Rubik's Cube Solving Robot

Nathaniel Knopf Jacob Swiezy

Rubik's Cube

- 4.3×10¹⁹ permutations
- World record time: 4.59 seconds
- 3 types of pieces
 - Centers (fixed)
 - Edges
 - Corners

Robots!

Motivation

- Robot in previous video: C++ →
 Arduino → Robot
- Some others implemented entire processor on FPGA, wrote C code
- We'll actually implement the solution on an FPGA

Hardware Components

- Nexys 4
- 6 stepper motors
- 6 stepper motor drivers
- 6 3D printed shaft-cube couplers
- 2 RGB color sensors
- Laser cut acrylic frame
- Rubik's Cube

Stepper Motors

- NEMA 17 Bipolar Stepper Motor
- A4988 Stepper Motor Driver
- 2 Part 3D Printed Shaft-Cube Coupler

Color Sensor

- Communicates over I2C
- Returns 16-bit RGB values
- On-board bright LED for consistent lighting conditions

The Frame

- Laser cut from ¹/₄" acrylic
- Rigidly bolted together
- Removable top allows for cube to be removed and scrambled

Modules

3 stages

- Determining state of Rubik's Cube
- Planning a solution
- Executing planned solution

Stage One: Determining State of Rubik's Cube

- State: 162 bit register
 - 54 pieces * 3 bits for colors (WOGRBY)
- Color Reader module
 - Two color sensors one for corners, one for edges
 - Color Reader module outputs color of piece it sees
- Spin All module
 - Contains sequences of moves for viewing all pieces
- Populate State module
 - Manages applying moves from Spin All
 - Stores values from Color Reader module in cube state register

Solving a Rubik's Cube

- Algorithms
 - A sequence of moves to exchange specific pieces of the Rubik's Cube
- Methods
 - Set of algorithms to solve the Rubik's Cube
 - "Beginners Method"

Stage Two: Planning a Solution

- Solving Algorithm module
 - Input: cube state register
 - Output: next move in solving the Rubik's Cube
 - FSM each state is a step of the method chosen
- Queue module
 - Collects moves output from the Solving Algorithm module
 - Outputs moves to sequence module in combined list
- Sequence module
 - Stores the moves to be executed so Motor module can access them.

Stage Three: Executing Planned Solution

- Motor module
 - Pulls moves one-by-one from sequence module
 - 18 possible moves
 - CCW rotation of each face
 - CW rotation of each face
 - 180° rotation of each face
 - Next move translated into appropriate hardware signals for stepper motor drivers
 - Move executed by driving stepper motor driver

Timeline

10/1-	4415 44144	44/40 44/40	11/10 11/05	11/00 10/0	10/0 40/44	Ontaria far finished	
VVeek	11/0-11/11	11/12-11/18	11/19-11/20	11/20-12/2	12/3-12/11	Criteria for finished	
Planning Solution						Module produces sequence of moves to solve Rubik's Cube	Nathaniel
State Determination						Module can determine state of Rubik's Cube by turning puzzle	Jacob
Testing of State Determination and Planning Solution						Modules can determine state through observation and plan a correct solution	Both
Robot Frame						Frame is constructed, Rubik's cube can be reliably truned without human intervention	
Color Sensor Interface						FPGA outputs one of six values corresponding to closest cube color	
Stepper Motor Driver Interface						Press button on FPGA to turn stepper motor a full turn	
Integration						Cube state is determined via color sensors, sequence of moves is determined, cube is physically solved	
Testing							
Stretch Goals						Faster solving algorithm is implemented on FPGA	

Questions?

