
6.111 Final Project Report
Two player Air Hockey game

Justin Graves
Matthew Guthmiller

Introduction
We attempted to implement a virtual two player air hockey game. This virtualization makes air
hockey more accessible by eliminating the need for a dedicated room since air hockey tables
are generally large and cumbersome to move; ours is comparatively quite portable. In our game
the players are able to control the paddles by pressing buttons on the labkit and the game itself
is rendered on the monitor. We chose to implement this air hockey game as our final project
because the game itself presents a variety of technical challenges, including modeling the
physics of the collisions of the puck with the paddles and walls to such a degree that the
gameplay would render smooth graphics and look realistic. We also knew that making a game
would allow for flexible goals since we could add various features once a basic game was
implemented.

The basic concept of air hockey is that two players stand on opposite sides of a rectangular
table and each control a paddle to strike a puck, which floats freely on a pocket of air to
minimize friction. Each end of the table contains an opening that serves as a goal, and each
player uses their paddle to defend their goal and attempt to score into their opponent’s goal.
The edges of the board are raised to allow the puck to bounce off the four sides of the table,
and the surface of the table has small holes that blow air to allow the puck to glide freely.

Unfortunately there were some systemic issues with our approach that left some overlooked
problems until too late, preventing us from completing the game. The biggest thing left
unfinished was the physics modeling behind the game. Primarily we waited too long to integrate
our work since we worked in parallel and once we discovered the physics was not working we
both halted progress on all other modules and worked concurrently on getting the physics to
work.

As a result, during the checkoff we were only able to show a rudimentary version of the game
that contained the visuals of the board, paddles, and pucks. While the paddles did move,
because the physics was not working the puck was not able to move and therefore you could
not play the game.

Summary

Before beginning the implementation we broke the game down into three main modules that
would allow us to effectively work in parallel so that progress would not be bottlenecked as we
waited for each other to finish building a component. The three main modules were a module to
control the physics for the game, a module to control the game logic of the game, and a module
to control all the graphics for the game.

Top Level View Block Diagram

The physics module was tasked with taking the positions of the paddles, board geometry, and
positions of the puck as inputs and returning the position of the puck, updating its velocity in
response to collisions and friction. The game logic module was tasked with connecting the
graphics module to the physics module. The game logic module would also keep track of scores
and other game state information. The graphics module was tasked with producing everything
that would be displayed on the screen including the puck and paddles in addition to any
gameplay information such as score and who won the game. Matthew was responsible for
getting the physics module up and running, and Justin was responsible for the game logic and
the graphics.

 Block Diagram for final Air Hockey game Design

Modules

collision_checker (Matt)

This module takes the positions of the puck and each paddle and outputs whether a collision
has occurred and of what type. It has 7 inputs -- clock; 11-bit inputs for the x positions of each of
the puck, paddle1, and paddle2; and 10-bit inputs for each of their y positions. It has one 3-bit
registered output to specify the type of collision detected (including a value for no collision). The
module is also parametrized to allow the dimensions of the board, boundaries of the goals,
paddle radius, and puck radius to be changed from default values.

At the positive edge of the clock, the module calculates the squared distance between the puck
and each paddle to compare to the square of the sum of the puck and paddle radii in order to
determine whether they overlap. The squares of these values was chosen to avoid having to
calculate square root to determine the actual distance between the puck and paddles. In
addition, the distance calculations perform subtraction in different orders depending on the
relative values in order to avoid signed arithmetic since we only care about the absolute value
anyway.

The module then checks each possible type of collision the puck could encounter -- with
paddle1, paddle2, the top edge of the board, the bottom edge of the board, the left edge of the

board outside the goal, the right edge of the board outside the goal, or the goal itself (if the puck
is in contact with the left or right edge and none of the above conditions apply).

A simple test fixture was created to place the puck and paddles in different positions to test that
the output collision type in each case was as expected. This proved very useful in resolving a
few bugs, as well as eventually confirming the module works as expected.

physics (Matt)

This module updates the position of the puck, modeling collisions and friction. It has 11-bit
inputs for the x coordinate of the puck, paddle1, and paddle2; 10-bit inputs for the y coordinate
of each; a 4-bit input to set the level of friction; a 3-bit input for the collision_type detected by the
collision detector; and an input for each of clock and vsync. It uses 11-bit and 10-bit registered
outputs for the updated x and y coordinates of the puck, respectively.

The module copies the the positions of the puck and paddles into the lowest order bits of signed
registers (which are one bit wider) in order to take advantage of signed arithmetic in computing
the puck velocity and position updates. The puck position is initialized, and then puck position
and velocity state is maintained internally since this module is the only thing modifying those
values. A final version would incorporate a reset input in order to reset the puck velocities to
zero and allow the puck position to be re-initialized, such as when starting a new game.

The module performs updates on the negative edge of vsync, although it was planned to
transition this to updates on the positive edge of the system clock (while vcount is beyond the
visible lines of the screen). The latest paddle positions are observed, and the x and y
components of paddle velocities updated as the difference between their new and previous
locations. If a collision has not occurred, the puck velocity is decreased in both dimensions by
the set amount of friction once every 30 updates (approximately once per second). If the
collision input indicates a collision with one of the walls, the appropriate component of the
puck’s velocity is negated. If a paddle collision has been detected, the point of collision is
calculated (i.e. where the puck and paddle overlap) and a vector from the paddle to that point
constructed. The relative velocity of the puck and the paddle in that direction is added to the
velocity of the puck (per the math below). Denominators are approximated by powers of two for
now in an attempt to get something working before possibly performing actual division for the
utmost in accuracy later on in development.

Initially we believed this to be straightforward enough to test primarily just by integrating with the
graphics and observing puck and paddle motion on the screen. This is partly due to the
combination of the fact that ISE synthesized the module without any errors and the realization
that any working test would only reveal whether the math was being calculated correctly, which
we viewed as the easier problem than actually using math that properly modeled the desired
gameplay. Unfortunately, however, integration of this module with the graphics did not take
place until several weeks later, delaying the realization that this module was not working
properly until after Thanksgiving. A simple test fixture was constructed to observe the module’s
behavior and assist in debugging. However after a cumulative 20 or so hours of collaborative
effort to debug this, we were unsuccessful.

nes (Matt)

This module generates the necessary control signals for the NES controller and collects
returned data, output as the status of each individual button. Its inputs are clock and a data wire

for the serial output from the NES controller; its outputs are the latch and pulse wires to the
controller and an 8-bit registered output with the most recent state of each of the 8 controller
buttons.

The interface with the controller was designed based on the controller specifications found at
https://tresi.github.io/nes/​. A counter is used to generate a clock signal with a roughly 12
microsecond period; a simple finite state machine uses a 4-bit counter to transition between 3
states to deliver the appropriate signals to the NES controller, while collecting each bit of the
serial signal on successive cycles of the output pulse signal.

A test module was used to debug and test the module by simulating the NES controller’s
response throughout the polling cycle. While everything worked perfectly in simulation, and the
appropriate control signals were observed on the oscilloscope, extensive debugging efforts
involving multiple TAs, as well as Joe, were unsuccessful in actually getting the controller to
output any data signal. In total at least 8 hours were spent just trying unsuccessfully to debug
this (after initially writing the module).

puck (Matt)

This module is responsible for generating the pixels that make up our circular objects, including
the puck and paddles. It has 5 inputs -- clock, an 11-bit x coordinate for the center of the circle,
11 bits for the current hcount signal, and 10 bits each for the y coordinate and vcount. It outputs
a 24-bit registered pixel, representing red, blue, and green with 8 bits each. Three parameters

https://tresi.github.io/nes/

can be used to configure the radius of the circle, the color of the circle, and the default
non-circle pixel color.

Like the collision detector, the module compares the square of the distance between (hcount,
vcount) and (x,y) to the square of the circle’s radius. If (hcount, vcount) is within the circle, the
output pixel contains the color of the circle; otherwise it is set to the default pixel color (in our
case white since that is the color of the board). This construction was based on the course
notes about drawing circles.

This module was easily tested and debugged by simply using it and observing the output on the
screen.

visual (Justin)

The visual module was a standalone module that took inputs of the location of the three main
game objects, the puck and two paddles. The visual module was also responsible for displaying
anything related to text to display score, timer, or any other game information. The submodule
xvga was used to interface with VGA and during each clock cycle the visual module was
responsible to output a color to be assigned to a pixel given a location. SInce we were using a
display of 1024x768 pixels we needed a refresh rate of 60Hz so we used the 65 MHz system
clock with the goal to generate approximately one pixel per clock cycle.

The proposed plan for the visual model was to first draw the board and have the puck and
paddles overlay it on the board. The idea behind this was that the puck and a paddles would be
defined by geometry parameter and use the puck module to render them. The puck module
would generate a colored pixel that was in the specified geometry bounds and if it was outside
the bounds generate white pixel so that it would not conflict with the board’s background. The
next phase was to generate the text on the screen and to add visual aesthetics to the existing
board. The latter was never fully implemented due to the mis allotment of time.

The basic idea for the text module was to read text information for memory and output the pixels
accordingly. We intended to use a tile map scheme where we treated each ASCII character as a
tile. The seven bit ASCII code for each character represented a tile that contained its specific
pattern in a bitmap scheme. The font scheme was going to be a 8x16 pixel pattern and stored in
ROM. The font ROM was implemented but the text generation was not fully development due to
mis allotment of time.

To implement the visual module we used the existing framework from the pong game to
interface with VGA. The visual model was definitely the most important module for debugging all
other modules and itself. One mistake that we made of the implementation of the air hockey
game was we neglected to hook up the modules from the physics area to check if there were
working properly early enough.

GameFSM (Justin)

The idea behind the GameFSM module was that it would keep track of the state of the game
and communicate with the physics module and the graphics module. The plan was to have this
module feed the current positions to the graphics module so that objects could be rendered on
the screen and to send the current positions to the physics module to determine if positions
were going to change due to events like collisions in the game. The physics module would
update the current positions in this module and this module would then in turn relay that
information to the graphic module. This module was also responsible for provided a user
interface to the players by controlling a start screen menu, keeping track of game state
parameters like score, and pause screen. It was estimated that this module would have taken
less than 10 hours to implement which why it was chosen to be done after Thanksgiving break.
Also since this module was communicating with these other two modules it would be harder to
test this module in isolation.

This module was never fully implemented only a framework was done. Part of the reason it was
not fully implemented was because a lot of time that was dedicated to working on this module
after Thanksgiving break was spent on debugging and re-writing the physics module since it
failed to work properly once integration started. The idea behind waiting to implement this
module after the break was that we wanted the visuals to be hooked up with the physics engine
fully working so that we could debug the game and make sure the important game actions
actually updated in the state machine. WIth hindsight we found that this was an ineffective way
and it wasted time as it bottlenecked the design of the game. We realize that it would have been
better to have implemented the GameFSM module completely without the physics module
working and instead used buttons and switches to update the game state to debug the module.

If we did this project over again this module should have been implemented alongside the
graphics module and the game stated could have just been controlled by switches (number in
binary representing each state) and buttons or switches to control scoring. This would have
allowed us to see if this module updated the graphics module correctly and to ensure this
module was communicating correctly to the graphics module. Also this module was to serve a
the communicator to the sound module, that was never implemented, to alert the sound module
the proper time and type of sound to play based on the current state and event within the game.

Integration

Our biggest downfall with the implementation of the air hockey game was the lack of testing and
integrating of the physics module with the graphics module. We underestimated how much time

the integration was going to take because we assumed that each module would be at least
partially working before Thanksgiving break and integration would make any lingering issues
apparent and easy to fix. In reality that proved not to be the case, and to make things worse the
integration did not occur until after Thanksgiving break and was a huge delay for our team in
getting the basics of the game up and running. With hindsight, we realize that we should have
made a separate trivial physics module that provided basic predictable motion for the puck just
for testing the rest of the game modules.

Conclusion

In short, we should have tested and sought help sooner. There were also a few communication
issues regarding coordinate systems that caused some minor confusion, so we should have
perhaps spelled out our specs just a little bit more completely from the onset. Our biggest
recommendation to future teams building something like this is to get the most basic version of
the game running absolutely as soon as possible.

While we were not successful in completing the game as hoped, we did end up with a lot of
things that worked well, and we spent a tremendous amount of time attempting to fix things that
nearly worked, such as the NES controller interface and the physics module. We had a solid
design for each major components, but in the case of things like the NES and physics modules
persistently encountered subtle errors that rendered them completely useless; it’s unclear what
exactly was wrong with either, but had those last small errors been resolved, we would have
had a fully functional game. And if they hadn’t proven so difficult to debug, we would have made
much more progress on further features.

