

FPGA Guitar
Multi-Effects
Processor
6.111 Final Project Report

Haris Brkic
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 1

Table of Contents
Overview .. 2

Design Implementation .. 3

FPGA Processor... 3

Effects Controller .. 5

Distortion .. 6

Delay .. 7

Auto-wah .. 8

Filtering .. 9

Chorus .. 10

Future Work... 11

Appendix: Verilog Code ... 12

 2

Overview

First analog guitar pedals appeared in the 1930s. Shortly after being introduced
to guitar players, they became an essential part of any guitarist's rig. The components
used to make these pedals have changed over the years but the sound effects they
produce have remained the same. It is quite expensive to make a versatile pedalboard
since we would need a lot of analog pedals to complete it.

The goal of this project was to simulate the behavior of analog pedals using
digital signal processing to create the digital equivalents of a large variety of pedals
used by guitarists. By doing so, we created a significantly cheaper version of a multi-
effects pedalboard that can be controlled from our labkit.

We digitized the analog signal from the guitar's magnetic pickups using the
AC97 codec and passed the digitized signal to the Effects Controller module. The
AC97 allows us to sample the incoming audio from the guitar’s magnetic pickup at 48
kHz and ensures high-quality audio output.

The Effects Controller module is an FSM that cycles through eight states and
at each step applies one of the effects if they are being used by passing the current
input. The effects are controlled by the labkit switches and the active effects are
passed to the logic controlling the graphics found in the top-level module, so they can
be displayed on a monitor.

Besides this, the digitized signal is passed to a looper/recorder module found
in the top-level module. When active, the looper stores the input signal in the onboard
ZBT memory and allows us to play the stored audio so that we can play and store
multiple parts of a musical phrase or song.

Figure 1: High-level Block Diagram

 3

Design Implementation

FPGA Processor

 FPGA Processor is a slightly modified version of the lab5 module. The main two

modifications are the inclusion of the looper and graphics logic inside this module. The

looper must be included in the top-level module in order to interact with the onboard

ZBT memory. Signals used for generating the graphics are also found in the FPGA

Processor module, so the VGA code was put inside that module.

 The other modifications to the lab5 module were minor. We switched from using

8-bit wide input and output in lab5audio to using signed 20-bit wide audio input and

output. This is because lower number of bits resulted in unwanted distortion of the

input signal.

 Lab5 module proved to be a good communication link between the magnetic

pickups and the onboard AC97. This setup did not require any form of preprocessing

of the input signal. Furthermore, the output from this module was fully compatible with

the guitar amplifier. The output from this module was the sum of the outputs of the

looper and the Effects Controller.

 The Effects Controller is instantiated within the FPGA Processor and the

debounced values of the labkit switches are passed to it to control the effects.

Looper allows a performer to record and replay a phrase in a loop. In addition,
it allows the performer to record multiple phrases or melodies on top of each other.

 The looper is implemented like the lab5 recorder. Both are implemented as

simple FSMs that increment the read or write memory address after each clock cycle

and store and/or output the value inside the current memory slot.

The major difference between the two is that the looper allows to record over

the currently stored values inside the ZBT memory slots. To achieve this, we

introduced a new register which would hold the current value inside the ZBT memory

slot prior to the overwrite. After three clock cycles, we store the sum of the value stored

within the register and the current effects output into the same memory address.

 One problem that arose with this implementation was the timing of the write

enable signal used by the ZBT memory. The write enable signal must be held longer

than 0.5 ns. Otherwise, the labkit does not have enough time to recognize that it needs

to store the passed data in the current memory slot. To solve this problem, we

introduced three intermediate states and held the write enable as an active low during

those states. After exiting the last intermediate state, we reset the write enable signal

and increment the memory address.

 One thing to keep in mind is overflow due to too much overwriting. We did not

encounter this issue due to the signal values being relatively small and the fact that

we used 20-bit wide registers and wires.

 4

 The graphics was implemented using the code that allows us to display ASCII

characters on a monitor. The code and the font files are available on the course

website. The inputs are the vertical and horizontal location of the string, and the string,

and the output is the RGB value associated with the pixel location.

 Using this code, all the effect names were displayed along with their current

state. The states were to the right of the effect names and switched between different

strings whenever the state of an effect changed. The VGA module used was identical

to the one used for lab 3.

Figure 2: VGA output

 5

Effects Controller

 The AC97 digitizes the guitar signal and outputs the digital signal to the Effects
Controller which passes that signal to the appropriate effects. Our effect modules alter
the digital signal and return it back to the Effects Controller.

Effects Controller is a simple FSM that initializes a temporary register in which
it stores the signal modified by the effects. It has eight states and each one
corresponds to a particular effect. The order in which the effects are applied matters.
Any form of filtering is supposed to happen before being passed to other effects.
Similarly, effects which store the output must be placed at the end of the chain.

The chain of effects that yielded the best results was: wah, distortion, chorus,
delay, and looper. Every effect module takes in the mentioned temporary register as
input, performs the necessary calculations and stores the new signal back in the same
register at the next positive clock edge.

Each of the effects requires its own ready signal. This is because all the effects
share the same input signal and must wait until the previous effect has finished
modifying the temporary register. Therefore, we change the ready signal for each of
the effects when we transition into the state representing that specific effect.

Once we reach the last state, the temporary register is stored into the register
holding the output and passed to the top-level module. After that, Effects Controller
waits for the next sample and the ready signal from the AC97. Even though we take 8
additional clock cycles to produce the output once we receive the input signal, we
maintain the 48 kHz sampling rate because the labkit uses a 27 MHz clock.

Figure 3: Proper effects chain

 6

Distortion

Distortion results from „hard clipping“ the instrument's audio signal. By clipping
the signal, the wave form of the input signal is distorted, and overtones are added.
Harmonic overtones produce a „warm“ sound and inharmonic overtones contribute
towards a more „gritty“ sound. „Hard clipping“ means that the input audio signal is re-
shaped such that it has perfectly flattened peaks.

We implemented this effect by comparing the input value to four different
threshold values. These four thresholds consisted of two pairs of with equal absolute
values with different signs. Any input value above the highest or lowest threshold
results in an output equal to the corresponding threshold. Values in between two
thresholds result in an output equal to the threshold with smaller absolute value. All
other inputs are directly passed as outputs.

 One issue that was encountered was making sure this module only produces

output on the AC97 ready signal. Otherwise, the output will be just silence since this

module will output the same signal to many times in a row.

 This was the simplest effect to implement. It was implemented during the first

week. This effect becomes better with an increase in the number of thresholds used.

We observed this because the initial implementation of distortion used one pair of

thresholds and the sound was heavily distorted.

Figure 4: Comparison between a normal and distorted sound wave

 7

Delay

Delay pedals produce an echo effect by reproducing an input audio signal with
a slight time-delay. The two types of delay are „slap“ (single repetition) and echo
(multiple repetitions).

Both types are implemented using BRAM to store the input signal and later mix
them with the input. However, this means that we need a dual-port BRAM so the bram
module from lab5 is not going to work. To change the lab5 bram module into a dual-
port BRAM module all we need to do is to add one more input. The input added is a
read address that is different from the write address. This way, we can both read and
write to the BRAM in the same clock cycle. The output of the dual-port BRAM is the
value inside the read address.

 At each ready signal, we store the input into the BRAM and output the input
signal mixed with an earlier stored signal. The difference between „slap“ and echo is
in the data they store to the BRAM. „Slap“ stores only the input data while echo stores
the input and the output of the BRAM at half volume (extended right shift). By doing
this, we create the feedback loop required to implement the decaying echo delay
effect.

To create a consistent and nice sounding delay, the difference between the
read and write memory addresses passed as inputs to the BRAM should be constant.
Otherwise, the sound we get becomes muddled.

Figure 5: Illustration of the delay effect

 8

Auto-wah

Auto-wah is an effect that sounds similar to a crying baby. This pedal is a
moving bandpass filter whose frequency center is periodically changed. It accents a
part of the inputs frequency and diminishes the rest of the input. The filters were written
in MATLAB and the coefficients were stored in a ROM within the labkit. We used the
labkit to change between the filters.

The auto-wah module periodically sweeps between the ten bandpass filter
outputs and mixes the filter output with the input signal. After mixing them, it outputs
the mixed signal. This module has two states: INCREASING and DECREASING.
While in the INCREASING state we go to the next bandpass filter whose center
frequency is higher. At each step it mixes the input with the output of the current filter.
Once we reach the bandpass filter with the highest center frequency we go to the
DECREASING state. The DECREASING state performs the same operations except
it switches to the bandpass filter with a lower cutoff frequency after each period.

The speed at which the filters switch is input by the user, a good one is a 100
Hz. Higher speeds have a negative effect on the output. If the speed used is too close
to the sampling rate, the effect results in a noisy output audio signal. Another problem
was encountered when the filter output was right shifted. This caused the output to
become distorted. Removing the extended right shift solved this issue.

This effect required the most time to implement. Furthermore, it was the most
tedious because all the filter coefficients had to be entered manually.

Figure 6: Auto-wah effect using different bandpass filters

 9

Filtering

 The auto-wah effect requires the output of multiple bandpass filters. First, we

used the same method as in lab5 and created 10 lowpass filters with 256 coefficients

and multiplied their values by 212. The coefficients were stored in a manner that would

be transformed into ROM by the compiling tools once loaded onto the labkit. The cutoff

frequencies of these filters span the frequencies that can be produced by the guitar.

Next, we used the accumulator method described in lab5 to produce the output

by applying the filter to the input. Finally, to create the bandpass outputs we just take

the outputs of two lowpass filters and output the difference between the outputs of the

two filters. This is because the difference between two lowpass filters is a bandpass

filter.

The MATLAB command used to obtain the filter coefficients is: round(fir1(

255,p)*4096), where p is the decimal number equal to the cutoff frequency divided by

the sampling rate. The cutoff frequencies for the lowpass filters used were: 300 Hz,

375 Hz, 450 Hz, 540 Hz, 660 Hz, 800 Hz, 950 Hz, 1100 Hz, 1350 Hz, and 1600 Hz.

One thing we learned is that the effect would sound better if we used bandpass
filters instead of subtracting the outputs of two lowpass filters.

 10

Chorus

Chorus pedals produces a wide swelling sound by mixing sounds with small
differences in sound quality and pitch. This is achieved by splitting up the audio signal
in two, delaying and/or modulating one of the signals, and mixing the signals back
together. This produces the sensation of hearing multiple guitars being played even
though we are using a single guitar.

This effect was implemented by playing a pitch shifted copy of the input signal
with a slight time delay. The delay was implemented the same way as in the “slap”
delay effect. We just store the input in a dual-port BRAM and play it back later.

The pitch shift was a harder to introduce. To pitch shift the input we had to
resample the input signal. Because of this, we had to change the approach to the
chorus effect within the Effects Controller since the sampling rate of the chorus is
controlled by that module. The input to the chorus module was sampled at
approximately 47 kHz (a bit below the sampling rate). This resulted in a slightly lower
tone than the one played.

After producing the time delayed and pitch shifted copy we mix it with the input
signal and pass that as the output of the module.

However, resampling the input signal produced an annoying ticking noise on
top of the guitar sound. To fix this, we could implement the chorus effect using just the
time delay or find a better way to produce the pitch shift. The sampling rate should not
be much faster or slower than 48 kHz because it would result in a pitch that is too high
or too low.

Figure 7: Illustration of the chorus effect

 11

Future Work

 One of the ways to improve this project would be to implement some of the

more complex guitar effects. The three most popular are pitch-shifter, reverb, and

phaser.

Pitch shifters raise or lower notes played by a set interval by altering the
frequency of the audio signal. Simple pitch shifters known as octavers raise or lower
the note played by an octave or two. Complex pitch shifters allow a broad range of
interval alterations. A pitch shifter could be created by resampling the input signal at a
different rate.

Reverb pedals simulate the spacious sounds produced in acoustic spaces such
as halls and cathedrals. This effect is achieved by creating many gradually decaying
echoes. To create this effect using digital logic, digital signal processing could be used
to simulate the behavior of multiple feedback delay circuits. This is quite
computationally expensive and requires the use of complex digital signal processing
algorithms such as GVerb.

A phaser splits the audio signal and cyclically alters the phase of one of parts
of the signals. After shifting one of the parts' phase, it mixes the two parts of the audio
signal back together. The phaser pedal can be implemented using a cascaded 2nd
order notch filter with a low quality factor.

 Furthermore, the existing effects could be refined and more user control could
be added. Currently, to change the parameters we have to reprogram the labkit with
new parameters. We could give the user more control over all the parameters and
connect the wah effect to an external pedal so that the user can control the center
frequency of the bandpass filter by changing the position of the external pedal.

 One thing that we haven’t spent much time on is the graphics module. It
performs its function, but it is not visually appealing. It could be improved such that it
resembles an actual menu or maybe a guitar pedalboard which allows us to select a
pedal and see the change in its parameters as turning knobs.

 We could also create a storage module that would allow the user to store his
favorite presets and load them whenever he wants to from memory. Additionally, we
could change the interface to the AC97 and produce stereophonic sounds.

There are many possible improvements for this specific project. However, most
of these improvements are hard to implement while retaining high-quality audio output.

 12

Appendix: Verilog Code

module coeffs300(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 300Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = 12'sd1;
 8'd1: coeff = 12'sd1;
 8'd2: coeff = 12'sd1;
 8'd3: coeff = 12'sd1;
 8'd4: coeff = 12'sd1;
 8'd5: coeff = 12'sd1;
 8'd6: coeff = 12'sd1;
 8'd7: coeff = 12'sd1;
 8'd8: coeff = 12'sd1;
 8'd9: coeff = 12'sd1;
 8'd10: coeff = 12'sd1;
 8'd11: coeff = 12'sd1;
 8'd12: coeff = 12'sd1;
 8'd13: coeff = 12'sd1;
 8'd14: coeff = 12'sd1;
 8'd15: coeff = 12'sd1;
 8'd16: coeff = 12'sd1;
 8'd17: coeff = 12'sd2;
 8'd18: coeff = 12'sd2;
 8'd19: coeff = 12'sd2;
 8'd20: coeff = 12'sd2;
 8'd21: coeff = 12'sd2;
 8'd22: coeff = 12'sd2;
 8'd23: coeff = 12'sd2;
 8'd24: coeff = 12'sd2;
 8'd25: coeff = 12'sd3;
 8'd26: coeff = 12'sd3;
 8'd27: coeff = 12'sd3;
 8'd28: coeff = 12'sd3;
 8'd29: coeff = 12'sd3;
 8'd30: coeff = 12'sd3;
 8'd31: coeff = 12'sd4;
 8'd32: coeff = 12'sd4;
 8'd33: coeff = 12'sd4;
 8'd34: coeff = 12'sd4;
 8'd35: coeff = 12'sd4;
 8'd36: coeff = 12'sd5;
 8'd37: coeff = 12'sd5;
 8'd38: coeff = 12'sd5;
 8'd39: coeff = 12'sd5;
 8'd40: coeff = 12'sd6;
 8'd41: coeff = 12'sd6;
 8'd42: coeff = 12'sd6;
 8'd43: coeff = 12'sd7;
 8'd44: coeff = 12'sd7;
 8'd45: coeff = 12'sd7;
 8'd46: coeff = 12'sd8;
 8'd47: coeff = 12'sd8;
 8'd48: coeff = 12'sd8;

 13

 8'd49: coeff = 12'sd9;
 8'd50: coeff = 12'sd9;
 8'd51: coeff = 12'sd9;
 8'd52: coeff = 12'sd10;
 8'd53: coeff = 12'sd10;
 8'd54: coeff = 12'sd10;
 8'd55: coeff = 12'sd11;
 8'd56: coeff = 12'sd11;
 8'd57: coeff = 12'sd11;
 8'd58: coeff = 12'sd12;
 8'd59: coeff = 12'sd12;
 8'd60: coeff = 12'sd13;
 8'd61: coeff = 12'sd13;
 8'd62: coeff = 12'sd14;
 8'd63: coeff = 12'sd14;
 8'd64: coeff = 12'sd14;
 8'd65: coeff = 12'sd15;
 8'd66: coeff = 12'sd15;
 8'd67: coeff = 12'sd16;
 8'd68: coeff = 12'sd16;
 8'd69: coeff = 12'sd17;
 8'd70: coeff = 12'sd17;
 8'd71: coeff = 12'sd18;
 8'd72: coeff = 12'sd18;
 8'd73: coeff = 12'sd18;
 8'd74: coeff = 12'sd19;
 8'd75: coeff = 12'sd19;
 8'd76: coeff = 12'sd20;
 8'd77: coeff = 12'sd20;
 8'd78: coeff = 12'sd21;
 8'd79: coeff = 12'sd21;
 8'd80: coeff = 12'sd22;
 8'd81: coeff = 12'sd22;
 8'd82: coeff = 12'sd23;
 8'd83: coeff = 12'sd23;
 8'd84: coeff = 12'sd23;
 8'd85: coeff = 12'sd24;
 8'd86: coeff = 12'sd24;
 8'd87: coeff = 12'sd25;
 8'd88: coeff = 12'sd25;
 8'd89: coeff = 12'sd26;
 8'd90: coeff = 12'sd26;
 8'd91: coeff = 12'sd26;
 8'd92: coeff = 12'sd27;
 8'd93: coeff = 12'sd27;
 8'd94: coeff = 12'sd28;
 8'd95: coeff = 12'sd28;
 8'd96: coeff = 12'sd28;
 8'd97: coeff = 12'sd29;
 8'd98: coeff = 12'sd29;
 8'd99: coeff = 12'sd30;
 8'd100: coeff = 12'sd30;
 8'd101: coeff = 12'sd30;
 8'd102: coeff = 12'sd31;
 8'd103: coeff = 12'sd31;
 8'd104: coeff = 12'sd31;
 8'd105: coeff = 12'sd31;
 8'd106: coeff = 12'sd32;
 8'd107: coeff = 12'sd32;
 8'd108: coeff = 12'sd32;

 14

 8'd109: coeff = 12'sd33;
 8'd110: coeff = 12'sd33;
 8'd111: coeff = 12'sd33;
 8'd112: coeff = 12'sd33;
 8'd113: coeff = 12'sd33;
 8'd114: coeff = 12'sd34;
 8'd115: coeff = 12'sd34;
 8'd116: coeff = 12'sd34;
 8'd117: coeff = 12'sd34;
 8'd118: coeff = 12'sd34;
 8'd119: coeff = 12'sd34;
 8'd120: coeff = 12'sd35;
 8'd121: coeff = 12'sd35;
 8'd122: coeff = 12'sd35;
 8'd123: coeff = 12'sd35;
 8'd124: coeff = 12'sd35;
 8'd125: coeff = 12'sd35;
 8'd126: coeff = 12'sd35;
 8'd127: coeff = 12'sd35;
 8'd128: coeff = 12'sd35;
 8'd129: coeff = 12'sd35;
 8'd130: coeff = 12'sd35;
 8'd131: coeff = 12'sd35;
 8'd132: coeff = 12'sd35;
 8'd133: coeff = 12'sd35;
 8'd134: coeff = 12'sd35;
 8'd135: coeff = 12'sd35;
 8'd136: coeff = 12'sd34;
 8'd137: coeff = 12'sd34;
 8'd138: coeff = 12'sd34;
 8'd139: coeff = 12'sd34;
 8'd140: coeff = 12'sd34;
 8'd141: coeff = 12'sd34;
 8'd142: coeff = 12'sd33;
 8'd143: coeff = 12'sd33;
 8'd144: coeff = 12'sd33;
 8'd145: coeff = 12'sd33;
 8'd146: coeff = 12'sd33;
 8'd147: coeff = 12'sd32;
 8'd148: coeff = 12'sd32;
 8'd149: coeff = 12'sd32;
 8'd150: coeff = 12'sd31;
 8'd151: coeff = 12'sd31;
 8'd152: coeff = 12'sd31;
 8'd153: coeff = 12'sd31;
 8'd154: coeff = 12'sd30;
 8'd155: coeff = 12'sd30;
 8'd156: coeff = 12'sd30;
 8'd157: coeff = 12'sd29;
 8'd158: coeff = 12'sd29;
 8'd159: coeff = 12'sd28;
 8'd160: coeff = 12'sd28;
 8'd161: coeff = 12'sd28;
 8'd162: coeff = 12'sd27;
 8'd163: coeff = 12'sd27;
 8'd164: coeff = 12'sd26;
 8'd165: coeff = 12'sd26;
 8'd166: coeff = 12'sd26;
 8'd167: coeff = 12'sd25;
 8'd168: coeff = 12'sd25;

 15

 8'd169: coeff = 12'sd24;
 8'd170: coeff = 12'sd24;
 8'd171: coeff = 12'sd23;
 8'd172: coeff = 12'sd23;
 8'd173: coeff = 12'sd23;
 8'd174: coeff = 12'sd22;
 8'd175: coeff = 12'sd22;
 8'd176: coeff = 12'sd21;
 8'd177: coeff = 12'sd21;
 8'd178: coeff = 12'sd20;
 8'd179: coeff = 12'sd20;
 8'd180: coeff = 12'sd19;
 8'd181: coeff = 12'sd19;
 8'd182: coeff = 12'sd18;
 8'd183: coeff = 12'sd18;
 8'd184: coeff = 12'sd18;
 8'd185: coeff = 12'sd17;
 8'd186: coeff = 12'sd17;
 8'd187: coeff = 12'sd16;
 8'd188: coeff = 12'sd16;
 8'd189: coeff = 12'sd15;
 8'd190: coeff = 12'sd15;
 8'd191: coeff = 12'sd14;
 8'd192: coeff = 12'sd14;
 8'd193: coeff = 12'sd14;
 8'd194: coeff = 12'sd13;
 8'd195: coeff = 12'sd13;
 8'd196: coeff = 12'sd12;
 8'd197: coeff = 12'sd12;
 8'd198: coeff = 12'sd11;
 8'd199: coeff = 12'sd11;
 8'd200: coeff = 12'sd11;
 8'd201: coeff = 12'sd10;
 8'd202: coeff = 12'sd10;
 8'd203: coeff = 12'sd10;
 8'd204: coeff = 12'sd9;
 8'd205: coeff = 12'sd9;
 8'd206: coeff = 12'sd9;
 8'd207: coeff = 12'sd8;
 8'd208: coeff = 12'sd8;
 8'd209: coeff = 12'sd8;
 8'd210: coeff = 12'sd7;
 8'd211: coeff = 12'sd7;
 8'd212: coeff = 12'sd7;
 8'd213: coeff = 12'sd6;
 8'd214: coeff = 12'sd6;
 8'd215: coeff = 12'sd6;
 8'd216: coeff = 12'sd5;
 8'd217: coeff = 12'sd5;
 8'd218: coeff = 12'sd5;
 8'd219: coeff = 12'sd5;
 8'd220: coeff = 12'sd4;
 8'd221: coeff = 12'sd4;
 8'd222: coeff = 12'sd4;
 8'd223: coeff = 12'sd4;
 8'd224: coeff = 12'sd4;
 8'd225: coeff = 12'sd3;
 8'd226: coeff = 12'sd3;
 8'd227: coeff = 12'sd3;
 8'd228: coeff = 12'sd3;

 16

 8'd229: coeff = 12'sd3;
 8'd230: coeff = 12'sd3;
 8'd231: coeff = 12'sd2;
 8'd232: coeff = 12'sd2;
 8'd233: coeff = 12'sd2;
 8'd234: coeff = 12'sd2;
 8'd235: coeff = 12'sd2;
 8'd236: coeff = 12'sd2;
 8'd237: coeff = 12'sd2;
 8'd238: coeff = 12'sd2;
 8'd239: coeff = 12'sd1;
 8'd240: coeff = 12'sd1;
 8'd241: coeff = 12'sd1;
 8'd242: coeff = 12'sd1;
 8'd243: coeff = 12'sd1;
 8'd244: coeff = 12'sd1;
 8'd245: coeff = 12'sd1;
 8'd246: coeff = 12'sd1;
 8'd247: coeff = 12'sd1;
 8'd248: coeff = 12'sd1;
 8'd249: coeff = 12'sd1;
 8'd250: coeff = 12'sd1;
 8'd251: coeff = 12'sd1;
 8'd252: coeff = 12'sd1;
 8'd253: coeff = 12'sd1;
 8'd254: coeff = 12'sd1;
 8'd255: coeff = 12'sd1;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs375(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 375Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = 12'sd0;
 8'd1: coeff = 12'sd0;
 8'd2: coeff = 12'sd0;
 8'd3: coeff = 12'sd0;
 8'd4: coeff = 12'sd0;
 8'd5: coeff = 12'sd0;
 8'd6: coeff = 12'sd0;
 8'd7: coeff = 12'sd0;
 8'd8: coeff = 12'sd0;
 8'd9: coeff = 12'sd0;
 8'd10: coeff = 12'sd0;
 8'd11: coeff = 12'sd0;
 8'd12: coeff = 12'sd0;
 8'd13: coeff = 12'sd0;
 8'd14: coeff = 12'sd1;
 8'd15: coeff = 12'sd1;
 8'd16: coeff = 12'sd1;
 8'd17: coeff = 12'sd1;
 8'd18: coeff = 12'sd1;
 8'd19: coeff = 12'sd1;
 8'd20: coeff = 12'sd1;
 8'd21: coeff = 12'sd1;

 17

 8'd22: coeff = 12'sd1;
 8'd23: coeff = 12'sd1;
 8'd24: coeff = 12'sd1;
 8'd25: coeff = 12'sd1;
 8'd26: coeff = 12'sd2;
 8'd27: coeff = 12'sd2;
 8'd28: coeff = 12'sd2;
 8'd29: coeff = 12'sd2;
 8'd30: coeff = 12'sd2;
 8'd31: coeff = 12'sd2;
 8'd32: coeff = 12'sd3;
 8'd33: coeff = 12'sd3;
 8'd34: coeff = 12'sd3;
 8'd35: coeff = 12'sd3;
 8'd36: coeff = 12'sd3;
 8'd37: coeff = 12'sd4;
 8'd38: coeff = 12'sd4;
 8'd39: coeff = 12'sd4;
 8'd40: coeff = 12'sd4;
 8'd41: coeff = 12'sd4;
 8'd42: coeff = 12'sd5;
 8'd43: coeff = 12'sd5;
 8'd44: coeff = 12'sd5;
 8'd45: coeff = 12'sd6;
 8'd46: coeff = 12'sd6;
 8'd47: coeff = 12'sd6;
 8'd48: coeff = 12'sd7;
 8'd49: coeff = 12'sd7;
 8'd50: coeff = 12'sd7;
 8'd51: coeff = 12'sd8;
 8'd52: coeff = 12'sd8;
 8'd53: coeff = 12'sd8;
 8'd54: coeff = 12'sd9;
 8'd55: coeff = 12'sd9;
 8'd56: coeff = 12'sd10;
 8'd57: coeff = 12'sd10;
 8'd58: coeff = 12'sd10;
 8'd59: coeff = 12'sd11;
 8'd60: coeff = 12'sd11;
 8'd61: coeff = 12'sd12;
 8'd62: coeff = 12'sd12;
 8'd63: coeff = 12'sd13;
 8'd64: coeff = 12'sd13;
 8'd65: coeff = 12'sd14;
 8'd66: coeff = 12'sd14;
 8'd67: coeff = 12'sd15;
 8'd68: coeff = 12'sd15;
 8'd69: coeff = 12'sd16;
 8'd70: coeff = 12'sd16;
 8'd71: coeff = 12'sd17;
 8'd72: coeff = 12'sd17;
 8'd73: coeff = 12'sd18;
 8'd74: coeff = 12'sd18;
 8'd75: coeff = 12'sd19;
 8'd76: coeff = 12'sd19;
 8'd77: coeff = 12'sd20;
 8'd78: coeff = 12'sd20;
 8'd79: coeff = 12'sd21;
 8'd80: coeff = 12'sd22;
 8'd81: coeff = 12'sd22;

 18

 8'd82: coeff = 12'sd23;
 8'd83: coeff = 12'sd23;
 8'd84: coeff = 12'sd24;
 8'd85: coeff = 12'sd24;
 8'd86: coeff = 12'sd25;
 8'd87: coeff = 12'sd25;
 8'd88: coeff = 12'sd26;
 8'd89: coeff = 12'sd26;
 8'd90: coeff = 12'sd27;
 8'd91: coeff = 12'sd27;
 8'd92: coeff = 12'sd28;
 8'd93: coeff = 12'sd28;
 8'd94: coeff = 12'sd29;
 8'd95: coeff = 12'sd29;
 8'd96: coeff = 12'sd30;
 8'd97: coeff = 12'sd30;
 8'd98: coeff = 12'sd31;
 8'd99: coeff = 12'sd31;
 8'd100: coeff = 12'sd32;
 8'd101: coeff = 12'sd32;
 8'd102: coeff = 12'sd32;
 8'd103: coeff = 12'sd33;
 8'd104: coeff = 12'sd33;
 8'd105: coeff = 12'sd34;
 8'd106: coeff = 12'sd34;
 8'd107: coeff = 12'sd34;
 8'd108: coeff = 12'sd35;
 8'd109: coeff = 12'sd35;
 8'd110: coeff = 12'sd35;
 8'd111: coeff = 12'sd36;
 8'd112: coeff = 12'sd36;
 8'd113: coeff = 12'sd36;
 8'd114: coeff = 12'sd36;
 8'd115: coeff = 12'sd37;
 8'd116: coeff = 12'sd37;
 8'd117: coeff = 12'sd37;
 8'd118: coeff = 12'sd37;
 8'd119: coeff = 12'sd37;
 8'd120: coeff = 12'sd37;
 8'd121: coeff = 12'sd38;
 8'd122: coeff = 12'sd38;
 8'd123: coeff = 12'sd38;
 8'd124: coeff = 12'sd38;
 8'd125: coeff = 12'sd38;
 8'd126: coeff = 12'sd38;
 8'd127: coeff = 12'sd38;
 8'd128: coeff = 12'sd38;
 8'd129: coeff = 12'sd38;
 8'd130: coeff = 12'sd38;
 8'd131: coeff = 12'sd38;
 8'd132: coeff = 12'sd38;
 8'd133: coeff = 12'sd38;
 8'd134: coeff = 12'sd38;
 8'd135: coeff = 12'sd37;
 8'd136: coeff = 12'sd37;
 8'd137: coeff = 12'sd37;
 8'd138: coeff = 12'sd37;
 8'd139: coeff = 12'sd37;
 8'd140: coeff = 12'sd37;
 8'd141: coeff = 12'sd36;

 19

 8'd142: coeff = 12'sd36;
 8'd143: coeff = 12'sd36;
 8'd144: coeff = 12'sd36;
 8'd145: coeff = 12'sd35;
 8'd146: coeff = 12'sd35;
 8'd147: coeff = 12'sd35;
 8'd148: coeff = 12'sd34;
 8'd149: coeff = 12'sd34;
 8'd150: coeff = 12'sd34;
 8'd151: coeff = 12'sd33;
 8'd152: coeff = 12'sd33;
 8'd153: coeff = 12'sd32;
 8'd154: coeff = 12'sd32;
 8'd155: coeff = 12'sd32;
 8'd156: coeff = 12'sd31;
 8'd157: coeff = 12'sd31;
 8'd158: coeff = 12'sd30;
 8'd159: coeff = 12'sd30;
 8'd160: coeff = 12'sd29;
 8'd161: coeff = 12'sd29;
 8'd162: coeff = 12'sd28;
 8'd163: coeff = 12'sd28;
 8'd164: coeff = 12'sd27;
 8'd165: coeff = 12'sd27;
 8'd166: coeff = 12'sd26;
 8'd167: coeff = 12'sd26;
 8'd168: coeff = 12'sd25;
 8'd169: coeff = 12'sd25;
 8'd170: coeff = 12'sd24;
 8'd171: coeff = 12'sd24;
 8'd172: coeff = 12'sd23;
 8'd173: coeff = 12'sd23;
 8'd174: coeff = 12'sd22;
 8'd175: coeff = 12'sd22;
 8'd176: coeff = 12'sd21;
 8'd177: coeff = 12'sd20;
 8'd178: coeff = 12'sd20;
 8'd179: coeff = 12'sd19;
 8'd180: coeff = 12'sd19;
 8'd181: coeff = 12'sd18;
 8'd182: coeff = 12'sd18;
 8'd183: coeff = 12'sd17;
 8'd184: coeff = 12'sd17;
 8'd185: coeff = 12'sd16;
 8'd186: coeff = 12'sd16;
 8'd187: coeff = 12'sd15;
 8'd188: coeff = 12'sd15;
 8'd189: coeff = 12'sd14;
 8'd190: coeff = 12'sd14;
 8'd191: coeff = 12'sd13;
 8'd192: coeff = 12'sd13;
 8'd193: coeff = 12'sd12;
 8'd194: coeff = 12'sd12;
 8'd195: coeff = 12'sd11;
 8'd196: coeff = 12'sd11;
 8'd197: coeff = 12'sd10;
 8'd198: coeff = 12'sd10;
 8'd199: coeff = 12'sd10;
 8'd200: coeff = 12'sd9;
 8'd201: coeff = 12'sd9;

 20

 8'd202: coeff = 12'sd8;
 8'd203: coeff = 12'sd8;
 8'd204: coeff = 12'sd8;
 8'd205: coeff = 12'sd7;
 8'd206: coeff = 12'sd7;
 8'd207: coeff = 12'sd7;
 8'd208: coeff = 12'sd6;
 8'd209: coeff = 12'sd6;
 8'd210: coeff = 12'sd6;
 8'd211: coeff = 12'sd5;
 8'd212: coeff = 12'sd5;
 8'd213: coeff = 12'sd5;
 8'd214: coeff = 12'sd4;
 8'd215: coeff = 12'sd4;
 8'd216: coeff = 12'sd4;
 8'd217: coeff = 12'sd4;
 8'd218: coeff = 12'sd4;
 8'd219: coeff = 12'sd3;
 8'd220: coeff = 12'sd3;
 8'd221: coeff = 12'sd3;
 8'd222: coeff = 12'sd3;
 8'd223: coeff = 12'sd3;
 8'd224: coeff = 12'sd2;
 8'd225: coeff = 12'sd2;
 8'd226: coeff = 12'sd2;
 8'd227: coeff = 12'sd2;
 8'd228: coeff = 12'sd2;
 8'd229: coeff = 12'sd2;
 8'd230: coeff = 12'sd1;
 8'd231: coeff = 12'sd1;
 8'd232: coeff = 12'sd1;
 8'd233: coeff = 12'sd1;
 8'd234: coeff = 12'sd1;
 8'd235: coeff = 12'sd1;
 8'd236: coeff = 12'sd1;
 8'd237: coeff = 12'sd1;
 8'd238: coeff = 12'sd1;
 8'd239: coeff = 12'sd1;
 8'd240: coeff = 12'sd1;
 8'd241: coeff = 12'sd1;
 8'd242: coeff = 12'sd0;
 8'd243: coeff = 12'sd0;
 8'd244: coeff = 12'sd0;
 8'd245: coeff = 12'sd0;
 8'd246: coeff = 12'sd0;
 8'd247: coeff = 12'sd0;
 8'd248: coeff = 12'sd0;
 8'd249: coeff = 12'sd0;
 8'd250: coeff = 12'sd0;
 8'd251: coeff = 12'sd0;
 8'd252: coeff = 12'sd0;
 8'd253: coeff = 12'sd0;
 8'd254: coeff = 12'sd0;
 8'd255: coeff = 12'sd0;
 default: coeff = 12'hXXX;
 endcase
endmodule

 21

module coeffs450(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 450Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = -12'sd1;
 8'd1: coeff = 12'sd0;
 8'd2: coeff = 12'sd0;
 8'd3: coeff = 12'sd0;
 8'd4: coeff = 12'sd0;
 8'd5: coeff = 12'sd0;
 8'd6: coeff = 12'sd0;
 8'd7: coeff = 12'sd0;
 8'd8: coeff = 12'sd0;
 8'd9: coeff = 12'sd0;
 8'd10: coeff = 12'sd0;
 8'd11: coeff = 12'sd0;
 8'd12: coeff = 12'sd0;
 8'd13: coeff = 12'sd0;
 8'd14: coeff = 12'sd0;
 8'd15: coeff = 12'sd0;
 8'd16: coeff = 12'sd0;
 8'd17: coeff = 12'sd0;
 8'd18: coeff = 12'sd0;
 8'd19: coeff = 12'sd0;
 8'd20: coeff = 12'sd0;
 8'd21: coeff = 12'sd0;
 8'd22: coeff = 12'sd0;
 8'd23: coeff = 12'sd0;
 8'd24: coeff = 12'sd0;
 8'd25: coeff = 12'sd0;
 8'd26: coeff = 12'sd0;
 8'd27: coeff = 12'sd0;
 8'd28: coeff = 12'sd1;
 8'd29: coeff = 12'sd1;
 8'd30: coeff = 12'sd1;
 8'd31: coeff = 12'sd1;
 8'd32: coeff = 12'sd1;
 8'd33: coeff = 12'sd1;
 8'd34: coeff = 12'sd1;
 8'd35: coeff = 12'sd1;
 8'd36: coeff = 12'sd2;
 8'd37: coeff = 12'sd2;
 8'd38: coeff = 12'sd2;
 8'd39: coeff = 12'sd2;
 8'd40: coeff = 12'sd2;
 8'd41: coeff = 12'sd3;
 8'd42: coeff = 12'sd3;
 8'd43: coeff = 12'sd3;
 8'd44: coeff = 12'sd3;
 8'd45: coeff = 12'sd4;
 8'd46: coeff = 12'sd4;
 8'd47: coeff = 12'sd4;
 8'd48: coeff = 12'sd5;
 8'd49: coeff = 12'sd5;
 8'd50: coeff = 12'sd5;
 8'd51: coeff = 12'sd6;
 8'd52: coeff = 12'sd6;

 22

 8'd53: coeff = 12'sd6;
 8'd54: coeff = 12'sd7;
 8'd55: coeff = 12'sd7;
 8'd56: coeff = 12'sd8;
 8'd57: coeff = 12'sd8;
 8'd58: coeff = 12'sd9;
 8'd59: coeff = 12'sd9;
 8'd60: coeff = 12'sd10;
 8'd61: coeff = 12'sd10;
 8'd62: coeff = 12'sd11;
 8'd63: coeff = 12'sd11;
 8'd64: coeff = 12'sd12;
 8'd65: coeff = 12'sd12;
 8'd66: coeff = 12'sd13;
 8'd67: coeff = 12'sd13;
 8'd68: coeff = 12'sd14;
 8'd69: coeff = 12'sd14;
 8'd70: coeff = 12'sd15;
 8'd71: coeff = 12'sd16;
 8'd72: coeff = 12'sd16;
 8'd73: coeff = 12'sd17;
 8'd74: coeff = 12'sd17;
 8'd75: coeff = 12'sd18;
 8'd76: coeff = 12'sd19;
 8'd77: coeff = 12'sd19;
 8'd78: coeff = 12'sd20;
 8'd79: coeff = 12'sd21;
 8'd80: coeff = 12'sd21;
 8'd81: coeff = 12'sd22;
 8'd82: coeff = 12'sd22;
 8'd83: coeff = 12'sd23;
 8'd84: coeff = 12'sd24;
 8'd85: coeff = 12'sd24;
 8'd86: coeff = 12'sd25;
 8'd87: coeff = 12'sd26;
 8'd88: coeff = 12'sd26;
 8'd89: coeff = 12'sd27;
 8'd90: coeff = 12'sd28;
 8'd91: coeff = 12'sd28;
 8'd92: coeff = 12'sd29;
 8'd93: coeff = 12'sd30;
 8'd94: coeff = 12'sd30;
 8'd95: coeff = 12'sd31;
 8'd96: coeff = 12'sd31;
 8'd97: coeff = 12'sd32;
 8'd98: coeff = 12'sd32;
 8'd99: coeff = 12'sd33;
 8'd100: coeff = 12'sd34;
 8'd101: coeff = 12'sd34;
 8'd102: coeff = 12'sd35;
 8'd103: coeff = 12'sd35;
 8'd104: coeff = 12'sd36;
 8'd105: coeff = 12'sd36;
 8'd106: coeff = 12'sd37;
 8'd107: coeff = 12'sd37;
 8'd108: coeff = 12'sd37;
 8'd109: coeff = 12'sd38;
 8'd110: coeff = 12'sd38;
 8'd111: coeff = 12'sd39;
 8'd112: coeff = 12'sd39;

 23

 8'd113: coeff = 12'sd39;
 8'd114: coeff = 12'sd40;
 8'd115: coeff = 12'sd40;
 8'd116: coeff = 12'sd40;
 8'd117: coeff = 12'sd41;
 8'd118: coeff = 12'sd41;
 8'd119: coeff = 12'sd41;
 8'd120: coeff = 12'sd41;
 8'd121: coeff = 12'sd41;
 8'd122: coeff = 12'sd41;
 8'd123: coeff = 12'sd42;
 8'd124: coeff = 12'sd42;
 8'd125: coeff = 12'sd42;
 8'd126: coeff = 12'sd42;
 8'd127: coeff = 12'sd42;
 8'd128: coeff = 12'sd42;
 8'd129: coeff = 12'sd42;
 8'd130: coeff = 12'sd42;
 8'd131: coeff = 12'sd42;
 8'd132: coeff = 12'sd42;
 8'd133: coeff = 12'sd41;
 8'd134: coeff = 12'sd41;
 8'd135: coeff = 12'sd41;
 8'd136: coeff = 12'sd41;
 8'd137: coeff = 12'sd41;
 8'd138: coeff = 12'sd41;
 8'd139: coeff = 12'sd40;
 8'd140: coeff = 12'sd40;
 8'd141: coeff = 12'sd40;
 8'd142: coeff = 12'sd39;
 8'd143: coeff = 12'sd39;
 8'd144: coeff = 12'sd39;
 8'd145: coeff = 12'sd38;
 8'd146: coeff = 12'sd38;
 8'd147: coeff = 12'sd37;
 8'd148: coeff = 12'sd37;
 8'd149: coeff = 12'sd37;
 8'd150: coeff = 12'sd36;
 8'd151: coeff = 12'sd36;
 8'd152: coeff = 12'sd35;
 8'd153: coeff = 12'sd35;
 8'd154: coeff = 12'sd34;
 8'd155: coeff = 12'sd34;
 8'd156: coeff = 12'sd33;
 8'd157: coeff = 12'sd32;
 8'd158: coeff = 12'sd32;
 8'd159: coeff = 12'sd31;
 8'd160: coeff = 12'sd31;
 8'd161: coeff = 12'sd30;
 8'd162: coeff = 12'sd30;
 8'd163: coeff = 12'sd29;
 8'd164: coeff = 12'sd28;
 8'd165: coeff = 12'sd28;
 8'd166: coeff = 12'sd27;
 8'd167: coeff = 12'sd26;
 8'd168: coeff = 12'sd26;
 8'd169: coeff = 12'sd25;
 8'd170: coeff = 12'sd24;
 8'd171: coeff = 12'sd24;
 8'd172: coeff = 12'sd23;

 24

 8'd173: coeff = 12'sd22;
 8'd174: coeff = 12'sd22;
 8'd175: coeff = 12'sd21;
 8'd176: coeff = 12'sd21;
 8'd177: coeff = 12'sd20;
 8'd178: coeff = 12'sd19;
 8'd179: coeff = 12'sd19;
 8'd180: coeff = 12'sd18;
 8'd181: coeff = 12'sd17;
 8'd182: coeff = 12'sd17;
 8'd183: coeff = 12'sd16;
 8'd184: coeff = 12'sd16;
 8'd185: coeff = 12'sd15;
 8'd186: coeff = 12'sd14;
 8'd187: coeff = 12'sd14;
 8'd188: coeff = 12'sd13;
 8'd189: coeff = 12'sd13;
 8'd190: coeff = 12'sd12;
 8'd191: coeff = 12'sd12;
 8'd192: coeff = 12'sd11;
 8'd193: coeff = 12'sd11;
 8'd194: coeff = 12'sd10;
 8'd195: coeff = 12'sd10;
 8'd196: coeff = 12'sd9;
 8'd197: coeff = 12'sd9;
 8'd198: coeff = 12'sd8;
 8'd199: coeff = 12'sd8;
 8'd200: coeff = 12'sd7;
 8'd201: coeff = 12'sd7;
 8'd202: coeff = 12'sd6;
 8'd203: coeff = 12'sd6;
 8'd204: coeff = 12'sd6;
 8'd205: coeff = 12'sd5;
 8'd206: coeff = 12'sd5;
 8'd207: coeff = 12'sd5;
 8'd208: coeff = 12'sd4;
 8'd209: coeff = 12'sd4;
 8'd210: coeff = 12'sd4;
 8'd211: coeff = 12'sd3;
 8'd212: coeff = 12'sd3;
 8'd213: coeff = 12'sd3;
 8'd214: coeff = 12'sd3;
 8'd215: coeff = 12'sd2;
 8'd216: coeff = 12'sd2;
 8'd217: coeff = 12'sd2;
 8'd218: coeff = 12'sd2;
 8'd219: coeff = 12'sd2;
 8'd220: coeff = 12'sd1;
 8'd221: coeff = 12'sd1;
 8'd222: coeff = 12'sd1;
 8'd223: coeff = 12'sd1;
 8'd224: coeff = 12'sd1;
 8'd225: coeff = 12'sd1;
 8'd226: coeff = 12'sd1;
 8'd227: coeff = 12'sd1;
 8'd228: coeff = 12'sd0;
 8'd229: coeff = 12'sd0;
 8'd230: coeff = 12'sd0;
 8'd231: coeff = 12'sd0;
 8'd232: coeff = 12'sd0;

 25

 8'd233: coeff = 12'sd0;
 8'd234: coeff = 12'sd0;
 8'd235: coeff = 12'sd0;
 8'd236: coeff = 12'sd0;
 8'd237: coeff = 12'sd0;
 8'd238: coeff = 12'sd0;
 8'd239: coeff = 12'sd0;
 8'd240: coeff = 12'sd0;
 8'd241: coeff = 12'sd0;
 8'd242: coeff = 12'sd0;
 8'd243: coeff = 12'sd0;
 8'd244: coeff = 12'sd0;
 8'd245: coeff = 12'sd0;
 8'd246: coeff = 12'sd0;
 8'd247: coeff = 12'sd0;
 8'd248: coeff = 12'sd0;
 8'd249: coeff = 12'sd0;
 8'd250: coeff = 12'sd0;
 8'd251: coeff = 12'sd0;
 8'd252: coeff = 12'sd0;
 8'd253: coeff = 12'sd0;
 8'd254: coeff = 12'sd0;
 8'd255: coeff = -12'sd1;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs540(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 540Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = -12'sd1;
 8'd1: coeff = -12'sd1;
 8'd2: coeff = -12'sd1;
 8'd3: coeff = -12'sd1;
 8'd4: coeff = -12'sd1;
 8'd5: coeff = -12'sd1;
 8'd6: coeff = -12'sd1;
 8'd7: coeff = -12'sd1;
 8'd8: coeff = -12'sd1;
 8'd9: coeff = -12'sd1;
 8'd10: coeff = -12'sd1;
 8'd11: coeff = -12'sd1;
 8'd12: coeff = -12'sd1;
 8'd13: coeff = -12'sd1;
 8'd14: coeff = -12'sd1;
 8'd15: coeff = -12'sd1;
 8'd16: coeff = -12'sd1;
 8'd17: coeff = -12'sd1;
 8'd18: coeff = -12'sd1;
 8'd19: coeff = -12'sd1;
 8'd20: coeff = -12'sd1;
 8'd21: coeff = -12'sd1;
 8'd22: coeff = -12'sd1;
 8'd23: coeff = -12'sd1;
 8'd24: coeff = -12'sd1;

 26

 8'd25: coeff = -12'sd1;
 8'd26: coeff = -12'sd1;
 8'd27: coeff = -12'sd1;
 8'd28: coeff = -12'sd1;
 8'd29: coeff = -12'sd1;
 8'd30: coeff = -12'sd1;
 8'd31: coeff = -12'sd1;
 8'd32: coeff = -12'sd1;
 8'd33: coeff = -12'sd1;
 8'd34: coeff = -12'sd1;
 8'd35: coeff = 12'sd0;
 8'd36: coeff = 12'sd0;
 8'd37: coeff = 12'sd0;
 8'd38: coeff = 12'sd0;
 8'd39: coeff = 12'sd0;
 8'd40: coeff = 12'sd0;
 8'd41: coeff = 12'sd0;
 8'd42: coeff = 12'sd1;
 8'd43: coeff = 12'sd1;
 8'd44: coeff = 12'sd1;
 8'd45: coeff = 12'sd1;
 8'd46: coeff = 12'sd1;
 8'd47: coeff = 12'sd2;
 8'd48: coeff = 12'sd2;
 8'd49: coeff = 12'sd2;
 8'd50: coeff = 12'sd3;
 8'd51: coeff = 12'sd3;
 8'd52: coeff = 12'sd3;
 8'd53: coeff = 12'sd4;
 8'd54: coeff = 12'sd4;
 8'd55: coeff = 12'sd4;
 8'd56: coeff = 12'sd5;
 8'd57: coeff = 12'sd5;
 8'd58: coeff = 12'sd6;
 8'd59: coeff = 12'sd6;
 8'd60: coeff = 12'sd7;
 8'd61: coeff = 12'sd7;
 8'd62: coeff = 12'sd8;
 8'd63: coeff = 12'sd8;
 8'd64: coeff = 12'sd9;
 8'd65: coeff = 12'sd10;
 8'd66: coeff = 12'sd10;
 8'd67: coeff = 12'sd11;
 8'd68: coeff = 12'sd11;
 8'd69: coeff = 12'sd12;
 8'd70: coeff = 12'sd13;
 8'd71: coeff = 12'sd13;
 8'd72: coeff = 12'sd14;
 8'd73: coeff = 12'sd15;
 8'd74: coeff = 12'sd16;
 8'd75: coeff = 12'sd16;
 8'd76: coeff = 12'sd17;
 8'd77: coeff = 12'sd18;
 8'd78: coeff = 12'sd19;
 8'd79: coeff = 12'sd19;
 8'd80: coeff = 12'sd20;
 8'd81: coeff = 12'sd21;
 8'd82: coeff = 12'sd22;
 8'd83: coeff = 12'sd23;
 8'd84: coeff = 12'sd23;

 27

 8'd85: coeff = 12'sd24;
 8'd86: coeff = 12'sd25;
 8'd87: coeff = 12'sd26;
 8'd88: coeff = 12'sd27;
 8'd89: coeff = 12'sd28;
 8'd90: coeff = 12'sd28;
 8'd91: coeff = 12'sd29;
 8'd92: coeff = 12'sd30;
 8'd93: coeff = 12'sd31;
 8'd94: coeff = 12'sd32;
 8'd95: coeff = 12'sd32;
 8'd96: coeff = 12'sd33;
 8'd97: coeff = 12'sd34;
 8'd98: coeff = 12'sd35;
 8'd99: coeff = 12'sd35;
 8'd100: coeff = 12'sd36;
 8'd101: coeff = 12'sd37;
 8'd102: coeff = 12'sd38;
 8'd103: coeff = 12'sd38;
 8'd104: coeff = 12'sd39;
 8'd105: coeff = 12'sd40;
 8'd106: coeff = 12'sd40;
 8'd107: coeff = 12'sd41;
 8'd108: coeff = 12'sd41;
 8'd109: coeff = 12'sd42;
 8'd110: coeff = 12'sd43;
 8'd111: coeff = 12'sd43;
 8'd112: coeff = 12'sd44;
 8'd113: coeff = 12'sd44;
 8'd114: coeff = 12'sd44;
 8'd115: coeff = 12'sd45;
 8'd116: coeff = 12'sd45;
 8'd117: coeff = 12'sd46;
 8'd118: coeff = 12'sd46;
 8'd119: coeff = 12'sd46;
 8'd120: coeff = 12'sd46;
 8'd121: coeff = 12'sd47;
 8'd122: coeff = 12'sd47;
 8'd123: coeff = 12'sd47;
 8'd124: coeff = 12'sd47;
 8'd125: coeff = 12'sd47;
 8'd126: coeff = 12'sd47;
 8'd127: coeff = 12'sd47;
 8'd128: coeff = 12'sd47;
 8'd129: coeff = 12'sd47;
 8'd130: coeff = 12'sd47;
 8'd131: coeff = 12'sd47;
 8'd132: coeff = 12'sd47;
 8'd133: coeff = 12'sd47;
 8'd134: coeff = 12'sd47;
 8'd135: coeff = 12'sd46;
 8'd136: coeff = 12'sd46;
 8'd137: coeff = 12'sd46;
 8'd138: coeff = 12'sd46;
 8'd139: coeff = 12'sd45;
 8'd140: coeff = 12'sd45;
 8'd141: coeff = 12'sd44;
 8'd142: coeff = 12'sd44;
 8'd143: coeff = 12'sd44;
 8'd144: coeff = 12'sd43;

 28

 8'd145: coeff = 12'sd43;
 8'd146: coeff = 12'sd42;
 8'd147: coeff = 12'sd41;
 8'd148: coeff = 12'sd41;
 8'd149: coeff = 12'sd40;
 8'd150: coeff = 12'sd40;
 8'd151: coeff = 12'sd39;
 8'd152: coeff = 12'sd38;
 8'd153: coeff = 12'sd38;
 8'd154: coeff = 12'sd37;
 8'd155: coeff = 12'sd36;
 8'd156: coeff = 12'sd35;
 8'd157: coeff = 12'sd35;
 8'd158: coeff = 12'sd34;
 8'd159: coeff = 12'sd33;
 8'd160: coeff = 12'sd32;
 8'd161: coeff = 12'sd32;
 8'd162: coeff = 12'sd31;
 8'd163: coeff = 12'sd30;
 8'd164: coeff = 12'sd29;
 8'd165: coeff = 12'sd28;
 8'd166: coeff = 12'sd28;
 8'd167: coeff = 12'sd27;
 8'd168: coeff = 12'sd26;
 8'd169: coeff = 12'sd25;
 8'd170: coeff = 12'sd24;
 8'd171: coeff = 12'sd23;
 8'd172: coeff = 12'sd23;
 8'd173: coeff = 12'sd22;
 8'd174: coeff = 12'sd21;
 8'd175: coeff = 12'sd20;
 8'd176: coeff = 12'sd19;
 8'd177: coeff = 12'sd19;
 8'd178: coeff = 12'sd18;
 8'd179: coeff = 12'sd17;
 8'd180: coeff = 12'sd16;
 8'd181: coeff = 12'sd16;
 8'd182: coeff = 12'sd15;
 8'd183: coeff = 12'sd14;
 8'd184: coeff = 12'sd13;
 8'd185: coeff = 12'sd13;
 8'd186: coeff = 12'sd12;
 8'd187: coeff = 12'sd11;
 8'd188: coeff = 12'sd11;
 8'd189: coeff = 12'sd10;
 8'd190: coeff = 12'sd10;
 8'd191: coeff = 12'sd9;
 8'd192: coeff = 12'sd8;
 8'd193: coeff = 12'sd8;
 8'd194: coeff = 12'sd7;
 8'd195: coeff = 12'sd7;
 8'd196: coeff = 12'sd6;
 8'd197: coeff = 12'sd6;
 8'd198: coeff = 12'sd5;
 8'd199: coeff = 12'sd5;
 8'd200: coeff = 12'sd4;
 8'd201: coeff = 12'sd4;
 8'd202: coeff = 12'sd4;
 8'd203: coeff = 12'sd3;
 8'd204: coeff = 12'sd3;

 29

 8'd205: coeff = 12'sd3;
 8'd206: coeff = 12'sd2;
 8'd207: coeff = 12'sd2;
 8'd208: coeff = 12'sd2;
 8'd209: coeff = 12'sd1;
 8'd210: coeff = 12'sd1;
 8'd211: coeff = 12'sd1;
 8'd212: coeff = 12'sd1;
 8'd213: coeff = 12'sd0;
 8'd214: coeff = 12'sd0;
 8'd215: coeff = 12'sd0;
 8'd216: coeff = 12'sd0;
 8'd217: coeff = 12'sd0;
 8'd218: coeff = 12'sd0;
 8'd219: coeff = 12'sd0;
 8'd220: coeff = -12'sd1;
 8'd221: coeff = -12'sd1;
 8'd222: coeff = -12'sd1;
 8'd223: coeff = -12'sd1;
 8'd224: coeff = -12'sd1;
 8'd225: coeff = -12'sd1;
 8'd226: coeff = -12'sd1;
 8'd227: coeff = -12'sd1;
 8'd228: coeff = -12'sd1;
 8'd229: coeff = -12'sd1;
 8'd230: coeff = -12'sd1;
 8'd231: coeff = -12'sd1;
 8'd232: coeff = -12'sd1;
 8'd233: coeff = -12'sd1;
 8'd234: coeff = -12'sd1;
 8'd235: coeff = -12'sd1;
 8'd236: coeff = -12'sd1;
 8'd237: coeff = -12'sd1;
 8'd238: coeff = -12'sd1;
 8'd239: coeff = -12'sd1;
 8'd240: coeff = -12'sd1;
 8'd241: coeff = -12'sd1;
 8'd242: coeff = -12'sd1;
 8'd243: coeff = -12'sd1;
 8'd244: coeff = -12'sd1;
 8'd245: coeff = -12'sd1;
 8'd246: coeff = -12'sd1;
 8'd247: coeff = -12'sd1;
 8'd248: coeff = -12'sd1;
 8'd249: coeff = -12'sd1;
 8'd250: coeff = -12'sd1;
 8'd251: coeff = -12'sd1;
 8'd252: coeff = -12'sd1;
 8'd253: coeff = -12'sd1;
 8'd254: coeff = -12'sd1;
 8'd255: coeff = -12'sd1;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs660(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 660Hz.

 30

 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = -12'sd1;
 8'd1: coeff = -12'sd1;
 8'd2: coeff = -12'sd1;
 8'd3: coeff = -12'sd1;
 8'd4: coeff = -12'sd1;
 8'd5: coeff = -12'sd1;
 8'd6: coeff = -12'sd1;
 8'd7: coeff = -12'sd1;
 8'd8: coeff = -12'sd1;
 8'd9: coeff = -12'sd1;
 8'd10: coeff = -12'sd1;
 8'd11: coeff = -12'sd1;
 8'd12: coeff = -12'sd1;
 8'd13: coeff = -12'sd1;
 8'd14: coeff = -12'sd1;
 8'd15: coeff = -12'sd1;
 8'd16: coeff = -12'sd1;
 8'd17: coeff = -12'sd1;
 8'd18: coeff = -12'sd1;
 8'd19: coeff = -12'sd2;
 8'd20: coeff = -12'sd2;
 8'd21: coeff = -12'sd2;
 8'd22: coeff = -12'sd2;
 8'd23: coeff = -12'sd2;
 8'd24: coeff = -12'sd2;
 8'd25: coeff = -12'sd2;
 8'd26: coeff = -12'sd2;
 8'd27: coeff = -12'sd2;
 8'd28: coeff = -12'sd2;
 8'd29: coeff = -12'sd2;
 8'd30: coeff = -12'sd2;
 8'd31: coeff = -12'sd2;
 8'd32: coeff = -12'sd2;
 8'd33: coeff = -12'sd2;
 8'd34: coeff = -12'sd3;
 8'd35: coeff = -12'sd3;
 8'd36: coeff = -12'sd3;
 8'd37: coeff = -12'sd3;
 8'd38: coeff = -12'sd3;
 8'd39: coeff = -12'sd3;
 8'd40: coeff = -12'sd3;
 8'd41: coeff = -12'sd2;
 8'd42: coeff = -12'sd2;
 8'd43: coeff = -12'sd2;
 8'd44: coeff = -12'sd2;
 8'd45: coeff = -12'sd2;
 8'd46: coeff = -12'sd2;
 8'd47: coeff = -12'sd2;
 8'd48: coeff = -12'sd2;
 8'd49: coeff = -12'sd2;
 8'd50: coeff = -12'sd1;
 8'd51: coeff = -12'sd1;
 8'd52: coeff = -12'sd1;
 8'd53: coeff = -12'sd1;
 8'd54: coeff = 12'sd0;
 8'd55: coeff = 12'sd0;
 8'd56: coeff = 12'sd0;

 31

 8'd57: coeff = 12'sd1;
 8'd58: coeff = 12'sd1;
 8'd59: coeff = 12'sd2;
 8'd60: coeff = 12'sd2;
 8'd61: coeff = 12'sd3;
 8'd62: coeff = 12'sd3;
 8'd63: coeff = 12'sd4;
 8'd64: coeff = 12'sd4;
 8'd65: coeff = 12'sd5;
 8'd66: coeff = 12'sd6;
 8'd67: coeff = 12'sd6;
 8'd68: coeff = 12'sd7;
 8'd69: coeff = 12'sd8;
 8'd70: coeff = 12'sd8;
 8'd71: coeff = 12'sd9;
 8'd72: coeff = 12'sd10;
 8'd73: coeff = 12'sd11;
 8'd74: coeff = 12'sd12;
 8'd75: coeff = 12'sd13;
 8'd76: coeff = 12'sd14;
 8'd77: coeff = 12'sd15;
 8'd78: coeff = 12'sd16;
 8'd79: coeff = 12'sd16;
 8'd80: coeff = 12'sd18;
 8'd81: coeff = 12'sd19;
 8'd82: coeff = 12'sd20;
 8'd83: coeff = 12'sd21;
 8'd84: coeff = 12'sd22;
 8'd85: coeff = 12'sd23;
 8'd86: coeff = 12'sd24;
 8'd87: coeff = 12'sd25;
 8'd88: coeff = 12'sd26;
 8'd89: coeff = 12'sd27;
 8'd90: coeff = 12'sd28;
 8'd91: coeff = 12'sd30;
 8'd92: coeff = 12'sd31;
 8'd93: coeff = 12'sd32;
 8'd94: coeff = 12'sd33;
 8'd95: coeff = 12'sd34;
 8'd96: coeff = 12'sd35;
 8'd97: coeff = 12'sd36;
 8'd98: coeff = 12'sd37;
 8'd99: coeff = 12'sd38;
 8'd100: coeff = 12'sd40;
 8'd101: coeff = 12'sd41;
 8'd102: coeff = 12'sd42;
 8'd103: coeff = 12'sd43;
 8'd104: coeff = 12'sd44;
 8'd105: coeff = 12'sd45;
 8'd106: coeff = 12'sd45;
 8'd107: coeff = 12'sd46;
 8'd108: coeff = 12'sd47;
 8'd109: coeff = 12'sd48;
 8'd110: coeff = 12'sd49;
 8'd111: coeff = 12'sd50;
 8'd112: coeff = 12'sd50;
 8'd113: coeff = 12'sd51;
 8'd114: coeff = 12'sd52;
 8'd115: coeff = 12'sd52;
 8'd116: coeff = 12'sd53;

 32

 8'd117: coeff = 12'sd54;
 8'd118: coeff = 12'sd54;
 8'd119: coeff = 12'sd55;
 8'd120: coeff = 12'sd55;
 8'd121: coeff = 12'sd55;
 8'd122: coeff = 12'sd56;
 8'd123: coeff = 12'sd56;
 8'd124: coeff = 12'sd56;
 8'd125: coeff = 12'sd56;
 8'd126: coeff = 12'sd56;
 8'd127: coeff = 12'sd56;
 8'd128: coeff = 12'sd56;
 8'd129: coeff = 12'sd56;
 8'd130: coeff = 12'sd56;
 8'd131: coeff = 12'sd56;
 8'd132: coeff = 12'sd56;
 8'd133: coeff = 12'sd56;
 8'd134: coeff = 12'sd55;
 8'd135: coeff = 12'sd55;
 8'd136: coeff = 12'sd55;
 8'd137: coeff = 12'sd54;
 8'd138: coeff = 12'sd54;
 8'd139: coeff = 12'sd53;
 8'd140: coeff = 12'sd52;
 8'd141: coeff = 12'sd52;
 8'd142: coeff = 12'sd51;
 8'd143: coeff = 12'sd50;
 8'd144: coeff = 12'sd50;
 8'd145: coeff = 12'sd49;
 8'd146: coeff = 12'sd48;
 8'd147: coeff = 12'sd47;
 8'd148: coeff = 12'sd46;
 8'd149: coeff = 12'sd45;
 8'd150: coeff = 12'sd45;
 8'd151: coeff = 12'sd44;
 8'd152: coeff = 12'sd43;
 8'd153: coeff = 12'sd42;
 8'd154: coeff = 12'sd41;
 8'd155: coeff = 12'sd40;
 8'd156: coeff = 12'sd38;
 8'd157: coeff = 12'sd37;
 8'd158: coeff = 12'sd36;
 8'd159: coeff = 12'sd35;
 8'd160: coeff = 12'sd34;
 8'd161: coeff = 12'sd33;
 8'd162: coeff = 12'sd32;
 8'd163: coeff = 12'sd31;
 8'd164: coeff = 12'sd30;
 8'd165: coeff = 12'sd28;
 8'd166: coeff = 12'sd27;
 8'd167: coeff = 12'sd26;
 8'd168: coeff = 12'sd25;
 8'd169: coeff = 12'sd24;
 8'd170: coeff = 12'sd23;
 8'd171: coeff = 12'sd22;
 8'd172: coeff = 12'sd21;
 8'd173: coeff = 12'sd20;
 8'd174: coeff = 12'sd19;
 8'd175: coeff = 12'sd18;
 8'd176: coeff = 12'sd16;

 33

 8'd177: coeff = 12'sd16;
 8'd178: coeff = 12'sd15;
 8'd179: coeff = 12'sd14;
 8'd180: coeff = 12'sd13;
 8'd181: coeff = 12'sd12;
 8'd182: coeff = 12'sd11;
 8'd183: coeff = 12'sd10;
 8'd184: coeff = 12'sd9;
 8'd185: coeff = 12'sd8;
 8'd186: coeff = 12'sd8;
 8'd187: coeff = 12'sd7;
 8'd188: coeff = 12'sd6;
 8'd189: coeff = 12'sd6;
 8'd190: coeff = 12'sd5;
 8'd191: coeff = 12'sd4;
 8'd192: coeff = 12'sd4;
 8'd193: coeff = 12'sd3;
 8'd194: coeff = 12'sd3;
 8'd195: coeff = 12'sd2;
 8'd196: coeff = 12'sd2;
 8'd197: coeff = 12'sd1;
 8'd198: coeff = 12'sd1;
 8'd199: coeff = 12'sd0;
 8'd200: coeff = 12'sd0;
 8'd201: coeff = 12'sd0;
 8'd202: coeff = -12'sd1;
 8'd203: coeff = -12'sd1;
 8'd204: coeff = -12'sd1;
 8'd205: coeff = -12'sd1;
 8'd206: coeff = -12'sd2;
 8'd207: coeff = -12'sd2;
 8'd208: coeff = -12'sd2;
 8'd209: coeff = -12'sd2;
 8'd210: coeff = -12'sd2;
 8'd211: coeff = -12'sd2;
 8'd212: coeff = -12'sd2;
 8'd213: coeff = -12'sd2;
 8'd214: coeff = -12'sd2;
 8'd215: coeff = -12'sd3;
 8'd216: coeff = -12'sd3;
 8'd217: coeff = -12'sd3;
 8'd218: coeff = -12'sd3;
 8'd219: coeff = -12'sd3;
 8'd220: coeff = -12'sd3;
 8'd221: coeff = -12'sd3;
 8'd222: coeff = -12'sd2;
 8'd223: coeff = -12'sd2;
 8'd224: coeff = -12'sd2;
 8'd225: coeff = -12'sd2;
 8'd226: coeff = -12'sd2;
 8'd227: coeff = -12'sd2;
 8'd228: coeff = -12'sd2;
 8'd229: coeff = -12'sd2;
 8'd230: coeff = -12'sd2;
 8'd231: coeff = -12'sd2;
 8'd232: coeff = -12'sd2;
 8'd233: coeff = -12'sd2;
 8'd234: coeff = -12'sd2;
 8'd235: coeff = -12'sd2;
 8'd236: coeff = -12'sd2;

 34

 8'd237: coeff = -12'sd1;
 8'd238: coeff = -12'sd1;
 8'd239: coeff = -12'sd1;
 8'd240: coeff = -12'sd1;
 8'd241: coeff = -12'sd1;
 8'd242: coeff = -12'sd1;
 8'd243: coeff = -12'sd1;
 8'd244: coeff = -12'sd1;
 8'd245: coeff = -12'sd1;
 8'd246: coeff = -12'sd1;
 8'd247: coeff = -12'sd1;
 8'd248: coeff = -12'sd1;
 8'd249: coeff = -12'sd1;
 8'd250: coeff = -12'sd1;
 8'd251: coeff = -12'sd1;
 8'd252: coeff = -12'sd1;
 8'd253: coeff = -12'sd1;
 8'd254: coeff = -12'sd1;
 8'd255: coeff = -12'sd1;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs800(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 800Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = 12'sd0;
 8'd1: coeff = 12'sd0;
 8'd2: coeff = 12'sd0;
 8'd3: coeff = 12'sd0;
 8'd4: coeff = 12'sd0;
 8'd5: coeff = 12'sd0;
 8'd6: coeff = 12'sd0;
 8'd7: coeff = 12'sd0;
 8'd8: coeff = 12'sd0;
 8'd9: coeff = 12'sd0;
 8'd10: coeff = 12'sd0;
 8'd11: coeff = 12'sd0;
 8'd12: coeff = 12'sd0;
 8'd13: coeff = 12'sd0;
 8'd14: coeff = 12'sd0;
 8'd15: coeff = 12'sd0;
 8'd16: coeff = -12'sd1;
 8'd17: coeff = -12'sd1;
 8'd18: coeff = -12'sd1;
 8'd19: coeff = -12'sd1;
 8'd20: coeff = -12'sd1;
 8'd21: coeff = -12'sd1;
 8'd22: coeff = -12'sd1;
 8'd23: coeff = -12'sd1;
 8'd24: coeff = -12'sd2;
 8'd25: coeff = -12'sd2;
 8'd26: coeff = -12'sd2;
 8'd27: coeff = -12'sd2;
 8'd28: coeff = -12'sd2;

 35

 8'd29: coeff = -12'sd2;
 8'd30: coeff = -12'sd2;
 8'd31: coeff = -12'sd3;
 8'd32: coeff = -12'sd3;
 8'd33: coeff = -12'sd3;
 8'd34: coeff = -12'sd3;
 8'd35: coeff = -12'sd3;
 8'd36: coeff = -12'sd4;
 8'd37: coeff = -12'sd4;
 8'd38: coeff = -12'sd4;
 8'd39: coeff = -12'sd4;
 8'd40: coeff = -12'sd4;
 8'd41: coeff = -12'sd4;
 8'd42: coeff = -12'sd5;
 8'd43: coeff = -12'sd5;
 8'd44: coeff = -12'sd5;
 8'd45: coeff = -12'sd5;
 8'd46: coeff = -12'sd5;
 8'd47: coeff = -12'sd5;
 8'd48: coeff = -12'sd5;
 8'd49: coeff = -12'sd5;
 8'd50: coeff = -12'sd5;
 8'd51: coeff = -12'sd5;
 8'd52: coeff = -12'sd5;
 8'd53: coeff = -12'sd5;
 8'd54: coeff = -12'sd5;
 8'd55: coeff = -12'sd5;
 8'd56: coeff = -12'sd5;
 8'd57: coeff = -12'sd4;
 8'd58: coeff = -12'sd4;
 8'd59: coeff = -12'sd4;
 8'd60: coeff = -12'sd4;
 8'd61: coeff = -12'sd3;
 8'd62: coeff = -12'sd3;
 8'd63: coeff = -12'sd2;
 8'd64: coeff = -12'sd2;
 8'd65: coeff = -12'sd2;
 8'd66: coeff = -12'sd1;
 8'd67: coeff = 12'sd0;
 8'd68: coeff = 12'sd0;
 8'd69: coeff = 12'sd1;
 8'd70: coeff = 12'sd2;
 8'd71: coeff = 12'sd3;
 8'd72: coeff = 12'sd3;
 8'd73: coeff = 12'sd4;
 8'd74: coeff = 12'sd5;
 8'd75: coeff = 12'sd6;
 8'd76: coeff = 12'sd7;
 8'd77: coeff = 12'sd8;
 8'd78: coeff = 12'sd10;
 8'd79: coeff = 12'sd11;
 8'd80: coeff = 12'sd12;
 8'd81: coeff = 12'sd13;
 8'd82: coeff = 12'sd15;
 8'd83: coeff = 12'sd16;
 8'd84: coeff = 12'sd17;
 8'd85: coeff = 12'sd19;
 8'd86: coeff = 12'sd20;
 8'd87: coeff = 12'sd22;
 8'd88: coeff = 12'sd23;

 36

 8'd89: coeff = 12'sd25;
 8'd90: coeff = 12'sd26;
 8'd91: coeff = 12'sd28;
 8'd92: coeff = 12'sd29;
 8'd93: coeff = 12'sd31;
 8'd94: coeff = 12'sd32;
 8'd95: coeff = 12'sd34;
 8'd96: coeff = 12'sd36;
 8'd97: coeff = 12'sd37;
 8'd98: coeff = 12'sd39;
 8'd99: coeff = 12'sd40;
 8'd100: coeff = 12'sd42;
 8'd101: coeff = 12'sd44;
 8'd102: coeff = 12'sd45;
 8'd103: coeff = 12'sd47;
 8'd104: coeff = 12'sd48;
 8'd105: coeff = 12'sd50;
 8'd106: coeff = 12'sd51;
 8'd107: coeff = 12'sd52;
 8'd108: coeff = 12'sd54;
 8'd109: coeff = 12'sd55;
 8'd110: coeff = 12'sd56;
 8'd111: coeff = 12'sd58;
 8'd112: coeff = 12'sd59;
 8'd113: coeff = 12'sd60;
 8'd114: coeff = 12'sd61;
 8'd115: coeff = 12'sd62;
 8'd116: coeff = 12'sd63;
 8'd117: coeff = 12'sd64;
 8'd118: coeff = 12'sd64;
 8'd119: coeff = 12'sd65;
 8'd120: coeff = 12'sd66;
 8'd121: coeff = 12'sd66;
 8'd122: coeff = 12'sd67;
 8'd123: coeff = 12'sd67;
 8'd124: coeff = 12'sd68;
 8'd125: coeff = 12'sd68;
 8'd126: coeff = 12'sd68;
 8'd127: coeff = 12'sd68;
 8'd128: coeff = 12'sd68;
 8'd129: coeff = 12'sd68;
 8'd130: coeff = 12'sd68;
 8'd131: coeff = 12'sd68;
 8'd132: coeff = 12'sd67;
 8'd133: coeff = 12'sd67;
 8'd134: coeff = 12'sd66;
 8'd135: coeff = 12'sd66;
 8'd136: coeff = 12'sd65;
 8'd137: coeff = 12'sd64;
 8'd138: coeff = 12'sd64;
 8'd139: coeff = 12'sd63;
 8'd140: coeff = 12'sd62;
 8'd141: coeff = 12'sd61;
 8'd142: coeff = 12'sd60;
 8'd143: coeff = 12'sd59;
 8'd144: coeff = 12'sd58;
 8'd145: coeff = 12'sd56;
 8'd146: coeff = 12'sd55;
 8'd147: coeff = 12'sd54;
 8'd148: coeff = 12'sd52;

 37

 8'd149: coeff = 12'sd51;
 8'd150: coeff = 12'sd50;
 8'd151: coeff = 12'sd48;
 8'd152: coeff = 12'sd47;
 8'd153: coeff = 12'sd45;
 8'd154: coeff = 12'sd44;
 8'd155: coeff = 12'sd42;
 8'd156: coeff = 12'sd40;
 8'd157: coeff = 12'sd39;
 8'd158: coeff = 12'sd37;
 8'd159: coeff = 12'sd36;
 8'd160: coeff = 12'sd34;
 8'd161: coeff = 12'sd32;
 8'd162: coeff = 12'sd31;
 8'd163: coeff = 12'sd29;
 8'd164: coeff = 12'sd28;
 8'd165: coeff = 12'sd26;
 8'd166: coeff = 12'sd25;
 8'd167: coeff = 12'sd23;
 8'd168: coeff = 12'sd22;
 8'd169: coeff = 12'sd20;
 8'd170: coeff = 12'sd19;
 8'd171: coeff = 12'sd17;
 8'd172: coeff = 12'sd16;
 8'd173: coeff = 12'sd15;
 8'd174: coeff = 12'sd13;
 8'd175: coeff = 12'sd12;
 8'd176: coeff = 12'sd11;
 8'd177: coeff = 12'sd10;
 8'd178: coeff = 12'sd8;
 8'd179: coeff = 12'sd7;
 8'd180: coeff = 12'sd6;
 8'd181: coeff = 12'sd5;
 8'd182: coeff = 12'sd4;
 8'd183: coeff = 12'sd3;
 8'd184: coeff = 12'sd3;
 8'd185: coeff = 12'sd2;
 8'd186: coeff = 12'sd1;
 8'd187: coeff = 12'sd0;
 8'd188: coeff = 12'sd0;
 8'd189: coeff = -12'sd1;
 8'd190: coeff = -12'sd2;
 8'd191: coeff = -12'sd2;
 8'd192: coeff = -12'sd2;
 8'd193: coeff = -12'sd3;
 8'd194: coeff = -12'sd3;
 8'd195: coeff = -12'sd4;
 8'd196: coeff = -12'sd4;
 8'd197: coeff = -12'sd4;
 8'd198: coeff = -12'sd4;
 8'd199: coeff = -12'sd5;
 8'd200: coeff = -12'sd5;
 8'd201: coeff = -12'sd5;
 8'd202: coeff = -12'sd5;
 8'd203: coeff = -12'sd5;
 8'd204: coeff = -12'sd5;
 8'd205: coeff = -12'sd5;
 8'd206: coeff = -12'sd5;
 8'd207: coeff = -12'sd5;
 8'd208: coeff = -12'sd5;

 38

 8'd209: coeff = -12'sd5;
 8'd210: coeff = -12'sd5;
 8'd211: coeff = -12'sd5;
 8'd212: coeff = -12'sd5;
 8'd213: coeff = -12'sd5;
 8'd214: coeff = -12'sd4;
 8'd215: coeff = -12'sd4;
 8'd216: coeff = -12'sd4;
 8'd217: coeff = -12'sd4;
 8'd218: coeff = -12'sd4;
 8'd219: coeff = -12'sd4;
 8'd220: coeff = -12'sd3;
 8'd221: coeff = -12'sd3;
 8'd222: coeff = -12'sd3;
 8'd223: coeff = -12'sd3;
 8'd224: coeff = -12'sd3;
 8'd225: coeff = -12'sd2;
 8'd226: coeff = -12'sd2;
 8'd227: coeff = -12'sd2;
 8'd228: coeff = -12'sd2;
 8'd229: coeff = -12'sd2;
 8'd230: coeff = -12'sd2;
 8'd231: coeff = -12'sd2;
 8'd232: coeff = -12'sd1;
 8'd233: coeff = -12'sd1;
 8'd234: coeff = -12'sd1;
 8'd235: coeff = -12'sd1;
 8'd236: coeff = -12'sd1;
 8'd237: coeff = -12'sd1;
 8'd238: coeff = -12'sd1;
 8'd239: coeff = -12'sd1;
 8'd240: coeff = 12'sd0;
 8'd241: coeff = 12'sd0;
 8'd242: coeff = 12'sd0;
 8'd243: coeff = 12'sd0;
 8'd244: coeff = 12'sd0;
 8'd245: coeff = 12'sd0;
 8'd246: coeff = 12'sd0;
 8'd247: coeff = 12'sd0;
 8'd248: coeff = 12'sd0;
 8'd249: coeff = 12'sd0;
 8'd250: coeff = 12'sd0;
 8'd251: coeff = 12'sd0;
 8'd252: coeff = 12'sd0;
 8'd253: coeff = 12'sd0;
 8'd254: coeff = 12'sd0;
 8'd255: coeff = 12'sd0;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs950(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 950Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = 12'sd1;

 39

 8'd1: coeff = 12'sd1;
 8'd2: coeff = 12'sd1;
 8'd3: coeff = 12'sd1;
 8'd4: coeff = 12'sd1;
 8'd5: coeff = 12'sd1;
 8'd6: coeff = 12'sd1;
 8'd7: coeff = 12'sd1;
 8'd8: coeff = 12'sd1;
 8'd9: coeff = 12'sd1;
 8'd10: coeff = 12'sd1;
 8'd11: coeff = 12'sd1;
 8'd12: coeff = 12'sd1;
 8'd13: coeff = 12'sd1;
 8'd14: coeff = 12'sd1;
 8'd15: coeff = 12'sd1;
 8'd16: coeff = 12'sd1;
 8'd17: coeff = 12'sd1;
 8'd18: coeff = 12'sd1;
 8'd19: coeff = 12'sd1;
 8'd20: coeff = 12'sd1;
 8'd21: coeff = 12'sd1;
 8'd22: coeff = 12'sd0;
 8'd23: coeff = 12'sd0;
 8'd24: coeff = 12'sd0;
 8'd25: coeff = 12'sd0;
 8'd26: coeff = 12'sd0;
 8'd27: coeff = 12'sd0;
 8'd28: coeff = 12'sd0;
 8'd29: coeff = 12'sd0;
 8'd30: coeff = -12'sd1;
 8'd31: coeff = -12'sd1;
 8'd32: coeff = -12'sd1;
 8'd33: coeff = -12'sd1;
 8'd34: coeff = -12'sd1;
 8'd35: coeff = -12'sd2;
 8'd36: coeff = -12'sd2;
 8'd37: coeff = -12'sd2;
 8'd38: coeff = -12'sd3;
 8'd39: coeff = -12'sd3;
 8'd40: coeff = -12'sd3;
 8'd41: coeff = -12'sd3;
 8'd42: coeff = -12'sd4;
 8'd43: coeff = -12'sd4;
 8'd44: coeff = -12'sd4;
 8'd45: coeff = -12'sd5;
 8'd46: coeff = -12'sd5;
 8'd47: coeff = -12'sd6;
 8'd48: coeff = -12'sd6;
 8'd49: coeff = -12'sd6;
 8'd50: coeff = -12'sd6;
 8'd51: coeff = -12'sd7;
 8'd52: coeff = -12'sd7;
 8'd53: coeff = -12'sd7;
 8'd54: coeff = -12'sd8;
 8'd55: coeff = -12'sd8;
 8'd56: coeff = -12'sd8;
 8'd57: coeff = -12'sd8;
 8'd58: coeff = -12'sd8;
 8'd59: coeff = -12'sd8;
 8'd60: coeff = -12'sd8;

 40

 8'd61: coeff = -12'sd8;
 8'd62: coeff = -12'sd8;
 8'd63: coeff = -12'sd8;
 8'd64: coeff = -12'sd8;
 8'd65: coeff = -12'sd8;
 8'd66: coeff = -12'sd8;
 8'd67: coeff = -12'sd7;
 8'd68: coeff = -12'sd7;
 8'd69: coeff = -12'sd6;
 8'd70: coeff = -12'sd6;
 8'd71: coeff = -12'sd5;
 8'd72: coeff = -12'sd5;
 8'd73: coeff = -12'sd4;
 8'd74: coeff = -12'sd3;
 8'd75: coeff = -12'sd2;
 8'd76: coeff = -12'sd1;
 8'd77: coeff = 12'sd0;
 8'd78: coeff = 12'sd1;
 8'd79: coeff = 12'sd2;
 8'd80: coeff = 12'sd4;
 8'd81: coeff = 12'sd5;
 8'd82: coeff = 12'sd7;
 8'd83: coeff = 12'sd8;
 8'd84: coeff = 12'sd10;
 8'd85: coeff = 12'sd11;
 8'd86: coeff = 12'sd13;
 8'd87: coeff = 12'sd15;
 8'd88: coeff = 12'sd17;
 8'd89: coeff = 12'sd19;
 8'd90: coeff = 12'sd21;
 8'd91: coeff = 12'sd23;
 8'd92: coeff = 12'sd25;
 8'd93: coeff = 12'sd27;
 8'd94: coeff = 12'sd29;
 8'd95: coeff = 12'sd31;
 8'd96: coeff = 12'sd33;
 8'd97: coeff = 12'sd35;
 8'd98: coeff = 12'sd38;
 8'd99: coeff = 12'sd40;
 8'd100: coeff = 12'sd42;
 8'd101: coeff = 12'sd44;
 8'd102: coeff = 12'sd47;
 8'd103: coeff = 12'sd49;
 8'd104: coeff = 12'sd51;
 8'd105: coeff = 12'sd53;
 8'd106: coeff = 12'sd54;
 8'd107: coeff = 12'sd57;
 8'd108: coeff = 12'sd59;
 8'd109: coeff = 12'sd61;
 8'd110: coeff = 12'sd63;
 8'd111: coeff = 12'sd65;
 8'd112: coeff = 12'sd67;
 8'd113: coeff = 12'sd68;
 8'd114: coeff = 12'sd70;
 8'd115: coeff = 12'sd71;
 8'd116: coeff = 12'sd73;
 8'd117: coeff = 12'sd74;
 8'd118: coeff = 12'sd75;
 8'd119: coeff = 12'sd76;
 8'd120: coeff = 12'sd77;

 41

 8'd121: coeff = 12'sd78;
 8'd122: coeff = 12'sd79;
 8'd123: coeff = 12'sd80;
 8'd124: coeff = 12'sd80;
 8'd125: coeff = 12'sd81;
 8'd126: coeff = 12'sd81;
 8'd127: coeff = 12'sd81;
 8'd128: coeff = 12'sd81;
 8'd129: coeff = 12'sd81;
 8'd130: coeff = 12'sd81;
 8'd131: coeff = 12'sd80;
 8'd132: coeff = 12'sd80;
 8'd133: coeff = 12'sd79;
 8'd134: coeff = 12'sd78;
 8'd135: coeff = 12'sd77;
 8'd136: coeff = 12'sd76;
 8'd137: coeff = 12'sd75;
 8'd138: coeff = 12'sd74;
 8'd139: coeff = 12'sd73;
 8'd140: coeff = 12'sd71;
 8'd141: coeff = 12'sd70;
 8'd142: coeff = 12'sd68;
 8'd143: coeff = 12'sd67;
 8'd144: coeff = 12'sd65;
 8'd145: coeff = 12'sd63;
 8'd146: coeff = 12'sd61;
 8'd147: coeff = 12'sd59;
 8'd148: coeff = 12'sd57;
 8'd149: coeff = 12'sd55;
 8'd150: coeff = 12'sd53;
 8'd151: coeff = 12'sd51;
 8'd152: coeff = 12'sd49;
 8'd153: coeff = 12'sd47;
 8'd154: coeff = 12'sd44;
 8'd155: coeff = 12'sd42;
 8'd156: coeff = 12'sd40;
 8'd157: coeff = 12'sd38;
 8'd158: coeff = 12'sd35;
 8'd159: coeff = 12'sd33;
 8'd160: coeff = 12'sd31;
 8'd161: coeff = 12'sd29;
 8'd162: coeff = 12'sd27;
 8'd163: coeff = 12'sd25;
 8'd164: coeff = 12'sd23;
 8'd165: coeff = 12'sd21;
 8'd166: coeff = 12'sd19;
 8'd167: coeff = 12'sd17;
 8'd168: coeff = 12'sd15;
 8'd169: coeff = 12'sd13;
 8'd170: coeff = 12'sd11;
 8'd171: coeff = 12'sd10;
 8'd172: coeff = 12'sd8;
 8'd173: coeff = 12'sd7;
 8'd174: coeff = 12'sd5;
 8'd175: coeff = 12'sd4;
 8'd176: coeff = 12'sd2;
 8'd177: coeff = 12'sd1;
 8'd178: coeff = 12'sd0;
 8'd179: coeff = -12'sd1;
 8'd180: coeff = -12'sd2;

 42

 8'd181: coeff = -12'sd3;
 8'd182: coeff = -12'sd4;
 8'd183: coeff = -12'sd5;
 8'd184: coeff = -12'sd5;
 8'd185: coeff = -12'sd6;
 8'd186: coeff = -12'sd6;
 8'd187: coeff = -12'sd7;
 8'd188: coeff = -12'sd7;
 8'd189: coeff = -12'sd8;
 8'd190: coeff = -12'sd8;
 8'd191: coeff = -12'sd8;
 8'd192: coeff = -12'sd8;
 8'd193: coeff = -12'sd8;
 8'd194: coeff = -12'sd8;
 8'd195: coeff = -12'sd8;
 8'd196: coeff = -12'sd8;
 8'd197: coeff = -12'sd8;
 8'd198: coeff = -12'sd8;
 8'd199: coeff = -12'sd8;
 8'd200: coeff = -12'sd8;
 8'd201: coeff = -12'sd8;
 8'd202: coeff = -12'sd7;
 8'd203: coeff = -12'sd7;
 8'd204: coeff = -12'sd7;
 8'd205: coeff = -12'sd6;
 8'd206: coeff = -12'sd6;
 8'd207: coeff = -12'sd6;
 8'd208: coeff = -12'sd6;
 8'd209: coeff = -12'sd5;
 8'd210: coeff = -12'sd5;
 8'd211: coeff = -12'sd4;
 8'd212: coeff = -12'sd4;
 8'd213: coeff = -12'sd4;
 8'd214: coeff = -12'sd3;
 8'd215: coeff = -12'sd3;
 8'd216: coeff = -12'sd3;
 8'd217: coeff = -12'sd3;
 8'd218: coeff = -12'sd2;
 8'd219: coeff = -12'sd2;
 8'd220: coeff = -12'sd2;
 8'd221: coeff = -12'sd1;
 8'd222: coeff = -12'sd1;
 8'd223: coeff = -12'sd1;
 8'd224: coeff = -12'sd1;
 8'd225: coeff = -12'sd1;
 8'd226: coeff = 12'sd0;
 8'd227: coeff = 12'sd0;
 8'd228: coeff = 12'sd0;
 8'd229: coeff = 12'sd0;
 8'd230: coeff = 12'sd0;
 8'd231: coeff = 12'sd0;
 8'd232: coeff = 12'sd0;
 8'd233: coeff = 12'sd0;
 8'd234: coeff = 12'sd1;
 8'd235: coeff = 12'sd1;
 8'd236: coeff = 12'sd1;
 8'd237: coeff = 12'sd1;
 8'd238: coeff = 12'sd1;
 8'd239: coeff = 12'sd1;
 8'd240: coeff = 12'sd1;

 43

 8'd241: coeff = 12'sd1;
 8'd242: coeff = 12'sd1;
 8'd243: coeff = 12'sd1;
 8'd244: coeff = 12'sd1;
 8'd245: coeff = 12'sd1;
 8'd246: coeff = 12'sd1;
 8'd247: coeff = 12'sd1;
 8'd248: coeff = 12'sd1;
 8'd249: coeff = 12'sd1;
 8'd250: coeff = 12'sd1;
 8'd251: coeff = 12'sd1;
 8'd252: coeff = 12'sd1;
 8'd253: coeff = 12'sd1;
 8'd254: coeff = 12'sd1;
 8'd255: coeff = 12'sd1;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs1100(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 1100Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = 12'sd0;
 8'd1: coeff = 12'sd0;
 8'd2: coeff = 12'sd0;
 8'd3: coeff = 12'sd0;
 8'd4: coeff = 12'sd0;
 8'd5: coeff = 12'sd1;
 8'd6: coeff = 12'sd1;
 8'd7: coeff = 12'sd1;
 8'd8: coeff = 12'sd1;
 8'd9: coeff = 12'sd1;
 8'd10: coeff = 12'sd1;
 8'd11: coeff = 12'sd1;
 8'd12: coeff = 12'sd1;
 8'd13: coeff = 12'sd1;
 8'd14: coeff = 12'sd1;
 8'd15: coeff = 12'sd1;
 8'd16: coeff = 12'sd1;
 8'd17: coeff = 12'sd1;
 8'd18: coeff = 12'sd1;
 8'd19: coeff = 12'sd2;
 8'd20: coeff = 12'sd2;
 8'd21: coeff = 12'sd2;
 8'd22: coeff = 12'sd2;
 8'd23: coeff = 12'sd2;
 8'd24: coeff = 12'sd2;
 8'd25: coeff = 12'sd2;
 8'd26: coeff = 12'sd2;
 8'd27: coeff = 12'sd2;
 8'd28: coeff = 12'sd2;
 8'd29: coeff = 12'sd2;
 8'd30: coeff = 12'sd2;
 8'd31: coeff = 12'sd2;
 8'd32: coeff = 12'sd2;

 44

 8'd33: coeff = 12'sd2;
 8'd34: coeff = 12'sd1;
 8'd35: coeff = 12'sd1;
 8'd36: coeff = 12'sd1;
 8'd37: coeff = 12'sd1;
 8'd38: coeff = 12'sd1;
 8'd39: coeff = 12'sd0;
 8'd40: coeff = 12'sd0;
 8'd41: coeff = 12'sd0;
 8'd42: coeff = -12'sd1;
 8'd43: coeff = -12'sd1;
 8'd44: coeff = -12'sd1;
 8'd45: coeff = -12'sd2;
 8'd46: coeff = -12'sd2;
 8'd47: coeff = -12'sd3;
 8'd48: coeff = -12'sd3;
 8'd49: coeff = -12'sd4;
 8'd50: coeff = -12'sd4;
 8'd51: coeff = -12'sd5;
 8'd52: coeff = -12'sd5;
 8'd53: coeff = -12'sd6;
 8'd54: coeff = -12'sd6;
 8'd55: coeff = -12'sd7;
 8'd56: coeff = -12'sd7;
 8'd57: coeff = -12'sd8;
 8'd58: coeff = -12'sd9;
 8'd59: coeff = -12'sd9;
 8'd60: coeff = -12'sd9;
 8'd61: coeff = -12'sd10;
 8'd62: coeff = -12'sd10;
 8'd63: coeff = -12'sd11;
 8'd64: coeff = -12'sd11;
 8'd65: coeff = -12'sd11;
 8'd66: coeff = -12'sd11;
 8'd67: coeff = -12'sd12;
 8'd68: coeff = -12'sd12;
 8'd69: coeff = -12'sd12;
 8'd70: coeff = -12'sd12;
 8'd71: coeff = -12'sd11;
 8'd72: coeff = -12'sd11;
 8'd73: coeff = -12'sd11;
 8'd74: coeff = -12'sd10;
 8'd75: coeff = -12'sd10;
 8'd76: coeff = -12'sd9;
 8'd77: coeff = -12'sd8;
 8'd78: coeff = -12'sd8;
 8'd79: coeff = -12'sd7;
 8'd80: coeff = -12'sd5;
 8'd81: coeff = -12'sd4;
 8'd82: coeff = -12'sd3;
 8'd83: coeff = -12'sd1;
 8'd84: coeff = 12'sd0;
 8'd85: coeff = 12'sd2;
 8'd86: coeff = 12'sd4;
 8'd87: coeff = 12'sd6;
 8'd88: coeff = 12'sd8;
 8'd89: coeff = 12'sd10;
 8'd90: coeff = 12'sd12;
 8'd91: coeff = 12'sd14;
 8'd92: coeff = 12'sd17;

 45

 8'd93: coeff = 12'sd19;
 8'd94: coeff = 12'sd22;
 8'd95: coeff = 12'sd25;
 8'd96: coeff = 12'sd28;
 8'd97: coeff = 12'sd30;
 8'd98: coeff = 12'sd33;
 8'd99: coeff = 12'sd36;
 8'd100: coeff = 12'sd39;
 8'd101: coeff = 12'sd42;
 8'd102: coeff = 12'sd45;
 8'd103: coeff = 12'sd48;
 8'd104: coeff = 12'sd51;
 8'd105: coeff = 12'sd54;
 8'd106: coeff = 12'sd57;
 8'd107: coeff = 12'sd60;
 8'd108: coeff = 12'sd62;
 8'd109: coeff = 12'sd65;
 8'd110: coeff = 12'sd68;
 8'd111: coeff = 12'sd70;
 8'd112: coeff = 12'sd73;
 8'd113: coeff = 12'sd75;
 8'd114: coeff = 12'sd78;
 8'd115: coeff = 12'sd80;
 8'd116: coeff = 12'sd82;
 8'd117: coeff = 12'sd84;
 8'd118: coeff = 12'sd85;
 8'd119: coeff = 12'sd87;
 8'd120: coeff = 12'sd89;
 8'd121: coeff = 12'sd90;
 8'd122: coeff = 12'sd91;
 8'd123: coeff = 12'sd92;
 8'd124: coeff = 12'sd93;
 8'd125: coeff = 12'sd93;
 8'd126: coeff = 12'sd93;
 8'd127: coeff = 12'sd94;
 8'd128: coeff = 12'sd94;
 8'd129: coeff = 12'sd93;
 8'd130: coeff = 12'sd93;
 8'd131: coeff = 12'sd93;
 8'd132: coeff = 12'sd92;
 8'd133: coeff = 12'sd91;
 8'd134: coeff = 12'sd90;
 8'd135: coeff = 12'sd89;
 8'd136: coeff = 12'sd87;
 8'd137: coeff = 12'sd85;
 8'd138: coeff = 12'sd84;
 8'd139: coeff = 12'sd82;
 8'd140: coeff = 12'sd80;
 8'd141: coeff = 12'sd78;
 8'd142: coeff = 12'sd75;
 8'd143: coeff = 12'sd73;
 8'd144: coeff = 12'sd70;
 8'd145: coeff = 12'sd68;
 8'd146: coeff = 12'sd65;
 8'd147: coeff = 12'sd62;
 8'd148: coeff = 12'sd60;
 8'd149: coeff = 12'sd57;
 8'd150: coeff = 12'sd54;
 8'd151: coeff = 12'sd51;
 8'd152: coeff = 12'sd48;

 46

 8'd153: coeff = 12'sd45;
 8'd154: coeff = 12'sd42;
 8'd155: coeff = 12'sd39;
 8'd156: coeff = 12'sd36;
 8'd157: coeff = 12'sd33;
 8'd158: coeff = 12'sd30;
 8'd159: coeff = 12'sd28;
 8'd160: coeff = 12'sd25;
 8'd161: coeff = 12'sd22;
 8'd162: coeff = 12'sd19;
 8'd163: coeff = 12'sd17;
 8'd164: coeff = 12'sd14;
 8'd165: coeff = 12'sd12;
 8'd166: coeff = 12'sd10;
 8'd167: coeff = 12'sd8;
 8'd168: coeff = 12'sd6;
 8'd169: coeff = 12'sd4;
 8'd170: coeff = 12'sd2;
 8'd171: coeff = 12'sd0;
 8'd172: coeff = -12'sd1;
 8'd173: coeff = -12'sd3;
 8'd174: coeff = -12'sd4;
 8'd175: coeff = -12'sd5;
 8'd176: coeff = -12'sd7;
 8'd177: coeff = -12'sd8;
 8'd178: coeff = -12'sd8;
 8'd179: coeff = -12'sd9;
 8'd180: coeff = -12'sd10;
 8'd181: coeff = -12'sd10;
 8'd182: coeff = -12'sd11;
 8'd183: coeff = -12'sd11;
 8'd184: coeff = -12'sd11;
 8'd185: coeff = -12'sd12;
 8'd186: coeff = -12'sd12;
 8'd187: coeff = -12'sd12;
 8'd188: coeff = -12'sd12;
 8'd189: coeff = -12'sd11;
 8'd190: coeff = -12'sd11;
 8'd191: coeff = -12'sd11;
 8'd192: coeff = -12'sd11;
 8'd193: coeff = -12'sd10;
 8'd194: coeff = -12'sd10;
 8'd195: coeff = -12'sd9;
 8'd196: coeff = -12'sd9;
 8'd197: coeff = -12'sd9;
 8'd198: coeff = -12'sd8;
 8'd199: coeff = -12'sd7;
 8'd200: coeff = -12'sd7;
 8'd201: coeff = -12'sd6;
 8'd202: coeff = -12'sd6;
 8'd203: coeff = -12'sd5;
 8'd204: coeff = -12'sd5;
 8'd205: coeff = -12'sd4;
 8'd206: coeff = -12'sd4;
 8'd207: coeff = -12'sd3;
 8'd208: coeff = -12'sd3;
 8'd209: coeff = -12'sd2;
 8'd210: coeff = -12'sd2;
 8'd211: coeff = -12'sd1;
 8'd212: coeff = -12'sd1;

 47

 8'd213: coeff = -12'sd1;
 8'd214: coeff = 12'sd0;
 8'd215: coeff = 12'sd0;
 8'd216: coeff = 12'sd0;
 8'd217: coeff = 12'sd1;
 8'd218: coeff = 12'sd1;
 8'd219: coeff = 12'sd1;
 8'd220: coeff = 12'sd1;
 8'd221: coeff = 12'sd1;
 8'd222: coeff = 12'sd2;
 8'd223: coeff = 12'sd2;
 8'd224: coeff = 12'sd2;
 8'd225: coeff = 12'sd2;
 8'd226: coeff = 12'sd2;
 8'd227: coeff = 12'sd2;
 8'd228: coeff = 12'sd2;
 8'd229: coeff = 12'sd2;
 8'd230: coeff = 12'sd2;
 8'd231: coeff = 12'sd2;
 8'd232: coeff = 12'sd2;
 8'd233: coeff = 12'sd2;
 8'd234: coeff = 12'sd2;
 8'd235: coeff = 12'sd2;
 8'd236: coeff = 12'sd2;
 8'd237: coeff = 12'sd1;
 8'd238: coeff = 12'sd1;
 8'd239: coeff = 12'sd1;
 8'd240: coeff = 12'sd1;
 8'd241: coeff = 12'sd1;
 8'd242: coeff = 12'sd1;
 8'd243: coeff = 12'sd1;
 8'd244: coeff = 12'sd1;
 8'd245: coeff = 12'sd1;
 8'd246: coeff = 12'sd1;
 8'd247: coeff = 12'sd1;
 8'd248: coeff = 12'sd1;
 8'd249: coeff = 12'sd1;
 8'd250: coeff = 12'sd1;
 8'd251: coeff = 12'sd0;
 8'd252: coeff = 12'sd0;
 8'd253: coeff = 12'sd0;
 8'd254: coeff = 12'sd0;
 8'd255: coeff = 12'sd0;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs1350(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 1350Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = -12'sd1;
 8'd1: coeff = -12'sd1;
 8'd2: coeff = -12'sd1;
 8'd3: coeff = -12'sd1;
 8'd4: coeff = -12'sd1;

 48

 8'd5: coeff = -12'sd1;
 8'd6: coeff = -12'sd1;
 8'd7: coeff = -12'sd1;
 8'd8: coeff = -12'sd1;
 8'd9: coeff = -12'sd1;
 8'd10: coeff = -12'sd1;
 8'd11: coeff = -12'sd1;
 8'd12: coeff = -12'sd1;
 8'd13: coeff = -12'sd1;
 8'd14: coeff = -12'sd1;
 8'd15: coeff = -12'sd1;
 8'd16: coeff = -12'sd1;
 8'd17: coeff = 12'sd0;
 8'd18: coeff = 12'sd0;
 8'd19: coeff = 12'sd0;
 8'd20: coeff = 12'sd0;
 8'd21: coeff = 12'sd0;
 8'd22: coeff = 12'sd0;
 8'd23: coeff = 12'sd0;
 8'd24: coeff = 12'sd1;
 8'd25: coeff = 12'sd1;
 8'd26: coeff = 12'sd1;
 8'd27: coeff = 12'sd1;
 8'd28: coeff = 12'sd1;
 8'd29: coeff = 12'sd2;
 8'd30: coeff = 12'sd2;
 8'd31: coeff = 12'sd2;
 8'd32: coeff = 12'sd2;
 8'd33: coeff = 12'sd3;
 8'd34: coeff = 12'sd3;
 8'd35: coeff = 12'sd3;
 8'd36: coeff = 12'sd3;
 8'd37: coeff = 12'sd4;
 8'd38: coeff = 12'sd4;
 8'd39: coeff = 12'sd4;
 8'd40: coeff = 12'sd4;
 8'd41: coeff = 12'sd4;
 8'd42: coeff = 12'sd4;
 8'd43: coeff = 12'sd5;
 8'd44: coeff = 12'sd5;
 8'd45: coeff = 12'sd4;
 8'd46: coeff = 12'sd4;
 8'd47: coeff = 12'sd4;
 8'd48: coeff = 12'sd4;
 8'd49: coeff = 12'sd4;
 8'd50: coeff = 12'sd3;
 8'd51: coeff = 12'sd3;
 8'd52: coeff = 12'sd3;
 8'd53: coeff = 12'sd2;
 8'd54: coeff = 12'sd2;
 8'd55: coeff = 12'sd1;
 8'd56: coeff = 12'sd0;
 8'd57: coeff = 12'sd0;
 8'd58: coeff = -12'sd1;
 8'd59: coeff = -12'sd2;
 8'd60: coeff = -12'sd3;
 8'd61: coeff = -12'sd4;
 8'd62: coeff = -12'sd5;
 8'd63: coeff = -12'sd6;
 8'd64: coeff = -12'sd7;

 49

 8'd65: coeff = -12'sd8;
 8'd66: coeff = -12'sd9;
 8'd67: coeff = -12'sd10;
 8'd68: coeff = -12'sd11;
 8'd69: coeff = -12'sd12;
 8'd70: coeff = -12'sd13;
 8'd71: coeff = -12'sd14;
 8'd72: coeff = -12'sd15;
 8'd73: coeff = -12'sd15;
 8'd74: coeff = -12'sd16;
 8'd75: coeff = -12'sd17;
 8'd76: coeff = -12'sd17;
 8'd77: coeff = -12'sd17;
 8'd78: coeff = -12'sd17;
 8'd79: coeff = -12'sd17;
 8'd80: coeff = -12'sd17;
 8'd81: coeff = -12'sd17;
 8'd82: coeff = -12'sd16;
 8'd83: coeff = -12'sd16;
 8'd84: coeff = -12'sd15;
 8'd85: coeff = -12'sd14;
 8'd86: coeff = -12'sd12;
 8'd87: coeff = -12'sd11;
 8'd88: coeff = -12'sd9;
 8'd89: coeff = -12'sd7;
 8'd90: coeff = -12'sd5;
 8'd91: coeff = -12'sd2;
 8'd92: coeff = 12'sd0;
 8'd93: coeff = 12'sd3;
 8'd94: coeff = 12'sd6;
 8'd95: coeff = 12'sd9;
 8'd96: coeff = 12'sd13;
 8'd97: coeff = 12'sd16;
 8'd98: coeff = 12'sd20;
 8'd99: coeff = 12'sd24;
 8'd100: coeff = 12'sd28;
 8'd101: coeff = 12'sd32;
 8'd102: coeff = 12'sd36;
 8'd103: coeff = 12'sd41;
 8'd104: coeff = 12'sd45;
 8'd105: coeff = 12'sd49;
 8'd106: coeff = 12'sd54;
 8'd107: coeff = 12'sd58;
 8'd108: coeff = 12'sd63;
 8'd109: coeff = 12'sd67;
 8'd110: coeff = 12'sd71;
 8'd111: coeff = 12'sd76;
 8'd112: coeff = 12'sd80;
 8'd113: coeff = 12'sd84;
 8'd114: coeff = 12'sd88;
 8'd115: coeff = 12'sd91;
 8'd116: coeff = 12'sd95;
 8'd117: coeff = 12'sd98;
 8'd118: coeff = 12'sd101;
 8'd119: coeff = 12'sd104;
 8'd120: coeff = 12'sd106;
 8'd121: coeff = 12'sd108;
 8'd122: coeff = 12'sd110;
 8'd123: coeff = 12'sd112;
 8'd124: coeff = 12'sd113;

 50

 8'd125: coeff = 12'sd114;
 8'd126: coeff = 12'sd115;
 8'd127: coeff = 12'sd115;
 8'd128: coeff = 12'sd115;
 8'd129: coeff = 12'sd115;
 8'd130: coeff = 12'sd114;
 8'd131: coeff = 12'sd113;
 8'd132: coeff = 12'sd112;
 8'd133: coeff = 12'sd110;
 8'd134: coeff = 12'sd108;
 8'd135: coeff = 12'sd106;
 8'd136: coeff = 12'sd104;
 8'd137: coeff = 12'sd101;
 8'd138: coeff = 12'sd98;
 8'd139: coeff = 12'sd95;
 8'd140: coeff = 12'sd91;
 8'd141: coeff = 12'sd88;
 8'd142: coeff = 12'sd84;
 8'd143: coeff = 12'sd80;
 8'd144: coeff = 12'sd76;
 8'd145: coeff = 12'sd71;
 8'd146: coeff = 12'sd67;
 8'd147: coeff = 12'sd63;
 8'd148: coeff = 12'sd58;
 8'd149: coeff = 12'sd54;
 8'd150: coeff = 12'sd49;
 8'd151: coeff = 12'sd45;
 8'd152: coeff = 12'sd41;
 8'd153: coeff = 12'sd36;
 8'd154: coeff = 12'sd32;
 8'd155: coeff = 12'sd28;
 8'd156: coeff = 12'sd24;
 8'd157: coeff = 12'sd20;
 8'd158: coeff = 12'sd16;
 8'd159: coeff = 12'sd13;
 8'd160: coeff = 12'sd9;
 8'd161: coeff = 12'sd6;
 8'd162: coeff = 12'sd3;
 8'd163: coeff = 12'sd0;
 8'd164: coeff = -12'sd2;
 8'd165: coeff = -12'sd5;
 8'd166: coeff = -12'sd7;
 8'd167: coeff = -12'sd9;
 8'd168: coeff = -12'sd11;
 8'd169: coeff = -12'sd12;
 8'd170: coeff = -12'sd14;
 8'd171: coeff = -12'sd15;
 8'd172: coeff = -12'sd16;
 8'd173: coeff = -12'sd16;
 8'd174: coeff = -12'sd17;
 8'd175: coeff = -12'sd17;
 8'd176: coeff = -12'sd17;
 8'd177: coeff = -12'sd17;
 8'd178: coeff = -12'sd17;
 8'd179: coeff = -12'sd17;
 8'd180: coeff = -12'sd17;
 8'd181: coeff = -12'sd16;
 8'd182: coeff = -12'sd15;
 8'd183: coeff = -12'sd15;
 8'd184: coeff = -12'sd14;

 51

 8'd185: coeff = -12'sd13;
 8'd186: coeff = -12'sd12;
 8'd187: coeff = -12'sd11;
 8'd188: coeff = -12'sd10;
 8'd189: coeff = -12'sd9;
 8'd190: coeff = -12'sd8;
 8'd191: coeff = -12'sd7;
 8'd192: coeff = -12'sd6;
 8'd193: coeff = -12'sd5;
 8'd194: coeff = -12'sd4;
 8'd195: coeff = -12'sd3;
 8'd196: coeff = -12'sd2;
 8'd197: coeff = -12'sd1;
 8'd198: coeff = 12'sd0;
 8'd199: coeff = 12'sd0;
 8'd200: coeff = 12'sd1;
 8'd201: coeff = 12'sd2;
 8'd202: coeff = 12'sd2;
 8'd203: coeff = 12'sd3;
 8'd204: coeff = 12'sd3;
 8'd205: coeff = 12'sd3;
 8'd206: coeff = 12'sd4;
 8'd207: coeff = 12'sd4;
 8'd208: coeff = 12'sd4;
 8'd209: coeff = 12'sd4;
 8'd210: coeff = 12'sd4;
 8'd211: coeff = 12'sd5;
 8'd212: coeff = 12'sd5;
 8'd213: coeff = 12'sd4;
 8'd214: coeff = 12'sd4;
 8'd215: coeff = 12'sd4;
 8'd216: coeff = 12'sd4;
 8'd217: coeff = 12'sd4;
 8'd218: coeff = 12'sd4;
 8'd219: coeff = 12'sd3;
 8'd220: coeff = 12'sd3;
 8'd221: coeff = 12'sd3;
 8'd222: coeff = 12'sd3;
 8'd223: coeff = 12'sd2;
 8'd224: coeff = 12'sd2;
 8'd225: coeff = 12'sd2;
 8'd226: coeff = 12'sd2;
 8'd227: coeff = 12'sd1;
 8'd228: coeff = 12'sd1;
 8'd229: coeff = 12'sd1;
 8'd230: coeff = 12'sd1;
 8'd231: coeff = 12'sd1;
 8'd232: coeff = 12'sd0;
 8'd233: coeff = 12'sd0;
 8'd234: coeff = 12'sd0;
 8'd235: coeff = 12'sd0;
 8'd236: coeff = 12'sd0;
 8'd237: coeff = 12'sd0;
 8'd238: coeff = 12'sd0;
 8'd239: coeff = -12'sd1;
 8'd240: coeff = -12'sd1;
 8'd241: coeff = -12'sd1;
 8'd242: coeff = -12'sd1;
 8'd243: coeff = -12'sd1;
 8'd244: coeff = -12'sd1;

 52

 8'd245: coeff = -12'sd1;
 8'd246: coeff = -12'sd1;
 8'd247: coeff = -12'sd1;
 8'd248: coeff = -12'sd1;
 8'd249: coeff = -12'sd1;
 8'd250: coeff = -12'sd1;
 8'd251: coeff = -12'sd1;
 8'd252: coeff = -12'sd1;
 8'd253: coeff = -12'sd1;
 8'd254: coeff = -12'sd1;
 8'd255: coeff = -12'sd1;
 default: coeff = 12'hXXX;
 endcase
endmodule

module coeffs1600(
 input wire [7:0] index,
 output reg signed [11:0] coeff
); // Lowpass filter with cutoff frequency at 1600Hz.
 // tools will turn this into a 256x12 ROM
 always @(index)
 case (index)
 8'd0: coeff = 12'sd1;
 8'd1: coeff = 12'sd1;
 8'd2: coeff = 12'sd0;
 8'd3: coeff = 12'sd0;
 8'd4: coeff = 12'sd0;
 8'd5: coeff = 12'sd0;
 8'd6: coeff = 12'sd0;
 8'd7: coeff = 12'sd0;
 8'd8: coeff = 12'sd0;
 8'd9: coeff = 12'sd0;
 8'd10: coeff = 12'sd0;
 8'd11: coeff = 12'sd0;
 8'd12: coeff = -12'sd1;
 8'd13: coeff = -12'sd1;
 8'd14: coeff = -12'sd1;
 8'd15: coeff = -12'sd1;
 8'd16: coeff = -12'sd1;
 8'd17: coeff = -12'sd1;
 8'd18: coeff = -12'sd1;
 8'd19: coeff = -12'sd1;
 8'd20: coeff = -12'sd2;
 8'd21: coeff = -12'sd2;
 8'd22: coeff = -12'sd2;
 8'd23: coeff = -12'sd2;
 8'd24: coeff = -12'sd2;
 8'd25: coeff = -12'sd2;
 8'd26: coeff = -12'sd2;
 8'd27: coeff = -12'sd2;
 8'd28: coeff = -12'sd2;
 8'd29: coeff = -12'sd2;
 8'd30: coeff = -12'sd2;
 8'd31: coeff = -12'sd2;
 8'd32: coeff = -12'sd2;
 8'd33: coeff = -12'sd1;
 8'd34: coeff = -12'sd1;
 8'd35: coeff = -12'sd1;
 8'd36: coeff = -12'sd1;

 53

 8'd37: coeff = 12'sd0;
 8'd38: coeff = 12'sd0;
 8'd39: coeff = 12'sd1;
 8'd40: coeff = 12'sd1;
 8'd41: coeff = 12'sd2;
 8'd42: coeff = 12'sd2;
 8'd43: coeff = 12'sd3;
 8'd44: coeff = 12'sd3;
 8'd45: coeff = 12'sd4;
 8'd46: coeff = 12'sd4;
 8'd47: coeff = 12'sd5;
 8'd48: coeff = 12'sd5;
 8'd49: coeff = 12'sd6;
 8'd50: coeff = 12'sd6;
 8'd51: coeff = 12'sd7;
 8'd52: coeff = 12'sd7;
 8'd53: coeff = 12'sd7;
 8'd54: coeff = 12'sd8;
 8'd55: coeff = 12'sd8;
 8'd56: coeff = 12'sd8;
 8'd57: coeff = 12'sd8;
 8'd58: coeff = 12'sd7;
 8'd59: coeff = 12'sd7;
 8'd60: coeff = 12'sd7;
 8'd61: coeff = 12'sd6;
 8'd62: coeff = 12'sd6;
 8'd63: coeff = 12'sd5;
 8'd64: coeff = 12'sd4;
 8'd65: coeff = 12'sd3;
 8'd66: coeff = 12'sd2;
 8'd67: coeff = 12'sd1;
 8'd68: coeff = -12'sd1;
 8'd69: coeff = -12'sd2;
 8'd70: coeff = -12'sd4;
 8'd71: coeff = -12'sd5;
 8'd72: coeff = -12'sd7;
 8'd73: coeff = -12'sd8;
 8'd74: coeff = -12'sd10;
 8'd75: coeff = -12'sd12;
 8'd76: coeff = -12'sd13;
 8'd77: coeff = -12'sd15;
 8'd78: coeff = -12'sd16;
 8'd79: coeff = -12'sd18;
 8'd80: coeff = -12'sd19;
 8'd81: coeff = -12'sd20;
 8'd82: coeff = -12'sd21;
 8'd83: coeff = -12'sd22;
 8'd84: coeff = -12'sd23;
 8'd85: coeff = -12'sd23;
 8'd86: coeff = -12'sd23;
 8'd87: coeff = -12'sd23;
 8'd88: coeff = -12'sd22;
 8'd89: coeff = -12'sd21;
 8'd90: coeff = -12'sd20;
 8'd91: coeff = -12'sd19;
 8'd92: coeff = -12'sd17;
 8'd93: coeff = -12'sd14;
 8'd94: coeff = -12'sd12;
 8'd95: coeff = -12'sd9;
 8'd96: coeff = -12'sd6;

 54

 8'd97: coeff = -12'sd2;
 8'd98: coeff = 12'sd2;
 8'd99: coeff = 12'sd6;
 8'd100: coeff = 12'sd11;
 8'd101: coeff = 12'sd16;
 8'd102: coeff = 12'sd21;
 8'd103: coeff = 12'sd27;
 8'd104: coeff = 12'sd32;
 8'd105: coeff = 12'sd38;
 8'd106: coeff = 12'sd44;
 8'd107: coeff = 12'sd50;
 8'd108: coeff = 12'sd57;
 8'd109: coeff = 12'sd63;
 8'd110: coeff = 12'sd69;
 8'd111: coeff = 12'sd75;
 8'd112: coeff = 12'sd81;
 8'd113: coeff = 12'sd87;
 8'd114: coeff = 12'sd93;
 8'd115: coeff = 12'sd99;
 8'd116: coeff = 12'sd104;
 8'd117: coeff = 12'sd109;
 8'd118: coeff = 12'sd114;
 8'd119: coeff = 12'sd118;
 8'd120: coeff = 12'sd122;
 8'd121: coeff = 12'sd126;
 8'd122: coeff = 12'sd129;
 8'd123: coeff = 12'sd131;
 8'd124: coeff = 12'sd133;
 8'd125: coeff = 12'sd135;
 8'd126: coeff = 12'sd136;
 8'd127: coeff = 12'sd137;
 8'd128: coeff = 12'sd137;
 8'd129: coeff = 12'sd136;
 8'd130: coeff = 12'sd135;
 8'd131: coeff = 12'sd1133;
 8'd132: coeff = 12'sd131;
 8'd133: coeff = 12'sd129;
 8'd134: coeff = 12'sd126;
 8'd135: coeff = 12'sd122;
 8'd136: coeff = 12'sd118;
 8'd137: coeff = 12'sd114;
 8'd138: coeff = 12'sd109;
 8'd139: coeff = 12'sd104;
 8'd140: coeff = 12'sd99;
 8'd141: coeff = 12'sd93;
 8'd142: coeff = 12'sd87;
 8'd143: coeff = 12'sd81;
 8'd144: coeff = 12'sd75;
 8'd145: coeff = 12'sd69;
 8'd146: coeff = 12'sd63;
 8'd147: coeff = 12'sd57;
 8'd148: coeff = 12'sd50;
 8'd149: coeff = 12'sd44;
 8'd150: coeff = 12'sd38;
 8'd151: coeff = 12'sd32;
 8'd152: coeff = 12'sd27;
 8'd153: coeff = 12'sd21;
 8'd154: coeff = 12'sd16;
 8'd155: coeff = 12'sd11;
 8'd156: coeff = 12'sd6;

 55

 8'd157: coeff = 12'sd2;
 8'd158: coeff = -12'sd2;
 8'd159: coeff = -12'sd6;
 8'd160: coeff = -12'sd9;
 8'd161: coeff = -12'sd12;
 8'd162: coeff = -12'sd14;
 8'd163: coeff = -12'sd17;
 8'd164: coeff = -12'sd19;
 8'd165: coeff = -12'sd20;
 8'd166: coeff = -12'sd21;
 8'd167: coeff = -12'sd22;
 8'd168: coeff = -12'sd23;
 8'd169: coeff = -12'sd23;
 8'd170: coeff = -12'sd23;
 8'd171: coeff = -12'sd23;
 8'd172: coeff = -12'sd22;
 8'd173: coeff = -12'sd21;
 8'd174: coeff = -12'sd20;
 8'd175: coeff = -12'sd19;
 8'd176: coeff = -12'sd18;
 8'd177: coeff = -12'sd16;
 8'd178: coeff = -12'sd15;
 8'd179: coeff = -12'sd13;
 8'd180: coeff = -12'sd12;
 8'd181: coeff = -12'sd10;
 8'd182: coeff = -12'sd8;
 8'd183: coeff = -12'sd7;
 8'd184: coeff = -12'sd5;
 8'd185: coeff = -12'sd4;
 8'd186: coeff = -12'sd2;
 8'd187: coeff = -12'sd1;
 8'd188: coeff = 12'sd1;
 8'd189: coeff = 12'sd2;
 8'd190: coeff = 12'sd3;
 8'd191: coeff = 12'sd4;
 8'd192: coeff = 12'sd5;
 8'd193: coeff = 12'sd6;
 8'd194: coeff = 12'sd6;
 8'd195: coeff = 12'sd7;
 8'd196: coeff = 12'sd7;
 8'd197: coeff = 12'sd7;
 8'd198: coeff = 12'sd8;
 8'd199: coeff = 12'sd8;
 8'd200: coeff = 12'sd8;
 8'd201: coeff = 12'sd8;
 8'd202: coeff = 12'sd7;
 8'd203: coeff = 12'sd7;
 8'd204: coeff = 12'sd7;
 8'd205: coeff = 12'sd6;
 8'd206: coeff = 12'sd6;
 8'd207: coeff = 12'sd5;
 8'd208: coeff = 12'sd5;
 8'd209: coeff = 12'sd4;
 8'd210: coeff = 12'sd4;
 8'd211: coeff = 12'sd3;
 8'd212: coeff = 12'sd3;
 8'd213: coeff = 12'sd2;
 8'd214: coeff = 12'sd2;
 8'd215: coeff = 12'sd1;
 8'd216: coeff = 12'sd1;

 56

 8'd217: coeff = 12'sd0;
 8'd218: coeff = 12'sd0;
 8'd219: coeff = -12'sd1;
 8'd220: coeff = -12'sd1;
 8'd221: coeff = -12'sd1;
 8'd222: coeff = -12'sd1;
 8'd223: coeff = -12'sd2;
 8'd224: coeff = -12'sd2;
 8'd225: coeff = -12'sd2;
 8'd226: coeff = -12'sd2;
 8'd227: coeff = -12'sd2;
 8'd228: coeff = -12'sd2;
 8'd229: coeff = -12'sd2;
 8'd230: coeff = -12'sd2;
 8'd231: coeff = -12'sd2;
 8'd232: coeff = -12'sd2;
 8'd233: coeff = -12'sd2;
 8'd234: coeff = -12'sd2;
 8'd235: coeff = -12'sd2;
 8'd236: coeff = -12'sd1;
 8'd237: coeff = -12'sd1;
 8'd238: coeff = -12'sd1;
 8'd239: coeff = -12'sd1;
 8'd240: coeff = -12'sd1;
 8'd241: coeff = -12'sd1;
 8'd242: coeff = -12'sd1;
 8'd243: coeff = -12'sd1;
 8'd244: coeff = 12'sd0;
 8'd245: coeff = 12'sd0;
 8'd246: coeff = 12'sd0;
 8'd247: coeff = 12'sd0;
 8'd248: coeff = 12'sd0;
 8'd249: coeff = 12'sd0;
 8'd250: coeff = 12'sd0;
 8'd251: coeff = 12'sd0;
 8'd252: coeff = 12'sd0;
 8'd253: coeff = 12'sd0;
 8'd254: coeff = 12'sd1;
 8'd255: coeff = 12'sd1;
 default: coeff = 12'hXXX;
 endcase
endmodule

module filter300Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;

 57

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram0
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(ready));

 coeffs300 fir300(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset + 1;
 accumulator <= 0;
 index <= 0;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;

 58

 index <= 0;
 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module filter375Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram1
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(we));

 coeffs375 fir375(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;

 59

 we <= 1;
 write_mem_address <= offset;
 accumulator <= 0;
 index <= 0;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module filter450Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram2
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),

 60

 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(we));

 coeffs450 fir450(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset;
 accumulator <= 0;
 index <= 0;
 we <= 1;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;

 61

 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module filter540Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram3
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(we));

 coeffs540 fir540(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset;

 62

 accumulator <= 0;
 index <= 0;
 we <= 1;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module filter660Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram4
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),

 63

 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(we));

 coeffs660 fir660(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset;
 accumulator <= 0;
 index <= 0;
 we <= 1;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;

 64

 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module filter800Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram5
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(we));

 coeffs800 fir800(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset;
 accumulator <= 0;

 65

 index <= 0;
 we <= 1;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module filter950Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram6
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),

 66

 .din(ram_in),
 .dout(sample),
 .we(ready));

 coeffs950 fir950(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset;
 accumulator <= 0;
 index <= 0;
 we <= 1;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;

 67

 state <= START;
 end
 endcase
 end
endmodule

module filter1100Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram7
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(we));

 coeffs1100 fir1100(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset;
 accumulator <= 0;
 index <= 0;

 68

 we <= 1;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module filter1350Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram8
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),
 .din(ram_in),

 69

 .dout(sample),
 .we(we));

 coeffs1350 fir1350(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset;
 accumulator <= 0;
 index <= 0;
 we <= 1;
 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;

 70

 end
 endcase
 end
endmodule

module filter1600Hz #(parameter N = 20)(
 input wire clock,reset,ready,
 input wire signed [N-1:0] digital_in,
 output reg signed [N+11:0] digital_out
);

 parameter START = 1'b0; // Start state (first sample)
 parameter CALCULATING = 1'b1; // Calculation state
 wire signed [11:0] coeff;
 reg [7:0] offset, index, prev_offset;
 reg state;
 reg signed [N+11:0] accumulator;
 reg signed [N-1:0] ram_in;
 wire signed [N-1:0] sample;
 reg [7:0] write_mem_address = 0;
 reg [7:0] read_mem_address = 0;
 reg we = 0;

 new_bram #(.LOGSIZE(8), .WIDTH(20)) ram9
 (.addr_write(write_mem_address),
 .addr_read(read_mem_address),
 .clock(clock),
 .din(ram_in),
 .dout(sample),
 .we(we));

 coeffs1600 fir1600(.index(index), .coeff(coeff)); // Module for returning the right coeficient.

 always @(posedge clock) begin

 // When reset is one, initialize all of the registers.
 if (reset) begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end

 case(state)

 // In the START state, we store the first sample and initialize a new accumulator.
 // After that, we go into the CALCULATING state.
 START: begin

 if (ready) begin
 state <= CALCULATING;
 offset <= offset + 1;
 prev_offset <= offset;
 ram_in <= digital_in;
 write_mem_address <= offset + 1;
 accumulator <= 0;
 index <= 0;
 we <= 1;

 71

 end
 end

 CALCULATING: begin
 // In the CALCULATING staate, at each clock cycle we update our accumulator
 // using the next sample and coefficient. We then increment the index by one.
 we <= 0;

 if (index != 255) begin
 index <= index + 1;
 read_mem_address <= prev_offset - index + 1;
 accumulator <= accumulator + coeff*sample;
 end

 // If the index is 31, our y value is ready so we output it.
 // After outputing y, we go back into the START state.
 else if (index == 255) begin
 state <= START;
 index <= 255;
 digital_out <= accumulator;
 end
 end

 // On default, reset all of the registers.
 default: begin
 accumulator <= 0;
 index <= 0;
 offset <= 0;
 state <= START;
 end
 endcase
 end
endmodule

module font_rom(
 addr,
 clk,
 dout);

input [10 : 0] addr;
input clk;
output [7 : 0] dout;

// synopsys translate_off

 BLKMEMSP_V6_1 #(
 11, // c_addr_width
 "0", // c_default_data
 1536, // c_depth
 0, // c_enable_rlocs
 0, // c_has_default_data
 0, // c_has_din
 0, // c_has_en
 0, // c_has_limit_data_pitch
 0, // c_has_nd
 0, // c_has_rdy
 0, // c_has_rfd
 0, // c_has_sinit

 72

 0, // c_has_we
 18, // c_limit_data_pitch
 "font_rom.mif", // c_mem_init_file
 0, // c_pipe_stages
 0, // c_reg_inputs
 "0", // c_sinit_value
 8, // c_width
 0, // c_write_mode
 "0", // c_ybottom_addr
 1, // c_yclk_is_rising
 1, // c_yen_is_high
 "hierarchy1", // c_yhierarchy
 0, // c_ymake_bmm
 "16kx1", // c_yprimitive_type
 1, // c_ysinit_is_high
 "1024", // c_ytop_addr
 0, // c_yuse_single_primitive
 1, // c_ywe_is_high
 1) // c_yydisable_warnings
 inst (
 .ADDR(addr),
 .CLK(clk),
 .DOUT(dout),
 .DIN(),
 .EN(),
 .ND(),
 .RFD(),
 .RDY(),
 .SINIT(),
 .WE());

// synopsys translate_on

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of font_rom is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of font_rom is "black_box"

endmodule

module char_string_display (vclock,hcount,vcount,pixel,cstring,cx,cy);

 parameter NCHAR = 8; // number of 8-bit characters in cstring
 parameter NCHAR_BITS = 3; // number of bits in NCHAR

 input vclock; // 65MHz clock
 input [10:0] hcount; // horizontal index of current pixel (0..1023)
 input [9:0] vcount; // vertical index of current pixel (0..767)
 output [2:0] pixel; // char display's pixel
 input [NCHAR*8-1:0] cstring; // character string to display
 input [10:0] cx;
 input [9:0] cy;

 // 1 line x 8 character display (8 x 12 pixel-sized characters)

 73

 wire [10:0] hoff = hcount-1-cx;
 wire [9:0] voff = vcount-cy;
 wire [NCHAR_BITS-1:0] column = NCHAR-1-hoff[NCHAR_BITS-1+4:4]; // < NCHAR
 wire [2:0] h = hoff[3:1]; // 0 .. 7
 wire [3:0] v = voff[4:1]; // 0 .. 11

 // look up character to display (from character string)
 reg [7:0] char;
 integer n;
 always @(*)
 for (n=0 ; n<8 ; n = n+1) // 8 bits per character (ASCII)
 char[n] <= cstring[column*8+n];

 // look up raster row from font rom
 wire reverse = char[7];
 wire [10:0] font_addr = char[6:0]*12 + v; // 12 bytes per character
 wire [7:0] font_byte;
 font_rom f(font_addr,vclock,font_byte);

 // generate character pixel if we're in the right h,v area
 wire [2:0] cpixel = (font_byte[7 - h] ^ reverse) ? 7 : 0;
 wire dispflag = ((hcount > cx) & (vcount >= cy) & (hcount <= cx+NCHAR*16)
 & (vcount < cy + 24));
 wire [2:0] pixel = dispflag ? cpixel : 0;

endmodule

module bram #(parameter LOGSIZE=16, WIDTH=20)
 (input wire [LOGSIZE-1:0] addr,
 input wire clock,
 input wire [WIDTH-1:0] din,
 output reg [WIDTH-1:0] dout,
 input wire we);
 // let the tools infer the right number of BRAMs
 (* ram_style = "block" *)
 reg [WIDTH-1:0] mem[(1<<LOGSIZE)-1:0] = 0;
 always @(posedge clock) begin
 if (we) mem[addr] <= din;
 dout <= mem[addr];
 end
endmodule

module new_bram #(parameter LOGSIZE=14, WIDTH=20)
 (input wire [LOGSIZE-1:0] addr_write,
 input wire [LOGSIZE-1:0] addr_read,
 input wire clock,
 input wire signed [WIDTH-1:0] din,
 output reg signed [WIDTH-1:0] dout,
 input wire we);
 // Modified bram code from lab into a dual-port BRAM.
 // let the tools infer the right number of BRAMs
 (* ram_style = "block" *)
 reg [WIDTH-1:0] mem[(1<<LOGSIZE)-1:0];
 always @(posedge clock) begin
 if (we) mem[addr_write] <= din;
 dout <= mem[addr_read];
 end
endmodule

 74

module distortion #(parameter N=20, THRESHOLD_VOLTAGE_POS = 70000,
THRESHOLD_VOLTAGE_NEG = -70000, HIGH_VOLTAGE_POS = 90000, HIGH_VOLTAGE_NEG
= -90000) (
 input wire clock, // 27mhz system clock
 input wire reset, // 1 to reset to initial state
 input wire ready, // 1 when AC97 data is available
 input wire options, // Type of distortion
 input wire signed [N-1:0] digital_in, // N-bit PCM data from guitar
 output reg signed [N-1:0] digital_out // N-bit PCM data to amp
);

 parameter SOFTDIST = 1'b0;
 parameter HARDDIST = 1'b1;

 always @(posedge clock) begin

 case(options)

 // On ready, set the values above and below a threshold equal to the threshold value.
Otherwise, output the input.
 SOFTDIST: begin

 if (digital_in > THRESHOLD_VOLTAGE_POS && ready) digital_out <=
THRESHOLD_VOLTAGE_POS;

 else if (digital_in < THRESHOLD_VOLTAGE_NEG && ready) digital_out <=
THRESHOLD_VOLTAGE_NEG;

 else if (ready) digital_out <= digital_in;

 end

 // On ready, set the values above and below a threshold equal to the threshold value.
Otherwise, output the input.
 HARDDIST: begin

 if (digital_in > HIGH_VOLTAGE_POS && ready) digital_out <= HIGH_VOLTAGE_POS;

 else if (digital_in > THRESHOLD_VOLTAGE_POS && ready) digital_out <=
THRESHOLD_VOLTAGE_POS;

 else if (digital_in < THRESHOLD_VOLTAGE_NEG && ready) digital_out <=
THRESHOLD_VOLTAGE_NEG;

 else if (digital_in < HIGH_VOLTAGE_NEG && ready) digital_out <= HIGH_VOLTAGE_NEG;

 else if (ready) digital_out <= digital_in;

 end

 default: digital_out <= digital_in;

 endcase

 end

endmodule

 75

module delay #(parameter N=20, DELAY = 14) (// ac97 - 48000 256-bit frames per seond and a bit
clock 12.88Mhz
 input wire clock, // 27mhz system clock
 input wire reset, // 1 to reset to initial state
 input wire ready, // 1 when AC97 data is available
 input wire options, // Type of distortion
 input wire signed [N-1:0] digital_in, // N-bit PCM data from guitar
 output reg signed [N-1:0] digital_out // N-bit PCM data to amp
);

 parameter SLAP = 1'b0; // Single repetition.
 parameter ECHO = 1'b1; // Decaying echo.
 parameter ADDRESS_COUNTER = (1<<DELAY)-1;

 reg signed [N-1:0] delay_in;
 wire signed [N-1:0] delay_out;
 reg [DELAY-1:0] write_mem_address = 0;
 reg [DELAY-1:0] read_mem_address = 1;

 // Instantiate a dual-port BRAM.
 new_bram #(.LOGSIZE(DELAY), .WIDTH(N)) bram_delay(.addr_write(write_mem_address),
.addr_read(read_mem_address), .clock(clock), .din(delay_in), .dout(delay_out), .we(ready));

 always @(posedge clock) begin

 // On reset, set all registers to default values.
 if (reset) begin
 digital_out <= digital_in;
 write_mem_address <= 0;
 read_mem_address <= 1;
 delay_in <= digital_in;
 end

 else begin

 // Check the delay we want to use.
 case(options)

 SLAP: begin

 // On ready, store the current input. Output a mix of the input and a previously stored input.
 if (ready) begin

 delay_in <= digital_in;

 if (write_mem_address == ADDRESS_COUNTER) write_mem_address <= 0;
 else write_mem_address <= write_mem_address + 1;

 if (read_mem_address == ADDRESS_COUNTER) read_mem_address <= 0;
 else read_mem_address <= read_mem_address + 1;

 digital_out <= digital_in + (delay_out >>> 1);
 end
 end

 ECHO: begin

 // On ready, store the current input and the delayed signal. Output a mix of the input and a
previously stored input.
 if (ready) begin

 76

 delay_in <= digital_in + (delay_out >>> 1);

 if (write_mem_address == ADDRESS_COUNTER) write_mem_address <= 0;
 else write_mem_address <= write_mem_address + 1;

 if (read_mem_address == ADDRESS_COUNTER) read_mem_address <= 0;
 else read_mem_address <= read_mem_address + 1;

 digital_out <= digital_in + (delay_out >>> 1);

 end
 end

 // Set registers to their default values.
 default: begin
 digital_out <= digital_in;
 write_mem_address <= 0;
 read_mem_address <= 1;
 delay_in <= digital_in;
 end
 endcase
 end
 end
endmodule

module auto_wah #(parameter N = 20, SPEED = 100)(
 input wire clock, // 27mhz system clock
 input wire reset, // 1 to reset to initial state
 input wire ready, // 1 when AC97 data is available
 input wire wah_ready, // 1 when wah data is available
 input wire signed [N-1:0] digital_in, // N-bit PCM data from guitar
 output reg signed [N-1:0] digital_out); // N-bit PCM data to amp

 parameter INCREMENTING = 0; // State in which increase the center frequency of the bandpass
filter.
 parameter DECREMENTING = 1; // State in which decrease the center frequency of the bandpass
filter.
 reg [3:0] wah_counter = 0; // Chooses the bandpass filter.
 reg [15:0] counter = 0; // Counter used to determine the speed of the effect.
 reg state = 0;
 reg signed [N+11:0] filter_out;
 wire signed [N+11:0] f1, f2, f3, f4, f5, f6, f7, f8, f9, f10; // Signals produced by the filters.

 // Instantiation of 10 different lowpass filters.

 filter300Hz filter1(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f1));
 filter375Hz filter2(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f2));
 filter450Hz filter3(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f3));
 filter540Hz filter4(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f4));
 filter660Hz filter5(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f5));
 filter800Hz filter6(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f6));
 filter950Hz filter7(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f7));
 filter1100Hz filter8(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f8));
 filter1350Hz filter9(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in), .digital_out(f9));
 filter1600Hz filter10(.clock(clock), .reset(reset), .ready(ready), .digital_in(digital_in),
.digital_out(f10));

 always @(posedge clock) begin

 77

 // Whenever wah effect is ready, apply the filters.
 if (wah_ready) begin

 case (state)

 INCREMENTING: begin

 // Whenever counter reaches SPEED, go to the next center frequency.
 if (counter == SPEED) begin
 wah_counter <= wah_counter + 1;
 counter <= 0;
 end

 // Increment counter.
 else counter <= counter + 1;

 // If we reach the highest center frequency start going backward.
 if (wah_counter == 8) state <= DECREMENTING;

 end

 DECREMENTING: begin

 // Whenever counter reaches SPEED, go to the next center frequency.
 if (counter == SPEED) begin
 wah_counter <= wah_counter - 1;
 counter <= 0;
 end

 // Increment counter.
 else counter <= counter + 1;

 // If we reach the lowest center frequency start going forward.
 if (wah_counter == 0) state <= INCREMENTING;

 end
 endcase

 // Output the appropriate filter.
 case(wah_counter)

 4'd0: filter_out <= f2 - f1;
 4'd1: filter_out <= f3 - f2;
 4'd2: filter_out <= f4 - f3;
 4'd3: filter_out <= f5 - f4;
 4'd4: filter_out <= f6 - f5;
 4'd5: filter_out <= f7 - f6;
 4'd6: filter_out <= f8 - f7;
 4'd7: filter_out <= f9 - f8;
 4'd8: filter_out <= f10 - f9;
 default: filter_out <= f1;
 endcase

 digital_out <= digital_in + filter_out[N+11:12]; // Mix the input with the output of the bandpass
filter and output the mixed signal.
 end
 end
endmodule

 78

module chorus #(parameter N=20, CHORUS_DELAY = 12) (// ac97 - 48000 256-bit frames per
seond and a bit clock 12.88Mhz
 input wire clock, // 27mhz system clock
 input wire reset, // 1 to reset to initial state
 input wire ready, // 1 when AC97 data is available
 input wire signed [N-1:0] digital_in, // N-bit PCM data from guitar
 output reg signed [N-1:0] digital_out // N-bit PCM data to amp
);

 parameter ADDRESS_COUNTER = (1<<CHORUS_DELAY) - 1;

 reg signed [N-1:0] chorus_in;
 wire signed [N-1:0] chorus_out;
 reg [CHORUS_DELAY-1:0] write_mem_address = 0;
 reg [CHORUS_DELAY-1:0] read_mem_address = 1;

 // Dual-port ram.
 new_bram #(.LOGSIZE(CHORUS_DELAY), .WIDTH(N))
bram_chorus(.addr_write(write_mem_address), .addr_read(read_mem_address), .clock(clock),
.din(chorus_in), .dout(chorus_out), .we(ready));

 always @(posedge clock) begin

 // On reset, reset all the registers.
 if (reset) begin
 digital_out <= digital_in;
 write_mem_address <= 0;
 read_mem_address <= 1;
 chorus_in <= digital_in;
 end

 // On ready, collect the time delayed signal and output it. Increment the memory addresses.
 else if (ready) begin

 chorus_in <= digital_in;

 if (write_mem_address == ADDRESS_COUNTER) write_mem_address <= 0;
 else write_mem_address <= write_mem_address + 1;

 if (read_mem_address == ADDRESS_COUNTER) read_mem_address <= 0;
 else read_mem_address <= read_mem_address + 1;

 digital_out <= (chorus_out >>> 1);
 end
 end
endmodule

module Effects_Controller #(parameter N = 20) (
 input wire clock, // 27mhz system clock
 input wire reset, // 1 to reset to initial state
 input wire ready, // 1 when AC97 data is available - 48kHz
 input wire distortion_options, // Type of distortion
 input wire delay_options, // Type of delay
 input wire distortion, // Is distortion used
 input wire delay, // Is delay used
 input wire wah, // Is wah used
 input wire chorus, // Is chorus used
 input wire reverb, // Is reverb used
 input wire pitch_shifter, // Is pitch-shifter used

 79

 input wire phaser, // Is phaser used
 input wire signed [N-1:0] digital_in, // N-bit PCM data from guitar
 output reg signed [N-1:0] digital_out // N-bit PCM data to amp
);

 parameter START = 3'b000;
 parameter WAH = 3'b001;
 parameter DISTORTION = 3'b010;
 parameter CHORUS = 3'b011;
 parameter PHASER = 3'b100;
 parameter PITCH_SHIFTER = 3'b101;
 parameter DELAY = 3'b110;
 parameter REVERB = 3'b111;

 reg [2:0] state;
 reg signed [N-1:0] temp;
 wire signed [N-1:0] distortion_out, delay_out, chorus_out, wah_out;
 reg dready, wready, cready, phready, piready, deready, rready; // Ready signals for each of the
effects.
 reg [6:0] counter = 0;

 distortion #(.N(N)) distortion1(.clock(clock), .reset(reset), .ready(dready),
.options(distortion_options), .digital_in(temp), .digital_out(distortion_out));
 delay #(.N(N)) delay1(.clock(clock), .reset(reset), .ready(deready), .options(delay_options),
.digital_in(temp), .digital_out(delay_out));
 chorus #(.N(N)) chorus1(.clock(clock), .reset(reset), .ready(cready), .digital_in(temp),
.digital_out(chorus_out));
 auto_wah #(.N(N)) wah1(.clock(clock), .reset(reset), .ready(ready), .wah_ready(wready),
.digital_in(temp), .digital_out(wah_out));

 always @(posedge clock) begin

 // Reset if the reset signal is high.
 if (reset) begin

 temp <= digital_in;
 state <= START;
 digital_out <= digital_in;
 counter <= 0;
 end

 // At each state apply one effect using the passed parameters and go to the next state.
 case(state)

 START: begin

 // When the AC97 is ready start applying the active effects.
 if (ready) begin
 state <= WAH;
 if (wah) wready <= 1'b1;
 if (counter == 100) counter <= 0;
 else counter <= counter + 1;
 end

 temp <= digital_in;

 end

 WAH: begin

 80

 wready <= 1'b0;
 state <= DISTORTION;
 if (distortion) dready <= 1'b1;
 if (wready) temp <= wah_out;

 end

 DISTORTION: begin

 dready <= 1'b0;
 state <= CHORUS;
 if (dready) temp <= distortion_out;
 if (chorus && counter != 100) cready <= 1'b1; // Change sampling rate to introduce a small
pitch change.

 end

 CHORUS: begin

 cready <= 1'b0;
 state <= PHASER;
 if (cready) temp <= temp + chorus_out;
 if (phaser) phready <= 1'b1;

 end

 PHASER:begin

 phready <= 1'b0;
 state <= PITCH_SHIFTER;
 if (pitch_shifter) piready <= 1'b1;

 end

 PITCH_SHIFTER:begin

 piready <= 1'b0;
 state <= DELAY;
 if (delay) deready <= 1'b1;

 end

 DELAY:begin

 deready <= 1'b0;
 state <= REVERB;
 if (deready) temp <= delay_out;
 if (reverb) rready <= 1'b1;

 end

 REVERB:begin

 rready <= 1'b0;
 state <= START;
 digital_out <= temp; // Output the resulting signal.

 end
 endcase

 81

 end
endmodule

///
//
// Switch Debounce Module
//
///

module debounce (
 input wire reset, clock, noisy,
 output reg clean
);
 reg [18:0] count;
 reg new;

 always @(posedge clock)
 if (reset) begin
 count <= 0;
 new <= noisy;
 clean <= noisy;
 end
 else if (noisy != new) begin
 // noisy input changed, restart the .01 sec clock
 new <= noisy;
 count <= 0;
 end
 else if (count == 270000)
 // noisy input stable for .01 secs, pass it along!
 clean <= new;
 else
 // waiting for .01 sec to pass
 count <= count+1;

endmodule

///
 //
// bi-directional monaural interface to AC97
//
///

module audio (
 input wire clock_27mhz,
 input wire reset,
 input wire [4:0] volume,
 output wire [19:0] audio_in_data,
 input wire [19:0] audio_out_data,
 output wire ready,
 output reg audio_reset_b, // ac97 interface signals
 output wire ac97_sdata_out,
 input wire ac97_sdata_in,
 output wire ac97_synch,
 input wire ac97_bit_clock
);

 wire [7:0] command_address;
 wire [15:0] command_data;
 wire command_valid;

 82

 wire [19:0] left_in_data, right_in_data;
 wire [19:0] left_out_data, right_out_data;

 // wait a little before enabling the AC97 codec
 reg [9:0] reset_count;
 always @(posedge clock_27mhz) begin
 if (reset) begin
 audio_reset_b = 1'b0;
 reset_count = 0;
 end else if (reset_count == 1023)
 audio_reset_b = 1'b1;
 else
 reset_count = reset_count+1;
 end

 wire ac97_ready;
 ac97 ac97(.ready(ac97_ready),
 .command_address(command_address),
 .command_data(command_data),
 .command_valid(command_valid),
 .left_data(left_out_data), .left_valid(1'b1),
 .right_data(right_out_data), .right_valid(1'b1),
 .left_in_data(left_in_data), .right_in_data(right_in_data),
 .ac97_sdata_out(ac97_sdata_out),
 .ac97_sdata_in(ac97_sdata_in),
 .ac97_synch(ac97_synch),
 .ac97_bit_clock(ac97_bit_clock));

 // ready: one cycle pulse synchronous with clock_27mhz
 reg [2:0] ready_sync;
 always @ (posedge clock_27mhz) ready_sync <= {ready_sync[1:0], ac97_ready};
 assign ready = ready_sync[1] & ~ready_sync[2];

 reg [19:0] out_data;
 always @ (posedge clock_27mhz)
 if (ready) out_data <= audio_out_data;
 assign audio_in_data = left_in_data[19:0];
 assign left_out_data = out_data;
 assign right_out_data = left_out_data;

 // generate repeating sequence of read/writes to AC97 registers
 ac97commands cmds(.clock(clock_27mhz), .ready(ready),
 .command_address(command_address),
 .command_data(command_data),
 .command_valid(command_valid),
 .volume(volume),
 .source(3'b000)); // mic
endmodule

// assemble/disassemble AC97 serial frames
module ac97 (
 output reg ready,
 input wire [7:0] command_address,
 input wire [15:0] command_data,
 input wire command_valid,
 input wire [19:0] left_data,
 input wire left_valid,
 input wire [19:0] right_data,
 input wire right_valid,
 output reg [19:0] left_in_data, right_in_data,

 83

 output reg ac97_sdata_out,
 input wire ac97_sdata_in,
 output reg ac97_synch,
 input wire ac97_bit_clock
);
 reg [7:0] bit_count;

 reg [19:0] l_cmd_addr;
 reg [19:0] l_cmd_data;
 reg [19:0] l_left_data, l_right_data;
 reg l_cmd_v, l_left_v, l_right_v;

 initial begin
 ready <= 1'b0;
 // synthesis attribute init of ready is "0";
 ac97_sdata_out <= 1'b0;
 // synthesis attribute init of ac97_sdata_out is "0";
 ac97_synch <= 1'b0;
 // synthesis attribute init of ac97_synch is "0";

 bit_count <= 8'h00;
 // synthesis attribute init of bit_count is "0000";
 l_cmd_v <= 1'b0;
 // synthesis attribute init of l_cmd_v is "0";
 l_left_v <= 1'b0;
 // synthesis attribute init of l_left_v is "0";
 l_right_v <= 1'b0;
 // synthesis attribute init of l_right_v is "0";

 left_in_data <= 20'h00000;
 // synthesis attribute init of left_in_data is "00000";
 right_in_data <= 20'h00000;
 // synthesis attribute init of right_in_data is "00000";
 end

 always @(posedge ac97_bit_clock) begin
 // Generate the sync signal
 if (bit_count == 255)
 ac97_synch <= 1'b1;
 if (bit_count == 15)
 ac97_synch <= 1'b0;

 // Generate the ready signal
 if (bit_count == 128)
 ready <= 1'b1;
 if (bit_count == 2)
 ready <= 1'b0;

 // Latch user data at the end of each frame. This ensures that the
 // first frame after reset will be empty.
 if (bit_count == 255) begin
 l_cmd_addr <= {command_address, 12'h000};
 l_cmd_data <= {command_data, 4'h0};
 l_cmd_v <= command_valid;
 l_left_data <= left_data;
 l_left_v <= left_valid;
 l_right_data <= right_data;
 l_right_v <= right_valid;
 end

 84

 if ((bit_count >= 0) && (bit_count <= 15))
 // Slot 0: Tags
 case (bit_count[3:0])
 4'h0: ac97_sdata_out <= 1'b1; // Frame valid
 4'h1: ac97_sdata_out <= l_cmd_v; // Command address valid
 4'h2: ac97_sdata_out <= l_cmd_v; // Command data valid
 4'h3: ac97_sdata_out <= l_left_v; // Left data valid
 4'h4: ac97_sdata_out <= l_right_v; // Right data valid
 default: ac97_sdata_out <= 1'b0;
 endcase
 else if ((bit_count >= 16) && (bit_count <= 35))
 // Slot 1: Command address (8-bits, left justified)
 ac97_sdata_out <= l_cmd_v ? l_cmd_addr[35-bit_count] : 1'b0;
 else if ((bit_count >= 36) && (bit_count <= 55))
 // Slot 2: Command data (16-bits, left justified)
 ac97_sdata_out <= l_cmd_v ? l_cmd_data[55-bit_count] : 1'b0;
 else if ((bit_count >= 56) && (bit_count <= 75)) begin
 // Slot 3: Left channel
 ac97_sdata_out <= l_left_v ? l_left_data[19] : 1'b0;
 l_left_data <= { l_left_data[18:0], l_left_data[19] };
 end
 else if ((bit_count >= 76) && (bit_count <= 95))
 // Slot 4: Right channel
 ac97_sdata_out <= l_right_v ? l_right_data[95-bit_count] : 1'b0;
 else
 ac97_sdata_out <= 1'b0;

 bit_count <= bit_count+1;
 end // always @ (posedge ac97_bit_clock)

 always @(negedge ac97_bit_clock) begin
 if ((bit_count >= 57) && (bit_count <= 76))
 // Slot 3: Left channel
 left_in_data <= { left_in_data[18:0], ac97_sdata_in };
 else if ((bit_count >= 77) && (bit_count <= 96))
 // Slot 4: Right channel
 right_in_data <= { right_in_data[18:0], ac97_sdata_in };
 end
endmodule

// issue initialization commands to AC97
module ac97commands (
 input wire clock,
 input wire ready,
 output wire [7:0] command_address,
 output wire [15:0] command_data,
 output reg command_valid,
 input wire [4:0] volume,
 input wire [2:0] source
);
 reg [23:0] command;

 reg [3:0] state;
 initial begin
 command <= 4'h0;
 // synthesis attribute init of command is "0";
 command_valid <= 1'b0;
 // synthesis attribute init of command_valid is "0";
 state <= 16'h0000;
 // synthesis attribute init of state is "0000";

 85

 end

 assign command_address = command[23:16];
 assign command_data = command[15:0];

 wire [4:0] vol;
 assign vol = 31-volume; // convert to attenuation

 always @(posedge clock) begin
 if (ready) state <= state+1;

 case (state)
 4'h0: // Read ID
 begin
 command <= 24'h80_0000;
 command_valid <= 1'b1;
 end
 4'h1: // Read ID
 command <= 24'h80_0000;
 4'h3: // headphone volume
 command <= { 8'h04, 3'b000, vol, 3'b000, vol };
 4'h5: // PCM volume
 command <= 24'h18_0808;
 4'h6: // Record source select
 command <= { 8'h1A, 5'b00000, source, 5'b00000, source};
 4'h7: // Record gain = max
 command <= 24'h1C_0F0F;
 4'h9: // set +20db mic gain
 command <= 24'h0E_8048;
 4'hA: // Set beep volume
 command <= 24'h0A_0000;
 4'hB: // PCM out bypass mix1
 command <= 24'h20_8000;
 default:
 command <= 24'h80_0000;
 endcase // case(state)
 end // always @ (posedge clock)
endmodule // ac97commands

///
////
//// 6.111 FPGA Labkit -- Template Toplevel Module
////
//// For Labkit Revision 004
//// Created: October 31, 2004, from revision 003 file
//// Author: Nathan Ickes, 6.111 staff
////
///

module fpga_processor (beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in, ac97_synch,
 ac97_bit_clock,

 vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
 vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
 vga_out_vsync,

 tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
 tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
 tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

 86

 tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
 tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
 tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
 tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

 ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,
 ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

 ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,
 ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,

 clock_feedback_out, clock_feedback_in,

 flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
 flash_reset_b, flash_sts, flash_byte_b,

 rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

 mouse_clock, mouse_data, keyboard_clock, keyboard_data,

 clock_27mhz, clock1, clock2,

 disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
 disp_reset_b, disp_data_in,

 button0, button1, button2, button3, button_enter, button_right,
 button_left, button_down, button_up,

 switch,

 led,

 user1, user2, user3, user4,

 daughtercard,

 systemace_data, systemace_address, systemace_ce_b,
 systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

 analyzer1_data, analyzer1_clock,
 analyzer2_data, analyzer2_clock,
 analyzer3_data, analyzer3_clock,
 analyzer4_data, analyzer4_clock);

 output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
 input ac97_bit_clock, ac97_sdata_in;

 output [7:0] vga_out_red, vga_out_green, vga_out_blue;
 output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
 vga_out_hsync, vga_out_vsync;

 output [9:0] tv_out_ycrcb;
 output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
 tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
 tv_out_subcar_reset;

 input [19:0] tv_in_ycrcb;
 input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,
 tv_in_hff, tv_in_aff;
 output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,

 87

 tv_in_reset_b, tv_in_clock;
 inout tv_in_i2c_data;

 inout [35:0] ram0_data;
 output [18:0] ram0_address;
 output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;
 output [3:0] ram0_bwe_b;

 inout [35:0] ram1_data;
 output [18:0] ram1_address;
 output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;
 output [3:0] ram1_bwe_b;

 input clock_feedback_in;
 output clock_feedback_out;

 inout [15:0] flash_data;
 output [23:0] flash_address;
 output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
 input flash_sts;

 output rs232_txd, rs232_rts;
 input rs232_rxd, rs232_cts;

 input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

 input clock_27mhz, clock1, clock2;

 output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
 input disp_data_in;
 output disp_data_out;

 input button0, button1, button2, button3, button_enter, button_right,
 button_left, button_down, button_up;
 input [7:0] switch;
 output [7:0] led;

 inout [31:0] user1, user2, user3, user4;

 inout [43:0] daughtercard;

 inout [15:0] systemace_data;
 output [6:0] systemace_address;
 output systemace_ce_b, systemace_we_b, systemace_oe_b;
 input systemace_irq, systemace_mpbrdy;

 output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,
 analyzer4_data;
 output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

 //
 //
 // I/O Assignments
 //
 //

 // Audio Input and Output
 assign beep= 1'b0;
 // ac97_sdata_in is an input

 88

 // Video Output
 assign tv_out_ycrcb = 10'h0;
 assign tv_out_reset_b = 1'b0;
 assign tv_out_clock = 1'b0;
 assign tv_out_i2c_clock = 1'b0;
 assign tv_out_i2c_data = 1'b0;
 assign tv_out_pal_ntsc = 1'b0;
 assign tv_out_hsync_b = 1'b1;
 assign tv_out_vsync_b = 1'b1;
 assign tv_out_blank_b = 1'b1;
 assign tv_out_subcar_reset = 1'b0;

 // Video Input
 assign tv_in_i2c_clock = 1'b0;
 assign tv_in_fifo_read = 1'b0;
 assign tv_in_fifo_clock = 1'b0;
 assign tv_in_iso = 1'b0;
 assign tv_in_reset_b = 1'b0;
 assign tv_in_clock = 1'b0;
 assign tv_in_i2c_data = 1'bZ;
 // tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
 // tv_in_aef, tv_in_hff, and tv_in_aff are inputs

 // SRAMs
 //Ram default changes from the labkit
//Enable RAM0 - the control signals are active low
 assign ram0_ce_b = 1'b0;
 assign ram0_oe_b = 1'b0;
 assign ram0_bwe_b = 4'h0;
 assign ram0_adv_ld = 1'b0;
// Use the RAM data, address and write enable lines in place of BRAM
// assign ram0_data = 36'hZ; // store audio data here
// assign ram0_address = 19'h0; // ram address - 19 bits wide
 assign ram0_clk = clock_27mhz;
 assign ram0_cen_b = 1'b0;
// assign ram0_we_b = 1'b1 // ram write control active low
 assign ram1_data = 36'hZ;
 assign ram1_address = 19'h0;
 assign ram1_adv_ld = 1'b0;
 assign ram1_clk = 1'b0;
 assign ram1_cen_b = 1'b1;
 assign ram1_ce_b = 1'b1;
 assign ram1_oe_b = 1'b1;
 assign ram1_we_b = 1'b1;
 assign ram1_bwe_b = 4'hF;
 assign clock_feedback_out = 1'b0;
 // clock_feedback_in is an input

 // Flash ROM
 assign flash_data = 16'hZ;
 assign flash_address = 24'h0;
 assign flash_ce_b = 1'b1;
 assign flash_oe_b = 1'b1;
 assign flash_we_b = 1'b1;
 assign flash_reset_b = 1'b0;
 assign flash_byte_b = 1'b1;
 // flash_sts is an input

 // RS-232 Interface

 89

 assign rs232_txd = 1'b1;
 assign rs232_rts = 1'b1;
 // rs232_rxd and rs232_cts are inputs

 // PS/2 Ports
 // mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

 // LED Displays
 assign disp_blank = 1'b1;
 assign disp_clock = 1'b0;
 assign disp_rs = 1'b0;
 assign disp_ce_b = 1'b1;
 assign disp_reset_b = 1'b0;
 assign disp_data_out = 1'b0;
 // disp_data_in is an input

 // Buttons, Switches, and Individual LEDs
 // button0, button1, button2, button3, button_enter, button_right,
 // button_left, button_down, button_up, and switches are inputs

 // User I/Os
 //assign user1 = 32'hZ;
 assign user2 = 32'hZ;
 assign user3 = 32'hZ;
 assign user4 = 32'hZ;

 // Daughtercard Connectors
 assign daughtercard = 44'hZ;

 // SystemACE Microprocessor Port
 assign systemace_data = 16'hZ;
 assign systemace_address = 7'h0;
 assign systemace_ce_b = 1'b1;
 assign systemace_we_b = 1'b1;
 assign systemace_oe_b = 1'b1;
 // systemace_irq and systemace_mpbrdy are inputs
 // wire [7:0] from_ac97_data, to_ac97_data;
 // wire ready;

 // Logic Analyzer
 //lab5 assign analyzer1_data = 16'h0;
 //lab5 assign analyzer1_clock = 1'b1;
 assign analyzer2_data = 16'h0;
 assign analyzer2_clock = 1'b1;
 //lab5 assign analyzer3_data = 16'h0;
 //lab5 assign analyzer3_clock = 1'b1;
 assign analyzer4_data = 16'h0;
 assign analyzer4_clock = 1'b1;

 //
 //
 // Reset Generation
 //
 // A shift register primitive is used to generate an active-high reset
 // signal that remains high for 16 clock cycles after configuration finishes
 // and the FPGA's internal clocks begin toggling.
 //
 //

 // use FPGA's digital clock manager to produce a

 90

 // 65MHz clock (actually 64.8MHz)
 wire clock_65mhz_unbuf,clock_65mhz;
 DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
 // synthesis attribute CLKFX_DIVIDE of vclk1 is 10
 // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
 // synthesis attribute CLK_FEEDBACK of vclk1 is NONE
 // synthesis attribute CLKIN_PERIOD of vclk1 is 37
 BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

 wire reset, power_on_reset;
 SRL16 reset_sr2 (.D(1'b0), .CLK(clock_65mhz), .Q(power_on_reset),
 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
 SRL16 #(.INIT(16'hFFFF)) reset_sr(.D(1'b0), .CLK(clock_27mhz), .Q(reset),
 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));

 wire [19:0] from_ac97_data, to_ac97_data;
 wire ready;

 // display module for debugging

/*
 wire clock_27mhz_buf;
 BUFG vclk3(.O(clock_27mhz_buf),.I(clock_27mhz));

 wire [63:0] dispdata = {1'b0,cx2,2'b0,cy2,40'b0};
 display_16hex hexdisp1(reset, clock_27mhz_buf, dispdata,
 disp_blank, disp_clock, disp_rs, disp_ce_b,
 disp_reset_b, disp_data_out);
*/

 // allow user to adjust volume and control the looper.
 wire vup,vdown, left_button, right_button;
 reg old_vup,old_vdown,change,loop_reset, old_lb, old_rb;
 debounce bup(.reset(reset),.clock(clock_27mhz),.noisy(~button_up),.clean(vup));
 debounce bdown(.reset(reset),.clock(clock_27mhz),.noisy(~button_down),.clean(vdown));
 debounce lb(.reset(reset),.clock(clock_27mhz),.noisy(~button_left),.clean(left_button));
 debounce rb(.reset(reset),.clock(clock_27mhz),.noisy(~button_right),.clean(right_button));
 reg [4:0] volume;
 always @ (posedge clock_27mhz) begin
 if (reset) begin
 volume <= 5'd8;
 change <= 0;
 loop_reset <= 0;
 end

 else begin
 if (vup & ~old_vup & volume != 5'd31) volume <= volume+1;
 if (vdown & ~old_vdown & volume != 5'd0) volume <= volume-1;
 if (left_button & ~old_lb) loop_reset <= 1;
 else loop_reset <= 0;
 if (right_button & ~old_rb) change <= 1;
 else change <= 0;
 end
 old_vup <= vup;
 old_vdown <= vdown;
 old_lb <= left_button;
 old_rb <= right_button;
 end

 // AC97 driver

 91

 audio a(clock_27mhz, reset, volume, from_ac97_data, to_ac97_data, ready,
 audio_reset_b, ac97_sdata_out, ac97_sdata_in,
 ac97_synch, ac97_bit_clock);

 // Debounce the used switches.
 wire distortion, delay, pitch_shifter, wah, chorus, phaser, reverb, delay_options;

 debounce sw0(.reset(reset),.clock(clock_27mhz),.noisy(switch[0]),.clean(distortion));
 debounce sw1(.reset(reset),.clock(clock_27mhz),.noisy(switch[1]),.clean(delay));
 debounce sw2(.reset(reset),.clock(clock_27mhz),.noisy(switch[2]),.clean(pitch_shifter));
 debounce sw3(.reset(reset),.clock(clock_27mhz),.noisy(switch[3]),.clean(wah));
 debounce sw4(.reset(reset),.clock(clock_27mhz),.noisy(switch[4]),.clean(chorus));
 debounce sw5(.reset(reset),.clock(clock_27mhz),.noisy(switch[5]),.clean(phaser));
 debounce sw6(.reset(reset),.clock(clock_27mhz),.noisy(switch[6]),.clean(reverb));
 debounce sw7(.reset(reset),.clock(clock_27mhz),.noisy(switch[7]),.clean(delay_options));

 // light up LEDs when recording, show volume during playback.
 // led is active low
 assign led[7:3] = 5'b11111;
 wire signed [19:0] looper_out, effects_out;
 reg [20:0] mem_address, highest_address;
 reg [2:0] state;
 reg signed [19:0] mem_inp;
 reg [20:0] highest_adress = 0;
 reg record;

 // Instantiate the effects controller.
 Effects_Controller #(.N(20)) processor(.clock(clock_27mhz), .reset(reset), .ready(ready),
.distortion(distortion), .pitch_shifter(pitch_shifter), .wah(wah), .chorus(chorus), .phaser(phaser),
.delay(delay), .reverb(reverb), .digital_in(from_ac97_data), .digital_out(effects_out),
.distortion_options(1'b1), .delay_options(delay_options));

 // Looper module
 parameter NOT_ACTIVE = 3'd0;
 parameter RECORD = 3'd1;
 parameter PLAYBACK = 3'd2;
 parameter RECORD_AND_PLAYBACK_RETRIEVE = 3'd3;
 parameter RECORD_INTERMEDIATE_ONE = 3'd4;
 parameter RECORD_INTERMEDIATE_TWO = 3'd5;
 parameter RECORD_INTERMEDIATE_THREE = 3'd6;
 parameter RECORD_AND_PLAYBACK_STORE = 3'd7;
 parameter ADDRESS_COUNTER = (1<<19)-1;
 reg [35:0] ram_data;
 reg [1:0] counter = 0;

 always @(posedge clock_27mhz) begin

 // When reset is high, set all of the registers to their default value.
 if (reset) begin
 mem_address <= 0;
 state <= NOT_ACTIVE;
 highest_adress <= 0;
 ram_data <= 0;
 record <= 1;
 counter <= 0;
 end

 case(state)

 92

 // If looper is not active, do nothing. On change, go to record state.
 NOT_ACTIVE: begin

 mem_address <= 0;
 highest_address <= 0;
 ram_data <= 0;
 mem_inp <= 0;
 if (change) state <= RECORD;
 end

 RECORD: begin

 // On reset, go to NOT_ACTIVE state.
 if (loop_reset) state <= NOT_ACTIVE;

 // On change, go to playback state.
 else if (change) state <= PLAYBACK;

 // Store the current input to the ZBT memory. Allow for three clock cycles to hold the ZBT
 // WE long enoguh. Increment the counters and memory address appropriately.
 else if (ready) begin

 record <= 0;
 counter <= counter + 1;

 if (mem_address == ADDRESS_COUNTER) begin

 state <= PLAYBACK;
 mem_address <= 0;
 mem_inp <= effects_out;

 end

 else begin

 mem_address <= mem_address + 1;
 highest_address <= mem_address + 1;
 mem_inp <= effects_out;
 end
 end

 else if (counter == 3) begin
 record <= 1;
 counter <= 0;
 end

 else if (counter != 0) counter <= counter + 1;
 end

 PLAYBACK: begin

 // Play the stored signals one by one.
 record <= 1;

 // On reset, go back to not active state. On change, record over the stored data.
 if (loop_reset) state <= NOT_ACTIVE;
 else if (change) state <= RECORD_AND_PLAYBACK_RETRIEVE;

 else if (ready) begin

 93

 ram_data <= ram0_data;
 if (mem_address == highest_address) mem_address <= 0;
 else mem_address <= mem_address + 1;

 end

 end

 RECORD_AND_PLAYBACK_RETRIEVE: begin

 // On reset, go back to not active state. On change, playback the stored data.
 if (loop_reset) state <= NOT_ACTIVE;
 else if (change) state <= PLAYBACK;

 // On ready, collect the current stored value and go to the next state.
 else if (ready) begin

 ram_data <= ram0_data;
 state <= RECORD_INTERMEDIATE_ONE;
 mem_inp <= effects_out + ram_data[19:0];
 record <= 0;
 end

 end

 RECORD_INTERMEDIATE_ONE: state <= RECORD_INTERMEDIATE_TWO;

 RECORD_INTERMEDIATE_TWO: state <= RECORD_INTERMEDIATE_THREE;

 RECORD_INTERMEDIATE_THREE: state <= RECORD_AND_PLAYBACK_STORE;

 RECORD_AND_PLAYBACK_STORE: begin

‚ // ADD the current input to the ZBT memory. Allow for three clock cycles to hold the ZBT
 // WE long enough (the three intermediate states). Increment the memory address
appropriately.
 record <= 1;
 if (loop_reset) state <= NOT_ACTIVE;
 else if (change) state <= PLAYBACK;
 else state <= RECORD_AND_PLAYBACK_RETRIEVE;

 if (mem_address == highest_address) mem_address <= 0;

 else mem_address <= mem_address + 1;
 end

 // On default, set all the registers to their default state.
 default: begin

 mem_address <= 0;
 state <= NOT_ACTIVE;
 highest_adress <= 0;
 record <= 1;
 end

 endcase

 end

 assign led[2:0] = 3'b111;

 94

 assign ram0_data = (~record) ? {16'd0, mem_inp} : 36'hZ; // store audio data here - ZBT memory
 assign ram0_address = mem_address; // ZBT address
 assign ram0_we_b = record; // WE signal for ZBT memory

 assign to_ac97_data = effects_out + ram_data[19:0];

 // generate basic XVGA video signals
 wire [10:0] hcount;
 wire [9:0] vcount;
 wire hsync,vsync,blank;
 xvga xvga1(clock_65mhz,hcount,vcount,hsync,vsync,blank);

 // ASCII characters for display.
 wire [63:0] cstring1 = "Effects:";
 wire [31:0] cstring2 = "Dist";
 wire [39:0] cstring3 = "Delay";
 wire [47:0] cstring4 = "Chorus";
 wire [23:0] cstring5 = "Wah";
 wire [47:0] cstring9 = "State:";
 wire [47:0] cstring10 = "Active";
 wire [63:0] cstring11 = "Inactive";
 wire [31:0] cstring12 = "Slap";
 wire [31:0] cstring13 = "Echo";

 // Wires holding the values for VGA pixels.
 wire [2:0] cdpixel1, cdpixel2, cdpixel3, cdpixel4, cdpixel5, cdpixel9, cdpixel10, cdpixel_dist_active,
cdpixel_dist_inactive;
 wire [2:0] cdpixel_delay_slap, cdpixel_delay_echo, cdpixel_delay_inactive, cdpixel_chorus_active,
cdpixel_chorus_inactive, cdpixel_wah_active, cdpixel_wah_inactive;
 wire [2:0] cdpixel_dist_state, cdpixel_delay_state;
 wire [2:0] cdpixel_chorus_state, cdpixel_wah_state;

 // Modules for displaying all of the used effects and their states.
 char_string_display cd1(clock_65mhz,hcount,vcount,
 cdpixel1,cstring1,11'd320,10'd100);

 char_string_display cd2(clock_65mhz,hcount,vcount,
 cdpixel2,cstring2,11'd320,10'd180);

 char_string_display cd3(clock_65mhz,hcount,vcount,
 cdpixel3,cstring3,11'd320,10'd260);

 char_string_display cd4(clock_65mhz,hcount,vcount,
 cdpixel4,cstring4,11'd320,10'd340);

 char_string_display cd5(clock_65mhz,hcount,vcount,
 cdpixel5,cstring5,11'd320,10'd420);

 char_string_display cd9(clock_65mhz,hcount,vcount,
 cdpixel9,cstring9,11'd640,10'd100);

 char_string_display cd10(clock_65mhz,hcount,vcount,
 cdpixel_dist_active,cstring10,11'd640,10'd180);

 char_string_display cd11(clock_65mhz,hcount,vcount,
 cdpixel_dist_inactive,cstring11,11'd640,10'd180);

 assign cdpixel_dist_state = (distortion) ? cdpixel_dist_active : cdpixel_dist_inactive;

 char_string_display cd12(clock_65mhz,hcount,vcount,

 95

 cdpixel_delay_slap,cstring12,11'd640,10'd260);

 char_string_display cd13(clock_65mhz,hcount,vcount,
 cdpixel_delay_echo,cstring13,11'd640,10'd260);

 char_string_display cd14(clock_65mhz,hcount,vcount,
 cdpixel_delay_inactive,cstring11,11'd640,10'd260);

 assign cdpixel_delay_state = (~delay) ? cdpixel_delay_inactive : (delay_options) ?
cdpixel_delay_echo : cdpixel_delay_slap;

 char_string_display cd15(clock_65mhz,hcount,vcount,
 cdpixel_wah_active,cstring10,11'd640,10'd340);

 char_string_display cd16(clock_65mhz,hcount,vcount,
 cdpixel_wah_inactive,cstring11,11'd640,10'd340);

 assign cdpixel_wah_state = (wah) ? cdpixel_wah_active : cdpixel_wah_inactive;

 char_string_display cd17(clock_65mhz,hcount,vcount,
 cdpixel_chorus_active,cstring10,11'd640,10'd420);

 char_string_display cd18(clock_65mhz,hcount,vcount,
 cdpixel_chorus_inactive,cstring11,11'd640,10'd420);

 assign cdpixel_chorus_state = (chorus) ? cdpixel_chorus_active : cdpixel_chorus_inactive;

 reg [2:0] rgb;
 reg b,hs,vs;

 // Display the appropraite characters.
 always @(posedge clock_65mhz) begin
 hs <= hsync;
 vs <= vsync;
 b <= blank;
 rgb <= cdpixel1 | cdpixel2 | cdpixel3 | cdpixel4 | cdpixel5 | cdpixel9 | cdpixel_dist_state |
cdpixel_delay_state | cdpixel_wah_state | cdpixel_chorus_state ;
 end

 // VGA Output. In order to meet the setup and hold times of the
 // AD7125, we send it ~clock_65mhz.
 assign vga_out_red = {8{rgb[2]}};
 assign vga_out_green = {8{rgb[1]}};
 assign vga_out_blue = {8{rgb[0]}};
 assign vga_out_sync_b = 1'b1; // not used
 assign vga_out_blank_b = ~b;
 assign vga_out_pixel_clock = ~clock_65mhz;
 assign vga_out_hsync = hs;
 assign vga_out_vsync = vs;

 // output useful things to the logic analyzer connectors
 assign analyzer1_clock = ac97_bit_clock;
 assign analyzer1_data = {12'd0, to_ac97_data[3:0]};

 assign analyzer3_clock = ready;
 assign analyzer3_data = {to_ac97_data[19:4]};
endmodule

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
 input vclock;

 96

 output [10:0] hcount;
 output [9:0] vcount;
 output vsync;
 output hsync;
 output blank;

 reg hsync,vsync,hblank,vblank,blank;
 reg [10:0] hcount; // pixel number on current line
 reg [9:0] vcount; // line number

 // horizontal: 1344 pixels total
 // display 1024 pixels per line
 wire hsyncon,hsyncoff,hreset,hblankon;
 assign hblankon = (hcount == 1023);
 assign hsyncon = (hcount == 1047);
 assign hsyncoff = (hcount == 1183);
 assign hreset = (hcount == 1343);

 // vertical: 806 lines total
 // display 768 lines
 wire vsyncon,vsyncoff,vreset,vblankon;
 assign vblankon = hreset & (vcount == 767);
 assign vsyncon = hreset & (vcount == 776);
 assign vsyncoff = hreset & (vcount == 782);
 assign vreset = hreset & (vcount == 805);

 // sync and blanking
 wire next_hblank,next_vblank;
 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
 always @(posedge vclock) begin
 hcount <= hreset ? 0 : hcount + 1;
 hblank <= next_hblank;
 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
 vblank <= next_vblank;
 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);
 end
endmodule

