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Abstract 
Since its invention in 1974, the Rubik’s Cube has challenged users to solve a colorful 

puzzle in record time. While humans have managed to solve the puzzle in as little as 4.69 
seconds, robots are able to do so in under a second. This seemingly impossible puzzle can be 
solved amazingly quickly through the use of algorithms - sequences of moves that move specific 
pieces of the puzzle from one location to another.  

We developed a Rubik’s Cube solving robot that implements such algorithms on an 
FPGA. The FPGA interfaces with two RGB color sensors to sequentially observe each sticker of 
the Rubik’s Cube in a scrambled state. We implemented a method for taking this raw data and 
translating it into a representation of the scrambled state of the puzzle. We then implemented an 
algorithm that takes as input the scrambled state of the Rubik’s Cube and outputs a sequence of 
moves that solve the Rubik’s Cube. This output is translated into a series of instructions for six 
stepper motors that interact with the Rubik’s Cube. Each stepper motor, controlled by stepper 
motor drivers connected to the FPGA, turns a face of the puzzle. The stepper motors execute the 
moves produced by the algorithm for solving the Rubik’s Cube, fully solving the puzzle. 
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Motivation
 

Since its invention in 1974, the Rubik’s Cube has challenged users to solve a colorful puzzle in 
record time. While humans have managed to solve the puzzle in as little as 4.69 seconds, robots 
are able to do so in under a second . However, many existing solutions are implemented with 1

high level programming languages. Even one example found implemented on an FPGA involved 
first programming an entire processor on the FPGA, and then writing C code to compile on it. 
 
The goal of this project was to create a robot that could determine the state of a scrambled 
Rubik’s Cube and then solve it, all implemented on an FPGA. 
 
Introduction 

 
 
The design of the robot was created in house, and consisted of 6 stepper motors and stepper 
motor drivers, two RGB color sensors, a laser cut acrylic frame, 3D printed parts to allow the 
stepper motors to actuate the Rubik’s Cube, a power supply, and a Nexys 4 FPGA. The design of 
the robot, including a solved Rubik’s Cube, can be seen in Figure 1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - The fully assembled robot, interfacing with a Rubik’s Cube 

1 ​https://www.youtube.com/watch?v=ixTddQQ2Hs4 
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The initial state of the Rubik’s Cube was determined through the use of 2 RGB color sensors. 
The sensors were oriented on the frame of the robot such that one sensor could observe corner 
pieces and one could observe edge pieces. By applying sequences of moves to shift each corner 
and edge piece to the location of the color sensors, and then applying the inverse of these 
sequences to revert any changes, the entire Rubik’s Cube could be observed without changing 
the starting state of the puzzle. The initial state of the Rubik’s Cube was saved in a register called 
“cubestate”. Since there are six possible colors for each sticker of the Rubik’s Cube, 3 bits were 
required for each of 54 stickers, resulting in a total of 162 bits to store the initial state. Each 
sticker on the Rubik’s Cube was referred to with a specific set of 3 bits from within the cubestate 
register, as detailed in Figure 2 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  - Mapping of cubestate indices to stickers of the Rubik’s Cube 
 
The algorithm used to solve the Rubik’s Cube was based off of a modified version of a human 
method for solving the Rubik’s Cube called “The Beginner’s Method” or “Green Cross.”  In 2

general, each step of the method was handled with a case statement, and a variable for counting 
which substep of the method was being determined. The algorithm checked for various patterns 
on the Rubik’s Cube, and produced sequences of moves that, when applied, would solve the 
pieces involved in that pattern. Our method differed from The Beginner’s Method in the way it 
solved the last layer. While The Beginner’s Method solves the last layer by orienting edge 
pieces, permuting edge pieces, permuting corner pieces, and then orienting corner pieces, our 

2 ​https://solvethecube.com/ 
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method first oriented both edge and corner pieces in two steps, and then permuted them in two 
steps. 
 
As the algorithm for solving the Rubik’s Cube produced sequences of moves, these moves were 
outputted to two modules. One module, the sequencer module, queued the moves for execution 
on the physical robot. Another module, called update state, took these moves and applied them to 
cubestate, the internal representation of the Rubik’s Cube’s state. This module functioned by 
swapping values in the cubestate register corresponding to the 12 possible moves that can be 
executed on the Rubik’s Cube - a 90º clockwise and a 90º counterclockwise rotation of each of 
the six faces. The updated cubestate produced by this module was then fed back into the solving 
algorithm module to produce further moves for the solution. 
 
After the entire solution to the scrambled cube was found and queued in the sequencer module, 
the same sequencer module would begin to provide moves to the stepper motor driver modules. 
Each move would be translated into a series of steps by one of the six stepper motors attached to 
one face of the rubik’s cube. 
 
In the end, we were able to produce code that successfully determined the initial state of the 
Rubik’s Cube, produced a sequence of moves to solve it, and executed the solution by driving 
stepper motors actuating the faces of the Rubik’s Cube. Unfortunately, due to inconsistent 
lighting conditions and inaccuracies with the RGB sensors, we were not able to reliably 
determine the initial state of the Rubik’s Cube. However, given successful determination of the 
initial state (or if the initial state was programmed into the FPGA), the robot was able to reliably 
solve the Rubik’s Cube. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  



Bill of Materials
 

 
● 1 12” x 12”  x ¼” sheet of acrylic 

 
● 12 (6 sets of 2) 3D printed parts for interfacing the stepper motors with the Rubik’s Cube 

 
● 6 stepper motor drivers 

 
● 1 Nexys 4 FPGA 

 
● 2 ISL29125 RGB color sensors 

 
● 1.2 pounds of coffee beans 

  



Modules
 

 
Main  
Jacob Swiezy and Nathaniel Knopf 
The main.v module was responsible for wiring together all of the different secondary modules 
involved in our project, as well as the finite state machine responsible for controlling the 
behavior of the robot in the process of determining the initial state of the Rubik’s Cube and 
solving it. 
 
The finite state machine in main.v began by placing the robot in the determine state mode. In this 
mode the robot began rotating the faces of the cube to determine the color of each individual 
square on the cube. After determining the state of the cube using the spin all and determine state 
modules, the state machine transitioned into the user debug mode where it sent the state 
representation of the cube over serial, so that a connected computer running a parser python 
program could output the expected state of the cube. Using this, a user could determine whether 
the robot had successfully determined the state of the cube. This python program also used the 
cube state data to quickly determine if the cube state was feasible given the number of believed 
squares of each color (i.e. if the robot determined the cube had 10 blue squares, the robot could 
warn the user of an error). After outputting the believed cubestate, the state machine transitioned 
into solution mode where the robot would use the solving algorithm module and the update state 
module to determine a solution to the rubik’s cube. After finding a solution to the cube, the robot 
would transition into the physical solve mode where the sequencer module would be responsible 
for feeding the stepper motor modules one command at a time to solve the cube. Once the state 
was determined and the solution was found and implemented, the robot would enter into an idle 
mode where it would wait for a user reset signaling the presence of a new cube to be solved. 
 
Additionally, main.v included verilog code responsible for interfacing with the inputs and 
outputs of the FPGA (including buttons, switches, and LEDs) for debugging and user interface 
with the robot; it also included some predetermined cubestate registers for scrambled Rubik’s 
Cubes for which a sequence of moves was known to get the Rubik’s Cube to the corresponding 
state. 
 
 
 
 
 



Determine State 
Nathaniel Knopf and Jacob Swiezy 
The initial design of determine state consisted of a finite state machine consisting of five states - 
setup, prep, idle, observe, and done. In the setup state, all variables are reset. The state then 
transitions to prep. 
 
In the prep state, send_setup_moves, which is responsible for signalling spin_all.v to output a 
new sequence of moves, goes high. The cubestate register is bit shifted left by 3 in preparation of 
observation of a new value. The state is then set to idle. 
 
In the idle state, the determine_state.v module waits for the color sensors to produce a stable 
value. Once this occurs (determined by an input signal called color_sensor_stable going high), 
the finite state machine transitions to the observe state. 
 
In the observe state, the value given by the color sensor is recorded in the three lowest order bits 
of cubestate. The counter (which keeps track of which piece is being observed) is then 
incremented, and the state returns to prep.  
 
Once the counter reaches 48, signifying that all pieces have been observed, the state is 
transitioned to done (spin_all.v is also told to output one final sequence of moves to return the 
Rubik’s Cube to its original state). The module then signals to main.v that the cubestate has been 
determined and that the program can proceed to generate a solution. 
 
However, during testing, inaccuracies in the color sensors required a more intricate 
implementation of determine_state.v. To correct for errors in sensor readings, extra steps were 
added to the determination of the state of each edge square. While the original determine state 
module, used the spin all module to obtain exactly one RGB reading from each edge of the cube, 
the updated module took four measurements of each edge of the cube (i.e. it spun the left side of 
the cube four times and took a new measurement with each turn). The module then compared the 
four readings and determined the color of the cube edge to be the most popular reading. This 
process eliminated some of the error associated with color contamination from adjacent squares 
in the color reading.  
 
Once the state of each edge was determined, the module transitioned to determining the state of 
each corner of the cube. Originally, the module took one reading of each corner square and used 
this reading on its own to determine the state of each corner, however, in the updated module the 
reading of the adjacent edge, which was already determined, was used in addition to the reading 
provided by the color sensor in order to more accurately predict the color of each corner piece. 



Spin All 
Nathaniel Knopf 
The spin all module consists of a finite state machine with two states - idle, and send moves. In 
the idle state, the module waits for  single case statement operating on the counter used in 
determine_state.v Each case returns a sequence of moves that, when executed on the Rubik’s 
Cube, places the sticker corresponding to the given value of counter in front of a color sensor.  
 
Solving Algorithm 
Nathaniel Knopf 
The solving algorithm module was responsible for producing a sequence of moves that, when 
executed to the scrambled Rubik’s Cube, would solve it. The inputs to this module were the 
clock, a reset signal from main.v, a start signal from main.v, a 162 bit register containing the 
state of the Rubik’s Cube (at first its initial scrambled state, and later its state after applying the 
moves produced so far by solving_algorithm.v), and a signal from update_state.v signifying that 
it had produced the cubestate occurring after applying the most recently produced sequence of 
moves. 
 
The method implemented in this module is a modified form of the human method called “The 
Beginner’s Method,” or “Green Cross.” In this method, a cross is formed on the bottom layer by 
solving the four edge pieces on the bottom layer. The bottom layer corners are then solved, 
followed by the middle layer edges. The last layer of the Rubik’s Cube is then solved in four 
steps: first, the edges are oriented (i.e. the white stickers of the edges are all on the white side). 
Second, the corners are oriented. Third, the edges are permuted (i.e. the edge pieces are moved 
into their final positions such that both of their stickers match the color of the adjacent centers. 
Finally, the corners are permuted, at which point the Rubik’s Cube is solved.  
 
A number of variables are used in the process of solving the Rubik’s Cube. A variable called 
“step” tracks which step of the method is currently being executed - either cross, bottom_corners, 
middle_layer, oll_edges, oll_corners, pll_edges, pll_corners, or solved (signifying completion of 
the solution). A variable called “piece_counter” is also used to track substeps of each step of the 
method. For example, in solving the middle layer edges, there are four edge pieces which must 
be solved. The piece_counter variable keeps track of which edge should be solved next by the 
solving_algorithm module.  
 
The core finite state machine of this module consisted of four states - move, update_state, wait, 
and setup. The finite state machine begins in the setup state (and returns there upon receiving a 
reset signal). In this state, all variables associated with solving the Rubik’s Cube are set to their 
initial values.  



 
Once a start signal has been received by the module, the finite state machine transitions to the 
move state. In the move state, the next sequence of moves to be applied to the Rubik’s Cube was 
determined. Once a sequence of moves has been produced, the finite state machine transitions 
into the update_state state. 
 
In the update_state, state, the finite state machine waits for the solving_algorithm module to 
receive a signal from update_state.v signifying that it has completed updating the cubestate 
according to the moves produced by sovling_algorithm.v. Once this has occurred, the finite state 
machine transitions to the “wait” state. 
 
The purpose of the wait state is to ensure that the solving_algorithm module doesn’t produce 
new moves before the sequencer module has finished queueing up the moves produced thus far. 
This state consists of a counter that counts to 60 clock cycles, at which point the finite state 
machine transitions back to the move state, and the cycle continues until the puzzle has been 
solved. 
 
The actual part of the move state of the finite state machine that produced sequences of moves to 
solve the Rubik’s Cube consisted of a case statement operating on the step variable. Within each 
case corresponding to a step of the method with multiple substeps (cross, bottom_corners, and 
middle_layer), there was a second case statement operating on the piece_counter variable. These 
ultimate case statements recognized patterns on the Rubik’s Cube that were of particular interest 
to the step (or substep) of the method, and returned moves that would advance the puzzle to the 
next step.  
 
For example, if the step variable read to bottom_corners and the piece_counter variable read 0, 
the module would attempt to solve the bottom-front-left corner (i.e. the yellow-green-orange 
corner). The module identified patterns by checking each of the corner positions on the Rubik’s 
Cube (of which there are 8, each one with three stickers, yielding 3 values that must be checked 
for each corner). In the case of corners, the corner piece of interest can be in one of 8 locations, 
with 3 possible orientations per location, yielding 24 different possible patterns. Each of the 24 
possible patterns had a corresponding sequence of moves that could be applied to solve the 
yellow-green-orange corner. Once the sequence of moves had been produced, the piece_counter 
variable increased, signifying that the second bottom layer corner should be solved the next time 
the finite state machine returned to the move state. If the module had solved the last of the four 
corners, piece_counter was set to 0 and the step variable was incremented to the next step of the 
method (in this case, middle_layer). 
 



Wherever possible, some redundancies in pattern recognition and move production were 
eliminated. For example, in solving the bottom layer, a single clockwise rotation of the top face 
will not disturb any progress done so far in solving the Rubik’s Cube (since the top face is on the 
opposite side of the puzzle from the side being solved). Therefore, the module can check the four 
bottom layer corner positions and only one of the four corners on the top face (in our 
implementation, the top-front-left corner), and if it doesn’t see the piece of interest, apply a 
clockwise rotation of the top face until the piece of interest is moved into the top-front-left 
corner. This has the added bonus of assisting in the process of debugging - if the 
solving_algorithm module is attempting to solve a corner piece, but due to some error in the 
solving_algorithm module or the update_state module the cubestate register doesn’t contain the 
piece of interest in any location, the solving_algorithm module will produce an infinite series of 
clockwise rotations of the top face. This makes it immediately obvious where an error occurred 
in the production of the solution. 
 
Once the code for solving_algorithm.v had been written, there was very little structurally that 
had to be changed. The simple nature of the finite state machine meant there was little 
opportunity for bugs to emerge involving the actual structure of the module. However, due to the 
complexity of the algorithm (1393 lines of nested case statements that produce ultimately hard 
coded sequences of moves), debugging was very difficult. The final module spanned 1393 lines, 
and bugs involving the hard coding moves didn’t appear until one of the scrambled cubes 
happened to be solved in a way that involved the corresponding case statement. However, once 
bugs had been identified, correcting them was often as easy as correcting a typo in a sequence of 
moves. 
 
Update State 
Nathaniel Knopf 
The update state module is responsible for updating the internal representation of the Rubik’s 
Cube (cubestate) in response to moves produced by solving_algorithm.v. The inputs to this 
module are the clock, a 200 bit register called new_moves consisting of a sequence of up to 50 
moves (each move is represented by a 4 bit number), the current cubestate before executing the 
new moves, and a signal new_moves_ready, signifying that the moves on the new_moves input 
need to be applied to the cubestate. The finite state machine implemented in this module has 
three states - idle, moving, and done.  
 
In the idle state, the module waits for the new_moves_ready signal to go high. When this occurs, 
the input cubestate is copied over to a register internal to the module. After this, the finite state 
machine transitions to the moving state. 
 



In the moving state, the module progresses through the moves on the 200 bit new_moves 
register, applying them one by one to the internal cubestate. There is a case statement that 
operates on the next move to execute, and for each of the twelve possible moves (clockwise and 
counterclockwise rotations of each of the six faces) the values at various indices in the cubestate 
register are swapped in accordance with the update to a Rubik’s Cube after executing the given 
move. After the transformation corresponding to the move had been applied, the moves inputted 
to the module were bit shifted by 4, and the next move was selected. Once this process had 
repeated 50 times, the state transitioned to done. 
 
In the done state, the newly updated cubestate is sent to the solving_algorithm.v module, and a 
signal signifying that the update had completed is set to high. The state of the finite state 
machine is then sent to idle. 
 
Because the actual portion of this module responsible for swapping values in cubestate consists 
of 300 lines of hard coded indices, the module was prone to bugs that occurred due to typos. 
Detection of the bugs was also relatively difficult, because when a move updates cubestate 
incorrectly, the error often doesn’t present itself until further in the solution when an incorrectly 
updated piece becomes crucial to the production of a solution. At this point, the code in 
update_state.v for each move had to be double checked to ensure that the indices were coded 
correctly. 
 
Sequencer 
Jacob Swiezy 
The sequencer module is responsible for creating a queue of moves to execute in the solution 
determination phase and for sequentially returning one move at a time for the stepper motors in 
the physical solve phase. 
 
While the robot is determining a solution to the scrambled cube, the sequencer module acts to 
queue the next  moves in the solution. The module maintains 200 4-bit wide registers capable of 
holding 200 moves to execute in solving the cube. The module takes as input up to 50 of the next 
moves and then sequentially stores these moves in one of the 4-bit registers. If less than 50 
moves are provided to queue, as is often the case, the sequencer module scans the input MSB to 
LSB, for the first nibble of data that is nonzero. Once found, the module adds the remainder of 
the data in the 200-bit input to the queue in 4-bit chunks and increments a total move counter. 
When the sequencer module receives a sequence complete signal, the module transitions from 
the move queueing phase to the move returning phase. 
 
While the robot is physically solving the rubik’s cube, the sequencer module produces the next 
move to execute as output to the stepper motors. Each time that the sequencer module receives a 



signal that the previous move has been completed by the stepper motors, the module loads the 
next 4-bit move and increments the counter representing the number of completed moves. When 
the number of completed moves equals the move counter, the final move in the calculated 
solution has been executed and the sequencer module stops returning new moves, sets a signal 
signifying that the sequence has been fully executed, and goes into an idle state. 
 
Move to Step 
Jacob Swiezy 
The move to step module is responsible for translating a 4-bit move into the appropriate 
sequence of physical steps on a stepper motor. Because of our clever assignment of moves to 
numbers, the top 3 bits of each inputted move corresponds to the stepper required to rotate and 
the LSB bit corresponds to the direction of rotation required. 
 
We determined early on for our robot that it would only be feasible to execute one move at a 
time and thus only one stepper motor would ever be moving at a given time. Because of this, we 
determined that it would be allowable to tie all of the step inputs together to one step clock and 
to tie all of the direction inputs together for the physical stepper driver chips. Therefore, for each 
move, all six of the stepper driver chips are commanded to rotate in the same direction for the 
same number of steps (50 steps for a quarter turn), but only one of the stepper driver chips is 
enabled. In other words, for every move all of the stepper driver chips receive the exact same set 
of commands, but only one of the stepper driver chips has their output FETs enabled to 
physically drive its corresponding stepper motor. The enabled stepper driver chip thus rotates its 
stepper motor while the remaining five stepper driver chips are in a disabled state which allows 
the corresponding stepper motors to rotate freely. 
 
Using the enable inputs as a means to control which stepper motor moved was an important 
design choice. A stepper motor that is not being commanded to move, but is still enabled will 
attempt to hold its current position while a disabled stepper motor will rotate freely. Our robot 
depends on this free motion in order to correct for small amounts of under or over rotation in 
previous moves. 
 
Additionally the move to step module implements a step clock responsible for the frequency at 
which the stepper motors take steps while operating. This step clock is always enabled, but is 
reset with the start of each new move. As explained above, this signal can be always pulsing 
because it is the enable signals that are responsible for determining which stepper motor is 
actually moving at a given instance. 
 



Finally, this module implements a move finished signal. This signal is a simple logical AND of 
all of the done signals for each stepper driver. When a move is in progress by any of the stepper 
motors, this goes low, and it returns high at the completion of the move. 
 
Stepper Driver 
Jacob Swiezy 
This module is implemented once for each stepper motor in the move to step module. Each 
implementation consists of a simple counter. When the corresponding stepper motor is 
commanded to move, this module enables the stepper motor and then increments a counter on 
each low-to-high transition of the step clock implemented in the move to step module. When the 
counter reaches the number of commanded steps, the module then disables the stepper motor. 
After disabling the stepper motor, the module continues to count until an extra number of step 
cycles has elapsed. The module then transitions the done signal from low (move in progress) to 
high (move complete). This delay between the completion of the step motion and the assertion of 
the done signal allows the steppers to settle before a new move is loaded and commanded. 
 
Color Sensor 
Jacob Swiezy 
The color sensor module contains the necessary setup values for the RGB color sensors and acts 
as a finite state machine for each sensor. The module implements to I2C modules for 
communication with the color sensors. One module, the setup module, is responsible for writing 
the necessary configuration registers of the color sensor. This must be done once at the beginning 
of operation. The second module, the poll module, is responsible for polling the value of the red, 
green, and blue light sensors at a set frequency. 
 
The module begins in a setup state where it places the poll module in a reset state while enabling 
the setup module. Once the setup module signals completion, the color sensor module transitions 
into a polling state where it enables the polling module. 
 
I2C Setup 
Jacob Swiezy 
The I2C setup module is responsible for writing the appropriate values to the RGB color sensor 
configuration registers. For proper operation, two of the configuration registers on the ISL29125, 
need to be modified from their power on configuration, CONFIG-1 and CONFIG-2. We modify 
the CONFIG-1 register to enable the three light sensors and to increase the allowable light 
sensing range for bright environments. In addition we modify CONFIG-2 to increase the IR 
blocking filter to be at a maximum. 
 



This module implements the burst write operation of the I2C protocol allowing a master device 
to specify the slave device address and a starting register address followed by an unrestricted 
number of bytes for consecutive register writes. The entire operation is implemented as a finite 
state machine clocked at roughly 200kHz by an auxiliary clock module. In all 21 different states 
are required to properly modify the necessary configuration registers. At a high level the state 
machine functions as below: 

1. Send start signal 
2. Send device address 
3. Wait for acknowledgement 
4. Send address of first configuration register 
5. Wait for acknowledgement 
6. Send data byte 
7. Wait for acknowledgement (if more data bytes available go to 5 otherwise proceed to 7) 
8. Send stop signal 

 
I2C Poll 
Jacob Swiezy 
The I2C poll module is responsible for reading the values of the Red, Green, and Blue data 
registers at a set frequency. The ISL29125 has 3x 16-bit registers each containing the most recent 
sensor values for their respective color sensor. The values are updated by the sensor at a rate of 
roughly 10Hz, but since we don’t care if we receive repeat values we will continually read the 
sensor data registers to ensure we have the most up-to-date readings. 
 
This module implements the burst read operation of the I2C protocol allowing a master device to 
specify the slave device address and a starting register address followed by an unrestricted 
number of bytes for consecutive register reads. The entire operation is implemented as a finite 
state machine clocked at roughly 200kHz by an auxiliary clock module. In all 32 different states 
are required to properly read the appropriate data registers. At a high level the state machine 
functions as below: 

1. Send start signal 
2. Send device address 
3. Wait for acknowledgement 
4. Send address of first data register 
5. Wait for acknowledgement 
6. Send restart signal 
7. Read data byte 
8. Send acknowledgement (if more data bytes to read go to 7 otherwise proceed to 9) 
9. Send stop signal 

 



 
 
 
Serial Module 
Jacob Swiezy 
A serial module was implemented to allow for debugging information to be transmitted from the 
FPGA to a computer for user review. The communication operated with a standard 9600 baud 
clock and with the default serial setting of 8 bits per transmission, no parity bit, and one stop bit. 
We will not go into depth on this module for the reader’s sake because it was not critical to robot 
functionality.  
 
Supporting Modules 
In addition to the modules described above, the following (relatively simple) supporting modules 
were used: 
 

● A 200 kHz clock signal was generated using a simple counter for the I2C clock. 
● A 200 Hz clock signal was generated using a simple counter for the step clock. 
● A delay module was used to produce a delay for the color sensors to stabilize. 
● A baud rate generator (i.e. 9600 Hz clock) was generated for use by the serial module. 

 

 
 
  



Hardware
 

Stepper Motors 
Jacob Swiezy 
To physically rotate and solve the cube we used six NEMA 17 bipolar stepper motors. Stepper 
motors were chosen over other types of motors because they are continuous (i.e. they can rotate 
in one direction infinitely), they have a relatively high torque, and they are relatively precise 
without additional feedback. The stepper motor operates using two coils and a permanent magnet 
rotor. When the coils are energized in a particular sequence, the stepper rotates by precisely 1.8 
degrees (i.e. it takes 200 steps for the shaft of the motor to make a complete rotation). 
Unfortunately, rotating stepper motors is a nontrivial task and often requires a specialized driver. 
In order to reduce the control complexity and the computational load on the FPGA, we opted to 
offload the control of the six stepper motors to six specialized stepper motor drivers. Each A4988 
stepper motor driver requires 3 control signals (step, direction, enable). 
 
The step signal is responsible for controlling when the stepper motor takes a step (i.e. rotates 1.8 
degrees). A low-to-high transition at this input causes the stepper to take a step in the direction 
specified by the direction input. 
 
The direction signal is responsible for specifying which way the stepper will take a step on the 
next low-to-high transition of the step input. 
 
The enable signal directly controls the FETs responsible for energizing the stepper motor coils. 
A high input on this input disables all output FETs while a low on this input allows the output 
FETs to operate in accordance with the step and direction inputs. Importantly, if this input is left 
enabled (i.e. at a logic low level), the stepper motor will not rotate freely even when it is not 
being directly controlled by the step and direction inputs. 
 
Interfacing to the Cube (Stepper Shafts) 
Jacob Swiezy, Nathaniel Knopf 
In order to interface between the stepper motors and the rubik’s cube, we designed custom 
2-piece hubs to turn each face of the cube. One piece of the hub fit snugly on the stepper motor 
shaft while the other piece of the hub pressed snugly into the center square of each face of the 
rubik’s cube. These hubs were designed as 2 pieces for easy removal of the cube from the robot. 
 



Both pieces were designed in Solidworks and then manufactured using a 3D printer. The parts 
were designed to interfere as little as possible with the movement of the cube and for easy 
assembly (i.e. both pieces were press fit). 
 

 
Figure 3 - 2 part stepper shafts 

 
Robot Frame 
Jacob Swiezy 
The frame of the robot was carefully designed in Solidworks as a 3D CAD model before being 
manufactured out of ¼” acrylic. The CAD was developed around the size of the cube, mounting 
pattern of the color sensors, and mounting pattern of the NEMA 17 stepper motors. The design 
was meant to be easy to manufacture, simple to construct and repair, and most importantly 
provide a relatively unobstructed view of the entire cube during the entire solving process. The 
design also needed to be rigid so that the movements of the stepper motors translated into precise 
rotations of the rubik’s cube faces. 
 
In order to make the design easy to manufacture, we designed the robot to consist of only 2 
unique parts. The robot consisted of only two identical top plates and four identical side plates. 
This not only made manufacturing easy, but also allowed us to create spare parts without wasting 
a bunch of extra material. 
 
In order to make the design easy to assemble, we designed the robot using a simple interlocking 
structure such that the side pieces of the robot snugly fit into the top and bottom pieces of the 
robot. In addition to the interlocking structure, metal 90 degree angle brackets secured the side 
plates to the bottom plates. The top plate was left secured only by the interlocking structure of 



the robot, so that the rubik’s cube could be easily removed and replaced from the top of the 
robot. 
 
Finally, we designed the frame of the robot to be minimalistic, so that the user could view the 
entirety of the cube throughout the solving process. In addition, we chose to use transparent 
acrylic for construction of the robot, to provide an even less obstructed view of the cube 
throughout. 
 

 
Figure 4 - Robot frame 

 
RGB Color Sensors 
Jacob Swiezy 
An RGB color sensor is a sensor composed of 3 photodiodes each masked with a different filter. 
Each filter allows one of red (~600nm wavelength), green (~560nm wavelength), or blue 
(~440nm wavelength) light to pass through. The sensor integrates the amount of light detected 
over a specified period of time and returns the results as 3 16-bit readings. Using I2C, the user 
can read this data to determine the RGB light values present at the face of the sensor. Because 



the readings depend entirely on the amplitude of each wavelength of light present at the sensor, 
the results returned by the sensor will depend heavily on the lighting conditions of the sensor’s 
environment (i.e. a sensor placed in a dark environment will return much smaller results than a 
sensor directed at an identically colored object in a bright environment). 
 
For our project, we tested two different RGB color sensors for determining the initial state of the 
rubik’s cube. Below we will detail, the pros and cons of each sensor and what affected our final 
decision. 
 
Adafruit TCS34725 
Jacob Swiezy 
The first sensor we tested was a breakout board for the TCS34725 RGB color sensor supplied by 
Adafruit. The sensor communicated over I2C, had an IR blocking filter, and had the capability of 
returning 4 16-bit values (Red, Green, Blue, and White). The breakout for the sensor included a 
super bright white LED in close proximity to the sensor. This LED ensured more consistent 
results across different environments the sensor might be placed in. The breakout board also 
implemented level shifting transistors which allowed the board to be easily interfaced with a 5V 
system despite the sensors 3.3V operating voltage. 
 
We began testing this sensor with a Teensy 3.6. The sensor required very few setup instructions 
and had a relatively high refresh frequency. The results of the tests showed that the sensor could 
clearly differentiate between cube sticker colors in  a variety of lighting environments given that 
the sensor was in close proximity to the cube. Because of our success with this sensor, we chose 
to move forward with it in our final design. 
 
In testing we discovered that this module was not able to interface with the Nexys4DDR FPGA 
we had chosen to control our project. Initially, we determined that the incompatibility of this 
sensor with the FPGA was due to either the onboard level shifting transistors or the weak pullup 
resistors provided by adafruit. We were concerned that either the weak resistors were not 
creating a strong enough high level voltage on the sensor/FPGA interface or that the level 
shifting transistors were not allowing one of the boards to completely pull down the signal line 
during communication. After extensive testing with an oscilloscope, we determined that the issue 
was with the sensor which was not acknowledging the FPGA after successful transmission of the 
device’s address. We attempted to solve this problem in two ways. We began by adding stronger 
pullup resistors to the interface, but problems persisted. Next we bypassed the onboard level 
shifting transistors. This also produced no successful results. After more testing with an 
oscilloscope, we determined that there were additional underlying issues with the interface 
between these boards. Realizing that it could take many hours of debugging to find these 
problems, we decided to continue with a different sensor. 



Sparkfun ISL29125 
Jacob Swiezy 
The next sensor we tested was a breakout for the ISL29125 RGB color sensor supplied by 
Sparkfun electronics. The sensor communicated over I2C, had an IR blocking filter, and had the 
capability of returning 3 16-bit values (Red, Green, and Blue). The breakout for the sensor did 
not include any additional hardware. 
 
We initially began testing this sensor with a Teensy 3.6 as well. We determined that without an 
LED on the board, determining the color of a specific square on the rubik’s cube would be more 
difficult and unreliable, but we determined that we could rig up an external LED in close 
proximity to the board on the robot in order to achieve similar levels of success that we’d had 
with the Adafruit sensor. 
 
Unlike the Adafruit sensor, this sensor interfaced flawlessly with the Nexys4DDR FPGA. This 
sensor also had minimal required setup and a high refresh frequency. Unfortunately, even with 
the addition of an external high brightness LED to our robot, we were unable to obtain the same 
reliable results with this sensor that we achieved with the Adafruit sensor. Light contamination 
from adjacent stickers and inconsistent lighting environments both contributed to the limited 
success we were able to achieve with this sensor. 
 
 
 
  



Challenges and Concluding Thoughts 
 

While the Verilog written was all fully functional after debugging concluded, slight physical 
problems, such as varying lighting conditions and misalignments of the Rubik’s Cube, made 
achieving our overall goal of producing a robot that determined the scrambled state of a Rubik’s 
Cube and solved it difficult.  
 
The initial set of RGB color sensors used experienced issues when I2C communications were 
attempted. The replacement sensors ultimately used in this project produced many issues that 
inhibited the robot’s ability to determine the starting cubestate. In a controlled environment with 
invariable lighting conditions, the robot would be able to reliably determine the color of each 
square of the cube. Unfortunately, when attempting to determine the color of a given piece, 
shadows, light contamination from adjacent pieces, and even smudges on the face of the Rubik’s 
Cube caused the color sensors to be unreliable in determining the color of each sticker 
consistently. This, of course, led to unreliable determination of the initial cubestate, and therefore 
incorrect solutions. 
 
The robot also experienced issues in the rotation of the cube. The stepper motors and stepper 
motor drivers used provided no feedback to the FPGA to affirm that a perfect 90º turn had been 
executed. As a result, slight errors accumulated in the alignment of the Rubik’s Cube after turns 
had been completed. Luckily, we were able to correct for some of this by disabling stepper 
motors that were not in use, and relying on the ability of the Rubik’s Cube to turn while not 
perfectly aligned. This ability is known as “corner cutting” in the Rubik’s Cube solving world, 
and had the lucky benefit for us of re-aligning misaligned faces on the puzzle. 
 
Unfortunately, sometimes repeated sequences of the same move resulted in such an error in 
alignment that the robot would attempt to turn an adjacent face and jam up. The robot, not 
having any feedback from the stepper motors, would not be able to determine that a jam had 
occurred, and would continue trying to execute moves, usually incorrectly due to the skipped 
move. 
 
Were we to continue work on this project, the following attributes would be changed 

● Feedback would be added to the stepper motors through the use of shaft encoders. 
● HSV instead of RGB would be used to determine the color of the stickers. This encoding 

allows for more tolerance of varying lighting conditions, and could eliminate many of the 
issues that made determining cubestate difficult. 



● The algorithm implemented in solve_algorithm.v would be based on a graph search or 
maximizing some heuristic, rather than a collection of patterns to be recognized. This 
would allow for easier debugging of the module itself. 

 
Appendix​ ​- Block Diagram 
 

 


