​4​​:​0​​] data_idx ​=​ ​5​​'d31​​;

 ​always​​ @(​posedge​​ clock)
 ​begin
 ​if​​(reset)
 ​begin
 data_idx ​<=​ ​5​​'d31​​;
 data_reg ​<=​ data;
 mosi ​<=​ ​0​​;
 sck ​<=​ ​0​​;
 ​end
 ​else​​ ​if​​(en)
 ​begin
 ​// if sck is currently high, it's about to go low so we should
 ​// set up the next output bit
 ​if​​(sck)
 ​begin
 mosi ​<=​ data_reg[data_idx];
 data_idx ​<=​ data_idx ​-​ ​1​​;
 ​if​​(data_idx ​==​ ​0​​)
 ​begin
 data_reg ​<=​ data;

 ​end
 ​end
 sck ​<=​ sck ​+​ ​1​​;
 ​end
 ​end

 ​// set latched high every time we load new data (data_idx == 0)
 ​// since we only want to assert it for one clock cycle, only keep it high during
positive edge of sck

 ​assign​​ latched ​=​ sck ​&&​ (data_idx ​==​ ​5​​'d31​​);

endmodule

rotationModule.v
module​​ rotationSensor(
 ​input​​ clk,
 ​input​​ reset,
 ​input​​ enable,
 ​input​​ sensor,
 ​output​​ ​reg​​ [​7​​:​0​​] current_angle ​=​ ​0
);

 ​// Current count of clock cycles from the last
 ​// pulse from the sensor
 ​reg​​ [​21​​:​0​​] clock_counter ​=​ ​0​​;

 ​// The running average of clock cycles it takes
 ​// for a full revolution to complete
 ​reg​​ [​21​​:​0​​] counter_average ​=​ ​0​​;

 ​// Counter for the number of clock cycles that have
 ​// passed since the last degree change
 ​reg​​ [​13​​:​0​​] clock_degree_counter ​=​ ​0​​;
 ​reg​​ [​13​​:​0​​] clocks_per_degree ​=​ ​0​​;

 ​reg​​ previous_sensor ​=​ ​0​​;

 ​always​​ @(​posedge​​ clk) ​begin

 ​// Keep track of the previous value of sensor in order
 ​// to detect the rising edge

 previous_sensor ​<=​ sensor;

 ​// If reset is high, set all values to 0.

 ​if​​ (reset ​==​ ​1​​)​begin
 clock_counter ​<=​ ​0​​;
 counter_average ​<=​ ​0​​;
 clock_degree_counter ​<=​ ​0​​;
 clocks_per_degree ​<=​ ​0​​;
 current_angle ​<=​ ​0​​;
 ​end

 ​else​​ ​if​​ (enable ​==​ ​1​​) ​begin

 ​// If the sensor is high, a full revolution has
 ​// been completed. Current angle is reset to 0.
 ​// Counter_average is updated. Clock_counter is
 ​// reset to 0. Clock_per_degree is updated.
 ​// Clock_degree_counter is reset to 0.
 ​if​​ (sensor ​==​ ​1​​ ​&&​ previous_sensor ​==​ ​0​​) ​begin
 current_angle ​<=​ ​0​​;
 counter_average ​<=​ ​7​​*​(clock_counter ​>>​ ​3​​) ​+​ (counter_average ​>>​ ​3​​);

 ​// For testing purposes:
 ​// Comment the previous line and uncomment the folowing line
 ​// in order to use the current clock_counter value instead of
 ​// a weighted average of the past values.
 ​//counter_average <= clock_counter;

 clock_counter ​<=​ ​0​​;
 clock_degree_counter ​<=​ ​0​​;
 clocks_per_degree ​<=​ counter_average ​>>​ ​8​​;
 ​end

 ​// Sensor is low; full rotation has not been completed.
 ​// Increase clock_counter by 1. Calculate current angle
 ​// based on the clock_counter and counter_average;
 ​else​​ ​begin

 ​// If we have completed the number of clocks per degree,
 ​// increase the output degree value by 1. Reset clock_degree_counter
 ​if​​ (clock_degree_counter ​==​ clocks_per_degree) ​begin
 current_angle ​<=​ current_angle ​+​ ​1​​;
 clock_degree_counter ​<=​ ​0​​;
 ​end

 ​// If we haven't completed an extra degree, increase
clock_degree_counter

 ​else​​ ​begin
 clock_degree_counter ​<=​ clock_degree_counter ​+​ ​1​​;
 ​end

 clock_counter ​<=​ clock_counter ​+​ ​1​​;
 ​end
 ​end
 ​end
endmodule

Cmod-A7-Master.xdc
This file is a general .xdc for the CmodA7 rev. B

To use it in a project:

- uncomment the lines corresponding to used pins

- rename the used ports (in each line, after get_ports) according to the top level

signal names in the project

12 MHz Clock Signal

set_property -dict {PACKAGE_PIN L17 IOSTANDARD LVCMOS33} [get_ports sysclk]

create_clock -period 83.330 -name sys_clk_pin -waveform {0.000 41.660} -add

[get_ports sysclk]

LEDs

#set_property -dict { PACKAGE_PIN A17 IOSTANDARD LVCMOS33 } [get_ports { led[0] }];

#IO_L12N_T1_MRCC_16 Sch=led[1]

#set_property -dict { PACKAGE_PIN C16 IOSTANDARD LVCMOS33 } [get_ports { led[1] }];

#IO_L13P_T2_MRCC_16 Sch=led[2]

RGB LED

set_property -dict {PACKAGE_PIN B17 IOSTANDARD LVCMOS33} [get_ports led0_b]

set_property -dict {PACKAGE_PIN B16 IOSTANDARD LVCMOS33} [get_ports led0_g]

set_property -dict {PACKAGE_PIN C17 IOSTANDARD LVCMOS33} [get_ports led0_r]

Buttons

set_property -dict {PACKAGE_PIN A18 IOSTANDARD LVCMOS33} [get_ports {btn[0]}]

#set_property -dict { PACKAGE_PIN B18 IOSTANDARD LVCMOS33 } [get_ports { btn[1] }];

#IO_L19P_T3_16 Sch=btn[1]

Pmod Header JA

set_property -dict { PACKAGE_PIN G17 IOSTANDARD LVCMOS33 } [get_ports { ja[0] }];

#IO_L5N_T0_D07_14 Sch=ja[1]

set_property -dict { PACKAGE_PIN G19 IOSTANDARD LVCMOS33 } [get_ports { ja[1] }];

#IO_L4N_T0_D05_14 Sch=ja[2]

set_property -dict { PACKAGE_PIN N18 IOSTANDARD LVCMOS33 } [get_ports { ja[2] }];

#IO_L9P_T1_DQS_14 Sch=ja[3]

set_property -dict { PACKAGE_PIN L18 IOSTANDARD LVCMOS33 } [get_ports { ja[3] }];

#IO_L8P_T1_D11_14 Sch=ja[4]

set_property -dict { PACKAGE_PIN H17 IOSTANDARD LVCMOS33 } [get_ports { ja[4] }];

#IO_L5P_T0_D06_14 Sch=ja[7]

set_property -dict { PACKAGE_PIN H19 IOSTANDARD LVCMOS33 } [get_ports { ja[5] }];

#IO_L4P_T0_D04_14 Sch=ja[8]

set_property -dict { PACKAGE_PIN J19 IOSTANDARD LVCMOS33 } [get_ports { ja[6] }];

#IO_L6N_T0_D08_VREF_14 Sch=ja[9]

set_property -dict { PACKAGE_PIN K18 IOSTANDARD LVCMOS33 } [get_ports { ja[7] }];

#IO_L8N_T1_D12_14 Sch=ja[10]

Analog XADC Pins

Only declare these if you want to use pins 15 and 16 as single ended analog

inputs. pin 15 -> vaux4, pin16 -> vaux12

#set_property -dict { PACKAGE_PIN G2 IOSTANDARD LVCMOS33 } [get_ports { xa_n[0]

}]; #IO_L1N_T0_AD4N_35 Sch=ain_n[15]

#set_property -dict { PACKAGE_PIN G3 IOSTANDARD LVCMOS33 } [get_ports { xa_p[0]

}]; #IO_L1P_T0_AD4P_35 Sch=ain_p[15]

#set_property -dict { PACKAGE_PIN J2 IOSTANDARD LVCMOS33 } [get_ports { xa_n[1]

}]; #IO_L2N_T0_AD12N_35 Sch=ain_n[16]

#set_property -dict { PACKAGE_PIN H2 IOSTANDARD LVCMOS33 } [get_ports { xa_p[1]

}]; #IO_L2P_T0_AD12P_35 Sch=ain_p[16]

GPIO Pins

Pins 15 and 16 should remain commented if using them as analog inputs

set_property -dict {PACKAGE_PIN M3 IOSTANDARD LVCMOS33} [get_ports pio1]

set_property -dict {PACKAGE_PIN L3 IOSTANDARD LVCMOS33} [get_ports pio2]

#set_property -dict {PACKAGE_PIN A16 IOSTANDARD LVCMOS33} [get_ports pio3]

#set_property -dict { PACKAGE_PIN K3 IOSTANDARD LVCMOS33 } [get_ports { pio4 }];

#IO_L7N_T1_AD6N_35 Sch=pio[04]

#set_property -dict { PACKAGE_PIN C15 IOSTANDARD LVCMOS33 } [get_ports { pio5 }];

#IO_L11P_T1_SRCC_16 Sch=pio[05]

#set_property -dict { PACKAGE_PIN H1 IOSTANDARD LVCMOS33 } [get_ports { pio6 }];

#IO_L3P_T0_DQS_AD5P_35 Sch=pio[06]

#set_property -dict { PACKAGE_PIN A15 IOSTANDARD LVCMOS33 } [get_ports { pio7 }];

#IO_L6N_T0_VREF_16 Sch=pio[07]

#set_property -dict { PACKAGE_PIN B15 IOSTANDARD LVCMOS33 } [get_ports { pio8 }];

#IO_L11N_T1_SRCC_16 Sch=pio[08]

#set_property -dict { PACKAGE_PIN A14 IOSTANDARD LVCMOS33 } [get_ports { pio9 }];

#IO_L6P_T0_16 Sch=pio[09]

#set_property -dict { PACKAGE_PIN J3 IOSTANDARD LVCMOS33 } [get_ports { pio10 }];

#IO_L7P_T1_AD6P_35 Sch=pio[10]

#set_property -dict { PACKAGE_PIN J1 IOSTANDARD LVCMOS33 } [get_ports { pio11 }];

#IO_L3N_T0_DQS_AD5N_35 Sch=pio[11]

#set_property -dict { PACKAGE_PIN K2 IOSTANDARD LVCMOS33 } [get_ports { pio12 }];

#IO_L5P_T0_AD13P_35 Sch=pio[12]

#set_property -dict { PACKAGE_PIN L1 IOSTANDARD LVCMOS33 } [get_ports { pio13 }];

#IO_L6N_T0_VREF_35 Sch=pio[13]

#set_property -dict { PACKAGE_PIN L2 IOSTANDARD LVCMOS33 } [get_ports { pio14 }];

#IO_L5N_T0_AD13N_35 Sch=pio[14]

#set_property -dict { PACKAGE_PIN M1 IOSTANDARD LVCMOS33 } [get_ports { pio17 }];

#IO_L9N_T1_DQS_AD7N_35 Sch=pio[17]

#set_property -dict { PACKAGE_PIN N3 IOSTANDARD LVCMOS33 } [get_ports { pio18 }];

#IO_L12P_T1_MRCC_35 Sch=pio[18]

#set_property -dict { PACKAGE_PIN P3 IOSTANDARD LVCMOS33 } [get_ports { pio19 }];

#IO_L12N_T1_MRCC_35 Sch=pio[19]

#set_property -dict { PACKAGE_PIN M2 IOSTANDARD LVCMOS33 } [get_ports { pio20 }];

#IO_L9P_T1_DQS_AD7P_35 Sch=pio[20]

#set_property -dict { PACKAGE_PIN N1 IOSTANDARD LVCMOS33 } [get_ports { pio21 }];

#IO_L10N_T1_AD15N_35 Sch=pio[21]

#set_property -dict { PACKAGE_PIN N2 IOSTANDARD LVCMOS33 } [get_ports { pio22 }];

#IO_L10P_T1_AD15P_35 Sch=pio[22]

#set_property -dict { PACKAGE_PIN P1 IOSTANDARD LVCMOS33 } [get_ports { pio23 }];

#IO_L19N_T3_VREF_35 Sch=pio[23]

#set_property -dict { PACKAGE_PIN R3 IOSTANDARD LVCMOS33 } [get_ports { pio26 }];

#IO_L2P_T0_34 Sch=pio[26]

#set_property -dict { PACKAGE_PIN T3 IOSTANDARD LVCMOS33 } [get_ports { pio27 }];

#IO_L2N_T0_34 Sch=pio[27]

#set_property -dict { PACKAGE_PIN R2 IOSTANDARD LVCMOS33 } [get_ports { pio28 }];

#IO_L1P_T0_34 Sch=pio[28]

#set_property -dict { PACKAGE_PIN T1 IOSTANDARD LVCMOS33 } [get_ports { pio29 }];

#IO_L3P_T0_DQS_34 Sch=pio[29]

#set_property -dict { PACKAGE_PIN T2 IOSTANDARD LVCMOS33 } [get_ports { pio30 }];

#IO_L1N_T0_34 Sch=pio[30]

#set_property -dict { PACKAGE_PIN U1 IOSTANDARD LVCMOS33 } [get_ports { pio31 }];

#IO_L3N_T0_DQS_34 Sch=pio[31]

#set_property -dict { PACKAGE_PIN W2 IOSTANDARD LVCMOS33 } [get_ports { pio32 }];

#IO_L5N_T0_34 Sch=pio[32]

#set_property -dict { PACKAGE_PIN V2 IOSTANDARD LVCMOS33 } [get_ports { pio33 }];

#IO_L5P_T0_34 Sch=pio[33]

#set_property -dict { PACKAGE_PIN W3 IOSTANDARD LVCMOS33 } [get_ports { pio34 }];

#IO_L6N_T0_VREF_34 Sch=pio[34]

#set_property -dict { PACKAGE_PIN V3 IOSTANDARD LVCMOS33 } [get_ports { pio35 }];

#IO_L6P_T0_34 Sch=pio[35]

#set_property -dict { PACKAGE_PIN W5 IOSTANDARD LVCMOS33 } [get_ports { pio36 }];

#IO_L12P_T1_MRCC_34 Sch=pio[36]

#set_property -dict { PACKAGE_PIN V4 IOSTANDARD LVCMOS33 } [get_ports { pio37 }];

#IO_L11N_T1_SRCC_34 Sch=pio[37]

#set_property -dict { PACKAGE_PIN U4 IOSTANDARD LVCMOS33 } [get_ports { pio38 }];

#IO_L11P_T1_SRCC_34 Sch=pio[38]

#set_property -dict { PACKAGE_PIN V5 IOSTANDARD LVCMOS33 } [get_ports { pio39 }];

#IO_L16N_T2_34 Sch=pio[39]

#set_property -dict { PACKAGE_PIN W4 IOSTANDARD LVCMOS33 } [get_ports { pio40 }];

#IO_L12N_T1_MRCC_34 Sch=pio[40]

#set_property -dict { PACKAGE_PIN U5 IOSTANDARD LVCMOS33 } [get_ports { pio41 }];

#IO_L16P_T2_34 Sch=pio[41]

#set_property -dict { PACKAGE_PIN U2 IOSTANDARD LVCMOS33 } [get_ports { pio42 }];

#IO_L9N_T1_DQS_34 Sch=pio[42]

#set_property -dict { PACKAGE_PIN W6 IOSTANDARD LVCMOS33 } [get_ports { pio43 }];

#IO_L13N_T2_MRCC_34 Sch=pio[43]

#set_property -dict { PACKAGE_PIN U3 IOSTANDARD LVCMOS33 } [get_ports { pio44 }];

#IO_L9P_T1_DQS_34 Sch=pio[44]

#set_property -dict { PACKAGE_PIN U7 IOSTANDARD LVCMOS33 } [get_ports { pio45 }];

#IO_L19P_T3_34 Sch=pio[45]

#set_property -dict { PACKAGE_PIN W7 IOSTANDARD LVCMOS33 } [get_ports { pio46 }];

#IO_L13P_T2_MRCC_34 Sch=pio[46]

#set_property -dict { PACKAGE_PIN U8 IOSTANDARD LVCMOS33 } [get_ports { pio47 }];

#IO_L14P_T2_SRCC_34 Sch=pio[47]

#set_property -dict { PACKAGE_PIN V8 IOSTANDARD LVCMOS33 } [get_ports { pio48 }];

#IO_L14N_T2_SRCC_34 Sch=pio[48]

UART

#set_property -dict { PACKAGE_PIN J18 IOSTANDARD LVCMOS33 } [get_ports {

uart_rxd_out }]; #IO_L7N_T1_D10_14 Sch=uart_rxd_out

#set_property -dict { PACKAGE_PIN J17 IOSTANDARD LVCMOS33 } [get_ports {

uart_txd_in }]; #IO_L7P_T1_D09_14 Sch=uart_txd_in

Crypto 1 Wire Interface

#set_property -dict { PACKAGE_PIN D17 IOSTANDARD LVCMOS33 } [get_ports { crypto_sda

}]; #IO_0_14 Sch=crypto_sda

QSPI

#set_property -dict { PACKAGE_PIN K19 IOSTANDARD LVCMOS33 } [get_ports { qspi_cs

}]; #IO_L6P_T0_FCS_B_14 Sch=qspi_cs

#set_property -dict { PACKAGE_PIN D18 IOSTANDARD LVCMOS33 } [get_ports { qspi_dq[0]

}]; #IO_L1P_T0_D00_MOSI_14 Sch=qspi_dq[0]

#set_property -dict { PACKAGE_PIN D19 IOSTANDARD LVCMOS33 } [get_ports { qspi_dq[1]

}]; #IO_L1N_T0_D01_DIN_14 Sch=qspi_dq[1]

#set_property -dict { PACKAGE_PIN G18 IOSTANDARD LVCMOS33 } [get_ports { qspi_dq[2]

}]; #IO_L2P_T0_D02_14 Sch=qspi_dq[2]

#set_property -dict { PACKAGE_PIN F18 IOSTANDARD LVCMOS33 } [get_ports { qspi_dq[3]

}]; #IO_L2N_T0_D03_14 Sch=qspi_dq[3]

Cellular RAM

#set_property -dict { PACKAGE_PIN M18 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[0]

}]; #IO_L11P_T1_SRCC_14 Sch=sram- a[0]

#set_property -dict { PACKAGE_PIN M19 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[1]

}]; #IO_L11N_T1_SRCC_14 Sch=sram- a[1]

#set_property -dict { PACKAGE_PIN K17 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[2]

}]; #IO_L12N_T1_MRCC_14 Sch=sram- a[2]

#set_property -dict { PACKAGE_PIN N17 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[3]

}]; #IO_L13P_T2_MRCC_14 Sch=sram- a[3]

#set_property -dict { PACKAGE_PIN P17 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[4]

}]; #IO_L13N_T2_MRCC_14 Sch=sram- a[4]

#set_property -dict { PACKAGE_PIN P18 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[5]

}]; #IO_L14P_T2_SRCC_14 Sch=sram- a[5]

#set_property -dict { PACKAGE_PIN R18 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[6]

}]; #IO_L14N_T2_SRCC_14 Sch=sram- a[6]

#set_property -dict { PACKAGE_PIN W19 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[7]

}]; #IO_L16N_T2_A15_D31_14 Sch=sram- a[7]

#set_property -dict { PACKAGE_PIN U19 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[8]

}]; #IO_L15P_T2_DQS_RDWR_B_14 Sch=sram- a[8]

#set_property -dict { PACKAGE_PIN V19 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[9]

}]; #IO_L15N_T2_DQS_DOUT_CSO_B_14 Sch=sram- a[9]

#set_property -dict { PACKAGE_PIN W18 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[10]

}]; #IO_L16P_T2_CSI_B_14 Sch=sram- a[10]

#set_property -dict { PACKAGE_PIN T17 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[11]

}]; #IO_L17P_T2_A14_D30_14 Sch=sram- a[11]

#set_property -dict { PACKAGE_PIN T18 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[12]

}]; #IO_L17N_T2_A13_D29_14 Sch=sram- a[12]

#set_property -dict { PACKAGE_PIN U17 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[13]

}]; #IO_L18P_T2_A12_D28_14 Sch=sram- a[13]

#set_property -dict { PACKAGE_PIN U18 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[14]

}]; #IO_L18N_T2_A11_D27_14 Sch=sram- a[14]

#set_property -dict { PACKAGE_PIN V16 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[15]

}]; #IO_L19P_T3_A10_D26_14 Sch=sram- a[15]

#set_property -dict { PACKAGE_PIN W16 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[16]

}]; #IO_L20P_T3_A08_D24_14 Sch=sram- a[16]

#set_property -dict { PACKAGE_PIN W17 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[17]

}]; #IO_L20N_T3_A07_D23_14 Sch=sram- a[17]

#set_property -dict { PACKAGE_PIN V15 IOSTANDARD LVCMOS33 } [get_ports { MemAdr[18]

}]; #IO_L21P_T3_DQS_14 Sch=sram- a[18]

#set_property -dict { PACKAGE_PIN W15 IOSTANDARD LVCMOS33 } [get_ports { MemDB[0]

}]; #IO_L21N_T3_DQS_A06_D22_14 Sch=sram-dq[0]

#set_property -dict { PACKAGE_PIN W13 IOSTANDARD LVCMOS33 } [get_ports { MemDB[1]

}]; #IO_L22P_T3_A05_D21_14 Sch=sram-dq[1]

#set_property -dict { PACKAGE_PIN W14 IOSTANDARD LVCMOS33 } [get_ports { MemDB[2]

}]; #IO_L22N_T3_A04_D20_14 Sch=sram-dq[2]

#set_property -dict { PACKAGE_PIN U15 IOSTANDARD LVCMOS33 } [get_ports { MemDB[3]

}]; #IO_L23P_T3_A03_D19_14 Sch=sram-dq[3]

#set_property -dict { PACKAGE_PIN U16 IOSTANDARD LVCMOS33 } [get_ports { MemDB[4]

}]; #IO_L23N_T3_A02_D18_14 Sch=sram-dq[4]

#set_property -dict { PACKAGE_PIN V13 IOSTANDARD LVCMOS33 } [get_ports { MemDB[5]

}]; #IO_L24P_T3_A01_D17_14 Sch=sram-dq[5]

#set_property -dict { PACKAGE_PIN V14 IOSTANDARD LVCMOS33 } [get_ports { MemDB[6]

}]; #IO_L24N_T3_A00_D16_14 Sch=sram-dq[6]

#set_property -dict { PACKAGE_PIN U14 IOSTANDARD LVCMOS33 } [get_ports { MemDB[7]

}]; #IO_25_14 Sch=sram-dq[7]

#set_property -dict { PACKAGE_PIN P19 IOSTANDARD LVCMOS33 } [get_ports { RamOEn

}]; #IO_L10P_T1_D14_14 Sch=sram-oe

#set_property -dict { PACKAGE_PIN R19 IOSTANDARD LVCMOS33 } [get_ports { RamWEn

}]; #IO_L10N_T1_D15_14 Sch=sram-we

#set_property -dict { PACKAGE_PIN N19 IOSTANDARD LVCMOS33 } [get_ports { RamCEn

}]; #IO_L9N_T1_DQS_D13_14 Sch=sram-ce

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]

set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]

set_property CONFIG_MODE SPIx4 [current_design]

