FPGA GUITAR MULTI-EFFECTS PROCESSOR

Haris Brkic
6.111 Final Project
Presentation

Guitar Effect
Pedalboards

Motivation

- Analog Pedals are expensive
- Creating a good pedalboard requires a lot of different pedals
- Digital implementation would avoid the heavy wiring some of the pedals require
- We can create the versions of effects suitable to our personal preferences

BLOCK DIAGRAM

Modules

- Signal Processor transforms the signal to allow the AC97 to use it
- Amp Processor converts the AC97 output to a guitar amplifier input
- Effects Controller sends the digitized signal through the proper chain of effects
- Graphics Module displays the currently used effects and parameters

Effects

- Distortion distort the sound and add overtones
- Delay makes an echo effect
- Looper records and loops a phrase
- Chorus simulates a choir
- Phaser creates a slight rippling effect
- Pitch Shifter changes the pitch of the notes played
- Reverb simulates spacious sounds
- Wah-wah creates vowel-like sounds

DISTORTION EFFECT

TIMELINE

Week of November 6th:

- Implement the basic effect modules: distortion and delay
- Write the Signal Processor and Amp Processor modules

Week of November 13th:

- Implement the looper, chorus, wah-wah, and the basic Graphics Module
- Test if sound passes through the AC97 and is audible from the amplifier
- Implement the more complex effects (phaser, pitch shifter, reverb)

Week of November 20th:

- Test and debug the distortion, delay, looper, wah-wah, and chorus modules
- Write the Effects Controller module
- Check the current *Graphics Module*

Week of November 27th:

- Test and debug the more complex effects
- Implement a more appealing user interface

Week of December 4th:

Finish testing and debugging all the modules