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1  Overview 
Softball is a team sport played by people of all ages. It relies on both strategy and skill in order 
to succeed.  In the winter months, it is often difficult to practice outside due to cold weather. 
This virtual softball game allows users to swing a real bat and practice their hitting timing from 
the comfort of the indoors.  It also gives non-softball players the opportunity to experience a 
life-like version of the game with real equipment. 

 
Users will stand with a bat in front of a screen.  When the game begins, the user will signal that 
they are ready for a swing and the pitch initiates with the ball appearing at a random location in 
the strike zone.  As the ball approaches the batter, this will be visually cued by the ball changing 
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color and growing larger.  Additional visual cues to assist the user will be a strip of LEDs that 
indicate the changing distance of the batter to the ball as it approaches. 

 
The user is expected to swing the bat when the ball is in a hittable position.  By interfacing with 
an IMU, real bat position and angle from an accelerometer and gyroscope can be recorded, and 
a virtual representation of the bat will be reflected onto the screen in front of the user after the 
swing.  The goal is to give the user feedback on both their hitting timing as well as their batting 
mechanics in the form of the bat angle while swinging.  The screen will indicate approximately 
where the bat hit the ball (up, down, left, right, center) or if they missed the ball due to timing or 
incorrect bat angle.  If the ball is hit, a future plausible trajectory of the hit ball will be shown in 
order to make the game more fun and give better visual feedback to the user. 

 
There are a few additional features added to this game to make it more enjoyable for the user. 
A real picture of a softball pitcher will be the background to the game, and the full size game will 
be playable on a TV.  The score will also be displayed on the labkit, denoting the total hits and 
misses for each user.  Users also have the option to choose their difficulty.  The more difficult 
game has a faster ball speed and less time for the user to react.  Additionally, a foot pedal is 
used instead of a button press to signal that the batter is ready for the pitch. 

2 Goals 
The following list of goals were submitted as the project checklist.  

2.1 First Base (Baseline) 

1. Calculate angle of a physical bat swing using an IMU’s accelerometer readings. Also 

determine timing of swing from gyroscopic readings. 

 

2. Connect FPGA to IMU via a microcontroller transmitting a stream of accelerometer data 

using UART over a direct wired connection. Deserialize this input to get real-time values. 

 

3. Graphically represent an approaching ball by blending color and increasing size of a 

circle. 

 

4. Display a bat object at any angle provided by a real bat orientation.  

 

5. Signal a new pitch and calibration with a button press. Trigger graphical response based 

on swing timing. 
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2.2 Second Base (Expected) 

1. Randomly change the ball location in the strike zone between pitches. Correctly detect a 

hit or miss taking into account the ball’s location and bat swing. 

 

2. Detect that the user wants the next pitch when they raise the bat by their shoulder. 

Graphically pitch the ball at this time. 

 

3. Based on the bat angle and timing, show on the ball where the bat would have likely 

contacted the ball. 

 

4. Determine the angle of the physical bat as it comes through the strike zone using a 

combination of accelerometer and gyroscope readings, in order to accurately determine 

the bat angle at high speed circular swinging motions. 

2.3 Third Base (Stretch) 

1. Transmit IMU data over bluetooth connection to wirelessly communicate with the FPGA. 

 

2. Improved gameplay interface in at least two of the following areas. 

● Include softball-themed backdrop on screen. 

● Add sound effects for ball hits and misses. 

● Make game playable on TV screen 

● Adjustable difficulty can be set by the user before each swing. 

● Provide scoring system 

 

3. Utilize an addressable RGB LED strip to indicate the approaching ball, which is 

appropriately in sync with the FPGA. 

2.4 Home Run 

1. Have fun! 
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3 Higher Level Block Diagram 

Figure 1. Full system block diagram including all modules and signals, with indicated wire widths. Blue 
wires represent inputs/outputs through the labkit that interface with physical world, black wires are internal 
 

4 Subsystems 

4.1 Finite State Machine (FSM) 
The FSM is in control of understanding the current state of gameplay and updating the 
necessary signals.  At a high level, this module takes inputs from both the user and the graphics 
module.  Figure 2 shows the state transitions dependent on external signals.  The user is able to 
signal when they want the ball to be pitched by raising the bat, which changes the state from 
IDLE to BATTER_UP_WAIT resulting in a one second pause before the ball is pitched.  This 
allows the batter to get ready to hit, and is especially useful when playing in difficult mode. 
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The FSM then knows when the ball is approaching the batter and changes state to 
BALL_IN_ZONE, denoting the only state in which the batter can swing and have correct timing 
for a hit.  To determine when the ball switches from just approaching the batter to being in the 
strike zone and hittable, the FSM receives signals from the graphics module.  The graphics 
module outputs a pulse each time all pixels are refreshed (hcount = SCREEN_WIDTH and 
vcount = SCREEN_HEIGHT), so by counting the number of pulses, the FSM can time when the 
ball is a certain size and in the hittable zone.  This ensures that what the user is viewing 
accurately reflects the game state. 
 
If the user swings (external signal from bat module) when the ball is in a hittable state, the state 
changes to SYNC where the FSM waits for the pulse from graphics that the screen has been 
refreshed.  After this indication from graphics, the FSM enters the SWING state where it waits 
for the graphics module to analyze whether the ball was hit.  In short, the graphics module tells 
the FSM if there is overlap between the ball and bat for each pixel.  If there is, then the graphics 
module sends a hit signal.  If any hit signals are sent for one screen cycle, then the swing was 
considered a hit and the FSM moves to the HIT state.  While in the SWING state, if the FSM 
receives another screen cycle pulse from graphics, then it will determine that graphics had no 
overlap between the bat and ball, so the user missed.  This puts the FSM in the SWING_MISS 
state.  After about 5 seconds from either the HIT or SWING_MISS state, the FSM returns to the 
IDLE state, waiting for the batter to signal another pitch. 
 
If the batter swings from the wrong state at any time, the FSM changes to the TIME_MISS state. 
In this state, the FSM waits for another batter up signal from the user, or it times out after 5 
seconds back to the IDLE state. 

 
Figure 2. Finite State Machine Transition Diagram 
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In addition to keeping track of gameplay, the FSM also sends important signals to other 
modules.  It tells graphics when to display the angle of the bat on the screen, based on the 
current state.  It also keeps track of hits and misses so that the score can be displayed to the 
user.  It also determines the exact timing of the swing.  In the BALL_COMING state, the FSM 
determines which side of the ball the user hit based on the how deep the ball is in the strike 
zone.  Again, the FSM knows this information by counting screen refresh pulses from the 
graphics module.  The FSM then sends this timing information to the graphics module. 

 

4.2 Bat Physics 
To bring the real bat into a virtual environment, it was 
necessary to compute an accurate bat angle and position 
during a full swing from the sensors attached to the bat. The 
system relies only on data from a 9-axis IMU, streamed through 
an FPGA input pin, which provides gyroscopic and 
accelerometer data that allows a calculation of the bat’s 
orientation. The axes on the bat are defined in Figure 3. These 
definitions follow the right hand rule, with the exception of 
gyroz, which measures rotation around the negative z axis, not 
the positive z axis. The IMU is configured to output a signed 
16-bit number, with a maximum output of 2000dps for the 
gyroscope and 2g for the acceleration. The increase in the gyro 
threshold was necessary for the fast swings present in softball. 
Once the data is decoded by the serial receiver, acceleration 
and gyroscopic values are passed into the bat module for 
processing. The bat module consists of a small FSM to track 
the different stages of a swing and two submodules that 
constantly update position and angle calculations based on 
new data from the IMU.  
 

4.2.1 Position 
The position module needs to calibrate to a starting position, wait until the bat has 
rotated away, and then indicate once the bat returns to the initial position. This allows 
the system to fully track a swing from calibration to the single clock pulse of the bat 
crossing the hitting zone. Position takes in gyroz readings, which is the angular velocity 
about the vertical axis, to track how the bat rotates around the user and when it crosses 
the hitting plane, ie returns to the calibrated point. The gyro input is scaled and 
integrated to estimate the angle from its original position, using the following update 
equation: Note that to avoid computationally intensive[n] [n ] [n ] > .θz = θz − 1 + gz − 1 > T  
divisions, right shifts are used, equivalent to dividing by powers of two. Upon calibrating, 
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the angle is reset to zero and then a swing signal is sent after the angle has changed 
and returned to zero. Additionally, a range of values (defined as being under some 
threshold) are considered at the ‘zero’ position, ensuring that only real motions trigger 
these signals. An optimum value for the threshold and T were determined through 
experimentation (see ​section 5.5 ​for more detail on this process). Although relying purely 
on gyroscope values to calculate the angle introduces error due to drift, the effects are 
negligible since calibration occurs before each hit and the time between calibrating and 
swinging is only a few seconds. We also found that for some users, a raised bat would 
also trigger a swing, since the calculated angle becomes zero due to additional rotations. 
For example lifting the bat directly upwards to the user’s shoulder does not result in any 
rotation about one’s torso (z-axis), however the bat will be upside down. To exclude 
these cases, the zero position is only signalled if the angle with respect to horizontal is 
within about 60 degrees of the calibration point (ie in front of the user), requiring a similar 
calculation with gyrox. 

4.2.2 Slope 
Accurately reflecting the angle of the bat proved to be a major challenge requiring many 
iterations and tinkering to reach its functional state. On an FPGA, complex trigonometric 
functions take too many clock cycles, so we chose to represent the bat angle with slope, 
as a ratio between X and Y values with a positive or negative direction (detailed in 
section 6.2​). When the bat is stationary, all acceleration is due to gravity, which can be 
used to determine the orientation of the bat. From the IMU, accely values are used to 
describe Y, since it is zero when the bat is held horizontally and negative when pointing 
up, positive otherwise, indicating direction of the slope as well. On the other axis, X 
comes from accelz, which is at its maximum magnitude when the bat is horizontal, since 
it is perpendicular to the bat, therefore along the same direction as gravitational 
acceleration. Using a basic low pass equation suffices to calculate the slope for a 
stationary bat, however to factor in faster movements, an additional high pass term from 
the integration of gyrox needs to be included to get the combined equation:  
 

[n] 1 )(gyro) (accel)θx = ( −  β
2DIV

+  β
2DIV

 
         (((1 < IV ) )(θ [n ] [n ] > ) (a [n ])) > IV  =  < D − β x − 1 + gx − 1 > T + β y − 1 > D  

 
The ratio determines the sensitivity to the gyro readings, experimentally found to beβ

2DIV
 

around . The exact order of operations and size of registers turned out to be quite.01  0  
important because if the division occurs first, almost all results will be zero, but with the 
multiplication occurring first, it is ensured that the buffers are both large enough to not 
clip the higher order bits. Also note that all registers are signed, so verilog syntax must 
be used cautiously to guarantee that positive values have a leading zero appended.  
 
With the minor bugs fixed and optimal constants set, the bat could be tracked quite 
accurately with the merged gyro and accel equation for both X and Y values. However, 
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as soon as we stepped up to the plate for a few swings, the measurements were 
completely thrown off due to the centripetal acceleration that the IMU experiences. Since 
this acceleration points inwards in the negative y direction, it appeared as if there was 
additional gravity pulling the bat down, resulting in extreme negative unrealistic angles. 
After discovering this major issue, we attempted many different approaches to 
compensate for it and did some more research on what solutions may already exist, 
however none of them seemed practical enough to implement on an FPGA. A similar 
research project was done in the University of Michigan on tracking a bat swing with an 
IMU (King, K., Hough, J., McGinnis, R., & Perkins, N. C. 2012. A new technology for 
resolving the dynamics of a swinging bat. ​Sports Engineering​, ​15​, 41-52. Web.), but 
relied on post-processing of the data and complex trigonometric and matrix calculations, 
which was not ideal for real-time tracking with an FPGA. One of our first ideas was to 
ignore acceleration readings by lowering the beta ratio while the bat is swinging fast (as 
determined from the gyro), but this was not reliable enough for the wide variety of 
possible swings and the complex motion through the air. We also considered relying only 
on gyro readings, as for position, since they are not affected by centripetal acceleration. 
We found that these gyro readings were also thrown off during an actual swing due to 
rotation about other axes, which we were not able to account for using implementable 
formulas for the FPGA. Thresholding acceleration readings, at say 1g to eliminate any 
extreme values, was also not enough. We almost decided to switch to a bunting game 
where the user only determines a stationary angle, but not while swinging.  
 
After weeks of frustration, we came across a couple changes that, combined, could give 
us accurate results even during a real softball swing. The first fix was setting a constant 
X value. This eliminated the most extreme angles and did not seriously hinder true 
reflections of the bat’s angle, since we generally expect shallow angles. The next small 
change that made a huge difference was bringing the IMU closer to user’s hands, the 
approximate point of rotation, thereby reducing centripetal acceleration proportional to 
the change in radius. Finally, a modification on the equation to reduce the acceleration 
readings by a factored magnitude of gyroz, presumably proportional to the centripetal 
acceleration, worked best. It still required a lot of testing to determine all constants, so 
that spinning around while holding the bat level kept the angle stable. Although not a 
perfectly accurate equation, our approximations are reasonable enough that the game is 
playable and nearly reflects the real bat’s angle. 

    

4.3 Bat Signals 
In the softball game, the ball is pitched once the batter is ready and has the bat raised above 
their shoulder. Since a calibration signal when the bat is held horizontally in the hitting zone is 
necessary, we wanted to avoid an additional button press to signal the pitch. Instead, the bat 
module should use IMU data to determine when a batter is ready for the pitch. The position 
module uses gyroscopic values to detect when the bat has rotated away from its calibration 
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point, so the raised bat sensing can be incorporated as an additional state during this movement 
phase. In this state, position waits until gyro readings fall below a threshold then signals 
batter_up, indicating the bat is no longer moving, so the user is stationary and ready for the 
pitch. After a one second delay, the ball appears on the screen. We experimented with a variety 
of motion detection methods that more heavily constrain orientation and position of the bat, but 
found that this simpler technique functioned accurately and for the widest range of users. 

4.4 Serial Communication 
To enable all of the physical bat calculations, 6 degrees of freedom measurements are retrieved 
from the IMU, an MPU9250 on a breakout board. Instead of wasting weeks defining an I2C 
protocol and setup sequence on the FPGA, we chose to interface the IMU through a 
microcontroller, the Teensy V3.2, and define our own serial protocol to communicate with the 
FPGA (more on this decision in ​section 7.3​). This required defining a protocol to use, enforcing 
it on the Teensy, and decoding it on the FPGA (see figure 4).  
 
Initially, we implemented the simplest serial stream of all bits the Teensy received from the IMU 
whenever new data was available. The microcontroller library was based on a public library 
available for this specific device, requiring only minor adjustments of the sensitivity. The stream 
code, written in C++ for Arduino, is available in the Appendix (​section 11.2​). Although 
communication runs at 115200 baud, the IMU only outputs new values at approximately 400 Hz, 
so the signal is expected to appear as twelve 8-bit packets (6DOF of 16-bits each) with a start 
and stop bit, then a few microsecond delay before the next cluster of packets.  
 
To separate the packet reading and cluster organizing functions, thereby allowing for more 
modularity in the future, two new verilog modules are defined. The serialRX module gets an 
(synchronized) input signal from the FPGA’s IO ports and translates the stream into 8-bit 
packets from start to end bit, asserting a done signal when ready. Structured as an FSM to 
handle the IDLE, START, READ, and STOP states, the serialRX behaves similarly to the RS232 
module implemented in lab 2b while reading. It shifts in new incoming bits toward the right (LSB 
first) at a 115 kHz frequency until it has read all eight bits and outputs it as a complete packet. 
This allows the bluetoothRX module (originally known as imuRX, with slight modifications 
explained in the next section) to read the inputs packet by packet, and sort them into their 
proper assignment, accel and gyro x,y,z. This module uses an array to store the six desired 
readings, assigning them to their respective values. The FSM primarily alternates between 
reading the least significant bytes (which actually arrives first) and the most significant, then 
concatenating before updating the array. Once a whole cluster of packets has been read, 
indicated by a long delay of no new packets, a done signal is asserted and it returns to an IDLE 
state. Although initially not the most robust system, this setup sufficed to consistently transfer 
data on a wired connection of over a meter of unshielded wire. 
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4.5 Wireless Communication 
A long wire connecting the bat to the FPGA was not ideal, as it would whip around during the 
swing and eventually come loose or snap. We had always planned to transfer our serial 
communication to a wireless module, but weren’t sure about the difficulties it may bring. Ideally 
the transition from an already existing UART communication protocol would just require passing 
the data over the air instead of a wire, but it introduced some underlying issues with the original 
protocol. The first step was identifying the components needed to enable wireless 
communication. Two BlueSMiRF devices from SparkFun are necessary, which run at 115200 
baud off of the same 5V supply as the Teensy. Additionally, a 3.7V lithium ion polymer battery 
with a charger and DC step up converter to 5V is needed to supply power. With the hardware 
wired up and secured to the bat, the sparkfun guide can be used to setup the bluetooth 
connection and pair the modules to stream anything directly.  

 
Unfortunately, the reading seemed all jumbled since packets arrive as clusters of clusters, 
meaning that three full IMU readings would be sent immediately after each other, with a long 
pause in between. This confused the imuRX packet decoder, which was anticipating a delay 
between each cluster, not after three sequential clusters, which may also be broken mid-cluster. 
This unpredictable nature of bluetooth transmission required redefining the protocol to be more 
robust to such uncertainties. Learning from how UART sends each 8-bit packet, we decided to 
include a start packet, before sending the cluster of twelve IMU packets. Instead of relying on a 
long delay to indicate a new cluster, the bluetoothRX waits for the start byte to reset its byte 
counter, which is then used to index into the array of IMU values. For this approach to work, the 
Teensy must ensure that the specific start sequence is not sent coincidentally as an IMU 
reading, so a check-and-replace code selecting for the start byte is included on the Teensy 
before transmitting the bytes to the bluetooth device. Only the bottom byte needs to be 
replaced, making an insignificant change from 0x__11 to 0x__10, which does not impact the 
angle detection. The bluetoothRX module needed to be modified to detect the start byte and 
then stay in the reading lower bits state while resetting the counter. 
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4.6 Gameplay Graphics 
This section will discuss the overall visual cues provided by the graphics module to allow the 
user to play the game. 

4.6.1 Shapes 
The three main shapes responsible for gameplay include blob (rectangle), circle_blob (a 
circle), and bat_blob (an angled rectangle).  Each of these shapes is overlaid on top of a 
real picture of a softball pitcher, as shown in figure 5 below.  
 

 
 
The rectangular blob was used to make 6 yellow lines that represent the outline of the 
strike zone.  This allows the user to have an idea of where the ball is coming into the 
zone, and the bat angle required to hit it.  This module was mainly created from Pong 
(Lab 3) and adjusted for the purposes of this game.  
 
The circle_blob was used as the softball.  It requires the use of extra registers to handle 
the multiplication involved in defining a circle.  No further pipelining is necessary, as a 
few clock cycle inconsistencies will not be noticed by the user.  The module takes the 
center of the circle and radius as input, allowing the softball to move and change size. 
The ball begins to appear when the fsm sends the start_pitch signal to the graphics 
module. 
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The bat_blob represents the bat as it comes through the strike zone.  The bat is 
anchored to the center of the left edge of the screen, and the module takes as input an X 
component, Y component, and up or down indication.  These inputs represent the slope 
of the bat’s angle as it comes through the zone.  The bat_blob module utilizes multiple 
equations that use multiplication instead of division to determine the bat outline lines. 
The module takes into account whether the bat angle was up or down so that the 
bat_blob module does not have to use signed numbers, and instead uses separate, but 
related, equations for the different directions.  The equations also center the bat 
vertically and maintains a relatively constant bat width despite different angles. The bat 
appears according to the bat_enable signal sent by the fsm module when it is in 
particular states. 
 
Here is an example of the equations that defined the angle for an upward swing: 

 
((x_accel * ((SCREEN_HEIGHT>>1) - (vcount + (BAT_WIDTH >>1 )))) <= (y_accel * hcount)) 
&& ((y_accel * hcount) <= (x_accel * ((SCREEN_HEIGHT>>1) - (vcount - (BAT_WIDTH>>1))))) 

  

4.6.2 Ball Movement 
The movement of the softball is designed to indicate to the user that the ball is traveling 
closer to them and when it hittable.  The graphics module does this by both increasing 
the radius of the ball as it flies towards the user as well as changing the color of the ball. 
The ball’s width increases relative to the speed set by the user.  With a faster speed, the 
width of the ball increases more quickly because this represents the ball traversing a 
distance more quickly.  The radius of the ball increases by the speed on each screen 
pulse (refresh of all pixels).  The color of the ball is determined by a combination of red 
and green components.  The ball starts initially all red and then gradually changes to all 
green.  The speed of the color change is also determined by the speed of the pitch and 
corresponds to the ball width.  A greener ball tells the user that the ball is closer to them. 
The ball is also larger at this time, so it is easier to record a hit.  Once a swing is 
registered by the bat and signaled to the graphics module by the FSM module, the ball 
stops growing. 

 
To further enhance the user experience, the ball for each pitch is in a random location 
within the strikezone.  In order to determine the random location of the ball, there is a 
continuous 8 bit counter that increments on each 65 MHz clock edge.  Using the bits of 
this clock to simulate “random” numbers, the system performs a calculation with the 
numbers to calculate an x and y value for the center of the ball. 
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4.6.3 Swing Timing Representation 
One of the main use cases for this project is to help softball players improve their batting. 
To do this, we must give the user feedback on the timing of their swing.  The timing of 
the hit is denoted on the ball by shading the side (left, middle, right) either red or green 
depending on if the swing as a miss or hit.  The timing is determined by the swing and 
where the ball was located in the zone at the time of the swing.  For example, if the user 
swings late, then they would hit the left side of the ball, and that would be shaded 
accordingly, as shown in figure 5. 

4.7 Post Swing Graphics 
After the batter has swung, it is important that they receive feedback on their swing so that they 
can improve their hitting technique.  To give appropriate feedback, the system must determine if 
the swing hit the ball and if so, where the bat hit the ball. 
 

4.7.1 Hit Calculation 
The graphics module and finite state machine work in tandem to determine if a swing hit 
the ball.  Once the bat is shown on the screen with the correct angle, graphics iterates 
through every pixel to determine if any pixel exists that is both part of the bat and the 
ball.  If one exists, there is an intersection, so the bat is considered to have hit the ball. 
This implementation of hit determination allows the system to use the bat angle and ball 
size (determined by how far into the strikezone the ball is) to appropriately determine a 
hit.  It also ensure that the graphics shown to the user properly correspond to a hit or 
miss. 
 
The graphics module sends the finite state machine a high signal for a pixel that has 
both bat and ball components and a low signal otherwise.  The finite state machine waits 
for every pixel to be checked once and if none of these bits are high, then it considers 
the swing a miss.  Otherwise, the swing is a hit. 

 
4.7.2 Location of Bat Hitting Ball 
To more precisely identify where the bat would strike the ball for a particular swing, both 
the swing timing and angle must be taken into account.  As explained in Section 4.6.3, 
the timing of the swing is represented by the shading of the appropriate side of the ball. 
When there is a hit, this shading is green. 
 
The bat is represented as a blue slanted rectangle, corresponding to the angle of the 
swing.  When there is a hit, the location of the hit on the ball is identified by the 
intersection of the shaded area and angled bat.  This intersection turns a light blue color 
to distinguish it from the timing indication and bat representation. 
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4.8 Trajectory 
The trajectory of the ball shows a possible outcome of a hit, so it is only shown if a hit is 
detected after a swing.  The trajectory is determined by where the bat hit the ball.  For 
example, if the bat contacts the ball on the left and in the upper half, then the ball would 
travel down and to the right, providing visual feedback.  
 
To specify the trajectory of the ball, the ball must look as though it is moving farther away 
from the batter, and it must be given both a horizontal and vertical component to its 
movement.  To make the ball look like it is travelling away from the batter, the radius of 
the ball decreases.  To specify the trajectory, the X and Y position of the center of the 
ball changes.  To determine the X change, the timing of the swing is used.  If the bat 
contacts the ball on its left side, then the ball should move to the right and should have 
an increasing X value of its center point.  If the bat hits the middle of the ball, then the 
ball should fly directly into the screen and not vary horizontally.  Lastly, if the bat hits the 
right side of the ball, then the ball should fly to the left and the X value of its center 
should decrease.  To determine vertical ball movement, the graphics module looks for 
the bat intersecting the ball in both the top and bottom half of the ball.  If the bat only 
connects with the top half, then the ball moves downward.  If the bat only contacts the 
bottom half, then the ball flies upward.  And, if the bat contacts both the upper and lower 
halves, then the ball does ot move vertically.  With the combination of both X and Y 
movements, the ball trajectory takes into account the angle and timing of the swing. 
 

 

4.9 Background Picture 
To enhance the user experience we wanted to use a softball-related background for the 
game.  We took a picture of one of the pitchers on the MIT Varsity Softball team and 
cropped it so that it looked as though she had just finished her pitching motion from the 
point of view of the batter.  The purpose for this image was to have it present in the 
background with all of the gameplay features on top of it. 

 
15 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

 
To use the picture, it had to be loaded in to multiple BROMs using COE files.  Utilizing a 
MATLAB script, the images RGB values for each pixel were specified in three color 
maps: red, green, and blue.  Each of these color maps were 8 bits by 256 combinations 
and were each stored in their own BROMs.  In addition, there was an 8-bit by 
196608-entry index map used to look up for each pixel which row of the color tables 
should be used.  This allowed for an image that used 256 colors specified by 24 bits. 
This was then later converted to the 12 bit color that the NEXYS requires. 

 
In order to fit into the BROM, the image had to be scaled down to a quarter of the size 
needed to cover the screen.  When creating the image on the screen, it then had to be 
enlarged by using the same pixel color four times (quadrupling the size of the image). 
This meant that a change in the lookup value should only occur after every other vertical 
and horizontal change in pixel value.  To simplify this process, the last bit of both hcount 
and vcount were dropped for the purposes of finding the correct index value.  This 
allowed for the image to be quadrupled and fill the entire screen. 

4.10 Adjustable Ball Speed 
An additional project feature is the ability to adjust the difficulty of the game.  By adjusting the 
difficulty, the user changes the speed of the pitched ball.  The more difficult mode pitches the 
ball twice as fast as the easier mode, and this can be controlled by a switch on the FPGA.  To 
integrate this with the rest of the system, timing was controlled with the speed as a parameter. 
This allowed for the ball’s width to increase, ball’s color change, LED light up sequence, and the 
determination of hit timing to remain consistent across speeds. 

4.11 LED strip 
The LED strip consists of a clock-based addressable 30-LED strip, communicating through the 
additional module, ledTX, which serially transmits a full sequence of color and brightness 
settings for each LED at the proper frequency, and provide it the correct signals and the right 
times to sync with the rest of the game.  
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The datasheet for the APA102C addressable LED strip from Polulu required an approximately 1 
MHz clock and a specific start and end signal. Each LED’s setting is defined by a 32-bit packet, 
so we needed 1024 bits to send our (30+2)*32 bits of data to update the LED. The clock is 
generated from the MSB of a 6 bit counter running on a 65 MHz clock, to divide by 64 and get a 
50% duty cycle. The ledTX module detects a change in the input packet and then sets another 
counter to the size of the full packet. The module counts at the 1 MHz clock rate and always 
sends the next bit within the packet until it reaches zero and then waits on the next new packet 
to send.  
 
The full LED sequence is defined by the graphics module and each LED lights up in sequence 
according to the changing width of the ball.  To modularize the code, we did not want to check 
for a certain ball width and then light up a particular LED.  Instead, a sequence is sent to light 
the first LED and then the rest are defined by concatenating a blank LED signal with the 
commands for the first 29 LEDs.  This had the effect of moving the lit LED down the strip without 
the graphics module having to control which LED was specifically lit.  This also helped with 
adjusting to different speeds because we simply had to change when the led instructions were 
changed instead of having to recalculate which LED should be lit for certain ball widths.  When 
these instruction packets are prepared, graphics sends a signal to the serial transmitter to send 
the packet.  
 
After a swing, the LED corresponding to the timing of the swing remains lit.  For example, a 
hitting a ball on its left side corresponds to a late swing, so the LED that remains lit is farther 
down on the LED strip, corresponding to later in the zone.  This LED remains lit while the bat is 
on the screen to give the user additional feedback on their swing. 
 
After the bat disappears from the swing, an additional 
fun feature of the LEDs is that they turn either solid 
green or red depending on if there was a hit or a miss. 
This caused us to think about how often we should 
send the LED update packet if the packet was not 
changing.  We end up sending it a couple of times 
and then the LEDs remain constantly lit. The resulting 
behavior is shown in figure 8 below. 

4.12 Scoring 
As an add-on, we implemented a scoring feature that tracks the number of hits and misses 
made since resetting. Since the fsm module already tracks different states of hitting or missing, 
we incorporate the hit/miss counter with the FSM. To display the values, the system utilizes the 
7-segment LED display built into the Nexys4 board, with the accompanying display_8hex 
module provided in previous labs. However, as a typical user, we don’t expect hits to be 
counted in hexadecimal format, so we wrote a hex_to_dec module that converts any hex 
number into a decimal equivalent for displaying. To simplify the operations, the system restricts 
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the input to 14 bits, allowing up to four decimal digits, which are each defined as individual 
decimal counters. When a new hex input is present, the main counter is initialized, and counts 
down until it reaches zero. As it counts down, the decimal counters are incremented, carrying 
one to the next digit and resetting to zero whenever they reach 10. Although this technique 
requires as many clock cycles as the size of the hex number, this delay is not noticeable to the 
user, since it does not last more than . For otherclk/65 0 Hz .5 0 s /4ms  214 × 1 6 ≈ 2 × 1 −4 = 1  
applications, we may consider expanding this module to take in a variable number of bits and 
output the corresponding number of decimal digits by implementing an array and synthesizable 
for loops, or with a LUT; however given our low expected number of hits, this was not 
necessary. 

4.13 Externals 
For a more enjoyable user experience, we added various hardware externals, including a sound 
signalling calibration and a foot pedal as an alternative to a button press to allow a single player 
to signal their own pitches. The schematics for the speaker and footpedal are shown in figure 9 
and figure 10 respectively, each requiring a single IO pin from the FPGA. 
 
The siren module generates an 880 Hz signal from the 65 MHz input clk using a counter and 
outputs it at 50% duty cycle when enable is high. Using the same hardware setup as in lab 4, 
we connect this output to drive a piezo speaker to audibly indicate system calibration.  

 
 

The foot pedal is nothing more than a button connected to the FPGA over a long wire. We used 
a limit switch and attached a long platform to make it more user friendly. As shown on the 
schematic, a pull down resistor was included to make sure an ‘off’ signal is sent when the pedal 
is not pressed, and 3.3V are only connected across it when the switch is connected. 
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4.14 Physical Setup 
To set up the complete and playable project, a few square meters of open space is needed to 
allow for a full bat swing. A TV screen with a VGA port is used instead of a computer monitor to 
enhance the user experience with fuller immersion in the softball environment.  The foot pedal is 
placed near the batter, at least two meters from the screen to avoid unfortunate collisions with 
the bat. The strip of LEDs is located in front of the batter, perpendicular to the display, and 
mounted approximately a meter from the ground, to be clearly in the user’s view. The FPGA 
display must be visible to indicate the score, as well as having the buttons and switches 
accessible to reset the game or adjust the difficulty. Placing the speaker in a cup amplifies the 
sound to make it noticable from the batter’s position. The complete setup is shown in figure 11 
below. 
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5 Testing and Debugging 
We used a wide variety of methods to verify the functionality of each module before combining 
them all and then trying to find the bugs. We had originally designed the system to be highly 
modular, allowing each subsystem to be written and tested independently. 

5.1 Simulations 
Writing test benches and running simulations is very useful for specific modules that require 
very precise timing and for which we know the exact inputs. Both the fsm and serialRX modules 
are perfect examples for simulating. For the fsm, we thoroughly planned the whole sequence of 
possible incoming signals and manually worked out the desired response. Then we ran a 
simulation with those signals to compare the results and check for any glitches. Similarly, the 
exact packet-receiving subsystem needed to be precisely timed to align the incoming signal into 
properly ordered data. We could also verify the correct assertion of the done signal. 

5.2 ILA and Oscilloscope 
The internal logic analyzer and oscilloscope were useful in displaying streams of data that were 
occasionally hard to simulate or when we were not sure if a bug was due to hardware or 
software issues. This was particularly helpful in testing our communication with the IMU, 
verifying that the correct bits were being sent in the first place, and then observing the difference 
in how the packets are sent over bluetooth, and also for data sent to the addressable LEDs, to 
identify where the issue was coming from. 

5.3 Manual Mode 
To test the graphics we needed only to connect a VGA cable to a monitor, but to test the 
gameplay functionality with the graphics, it was necessary to provide fake input signals, which 
normally would come from the physical bat. We called this ‘manual mode’, which could be 
turned on by the flip of a switch, and allowed button presses to signal calibration and batter_up 
messages. We also introduced a switch-dependent bat X and Y, to test the various angles 
possible for the bat blob without necessarily having the IMU calculations ready. 

5.4 Indicator Displays 
On the FPGA, we used a wide variety of signals to debug our system with instant visual 
feedback. During testing, we extensively used the hex display to communicate the current state 
of the module under testing without needing to set up and trigger an ILA. We also relied on the 
colored LEDs for simple conditions, such as whether the bat is determined to be pointing up or 
down. Although this binary feedback was enough for initial testing, we found it much more 
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useful to graphically display the virtual bat on a monitor in real time. Although for the game we 
are only interested in the snapshot moment when the bat crosses the hitting zone, this method 
of testing allowed us to really understand the effects of centripetal acceleration during a full 
swing and we could adjust the settings until finding an ideal set of parameters. 

5.5 Calibrating Parameters 
Determining the exact set of parameters that work best for the IMU equations was a somewhat 
tedious process but found it to be much easier than going through endless calculations which 
might not even be implementable on the FPGA. To avoid waiting several minutes between each 
test code compilation, we connected the various parameters to a switch-based input, and could 
test a wide range of possible values with the same code uploaded. To visually test the bat 
system, we enable the bat to always display the measured angle in real-time. A combination of 
seeing the effects our switch changes had on the resulting bat angle and knowing the expected 
impact based on the equation, we were able to fairly quickly narrow down an ideal set of values. 
The greatest difficulties came from the slope calculator with three varying parameters along with 
needing to account for different styles of swinging a bat. 
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6 Challenges 

6.1 Bat Angle Calculation 
One of the most surprisingly difficult challenges was using the IMU data to track a bat swing. 
There are many different axes of rotation and variation from batter to batter in their speed and 
form of their swings. We tried to find the simplest approximation that could reasonably reflect the 
user’s bat angle, but discovered that we would need to make several different adjustments and 
iterations to be fully operational for the game. The general approach of low passing acceleration 
and merging with integrated reading from the gyroscope was too sensitive to effects from 
centripetal acceleration. After attempting many different angle tracking and acceleration 
compensation techniques (described in more detail in Section 4.2), we settled on a 
pseudo-compensating formula while also adjusting other factors to eliminate extreme values. By 
subtracting gyro readings from the acceleration, we were able to approximately scale the 
measured acceleration by a factor proportional to the centripetal acceleration; however, 
optimizing for the best constant scaling factors required a lot of testing on a variety of users. 
This technique was also not very successful until we moved the IMU closer to the point of 
rotation, which reduced the magnitude of the centripetal acceleration enough to be 
compensable. Then finally, to eliminate any extreme readings, we fixed a constant X value, 
since we decided a small angle approximation was close enough and we could avoid trying to 
compensate for the centripetal acceleration in multiple dimensions. 

6.2 Bat Angle Representation 
One of the biggest challenges early on in the project was figuring out how to best represent an 
angled bat on the screen.  We wanted the bat to look accurate, so the ability to represent a 
slanted rectangle was necessary.  There were multiple challenges associated with this including 
how to best represent a bat angle, how to appropriately perform the calculation required to form 
a slanted line, and how to handle negative numbers. 
 
The first aspect to solving any of these challenges was to develop the equations of the lines 
(originating from the left of the screen and vertically centered).  Using a slope, these equations 
were formed.  Then, we discussed how to best represent this slope, which determined the angle 
of the bat.  Having to perform a division calculation when the divisor is not a power of 2 is not 
ideal, so instead of inputting a slope to the graphics module, the decision was made to give both 
an X and Y value.  This led to more equation manipulation such that the only calculations 
required were multiplications instead of divisions. 
 
This then left the question of negative slopes (corresponding to downward angles).  We made 
the design decision to have a separate signal given as input to graphics to indicate whether the 
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angle of the swing was up or down.  This meant that graphics did not have to be aware of any 
negative values, making the code more modular.  The line equations had to be altered slightly 
for downward angles, but this input is checked before any calculations are completed. 
 
Maintaining a consistent bat width at varying angles also turned out to be a much greater 
challenge than expected, since our original approach defined a constant bat height within each 
vertical pixel line.  This height value needed to be scaled by an experimentally determined factor 
dependent on the bat angle. Although fully functional in manual mode, we found this feature 
unnecessary for smaller angles present in an actual swing. 

6.3 Background Picture 
The background picture caused a great deal of difficulty and ultimately learning through the 
process of getting it to appear on screen.  Neither of us had any experience with images on the 
FPGA or handling memory (we did infrared Lab 5, not the audio Lab 5), so we learned about 
that through the process of putting a real image on the screen.  Unfortunately, the NEXYS did 
not have a large enough memory to hold pixel information for the entire screen, so the image 
had to first be cropped and sized to be a quarter of the screen.  
 
With no experience understanding what a color map provides, the first attempt to load the image 
simply stored 9 bit color (3 bits for each red, green, and blue) which could be indexed directly 
from the location of the pixel.  After using MATLAB code to convert this information to a COE 
file, the image appeared on the screen, but the color was not what we wanted.  Due to space 
restrictions, so few colors could be used and the image did not look right. 
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We then decided to try using color maps to improve the image.  This involved using four BROMs 
instead of just one.  Three of these held the 8 bits for each color component (red, green, and 
blue) and the other held the index of these colors corresponding to each pixel.  More MATLAB 
code was necessary to generate these four COE files, but in the end, the color on the screen 
looked much better and more accurate. 
 
The last remaining challenge for the image was that it was only specified to be a quarter of the 
screen due to memory constraints.  The image had to be pixelated and quadrupled in size.  To 
do this, the last bit of both hcount and vcount were left out of the calculations for looking up the 
color index.  This meant that every pixel index was used four times instead of once, performing 
the quadrupling of the photo. 

6.4 LEDs 
The addressable LEDs provided both a motivation and a challenge for this project.  We were 
very excited to get to this stage of our project where we could implement them, but also had to 
figure out how to communicate with another piece of external hardware.  To learn about the 
general process for how the LEDs work, we meticulously read the data sheet and developed a 
plan to form the right instructions and time the data right. 
 
One of the biggest challenges we had was in figuring out how to light the correct LED to 
correspond with the size of the softball as determined by the graphics module.  At first, we 
planned to do this using equations that take in the size of the ball and then determined the LED 
that should be lit and then construct a stream of bits that corresponded to those instructions. 
This approach seemed more complicated than necessary.  After thinking more about it, we 
realized that the system just needed to know when to move the lit LED over by one.  We also 
simplified this process by forming the new instructions by concatenating a blank LED signal to 
the front of the first 29 LEDs of the previous instruction.  This performs the same operation as 
moving the LED light over 1, but it does not require graphics to know exactly which LED is lit at 
all times, it only knows when the lit LED should be shifted. 
 
To improve the overall user experience, we had to extend the cable that connects the LEDs to 
the FPGA.  Since we used a long unshielded wire, this led to a glitchy signal arriving at the data 
input for the lights, causing them to flicker when repeatedly sending the same packet to hold a 
solid color.  To fix this, we reworked the ledTX module to detect and ignore repeat packets. 
Until a new packet is sent, the LED strip holds the previous value, so the desired effect is 
produced. Since the original packet is not sent as frequently, the probability of a corrupted 
packet arriving is much lower, so we no longer noticed any glitchy behavior. 
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7 Design Decisions 
Throughout this project, we made strategic design decisions regarding the implementation of 
the project and overall user experience. 

7.1 Nexys 4 vs Labkit 
Our first major decision was whether to use the Nexys 4 or the Labkit. There were several 
advantages of sticking with the more familiar labkit with more available IO ports and existing 
code from previous labs, but we felt that the Nexys offered a nicer interface and may be more 
applicable in future career or personal projects. The first challenge we faced with the Nexys was 
porting the pong VGA module to the different FPGA setup, since that was the basis for our 
graphics module. Another concern we had with the Nexys is that it would not provide 5V to 
power the Teensy, which was needed to communicate with the IMU. We knew that eventually 
we wanted the bat to be battery powered anyway, so we did not get too concerned about this, 
and were able to work around the restriction during testing stages by utilizing the NEXYS 4 
board’s USB port, which is able to supply 5V power. 

7.2 IMU vs Camera 
A key decision in our approach to this project was what sensors we should use to detect the bat 
angle. For example, should we calculate the bat angle from a camera image or using only IMU 
readings? Should we use a special distance sensor to know when the bat is in the plane and 
what angle it is at? These questions were very difficult to answer without having much 
understanding on the difficulty of any specific approach. Important factors we considered were 
the components, setup, speed, and accuracy of the devices. The IMU was available in lab and 
we knew that theoretically it could provide orientation information. Our biggest concern with the 
camera was the frame rate to capture the exact moment of the swing and processing time 
required post-swing. Although the bat angle does not need to be shown in real time, we wanted 
nearly instantaneous feedback for the user of how they swung. It would have also been much 
more difficult to determine the exact timing of the swing using a camera, so we might have 
ended up needing an additional sensor anyway. It seemed that a full camera system would 
have missed some key readings and overall would have required much more setup for a 
relatively simple angle calculation. Looking back, we realize that a camera could have been able 
to provide more information on the height the bat is held at and would obviously not be 
influenced by centripetal acceleration, but we feel that a single IMU sensor was enough to make 
the game fun and playable once we figured out the right calculations and communication 
protocol. 
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7.3 Communication Protocol 
The IMU device we worked with communicates using an I2C protocol, which we learned enough 
about in lecture that we could have spent weeks on setting up that communication channel and 
interfacing the IMU directly with the FPGA. We decided that we were more interested in 
focusing on the gameplay component and IMU calculations than on the communication protocol 
alone, so we chose to buffer the data through a microcontroller, the Teensy, which handled the 
I2C protocol and streamed the data serially to the FPGA. Although we still had to create our 
own serial protocol and have both the Teensy and FPGA agree upon it, we were able to reach a 
functional prototype state within a week, instead of spending a month debugging the exact 
timing signals required for I2C. It was also more interesting to see our own protocol in action 
than trying to implement an existing one using IP cores or researching the specs on our own. 
We also knew that eventually, we were aiming to make the device bluetooth enabled, so by 
beginning with a serial communication channel, we would theoretically be able to simply insert 
two paired bluetooth modules that passed through all the data to act as a virtual wire. Of course 
this came with more difficulties than anticipated, but building off of an already working serial 
protocol made the transition much smoother. 

7.4 User Interface 
Many graphical design decisions were made with the user in mind.  First, we decided to not only 
have the ball grow larger as it approached the batter, but it also changes color.  The reason for 
this was to better help the user understand when they are able to hit the ball with correct timing. 
We also chose to only show the angle of the bat at the moment it would contact the ball.  This 
was a strategic decision made because the system does have the capability to show the 
changing bat angle in real time.  We chose to only show the angle at one point so that the user 
would have to focus on the specific part of the swing when the ball would contact the bat.  This 
is consistent with only looking at the timing of the swing at this point as well. 
 
We also thought specifically about how to give the user feedback on their swing.  We chose to 
show them the side of the ball that they hit, because this is important information to a softball 
player.  In softball, batters ideally want to hit the center of the ball.  This would be the best timing 
and hit location for a line drive hit.  By illuminating the side of the ball that was hit, the batter can 
adjust their timing for the next swing.  For players who do not care as much about where the bat 
hit the ball but who want to know where the ball would travel as a result of their hit, we also 
added in the trajectory of the ball.  After pausing for 5 seconds to show the user where their bat 
intersected with the ball, the ball’s trajectory is shown as another visual cue to the user. 
 
Another user experience decision made was to have the batter calibrate their swing for every 
pitch.  This decision was made for a few reasons.  First, it allows the system to know when to 
judge that the batter has broken the plane of the ball.  There are thresholds around this 
calibrated value to correctly determine this timing.  Second, it allows the system to be used by 
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everyone and all types of swings.  This calibration allows the system to recognise swings of 
many different types so that the system is not designed to only work for one person.  Lastly, the 
calibration allows the system to take into account any gyroscopic drift that may have occurred 
from the last swing.  When the bat, and IMU, whip around on a swing, the sensors can be 
thrown off.  The recalibration process allows the system to take those changes into account. To 
simplify the user interface, we attached the calibration signal to a foot pedal and avoided 
needing a second button by signalling the pitch autonomously once the bat is raised. 

7.5 LEDs 
When we were given the strip of LEDs, we felt like we had a world of possibilities as to how we 
could utilize them.  To determine what to do, we thought about what would be most helpful to 
the user.  We decided that it would be most helpful to light up LEDs in sequence to physically 
show the batter where the ball was in relation to them.  We feel that this was the best decision 
because as we performed user testing, we noticed that some of the users looked at the screen 
for timing cues while others used the LEDs. 

8 Reflections 

8.1 Katie 
As we were trying to figure out what to do for our project, I said to Melinda that I had a crazy 
idea involving swinging a softball bat around the lab.  She looked at me like I was crazy at first, 
but then we sat back and talked about the idea and how it would teach us about interfacing the 
real world and the virtual world.  We decided that this project would allow us to achieve our 
goals for what we wanted to learn from this project - and I was going to get to swing a bat in lab 
and talk about softball! 
 
As for the project itself, I learned about making fast iterations to improve the system and user 
experience as a whole.  I focussed mostly on the graphics and gameplay aspects of the project, 
which were working at a baseline level pretty early on in the project.  This meant that I gained a 
lot of experience in adding new features to existing code.  This definitely presented challenges 
at times in determining the best implementation of new features and how to fit them into the 
existing code without changing the already working functionality.  Through this, I learned about 
making clear and modular code from the beginning and how to utilize signals that were already 
being sent for ulterior purposes.  Most of the graphics were built in this way where additional 
features were added that were related to existing graphical features such as the ball size and 
whether the bat was on the screen. 
 
In addition to all of the technical knowledge I gained from this class (it was my first full EE lab 
that I have taken), I also learned more product sense skills.  I will be starting as a full time 
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product manager after I graduate, and this project allowed me to think about our system as a 
product.  Most of the design decisions were made from a balance of technical considerations as 
well as user experience considerations, and these are trade offs that I know I will have to make 
in the future.  I also gained experience working closely with a partner to not only make a 
technical project but also to present and write deliverables. 

8.2 Melinda 
When first approaching this project, I felt lost and overwhelmed by the vast number of tasks we 
had to accomplish, most of which were completely new and unfamiliar to me. How could I 
possibly interface with an IMU to calculate orientation, let alone play softball with it?!? I also 
remember writing out our proposed schedule and doubting that we could ever keep up with it; 
there was so much to do and so little time. After getting over this feeling of hopelessness and 
beginning to work on the project one step at a time, I started being more confident with what I 
was able to do and would take on the challenges. Sure, I sometimes had no idea what I was 
doing, but I felt like I had enough basic knowledge and support from the staff to start working on 
something and eventually mold it into a working module. By the end of it, I couldn’t believe we 
were able to stay on schedule and complete our goals - even reaching the LEDs that I had been 
really looking forward to. I also felt that I gained an incredible amount of knowledge and 
confidence when working with FPGAs and felt much more comfortable with needing to 
implement whatever behavior was necessary. In fact, I even ended up using an FPGA instead 
of a microcontroller for my 6.301 project, since I felt more familiar with Verilog than C coding by 
that point. I really enjoyed this class and know that I will be able to take a lot from it, if not only 
being able to program digital logic, but also in how to think about and use these devices for 
practical purposes. 

9 Conclusion 
As we conclude this project and a wonderful semester, we took some time to reflect on our 
project experience.  There are a few key takeaways that we think would be helpful for future 
students to know. 

9.1 Start Early and Ask for Help 
We truly enjoyed working on this project!  Besides having the opportunity to make a fun and 
useful game, we found our time in lab to not be very stressful.  We believe that one of the main 
reasons for this was because we started working on our project very early.  We stayed to our 
original schedule from our project presentation and worked each week to make sure that we 
met our goals every week.  By staying on this schedule, we were able to achieve our baseline 
and expected goals before Thanksgiving Break and began to work on our stretch goals.  This 
ultimately allowed us to finish the project about a week early and work on adding a few 
additional fun features and hardware. 
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We also recommend asking for help early on in the process.  After struggling to figure out 
challenges, we asked the staff for their help in solving problems.  Not only did this help us fix our 
problems, but we also learned a lot from talking with the staff.  Clear examples of this were 
when learning about the physics behind the IMU and color maps when utilizing real images. 

9.2 Modular Design  
We had a very clear idea of the different modules we were each going to work on at the start of 
the project.  We found a way to modularize our project such that we could both work in parallel 
by being in lab together at the same time but working on separate parts.  This allowed us to be 
more efficient in our work. 
 
Although we were working on different modules in parallel, we were communicating frequently 
about the signals sent between the modules.  This meant that it was much easier to integrate 
the system in the end because the modules were designed to work with each other.  An 
example of this is the bat data interfacing with the bat graphic.  These components were 
designed by two different people, but the bat data must report X and Y components of the 
angles and the graphics module knew that the inputs would be X and Y components.  During 
integration, we just had to change the sources of input for the graphics module to display the 
real bat data instead of the simulated bat data. 

9.3 Iterative Process 
We also approached this project in a very iterative way.  Throughout the semester, we 
continued to add features onto the existing project.  Although it took time to figure out how to 
add new features seamlessly into the existing code, by doing this, we ensured the overall timing 
and gameplay of the system remained reliable.  We built a general state machine to begin the 
project, and as the project grew, we never really removed states, we added them.  This way 
everything fit into the same general structure with more features added in between the original 
states.  Overall, this allowed us to take more risks in what we built because we knew that we 
could revert the project to a working version. 
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11 Appendix 

11.1 User Experience 
Here is a list of instructions on the general overall user experience of the game: 
 

1. The batter performs a partial swing to the point where they would hit the ball.  At this 
point, ensure that the breadboard and IMU are facing the ceiling. 

2. From this position, step on the foot pedal to calibrate the bat.  When the beeping stops, 
the calibration is complete. 

3. Pull the bat back and prepare for the ball to come.  In softball, this is called a load. 
4. The pitch will be automatically triggered from this position, and a growing ball will appear 

on the screen. 
5. When the ball becomes green, swing the bat at the correct angle to hit the ball. 
6. Look at the screen and string of LED lights to see how well you hit the ball.  After 5 

seconds, the ball’s trajectory will show on the screen. 
7. Repeat steps 1-6 for another pitch each time. 
8. When done, look at the FPGA to see the number of hits and misses. 

11.2 PC Code 

11.2.1 Picture - generateCOE.m 
%6.111 Image Color Table MATLAB deme 
%Edgar Twigg bwayr@mit.edu 
%4/1/2008 (But I swear this file isn't a joke) 
 
%% How to use this file 
%Notice how %% divides up sections?  If you hit ctrl+enter, then MATLAB 
%will execute all the lines within that section, but nothing else.  You can 
%also navigate quickly through the file using ctrl+arrow_key 
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%% Getting 24 bit data 
%So when you look at a 24 bit bitmap file, the file specifies three 8 bit 
%values for each color, 8 each for red, green, and blue. 
[picture] = imread('Pitching_Image.bmp'); 
 
%% View the image 
%This command image will draw the picture you just loaded 
figure %opens a new window 
image(picture) %draws your picture 
title('24 bit bitmap')  %gives it a title so you don't forget what it is 
 
%% Manipulate the data in the image 
%So now you have a matrix of values that represent the image.  You can 
%access them in the following way: 
% 
%picture(row,column,color) 
% 
%Remember that MATLAB uses 1-based indexes, and Verilog uses 0! 
% 
%Also, you can use MATLAB's slice operator to do nifty things. 
%picture(:,:,1) would return a 2D matrix with the red value for every row and 
%column. 
% 
%picture(:,1,2) would return a 1D matrix with the green value for every row 
%in the first column. 
 
%This is how MATLAB indexes the colors 
RED = 1; 
GREEN = 2; 
BLUE = 3; 
 
%So if we wanted to see the red values of the image only, we could say 
figure 
image(picture(:,:,RED)) 
title('Red values in 24 bit bitmap') 
 
%Because the image we gave matlab above specifies only one value per pixel 
%rather than usual three (red,blue,green), MATLAB colors each pixel from 
%blue to red based on the value at that pixel. 
 
%% Getting 8 bit data 
%When you store an 8 bit bitmap, things get a little more complicated.  Now 
%each pixel in the image only gets one 8 bit value.  But, you need to send 
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%the monitor an r,g, and b!  How can this work? 
% 
%8 bit bitmaps include a table which specifies the rgb values for each of 
%the 8 bits in the image. 
% 
%So each pixel is represented by one byte, and that byte is an index into a 
%table where each index specifies an r, g, and b value separately. 
% 
%Because of this, now we need to load both the image and it's colormap. 
[picture color_table] = imread('Pitching_Image.bmp'); 
 
%% Displaying without the color table 
%If we try to display the picture without the colormap, the image does not 
%make sense 
figure 
image(picture) 
title('Per pixel values in 8 bit bitmap') 
 
%% Displaying WITH the color table 
%So to display the picture with the proper color table, we need to tell 
%MATLAB to set its colormap to be in line with our colorbar.  The image 
%quality is somewhat reduced compared to the 24 bit image, but not too bad. 
figure 
image(picture) 
colormap(color_table)   %This command tells MATLAB to use the image's color table 
colorbar %This command tells MATLAB to draw the color table it is using 
title('8 bit bitmap displayed using color table') 
% green = color_table(:,2); 
% scaled_data = green * 255; 
 
%% More about the color table 
%The color table is in the format: 
% 
%color_table(color_index,1=r 2=g 3=b) 
% 
%So to get the r g b values for color index 3, we only need to say: 
disp(' r g b for color 3 is:') 
disp(color_table(3,:)) %disp = print to console 
 
%Although in the bitmap file the colors are indexed as 0-255 and each rgb 
%value is an integer between 0-255, MATLAB images don't work like that, so 
%MATLAB has automatically scaled them to be indexed 1-256 and to have a 
%floating point value between 0 and 1.  To turn the floats into integer 
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%values between 0 and 256: 
 
color_table_8bit = uint8(round(256*color_table)); 
 
disp(' r g b for color 3 in integers is:') 
disp(color_table_8bit(3,:)) 
 
%Note that this doesn't fix the indexing (and it can't, since MATLAB won't 
%let you have indexes below 1) 
 
%another way to look at the color table is like this (don't worry about how 
%to make this graph) 
figure 
stem3(color_table_8bit) 
set(gca,'XTick',1:3); 
set(gca,'YTick',[1,65,129,193,256]); 
set(gca,'YTickLabel',['  0';' 64';'128';'192';'255']); 
set(gca,'ZTick',[0,64,128,192,255]); 
 
xlabel('red = 1, green = 2, blue = 3') 
ylabel('color index') 
zlabel('value') 
title('Another way to see the color table') 
 
%% Even smaller bitmaps 
%You can extend what we did for 8-bit bitmaps to even more compressed 
%forms, such as this 4-bit bitmap.  Now we only have 16 colors to work with 
%though, and our image quality is significantly reduced: 
% [picture color_table] = imread('Pitching_Image.bmp'); 
% 
% figure 
% image(picture) 
% colormap(color_table) 
% colorbar   
% title('4 bit bitmap displayed using color table') 
 
%% Writing data to coe files for putting them on the fpga 
%You can instantiate BRAMs to take their values from a file you feed them 
%when you flash the FPGA.  You can use this technique to send them 
%colortables, image data, anything.  Here's how to send the red component 
%of the color table of the last example 
 
%red = color_table(:,1); %grabs the red part of the colortable 
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%scaled_data = red*255; %scales the floats back to 0-255 
% green = color_table(:,2); 
% scaled_data = green * 255; 
% blue = color_table(:,3); 
% scaled_data = blue*255; 
% rounded_data = round(scaled_data);  %rounds them down 
% data = dec2bin(rounded_data,8); %convert the binary data to 8 bit binary #s 
% 
% %open a file 
% output_name = 'color_table_pitch_blue.coe'; 
% file = fopen(output_name,'w'); 
% 
% %write the header info 
% fprintf(file,'memory_initialization_radix=2;\n'); 
% fprintf(file,'memory_initialization_vector=\n'); 
% fclose(file); 
% 
% %put commas in the data 
% rowxcolumn = size(data); 
% rows = rowxcolumn(1); 
% columns = rowxcolumn(2); 
% output = data; 
% for i = 1:(rows-1) 
% output(i,(columns+1)) = ','; 
% end 
% output(rows,(columns+1)) = ';'; 
% 
% %append the numeric values to the file 
% dlmwrite(output_name,output,'-append','delimiter','', 'newline', 'pc'); 
% 
% %You're done! 
 
%% Turning a 2D image into a 1D memory array 
%The code above is all well and good for the color table, since it's 1-D 
%(well, at least you can break it into 3 1-D arrays).  But what about a 2D 
%array?  We need to turn it into a 1-D array: 
 
picture_size = size(picture); %figure out how big the image is 
num_rows = picture_size(1); 
num_columns = picture_size(2); 
 
pixel_columns = zeros(picture_size(1)*picture_size(2),1,'uint8');  %pre-allocate a space for a 
new column vector 

 
34 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

 
for r = 1:num_rows 

for c = 1:num_columns 
 pixel_columns((r-1)*num_columns+c) = picture(r,c); %pixel# = (y*numColumns)+x 

end 
end 
 
%so now pixel_columns is a column vector of the pixel values in the image 
 
% blue = color_table(:,3); 
% scaled_data = blue*255; 
% rounded_data = round(scaled_data);  %rounds them down 
data = dec2bin(pixel_columns,8); %convert the binary data to 8 bit binary #s 
 
%open a file 
output_name = 'pixel_values.coe'; 
file = fopen(output_name,'w'); 
 
%write the header info 
fprintf(file,'memory_initialization_radix=2;\n'); 
fprintf(file,'memory_initialization_vector=\n'); 
fclose(file); 
 
%put commas in the data 
rowxcolumn = size(data); 
rows = rowxcolumn(1); 
columns = rowxcolumn(2); 
output = data; 
for i = 1:(rows-1) 

output(i,(columns+1)) = ','; 
end 
output(rows,(columns+1)) = ';'; 
 
%append the numeric values to the file 
dlmwrite(output_name,output,'-append','delimiter','', 'newline', 'pc'); 
 
%You're done! 
 
%just to make sure that we're doing things correctly 
regen_picture = zeros(num_rows,num_columns,'uint8'); 
for r = 1:num_rows 

for c = 1:num_columns 
 regen_picture(r,c) = pixel_columns((r-1)*num_columns+c,1); 
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end 
end 
 
figure 
subplot(121) 
image(picture) 
axis square 
colormap(color_table) 
colorbar   
title('Original Picture') 
 
subplot(122) 
image(regen_picture) 
axis square 
colormap(color_table) 
colorbar   
title('Regenerated Picture') 
 

11.2.2 Teensy 3.2  - imu_stream_bluetooth.ino 
#include <MPU9250.h> 
#include <math.h> 
 
#define FPGA Serial1 
 
MPU9250 imu; 
 
int led = 13; 
float accel_data[3] = {0};   // initialize array holding accel data 
float gyro_data[3] = {0};   // initialize array holding gyro data 
 
 
void setup()  
{ 
  pinMode(led, OUTPUT); 
  digitalWrite(led, HIGH); 
  
  delay(1000); 
  // Serial monitors 
  Serial.begin(115200);  
  FPGA.begin(115200); //500000 
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  digitalWrite(led, LOW); 
  //setup bluetooth to connect with pair 
  FPGA.print("$$$");  // Enter command mode 
  delay(1000);  // Short delay, wait for the BlueSmirf to send back CMD 
  FPGA.println("C,000666DACBBE");  // address of FPGA module 
 
 
  // setup IMU 
  byte c = imu.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); 
  Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); 
  Serial.println("MPU9250 is online..."); 
  digitalWrite(led, HIGH); 
  
  // Calibrate gyro and accelerometers, load biases in bias registers 
  imu.initMPU9250(); 
  //imu.MPU9250SelfTest(imu.selfTest); 
  imu.calibrateMPU9250(imu.gyroBias, imu.accelBias); 
  imu.initMPU9250();// need to reinitialize to make sure gyro configs are saved! 
  imu.initAK8963(imu.factoryMagCalibration); 
  imu.getAres(); 
  imu.getGres(); 
  imu.getMres(); 
} 
 
 
void loop()  
{ 

// read accelerometer data 
  imu.readAccelData(imu.accelCount); 
  imu.readGyroData(imu.gyroCount); 
 
  // testing!!! 
  // print to serial output- pin 1 (3rd down on left) 
  int16_t fake[3] = {0x1111, 0x1234, 0xFFFF};   // output as 3355_3355_8800 
 
  // send start byte 
  byte start_byte = 0x11; 
  byte replace_byte = 0x10; 
  FPGA.write(start_byte); 
  //make sure to never send 0x00 
  
  // load accel info into array 
  byte accel[6]; 
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  byte *a = accel; 
  for(int i=0; i < 3; i++){ 
    //LSB (cannot be same as start byte) 
    *a = imu.accelCount[i];//fake[i];// 
    if (*a == start_byte) *a = replace_byte; 
    a++; 
    //MSB 
    *a = (imu.accelCount[i]>>8);//(fake[i]>>8);// 
    a++; 
  } 
  FPGA.write(accel,6); 
 
  // load gyro info into array 
  byte gyro[6]; 
  byte *g = gyro; 
  for(int i=0; i < 3; i++){ 
    *g = imu.gyroCount[i];//fake[i];// 
    if (*g == start_byte) *g = replace_byte; 
    g++; 
    *g = (imu.gyroCount[i]>>8);//(fake[i]>>8);// 
    g++; 
  } 
  FPGA.write(gyro,6); 
  
  //FPGA.write(imu.accelCount[0]>>8); 
  
  delay(1.5); // 400Hz 
} 
 
 
 
 
 

11.2.3 IMU - MPU9250.h and .cpp 
/* 
 Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. 
 Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or 
 a 3.3 V Teensy 3.1. We have disabled the internal pull-ups used by the Wire 
 library in the Wire.h/twi.c utility file. We are also using the 400 kHz fast 
 I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file. 
 */ 

 
38 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

#ifndef _MPU9250_H_ 
#define _MPU9250_H_ 
 
#include <SPI.h> 
#include <Wire.h> 
 
#define SERIAL_DEBUG true 
 
// See also MPU-9250 Register Map and Descriptions, Revision 4.0, 
// RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in above 
// document; the MPU9250 and MPU9150 are virtually identical but the latter has 
// a different register map 
 
//Magnetometer Registers 
#define AK8963_ADDRESS   0x0C 
#define WHO_AM_I_AK8963  0x49 // (AKA WIA) should return 0x48 
#define INFO             0x01 
#define AK8963_ST1       0x02  // data ready status bit 0 
#define AK8963_XOUT_L    0x03  // data 
#define AK8963_XOUT_H    0x04 
#define AK8963_YOUT_L    0x05 
#define AK8963_YOUT_H    0x06 
#define AK8963_ZOUT_L    0x07 
#define AK8963_ZOUT_H    0x08 
#define AK8963_ST2       0x09  // Data overflow bit 3 and data read error status bit 2 
#define AK8963_CNTL      0x0A  // Power down (0000), single-measurement (0001), self-test 
(1000) and Fuse ROM (1111) modes on bits 3:0 
#define AK8963_ASTC      0x0C  // Self test control 
#define AK8963_I2CDIS    0x0F  // I2C disable 
#define AK8963_ASAX      0x10  // Fuse ROM x-axis sensitivity adjustment value 
#define AK8963_ASAY      0x11  // Fuse ROM y-axis sensitivity adjustment value 
#define AK8963_ASAZ      0x12  // Fuse ROM z-axis sensitivity adjustment value 
 
#define SELF_TEST_X_GYRO 0x00 
#define SELF_TEST_Y_GYRO 0x01 
#define SELF_TEST_Z_GYRO 0x02 
 
/*#define X_FINE_GAIN      0x03 // [7:0] fine gain 
#define Y_FINE_GAIN      0x04 
#define Z_FINE_GAIN      0x05 
#define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer 
#define XA_OFFSET_L_TC   0x07 
#define YA_OFFSET_H      0x08 
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#define YA_OFFSET_L_TC   0x09 
#define ZA_OFFSET_H      0x0A 
#define ZA_OFFSET_L_TC   0x0B */ 
 
#define SELF_TEST_X_ACCEL 0x0D 
#define SELF_TEST_Y_ACCEL 0x0E 
#define SELF_TEST_Z_ACCEL 0x0F 
 
#define SELF_TEST_A       0x10 
 
#define XG_OFFSET_H       0x13  // User-defined trim values for gyroscope 
#define XG_OFFSET_L       0x14 
#define YG_OFFSET_H       0x15 
#define YG_OFFSET_L       0x16 
#define ZG_OFFSET_H       0x17 
#define ZG_OFFSET_L       0x18 
#define SMPLRT_DIV        0x19 
#define CONFIG            0x1A 
#define GYRO_CONFIG       0x1B 
#define ACCEL_CONFIG      0x1C 
#define ACCEL_CONFIG2     0x1D 
#define LP_ACCEL_ODR      0x1E 
#define WOM_THR           0x1F 
 
// Duration counter threshold for motion interrupt generation, 1 kHz rate, 
// LSB = 1 ms 
#define MOT_DUR           0x20 
// Zero-motion detection threshold bits [7:0] 
#define ZMOT_THR          0x21 
// Duration counter threshold for zero motion interrupt generation, 16 Hz rate, 
// LSB = 64 ms 
#define ZRMOT_DUR         0x22 
 
#define FIFO_EN            0x23 
#define I2C_MST_CTRL       0x24 
#define I2C_SLV0_ADDR      0x25 
#define I2C_SLV0_REG       0x26 
#define I2C_SLV0_CTRL      0x27 
#define I2C_SLV1_ADDR      0x28 
#define I2C_SLV1_REG       0x29 
#define I2C_SLV1_CTRL      0x2A 
#define I2C_SLV2_ADDR      0x2B 
#define I2C_SLV2_REG       0x2C 
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#define I2C_SLV2_CTRL      0x2D 
#define I2C_SLV3_ADDR      0x2E 
#define I2C_SLV3_REG       0x2F 
#define I2C_SLV3_CTRL      0x30 
#define I2C_SLV4_ADDR      0x31 
#define I2C_SLV4_REG       0x32 
#define I2C_SLV4_DO        0x33 
#define I2C_SLV4_CTRL      0x34 
#define I2C_SLV4_DI        0x35 
#define I2C_MST_STATUS     0x36 
#define INT_PIN_CFG        0x37 
#define INT_ENABLE         0x38 
#define DMP_INT_STATUS     0x39  // Check DMP interrupt 
#define INT_STATUS         0x3A 
#define ACCEL_XOUT_H       0x3B 
#define ACCEL_XOUT_L       0x3C 
#define ACCEL_YOUT_H       0x3D 
#define ACCEL_YOUT_L       0x3E 
#define ACCEL_ZOUT_H       0x3F 
#define ACCEL_ZOUT_L       0x40 
#define TEMP_OUT_H         0x41 
#define TEMP_OUT_L         0x42 
#define GYRO_XOUT_H        0x43 
#define GYRO_XOUT_L        0x44 
#define GYRO_YOUT_H        0x45 
#define GYRO_YOUT_L        0x46 
#define GYRO_ZOUT_H        0x47 
#define GYRO_ZOUT_L        0x48 
#define EXT_SENS_DATA_00   0x49 
#define EXT_SENS_DATA_01   0x4A 
#define EXT_SENS_DATA_02   0x4B 
#define EXT_SENS_DATA_03   0x4C 
#define EXT_SENS_DATA_04   0x4D 
#define EXT_SENS_DATA_05   0x4E 
#define EXT_SENS_DATA_06   0x4F 
#define EXT_SENS_DATA_07   0x50 
#define EXT_SENS_DATA_08   0x51 
#define EXT_SENS_DATA_09   0x52 
#define EXT_SENS_DATA_10   0x53 
#define EXT_SENS_DATA_11   0x54 
#define EXT_SENS_DATA_12   0x55 
#define EXT_SENS_DATA_13   0x56 
#define EXT_SENS_DATA_14   0x57 
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#define EXT_SENS_DATA_15   0x58 
#define EXT_SENS_DATA_16   0x59 
#define EXT_SENS_DATA_17   0x5A 
#define EXT_SENS_DATA_18   0x5B 
#define EXT_SENS_DATA_19   0x5C 
#define EXT_SENS_DATA_20   0x5D 
#define EXT_SENS_DATA_21   0x5E 
#define EXT_SENS_DATA_22   0x5F 
#define EXT_SENS_DATA_23   0x60 
#define MOT_DETECT_STATUS  0x61 
#define I2C_SLV0_DO        0x63 
#define I2C_SLV1_DO        0x64 
#define I2C_SLV2_DO        0x65 
#define I2C_SLV3_DO        0x66 
#define I2C_MST_DELAY_CTRL 0x67 
#define SIGNAL_PATH_RESET  0x68 
#define MOT_DETECT_CTRL    0x69 
#define USER_CTRL          0x6A  // Bit 7 enable DMP, bit 3 reset DMP 
#define PWR_MGMT_1         0x6B // Device defaults to the SLEEP mode 
#define PWR_MGMT_2         0x6C 
#define DMP_BANK           0x6D  // Activates a specific bank in the DMP 
#define DMP_RW_PNT         0x6E  // Set read/write pointer to a specific start address in 
specified DMP bank 
#define DMP_REG            0x6F  // Register in DMP from which to read or to which to write 
#define DMP_REG_1          0x70 
#define DMP_REG_2          0x71 
#define FIFO_COUNTH        0x72 
#define FIFO_COUNTL        0x73 
#define FIFO_R_W           0x74 
#define WHO_AM_I_MPU9250   0x75 // Should return 0x71 
#define XA_OFFSET_H        0x77 
#define XA_OFFSET_L        0x78 
#define YA_OFFSET_H        0x7A 
#define YA_OFFSET_L        0x7B 
#define ZA_OFFSET_H        0x7D 
#define ZA_OFFSET_L        0x7E 
 
// Using the MPU-9250 breakout board, ADO is set to 0 
// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 
#define ADO 0 
#if ADO 
#define MPU9250_ADDRESS 0x69  // Device address when ADO = 1 
#else 
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#define MPU9250_ADDRESS 0x68  // Device address when ADO = 0 
#define AK8963_ADDRESS  0x0C   // Address of magnetometer 
#endif // AD0 
 
#define READ_FLAG 0x80 
#define NOT_SPI -1 
#define SPI_DATA_RATE 1000000 // 1MHz is the max speed of the MPU-9250 
//#define SPI_DATA_RATE 1000000 // 1MHz is the max speed of the MPU-9250 
#define SPI_MODE SPI_MODE3 
 
class MPU9250 
{ 
protected: 
    // Set initial input parameters 
    enum Ascale 
    { 
      AFS_2G = 0, 
      AFS_4G, 
      AFS_8G, 
      AFS_16G 
    }; 
 
    enum Gscale { 
      GFS_250DPS = 0, 
      GFS_500DPS, 
      GFS_1000DPS, 
      GFS_2000DPS 
    }; 
 
    enum Mscale { 
      MFS_14BITS = 0, // 0.6 mG per LSB 
      MFS_16BITS      // 0.15 mG per LSB 
    }; 
 
    enum M_MODE { 
      M_8HZ = 0x02,  // 8 Hz update 
      M_100HZ = 0x06 // 100 Hz continuous magnetometer 
    }; 
 
    // TODO: Add setter methods for this hard coded stuff 
    // Specify sensor full scale 
    uint8_t Gscale = GFS_2000DPS; 
    uint8_t Ascale = AFS_2G; 
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    // Choose either 14-bit or 16-bit magnetometer resolution 
    uint8_t Mscale = MFS_16BITS; 
 
    // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read 
    uint8_t Mmode = M_8HZ; 
 
    // SPI chip select pin 
    int8_t _csPin; 
 
    uint8_t writeByteWire(uint8_t, uint8_t, uint8_t); 
    uint8_t writeByteSPI(uint8_t, uint8_t); 
    uint8_t readByteSPI(uint8_t subAddress); 
    uint8_t readByteWire(uint8_t address, uint8_t subAddress); 
    bool magInit(); 
    void kickHardware(); 
    void select(); 
    void deselect(); 
// TODO: Remove this next line 
public: 
    uint8_t ak8963WhoAmI_SPI(); 
 
  public: 
    float pitch, yaw, roll; 
    float temperature;   // Stores the real internal chip temperature in Celsius 
    int16_t tempCount;   // Temperature raw count output 
    uint32_t delt_t = 0; // Used to control display output rate 
 
    uint32_t count = 0, sumCount = 0; // used to control display output rate 
    float deltat = 0.0f, sum = 0.0f;  // integration interval for both filter schemes 
    uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval 
    uint32_t Now = 0;        // used to calculate integration interval 
 
    int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output 
    int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output 
    // Scale resolutions per LSB for the sensors 
    float aRes, gRes, mRes; 
    // Variables to hold latest sensor data values 
    float ax, ay, az, gx, gy, gz, mx, my, mz; 
    // Factory mag calibration and mag bias 
    float factoryMagCalibration[3] = {0, 0, 0}, factoryMagBias[3] = {0, 0, 0}; 
    // Bias corrections for gyro, accelerometer, and magnetometer 
    float gyroBias[3]  = {0, 0, 0}, 
          accelBias[3] = {0, 0, 0}, 
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          magBias[3]   = {0, 0, 0}, 
          magScale[3]  = {0, 0, 0}; 
    float selfTest[6]; 
    // Stores the 16-bit signed accelerometer sensor output 
    int16_t accelCount[3]; 
 
    // Public method declarations 
    MPU9250(int8_t csPin=NOT_SPI); 
    void getMres(); 
    void getGres(); 
    void getAres(); 
    void readAccelData(int16_t *); 
    void readGyroData(int16_t *); 
    void readMagData(int16_t *); 
    int16_t readTempData(); 
    void updateTime(); 
    void initAK8963(float *); 
    void initMPU9250(); 
    void calibrateMPU9250(float * gyroBias, float * accelBias); 
    void MPU9250SelfTest(float * destination); 
    void magCalMPU9250(float * dest1, float * dest2); 
    uint8_t writeByte(uint8_t, uint8_t, uint8_t); 
    uint8_t readByte(uint8_t, uint8_t); 
    uint8_t readBytes(uint8_t, uint8_t, uint8_t, uint8_t *); 
    // TODO: make SPI/Wire private 
    uint8_t readBytesSPI(uint8_t, uint8_t, uint8_t *); 
    uint8_t readBytesWire(uint8_t, uint8_t, uint8_t, uint8_t *); 
    bool isInI2cMode() { return _csPin == -1; } 
    bool begin(); 
};  // class MPU9250 
 
#endif // _MPU9250_H_ 
 
 
#include "MPU9250.h" 
 
//=======================================================================
======= 
//====== Set of useful function to access acceleration. gyroscope, magnetometer, 
//====== and temperature data 
//=======================================================================
======= 
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MPU9250::MPU9250(int8_t cspin /*=NOT_SPI*/) // Uses I2C communication by default 
{ 
  // Use hardware SPI communication 
  // If used with sparkfun breakout board 
  // https://www.sparkfun.com/products/13762 , change the pre-soldered JP2 to 
  // enable SPI (solder middle and left instead of middle and right) pads are 
  // very small and re-soldering can be very tricky. I2C highly recommended. 
  if ((cspin > NOT_SPI) && (cspin < NUM_DIGITAL_PINS)) 
  { 
    _csPin = cspin; 
    SPI.begin(); 
    pinMode(_csPin, OUTPUT); 
    deselect(); 
  } 
  else 
  { 
    _csPin = NOT_SPI; 
    Wire.begin(); 
  } 
} 
 
void MPU9250::getMres() 
{ 
  switch (Mscale) 
  { 
    // Possible magnetometer scales (and their register bit settings) are: 
    // 14 bit resolution (0) and 16 bit resolution (1) 
    case MFS_14BITS: 
      mRes = 10.0f * 4912.0f / 8190.0f; // Proper scale to return milliGauss 
      break; 
    case MFS_16BITS: 
      mRes = 10.0f * 4912.0f / 32760.0f; // Proper scale to return milliGauss 
      break; 
  } 
} 
 
void MPU9250::getGres() 
{ 
  switch (Gscale) 
  { 
    // Possible gyro scales (and their register bit settings) are: 
    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). 
    // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 

 
46 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

    // 2-bit value: 
    case GFS_250DPS: 
      gRes = 250.0f / 32768.0f; 
      break; 
    case GFS_500DPS: 
      gRes = 500.0f / 32768.0f; 
      break; 
    case GFS_1000DPS: 
      gRes = 1000.0f / 32768.0f; 
      break; 
    case GFS_2000DPS: 
      gRes = 2000.0f / 32768.0f; 
      break; 
  } 
} 
 
void MPU9250::getAres() 
{ 
  switch (Ascale) 
  { 
    // Possible accelerometer scales (and their register bit settings) are: 
    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
    // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 
    // 2-bit value: 
    case AFS_2G: 
      aRes = 2.0f / 32768.0f; 
      break; 
    case AFS_4G: 
      aRes = 4.0f / 32768.0f; 
      break; 
    case AFS_8G: 
      aRes = 8.0f / 32768.0f; 
      break; 
    case AFS_16G: 
      aRes = 16.0f / 32768.0f; 
      break; 
  } 
} 
 
 
void MPU9250::readAccelData(int16_t * destination) 
{ 
  uint8_t rawData[6];  // x/y/z accel register data stored here 
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  // Read the six raw data registers into data array 
  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); 
 
  // Turn the MSB and LSB into a signed 16-bit value 
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; 
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; 
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; 
} 
 
 
void MPU9250::readGyroData(int16_t * destination) 
{ 
  uint8_t rawData[6];  // x/y/z gyro register data stored here 
  // Read the six raw data registers sequentially into data array 
  readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); 
 
  // Turn the MSB and LSB into a signed 16-bit value 
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; 
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; 
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; 
} 
 
void MPU9250::readMagData(int16_t * destination) 
{ 
  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end 
  // of data acquisition 
  uint8_t rawData[7]; 
  // Wait for magnetometer data ready bit to be set 
  if (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) 
  { 
    // Read the six raw data and ST2 registers sequentially into data array 
    readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); 
    uint8_t c = rawData[6]; // End data read by reading ST2 register 
    // Check if magnetic sensor overflow set, if not then report data 
    if (!(c & 0x08)) 
    { 
      // Turn the MSB and LSB into a signed 16-bit value 
      destination[0] = ((int16_t)rawData[1] << 8) | rawData[0]; 
      // Data stored as little Endian 
      destination[1] = ((int16_t)rawData[3] << 8) | rawData[2]; 
      destination[2] = ((int16_t)rawData[5] << 8) | rawData[4]; 
    } 
  } 
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} 
 
int16_t MPU9250::readTempData() 
{ 
  uint8_t rawData[2]; // x/y/z gyro register data stored here 
  // Read the two raw data registers sequentially into data array 
  readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); 
  // Turn the MSB and LSB into a 16-bit value 
  return ((int16_t)rawData[0] << 8) | rawData[1]; 
} 
 
// Calculate the time the last update took for use in the quaternion filters 
// TODO: This doesn't really belong in this class. 
void MPU9250::updateTime() 
{ 
  Now = micros(); 
 
  // Set integration time by time elapsed since last filter update 
  deltat = ((Now - lastUpdate) / 1000000.0f); 
  lastUpdate = Now; 
 
  sum += deltat; // sum for averaging filter update rate 
  sumCount++; 
} 
 
void MPU9250::initAK8963(float * destination) 
{ 
  // First extract the factory calibration for each magnetometer axis 
  uint8_t rawData[3];  // x/y/z gyro calibration data stored here 
  // TODO: Test this!! Likely doesn't work 
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer 
  delay(10); 
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode 
  delay(10); 
 
  // Read the x-, y-, and z-axis calibration values 
  readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); 
 
  // Return x-axis sensitivity adjustment values, etc. 
  destination[0] =  (float)(rawData[0] - 128)/256. + 1.; 
  destination[1] =  (float)(rawData[1] - 128)/256. + 1.; 
  destination[2] =  (float)(rawData[2] - 128)/256. + 1.; 
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer 
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  delay(10); 
 
  // Configure the magnetometer for continuous read and highest resolution. 
  // Set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL 
  // register, and enable continuous mode data acquisition Mmode (bits [3:0]), 
  // 0010 for 8 Hz and 0110 for 100 Hz sample rates. 
 
  // Set magnetometer data resolution and sample ODR 
  writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); 
  delay(10); 
} 
 
void MPU9250::initMPU9250() 
{ 
  // wake up device 
  // Clear sleep mode bit (6), enable all sensors 
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); 
  delay(100); // Wait for all registers to reset 
 
  // Get stable time source 
  // Auto select clock source to be PLL gyroscope reference if ready else 
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); 
  delay(200); 
 
  // Configure Gyro and Thermometer 
  // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, 
  // respectively; 
  // minimum delay time for this setting is 5.9 ms, which means sensor fusion 
  // update rates cannot be higher than 1 / 0.0059 = 170 Hz 
  // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both 
  // With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 
  // 8 kHz, or 1 kHz 
  writeByte(MPU9250_ADDRESS, CONFIG, 0x03); 
 
  // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) 
  // Use a 200 Hz rate; a rate consistent with the filter update rate 
  // determined inset in CONFIG above. 
  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); 
 
  // Set gyroscope full scale range 
  // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are 
  // left-shifted into positions 4:3 
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  // get current GYRO_CONFIG register value 
  uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); 
  // c = c & ~0xE0; // Clear self-test bits [7:5] 
  c = c & ~0x02; // Clear Fchoice bits [1:0] 
  c = c & ~0x18; // Clear AFS bits [4:3] 
  c = c | Gscale << 3; // Set full scale range for the gyro 
  // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of 
  // GYRO_CONFIG 
  // c =| 0x00; 
  // Write new GYRO_CONFIG value to register 
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); 
 
  // Set accelerometer full-scale range configuration 
  // Get current ACCEL_CONFIG register value 
  c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); 
  // c = c & ~0xE0; // Clear self-test bits [7:5] 
  c = c & ~0x18;  // Clear AFS bits [4:3] 
  c = c | Ascale << 3; // Set full scale range for the accelerometer  
  // Write new ACCEL_CONFIG register value 
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); 
 
  // Set accelerometer sample rate configuration 
  // It is possible to get a 4 kHz sample rate from the accelerometer by 
  // choosing 1 for accel_fchoice_b bit [3]; in this case the bandwidth is 
  // 1.13 kHz 
  // Get current ACCEL_CONFIG2 register value 
  c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); 
  c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) 
  c = c | 0x03;  // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz 
  // Write new ACCEL_CONFIG2 register value 
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); 
  // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
  // but all these rates are further reduced by a factor of 5 to 200 Hz because 
  // of the SMPLRT_DIV setting 
 
  // Configure Interrupts and Bypass Enable 
  // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH 
  // until interrupt cleared, clear on read of INT_STATUS, and enable 
  // I2C_BYPASS_EN so additional chips can join the I2C bus and all can be 
  // controlled by the Arduino as master. 
  writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); 
  // Enable data ready (bit 0) interrupt 
  writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); 
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  delay(100); 
} 
 
 
// Function which accumulates gyro and accelerometer data after device 
// initialization. It calculates the average of the at-rest readings and then 
// loads the resulting offsets into accelerometer and gyro bias registers. 
void MPU9250::calibrateMPU9250(float * gyroBias, float * accelBias) 
{ 
  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data 
  uint16_t ii, packet_count, fifo_count; 
  int32_t gyro_bias[3]  = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; 
 
  // reset device 
  // Write a one to bit 7 reset bit; toggle reset device 
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, READ_FLAG); 
  delay(100); 
 
  // get stable time source; Auto select clock source to be PLL gyroscope 
  // reference if ready else use the internal oscillator, bits 2:0 = 001 
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); 
  writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); 
  delay(200); 
 
  // Configure device for bias calculation 
  // Disable all interrupts 
  writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); 
  // Disable FIFO 
  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); 
  // Turn on internal clock source 
  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); 
  // Disable I2C master 
  writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); 
  // Disable FIFO and I2C master modes 
  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); 
  // Reset FIFO and DMP 
  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); 
  delay(15); 
 
  // Configure MPU6050 gyro and accelerometer for bias calculation 
  // Set low-pass filter to 188 Hz 
  writeByte(MPU9250_ADDRESS, CONFIG, 0x01); 
  // Set sample rate to 1 kHz 
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  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); 
  // Set gyro full-scale to 250 degrees per second, maximum sensitivity 
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); 
  // Set accelerometer full-scale to 2 g, maximum sensitivity 
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); 
 
  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec 
  uint16_t  accelsensitivity = 16384; // = 16384 LSB/g 
 
  // Configure FIFO to capture accelerometer and gyro data for bias calculation 
  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);  // Enable FIFO 
  // Enable gyro and accelerometer sensors for FIFO  (max size 512 bytes in 
  // MPU-9150) 
  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); 
  delay(40);  // accumulate 40 samples in 40 milliseconds = 480 bytes 
 
  // At end of sample accumulation, turn off FIFO sensor read 
  // Disable gyro and accelerometer sensors for FIFO 
  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); 
  // Read FIFO sample count 
  readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); 
  fifo_count = ((uint16_t)data[0] << 8) | data[1]; 
  // How many sets of full gyro and accelerometer data for averaging 
  packet_count = fifo_count/12; 
 
  for (ii = 0; ii < packet_count; ii++) 
  { 
    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; 
    // Read data for averaging 
    readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); 
    // Form signed 16-bit integer for each sample in FIFO 
    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ); 
    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ); 
    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ); 
    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ); 
    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ); 
    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]); 
 
    // Sum individual signed 16-bit biases to get accumulated signed 32-bit 
    // biases. 
    accel_bias[0] += (int32_t) accel_temp[0]; 
    accel_bias[1] += (int32_t) accel_temp[1]; 
    accel_bias[2] += (int32_t) accel_temp[2]; 
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    gyro_bias[0]  += (int32_t) gyro_temp[0]; 
    gyro_bias[1]  += (int32_t) gyro_temp[1]; 
    gyro_bias[2]  += (int32_t) gyro_temp[2]; 
  } 
  // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases 
  accel_bias[0] /= (int32_t) packet_count; 
  accel_bias[1] /= (int32_t) packet_count; 
  accel_bias[2] /= (int32_t) packet_count; 
  gyro_bias[0]  /= (int32_t) packet_count; 
  gyro_bias[1]  /= (int32_t) packet_count; 
  gyro_bias[2]  /= (int32_t) packet_count; 
 
  // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases 
  if (accel_bias[2] > 0L) 
  { 
    accel_bias[2] -= (int32_t) accelsensitivity; 
  } 
  else 
  { 
    accel_bias[2] += (int32_t) accelsensitivity; 
  } 
 
  // Construct the gyro biases for push to the hardware gyro bias registers, 
  // which are reset to zero upon device startup. 
  // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input 
  // format. 
  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; 
  // Biases are additive, so change sign on calculated average gyro biases 
  data[1] = (-gyro_bias[0]/4)       & 0xFF; 
  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF; 
  data[3] = (-gyro_bias[1]/4)       & 0xFF; 
  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF; 
  data[5] = (-gyro_bias[2]/4)       & 0xFF; 
 
  // Push gyro biases to hardware registers 
  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); 
  writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); 
  writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); 
  writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); 
  writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); 
  writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); 
 
  // Output scaled gyro biases for display in the main program 
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  gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity; 
  gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity; 
  gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity; 
 
  // Construct the accelerometer biases for push to the hardware accelerometer 
  // bias registers. These registers contain factory trim values which must be 
  // added to the calculated accelerometer biases; on boot up these registers 
  // will hold non-zero values. In addition, bit 0 of the lower byte must be 
  // preserved since it is used for temperature compensation calculations. 
  // Accelerometer bias registers expect bias input as 2048 LSB per g, so that 
  // the accelerometer biases calculated above must be divided by 8. 
 
  // A place to hold the factory accelerometer trim biases 
  int32_t accel_bias_reg[3] = {0, 0, 0}; 
  // Read factory accelerometer trim values 
  readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); 
  accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]); 
  readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); 
  accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]); 
  readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); 
  accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]); 
 
  // Define mask for temperature compensation bit 0 of lower byte of 
  // accelerometer bias registers 
  uint32_t mask = 1uL; 
  // Define array to hold mask bit for each accelerometer bias axis 
  uint8_t mask_bit[3] = {0, 0, 0}; 
 
  for (ii = 0; ii < 3; ii++) 
  { 
    // If temperature compensation bit is set, record that fact in mask_bit 
    if ((accel_bias_reg[ii] & mask)) 
    { 
      mask_bit[ii] = 0x01; 
    } 
  } 
 
  // Construct total accelerometer bias, including calculated average 
  // accelerometer bias from above 
  // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g 
  // (16 g full scale) 
  accel_bias_reg[0] -= (accel_bias[0]/8); 
  accel_bias_reg[1] -= (accel_bias[1]/8); 

 
55 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

  accel_bias_reg[2] -= (accel_bias[2]/8); 
 
  data[0] = (accel_bias_reg[0] >> 8) & 0xFF; 
  data[1] = (accel_bias_reg[0])      & 0xFF; 
  // preserve temperature compensation bit when writing back to accelerometer 
  // bias registers 
  data[1] = data[1] | mask_bit[0]; 
  data[2] = (accel_bias_reg[1] >> 8) & 0xFF; 
  data[3] = (accel_bias_reg[1])      & 0xFF; 
  // Preserve temperature compensation bit when writing back to accelerometer 
  // bias registers 
  data[3] = data[3] | mask_bit[1]; 
  data[4] = (accel_bias_reg[2] >> 8) & 0xFF; 
  data[5] = (accel_bias_reg[2])      & 0xFF; 
  // Preserve temperature compensation bit when writing back to accelerometer 
  // bias registers 
  data[5] = data[5] | mask_bit[2]; 
 
  // Apparently this is not working for the acceleration biases in the MPU-9250 
  // Are we handling the temperature correction bit properly? 
  // Push accelerometer biases to hardware registers 
  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); 
  writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); 
  writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); 
  writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); 
  writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); 
  writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); 
 
  // Output scaled accelerometer biases for display in the main program 
  accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity; 
  accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity; 
  accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity; 
} 
 
 
// Accelerometer and gyroscope self test; check calibration wrt factory settings 
// Should return percent deviation from factory trim values, +/- 14 or less 
// deviation is a pass. 
void MPU9250::MPU9250SelfTest(float * destination) 
{ 
  uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; 
  uint8_t selfTest[6]; 
  int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0}; 
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  float factoryTrim[6]; 
  uint8_t FS = 0; 
 
  // Set gyro sample rate to 1 kHz 
  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); 
  // Set gyro sample rate to 1 kHz and DLPF to 92 Hz 
  writeByte(MPU9250_ADDRESS, CONFIG, 0x02); 
  // Set full scale range for the gyro to 250 dps 
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); 
  // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz 
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); 
  // Set full scale range for the accelerometer to 2 g 
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); 
 
  // Get average current values of gyro and acclerometer 
  for (int ii = 0; ii < 200; ii++) 
  { 
Serial.print("BHW::ii = "); 
Serial.println(ii); 
    // Read the six raw data registers into data array 
    readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); 
    // Turn the MSB and LSB into a signed 16-bit value 
    aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; 
    aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; 
    aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
 
    // Read the six raw data registers sequentially into data array 
    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); 
    // Turn the MSB and LSB into a signed 16-bit value 
    gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; 
    gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; 
    gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  } 
 
  // Get average of 200 values and store as average current readings 
  for (int ii =0; ii < 3; ii++) 
  { 
    aAvg[ii] /= 200; 
    gAvg[ii] /= 200; 
  } 
 
  // Configure the accelerometer for self-test 
  // Enable self test on all three axes and set accelerometer range to +/- 2 g 
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  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); 
  // Enable self test on all three axes and set gyro range to +/- 250 degrees/s 
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG,  0xE0); 
  delay(25);  // Delay a while to let the device stabilize 
 
  // Get average self-test values of gyro and acclerometer 
  for (int ii = 0; ii < 200; ii++) 
  { 
    // Read the six raw data registers into data array 
    readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); 
    // Turn the MSB and LSB into a signed 16-bit value 
    aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; 
    aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; 
    aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
 
    // Read the six raw data registers sequentially into data array 
    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); 
    // Turn the MSB and LSB into a signed 16-bit value 
    gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; 
    gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; 
    gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  } 
 
  // Get average of 200 values and store as average self-test readings 
  for (int ii =0; ii < 3; ii++) 
  { 
    aSTAvg[ii] /= 200; 
    gSTAvg[ii] /= 200; 
  } 
 
  // Configure the gyro and accelerometer for normal operation 
  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); 
  writeByte(MPU9250_ADDRESS, GYRO_CONFIG,  0x00); 
  delay(25);  // Delay a while to let the device stabilize 
 
  // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg 
  // X-axis accel self-test results 
  selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); 
  // Y-axis accel self-test results 
  selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); 
  // Z-axis accel self-test results 
  selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); 
  // X-axis gyro self-test results 
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  selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); 
  // Y-axis gyro self-test results 
  selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); 
  // Z-axis gyro self-test results 
  selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); 
 
  // Retrieve factory self-test value from self-test code reads 
  // FT[Xa] factory trim calculation 
  factoryTrim[0] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[0] - 1.0) )); 
  // FT[Ya] factory trim calculation 
  factoryTrim[1] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[1] - 1.0) )); 
  // FT[Za] factory trim calculation 
  factoryTrim[2] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[2] - 1.0) )); 
  // FT[Xg] factory trim calculation 
  factoryTrim[3] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[3] - 1.0) )); 
  // FT[Yg] factory trim calculation 
  factoryTrim[4] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[4] - 1.0) )); 
  // FT[Zg] factory trim calculation 
  factoryTrim[5] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[5] - 1.0) )); 
 
  // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim 
  // of the Self-Test Response 
  // To get percent, must multiply by 100 
  for (int i = 0; i < 3; i++) 
  { 
    // Report percent differences 
    destination[i] = 100.0 * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i] 
      - 100.; 
    // Report percent differences 
    destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3] 
      - 100.; 
  } 
} 
 
// Function which accumulates magnetometer data after device initialization. 
// It calculates the bias and scale in the x, y, and z axes. 
void MPU9250::magCalMPU9250(float * bias_dest, float * scale_dest) 
{ 
  uint16_t ii = 0, sample_count = 0; 
  int32_t mag_bias[3]  = {0, 0, 0}, 
          mag_scale[3] = {0, 0, 0}; 
  int16_t mag_max[3]  = {0x8000, 0x8000, 0x8000}, 
          mag_min[3]  = {0x7FFF, 0x7FFF, 0x7FFF}, 
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          mag_temp[3] = {0, 0, 0}; 
 
  // Make sure resolution has been calculated 
  getMres(); 
 
  Serial.println(F("Mag Calibration: Wave device in a figure 8 until done!")); 
  Serial.println( 
      F("  4 seconds to get ready followed by 15 seconds of sampling)")); 
  delay(4000); 
 
  // shoot for ~fifteen seconds of mag data 
  // at 8 Hz ODR, new mag data is available every 125 ms 
  if (Mmode == M_8HZ) 
  { 
    sample_count = 128; 
  } 
  // at 100 Hz ODR, new mag data is available every 10 ms 
  if (Mmode == M_100HZ) 
  { 
    sample_count = 1500; 
  } 
 
  for (ii = 0; ii < sample_count; ii++) 
  { 
    readMagData(mag_temp);  // Read the mag data 
 
    for (int jj = 0; jj < 3; jj++) 
    { 
      if (mag_temp[jj] > mag_max[jj]) 
      { 
        mag_max[jj] = mag_temp[jj]; 
      } 
      if (mag_temp[jj] < mag_min[jj]) 
      { 
        mag_min[jj] = mag_temp[jj]; 
      } 
    } 
 
    if (Mmode == M_8HZ) 
    { 
      delay(135); // At 8 Hz ODR, new mag data is available every 125 ms 
    } 
    if (Mmode == M_100HZ) 
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    { 
      delay(12);  // At 100 Hz ODR, new mag data is available every 10 ms 
    } 
  } 
 
  // Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]); 
  // Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]); 
  // Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]); 
 
  // Get hard iron correction 
  // Get 'average' x mag bias in counts 
  mag_bias[0]  = (mag_max[0] + mag_min[0]) / 2; 
  // Get 'average' y mag bias in counts 
  mag_bias[1]  = (mag_max[1] + mag_min[1]) / 2; 
  // Get 'average' z mag bias in counts 
  mag_bias[2]  = (mag_max[2] + mag_min[2]) / 2; 
 
  // Save mag biases in G for main program 
  bias_dest[0] = (float)mag_bias[0] * mRes * factoryMagCalibration[0]; 
  bias_dest[1] = (float)mag_bias[1] * mRes * factoryMagCalibration[1]; 
  bias_dest[2] = (float)mag_bias[2] * mRes * factoryMagCalibration[2]; 
 
  // Get soft iron correction estimate 
  // Get average x axis max chord length in counts 
  mag_scale[0]  = (mag_max[0] - mag_min[0]) / 2; 
  // Get average y axis max chord length in counts 
  mag_scale[1]  = (mag_max[1] - mag_min[1]) / 2; 
  // Get average z axis max chord length in counts 
  mag_scale[2]  = (mag_max[2] - mag_min[2]) / 2; 
 
  float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; 
  avg_rad /= 3.0; 
 
  scale_dest[0] = avg_rad / ((float)mag_scale[0]); 
  scale_dest[1] = avg_rad / ((float)mag_scale[1]); 
  scale_dest[2] = avg_rad / ((float)mag_scale[2]); 
 
  Serial.println(F("Mag Calibration done!")); 
} 
 
// Wire.h read and write protocols 
uint8_t MPU9250::writeByte(uint8_t deviceAddress, uint8_t registerAddress, 
                        uint8_t data) 
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{ 
  if (_csPin != NOT_SPI) 
  { 
    return writeByteSPI(registerAddress, data); 
  } 
  else 
  { 
    return writeByteWire(deviceAddress,registerAddress, data); 
  } 
} 
 
uint8_t MPU9250::writeByteSPI(uint8_t registerAddress, uint8_t writeData) 
{ 
  uint8_t returnVal; 
 
  SPI.beginTransaction(SPISettings(SPI_DATA_RATE, MSBFIRST, SPI_MODE)); 
  select(); 
 
  SPI.transfer(registerAddress); 
  returnVal = SPI.transfer(writeData); 
 
  deselect(); 
  SPI.endTransaction(); 
#ifdef SERIAL_DEBUG 
  Serial.print("MPU9250::writeByteSPI slave returned: 0x"); 
  Serial.println(returnVal, HEX); 
#endif 
  return returnVal; 
} 
 
uint8_t MPU9250::writeByteWire(uint8_t deviceAddress, uint8_t registerAddress, 
                            uint8_t data) 
{ 
  Wire.beginTransmission(deviceAddress);  // Initialize the Tx buffer 
  Wire.write(registerAddress);      // Put slave register address in Tx buffer 
  Wire.write(data);                 // Put data in Tx buffer 
  Wire.endTransmission();           // Send the Tx buffer 
  // TODO: Fix this to return something meaningful 
  return NULL; 
} 
 
// Read a byte from given register on device. Calls necessary SPI or I2C 
// implementation. This was configured in the constructor. 
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uint8_t MPU9250::readByte(uint8_t deviceAddress, uint8_t registerAddress) 
{ 
  if (_csPin != NOT_SPI) 
  { 
    return readByteSPI(registerAddress); 
  } 
  else 
  { 
    return readByteWire(deviceAddress, registerAddress); 
  } 
} 
 
// Read a byte from the given register address from device using I2C 
uint8_t MPU9250::readByteWire(uint8_t deviceAddress, uint8_t registerAddress) 
{ 
  uint8_t data; // `data` will store the register data 
 
  // Initialize the Tx buffer 
  Wire.beginTransmission(deviceAddress); 
  // Put slave register address in Tx buffer 
  Wire.write(registerAddress); 
  // Send the Tx buffer, but send a restart to keep connection alive 
  Wire.endTransmission(false); 
  // Read one byte from slave register address 
  Wire.requestFrom(deviceAddress, (uint8_t) 1); 
  // Fill Rx buffer with result 
  data = Wire.read(); 
  // Return data read from slave register 
  return data; 
} 
 
// Read a byte from the given register address using SPI 
uint8_t MPU9250::readByteSPI(uint8_t registerAddress) 
{ 
  return writeByteSPI(registerAddress | READ_FLAG, 0xFF /*0xFF is arbitrary*/); 
} 
 
// Read 1 or more bytes from given register and device using I2C 
uint8_t MPU9250::readBytesWire(uint8_t deviceAddress, uint8_t registerAddress, 
                        uint8_t count, uint8_t * dest) 
{ 
  // Initialize the Tx buffer 
  Wire.beginTransmission(deviceAddress); 
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  // Put slave register address in Tx buffer 
  Wire.write(registerAddress); 
  // Send the Tx buffer, but send a restart to keep connection alive 
  Wire.endTransmission(false); 
 
  uint8_t i = 0; 
  // Read bytes from slave register address 
  Wire.requestFrom(deviceAddress, count); 
  while (Wire.available()) 
  { 
    // Put read results in the Rx buffer 
    dest[i++] = Wire.read(); 
  } 
 
  return i; // Return number of bytes written 
} 
 
// Select slave IC by asserting CS pin 
void MPU9250::select() 
{ 
  digitalWrite(_csPin, LOW); 
} 
 
// Select slave IC by deasserting CS pin 
void MPU9250::deselect() 
{ 
  digitalWrite(_csPin, HIGH); 
} 
 
uint8_t MPU9250::readBytesSPI(uint8_t registerAddress, uint8_t count, 
                           uint8_t * dest) 
{ 
  SPI.beginTransaction(SPISettings(SPI_DATA_RATE, MSBFIRST, SPI_MODE)); 
  select(); 
 
  SPI.transfer(registerAddress | READ_FLAG); 
 
  uint8_t i; 
 
  for (i = 0; i < count; i++) 
  { 
    dest[i] = SPI.transfer(0x00); 
#ifdef SERIAL_DEBUG 
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    Serial.print("readBytesSPI::Read byte: 0x"); 
    Serial.println(dest[i], HEX); 
#endif 
  } 
 
  SPI.endTransaction(); 
  deselect(); 
 
  delayMicroseconds(50); 
 
  return i; // Return number of bytes written 
 
  /* 
#ifdef SERIAL_DEBUG 
  Serial.print("MPU9250::writeByteSPI slave returned: 0x"); 
  Serial.println(returnVal, HEX); 
#endif 
  return returnVal; 
  */ 
 
  /* 
  // Set slave address of AK8963 and set AK8963 for read 
  writeByteSPI(I2C_SLV0_ADDR, AK8963_ADDRESS | READ_FLAG); 
 
Serial.print("\nBHW::I2C_SLV0_ADDR set to: 0x"); 
Serial.println(readByte(MPU9250_ADDRESS, I2C_SLV0_ADDR), HEX); 
 
  // Set address to start read from 
  writeByteSPI(I2C_SLV0_REG, registerAddress); 
  // Read bytes from magnetometer 
  // 
Serial.print("\nBHW::I2C_SLV0_CTRL gets 0x"); 
Serial.println(READ_FLAG | count, HEX); 
 
  // Read count bytes from registerAddress via I2C_SLV0 
  Serial.print("BHW::readBytesSPI: return value test: "); 
  Serial.println(writeByteSPI(I2C_SLV0_CTRL, READ_FLAG | count)); 
  */ 
} 
 
uint8_t MPU9250::readBytes(uint8_t deviceAddress, uint8_t registerAddress, 
                        uint8_t count, uint8_t * dest) 
{ 

 
65 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

  if (_csPin == NOT_SPI)  // Read via I2C 
  { 
    return readBytesWire(deviceAddress, registerAddress, count, dest); 
  } 
  else  // Read using SPI 
  { 
    return readBytesSPI(registerAddress, count, dest); 
  } 
} 
 
bool MPU9250::magInit() 
{ 
  // Reset registers to defaults, bit auto clears 
  writeByteSPI(0x6B, 0x80); 
  // Auto select the best available clock source 
  writeByteSPI(0x6B, 0x01); 
  // Enable X,Y, & Z axes of accel and gyro 
  writeByteSPI(0x6C, 0x00); 
  // Config disable FSYNC pin, set gyro/temp bandwidth to 184/188 Hz 
  writeByteSPI(0x1A, 0x01); 
  // Self tests off, gyro set to +/-2000 dps FS 
  writeByteSPI(0x1B, 0x18); 
  // Self test off, accel set to +/- 8g FS 
  writeByteSPI(0x1C, 0x08); 
  // Bypass DLPF and set accel bandwidth to 184 Hz 
  writeByteSPI(0x1D, 0x09); 
  // Configure INT pin (active high / push-pull / latch until read) 
  writeByteSPI(0x37, 0x30); 
  // Enable I2C master mode 
  // TODO Why not do this 11-100 ms after power up? 
  writeByteSPI(0x6A, 0x20); 
  // Disable multi-master and set I2C master clock to 400 kHz 
  //https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI/ calls says 
  // enabled multi-master... TODO Find out why 
  writeByteSPI(0x24, 0x0D); 
  // Set to write to slave address 0x0C 
  writeByteSPI(0x25, 0x0C); 
  // Point save 0 register at AK8963's control 2 (soft reset) register 
  writeByteSPI(0x26, 0x0B); 
  // Send 0x01 to AK8963 via slave 0 to trigger a soft restart 
  writeByteSPI(0x63, 0x01); 
  // Enable simple 1-byte I2C reads from slave 0 
  writeByteSPI(0x27, 0x81); 
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  // Point save 0 register at AK8963's control 1 (mode) register 
  writeByteSPI(0x26, 0x0A); 
  // 16-bit continuous measurement mode 1 
  writeByteSPI(0x63, 0x12); 
  // Enable simple 1-byte I2C reads from slave 0 
  writeByteSPI(0x27, 0x81); 
 
  // TODO: Remove this code 
  uint8_t ret = ak8963WhoAmI_SPI(); 
#ifdef SERIAL_DEBUG 
  Serial.print("MPU9250::magInit to return "); 
  Serial.println((ret == 0x48) ? "true" : "false"); 
#endif 
  return ret == 0x48; 
} 
 
// Write a null byte w/o CS assertion to get SPI hardware to idle high (mode 3) 
void MPU9250::kickHardware() 
{ 
  SPI.beginTransaction(SPISettings(SPI_DATA_RATE, MSBFIRST, SPI_MODE)); 
  SPI.transfer(0x00); // Send null byte 
  SPI.endTransaction(); 
} 
 
bool MPU9250::begin() 
{ 
  kickHardware(); 
  return magInit(); 
} 
 
// Read the WHOAMI (WIA) register of the AK8963 
// TODO: This method has side effects 
uint8_t MPU9250::ak8963WhoAmI_SPI() 
{ 
  uint8_t response, oldSlaveAddress, oldSlaveRegister, oldSlaveConfig; 
  // Save state 
  oldSlaveAddress  = readByteSPI(I2C_SLV0_ADDR); 
  oldSlaveRegister = readByteSPI(I2C_SLV0_REG); 
  oldSlaveConfig   = readByteSPI(I2C_SLV0_CTRL); 
#ifdef SERIAL_DEBUG 
  Serial.print("Old slave address: 0x"); 
  Serial.println(oldSlaveAddress, HEX); 
  Serial.print("Old slave register: 0x"); 
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  Serial.println(oldSlaveRegister, HEX); 
  Serial.print("Old slave config: 0x"); 
  Serial.println(oldSlaveConfig, HEX); 
#endif 
 
  // Set the I2C slave addres of AK8963 and set for read 
  response = writeByteSPI(I2C_SLV0_ADDR, AK8963_ADDRESS|READ_FLAG); 
  // I2C slave 0 register address from where to begin data transfer 
  response = writeByteSPI(I2C_SLV0_REG, 0x00); 
  // Enable 1-byte reads on slave 0 
  response = writeByteSPI(I2C_SLV0_CTRL, 0x81); 
  delayMicroseconds(1); 
  // Read WIA register 
  response = writeByteSPI(WHO_AM_I_AK8963|READ_FLAG, 0x00); 
 
  // Restore state 
  writeByteSPI(I2C_SLV0_ADDR, oldSlaveAddress); 
  writeByteSPI(I2C_SLV0_REG, oldSlaveRegister); 
  writeByteSPI(I2C_SLV0_CTRL, oldSlaveConfig); 
 
  return response; 
} 
 
 
 

11.2.4 Bluetooth - bluetooth_passthrough.ino 
/* 
  Based on example Bluetooth Serial Passthrough Sketch 
 by: Jim Lindblom 
 SparkFun Electronics 
 date: February 26, 2013 
 license: Public domain 
 */ 
 
#include <SoftwareSerial.h>  
 
int bluetoothTx = 0;  // TX-O pin of bluetooth mate, Teensy 0 (RX) 
int bluetoothRx = 1;  // RX-I pin of bluetooth mate, Teensy 1 (TX) 
 
SoftwareSerial bluetooth(bluetoothTx, bluetoothRx); 
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void setup() 
{ 
  Serial.begin(115200);  // Begin the serial monitor at 9600bps 
 
  pinMode(13, OUTPUT); 
  digitalWrite(13, HIGH); 
 
  bluetooth.begin(115200);  // The Bluetooth Mate defaults to 115200bps 
 
  // autoconnect command 
  bluetooth.print("$$$");  // Enter command mode 
  delay(1000);  // Short delay, wait for the Mate to send back CMD 
  bluetooth.println("C,000666DACBBE");  
} 
 
void loop() 
{ 
  if(bluetooth.available())  // If the bluetooth sent any characters 
  { 
    // Send any characters the bluetooth prints to the serial monitor 
    Serial.print((char)bluetooth.read());  
  } 
  if(Serial.available())  // If stuff was typed in the serial monitor 
  { 
    // Send any characters the Serial monitor prints to the bluetooth 
    bluetooth.print((char)Serial.read()); 
  } 
  // and loop forever and ever! 
} 
 
// setup instructions: https://learn.sparkfun.com/tutorials/using-the-bluesmirf 
 
 

11.3 Verilog Code 

11.3.1 labkit.v 
`timescale 1ns / 1ps 
 
module labkit( 
   input CLK100MHZ, 

 
69 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

   input[15:0] SW, 
   input BTNC, BTNU, BTNL, BTNR, BTND, 
   output[3:0] VGA_R, 
   output[3:0] VGA_B, 
   output[3:0] VGA_G, 
   inout[7:0] JA, 
   output VGA_HS, 
   output VGA_VS, 
   output LED16_B, LED16_G, LED16_R, 
   output LED17_B, LED17_G, LED17_R, 
   output[15:0] LED, 
   output[7:0] SEG,  // segments A-G (0-6), DP (7) 
   output[7:0] AN // Display 0-7 
   ); 
  
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 
// 
// SYSTEM 
// 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 

// create 65mhz system clock 
wire clock_65mhz; 
clk_gen_65mhz clk_65(.clk_in1(CLK100MHZ), .reset(0), .clk_out1(clock_65mhz), 

.locked()); 
 

// ENTER button is user reset 
wire reset,user_reset; 
debounce 

db1(.reset(power_on_reset),.clock(clock_65mhz),.noisy(BTNC),.clean(user_reset)); 
assign reset = user_reset; 

 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 
// 
// IOs  
// 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 

// debounce all buttons 
wire up,down, left, right; 
debounce db2(.reset(reset),.clock(clock_65mhz),.noisy(BTNU),.clean(up)); 
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debounce db3(.reset(reset),.clock(clock_65mhz),.noisy(BTND),.clean(down)); 
debounce db4(.reset(reset),.clock(clock_65mhz),.noisy(BTNL),.clean(left)); 

     debounce db5(.reset(reset),.clock(clock_65mhz),.noisy(BTNR),.clean(right)); 
 

// define inputs/outputs 
assign LED = SW;   
assign JA[7:6] = 0;  
assign JA[2] = 0; 

 
// set up footpedal to signal calibrate 
wire footpedal; 
debounce 

#(.DELAY(500000))db(.reset(reset),.clock(clock_65mhz),.noisy(JA[1]),.clean(footpedal)); 
assign calibrate = up|footpedal; 

  
// set up siren output on calibrate signal 
assign siren = JA[0]; 
siren siren1 (.clk(clock_65mhz), .reset(reset), .on(calibrate), .siren(siren)); 

 
// for testing LED strip 
parameter [31:0] START_BIT = 32'b0; 
parameter [31:0] STOP_BIT = 32'hFFFF_FFFF; 
parameter [31:0] LED_BIT = {3'b111,29'b0}; 
reg BTNR_pulse; 
reg BTNR_prev; 
always @(posedge clock_65mhz) begin 

 BTNR_prev <= right; 
 BTNR_pulse <= right !== BTNR_prev; 

end 
wire [31:0] led_bit = right ? LED_BIT : STOP_BIT; 
// set up LED strip 
ledTX #(.SIZE(1024)) leds(.clk(clock_65mhz), .reset(reset), .packet(led_full_sequence), 

.update(led_update), .signal(JA[4]), .led_clk(JA[5])); 
 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 
// 
// BAT  
// 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 

// set up serial packet reader 
wire signal; 
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synchronize sync(.clk(clock_65mhz), .in(JA[3]), .out(signal)); 
wire [7:0] packet; 
wire done_serial; 
serialRX serialRX1(.clk(clock_65mhz), .reset(reset), .serial_in(signal), .data(packet), 

.done(done_serial)); 
  

// set up imu reader 
wire [15:0] accelx, accely, accelz, gyrox, gyroy, gyroz; 
wire done_imu; 
bluetoothRX bluetoothRX1(.clk(clock_65mhz), .reset(reset), .data(packet), 

.write(done_serial), 
 .accelx(accelx), .accely(accely), .accelz(accelz), .gyrox(gyrox), .gyroy(gyroy), 
.gyroz(gyroz), .done(done_imu)); 
  

// set up bat calculator   
wire [7:0] x,y; 
wire direction, swing; 
wire [7:0] test_x,test_y; // for debugging  
wire [1:0] bat_state;  
wire swing,batter_up; 
bat bat1(.clk(clock_65mhz), .reset(reset), .start(calibrate), .ready(done_imu), 

 .gyrox(gyrox), .gyroy(gyroy), .gyroz(gyroz), .accelx(accelx), 
.accely(accely), .accelz(accelz), 
 .X(x), .Y(y), .direction(direction), .done(swing), .batter_ready(batter_up), 
 .state(bat_state), .pos0(LED16_B), .test_x(test_x), .test_y(test_y), 
.test_dir(LED17_G), .SW(SW[15:3]));   

assign LED17_R = ~LED17_G;   // visually display up/down direction of bat in real time 
 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 
// 
// FSM 
// 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///   

// set up FSM 
wire [3:0] fsm_state;  
fsm gameplay(.clock(clock_65mhz), .reset(reset), .batter_up(batter_up|left), 

.swing(swing|down), .ball_clock(xvga_screen_pulse), .hit(hit), 
 .out_state(fsm_state), .bat_enable(bat_enable), .ball_speed(ball_speed), 
.swing_time(swing_time), .start_pitch(start_pitch), .hits(hits), 
 .misses(misses), .start_ball_moving(start_ball_moving)); 
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// instantiate 7-segment display 
wire [31:0] data; 
wire [6:0] segments; 
display_8hex display(.clk(clock_65mhz),.data(data), .seg(segments), .strobe(AN));  
assign SEG[6:0] = segments; 
assign SEG[7] = 1'b1; 

 
// display hits and misses in dec on hex_disp 
wire [13:0] hits,misses; 
wire [7:0] hits_dec, misses_dec; 
hex_to_dec hit_dec(.clk(clock_65mhz), .reset(reset), .hex(hits), .dec(hits_dec)); 
hex_to_dec miss_dec(.clk(clock_65mhz), .reset(reset), .hex(misses), .dec(misses_dec)); 
assign data = {8'b0, hits_dec, 8'b0, misses_dec}; 

 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 
// 
// GRAPHICS 
// 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// 

// generate basic XVGA video signals 
wire [10:0] hcount; 
wire [9:0]  vcount; 
wire hsync,vsync,blank; 
xvga xvga(.vclock(clock_65mhz),.hcount(hcount),.vcount(vcount), 

 .hsync(hsync),.vsync(vsync),.blank(blank)); 
 

// feed XVGA signals to graphics module 
wire [23:0] pixel; 
wire phsync,pvsync,pblank; 
wire xvga_screen_pulse; 
wire hit; 
wire bat_enable; 
wire [1:0] swing_time; 
wire start_pitch; 
wire [1023:0] led_full_sequence; 
wire led_update; 
wire [1:0] ball_speed = SW[2] + 1; 
wire manual = SW[8]; 
wire start_ball_moving; 
graphics pg(.vclock(clock_65mhz),.reset(reset), .hcount(hcount),.vcount(vcount), 

.hsync(hsync),.vsync(vsync),.blank(blank), 
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 .bat_up(manual?SW[15]:direction), .x_accel(manual?SW[14:12]:x), 
.y_accel(manual?SW[11:9]:y), .start_pitch(start_pitch), .bat_enable(bat_enable), 
 .softball_side(swing_time), .ball_speed(ball_speed), 
.start_ball_move(start_ball_moving), .phsync(phsync), .pvsync(pvsync), .pblank(pblank), 
 .pixel(pixel), .screen_pulse(xvga_screen_pulse), .hit(hit), 
.led_full_sequence(led_full_sequence), .led_update(led_update)); 

// import pong basics into vivado 
reg [23:0] rgb; 
wire border = (hcount==0 | hcount==1023 | vcount==0 | vcount==767); 
reg b,hs,vs; 
always @(posedge clock_65mhz) begin 

 if (SW[1:0] == 2'b01) begin 
 // 1 pixel outline of visible area (white) 

    hs <= hsync; 
 vs <= vsync; 
 b <= blank; 
 rgb <= {24{border}}; 
 end else if (SW[1:0] == 2'b10) begin 
 // color bars 
 hs <= hsync; 
 vs <= vsync; 
 b <= blank; 
 rgb <= {{8{hcount[8]}}, {8{hcount[7]}}, {8{hcount[6]}}} ; 
 end else begin 
 // default: virtual softball game 
 hs <= phsync; 
 vs <= pvsync; 
 b <= pblank; 
 rgb <= pixel & {24{~blank}}; 
 end 

end 
// provide outputs 
assign VGA_R = rgb[23:20]; 
assign VGA_G = rgb[15:12]; 
assign VGA_B = rgb[7:4];  
assign VGA_HS = ~hsync; 
assign VGA_VS = ~vsync; 

 
endmodule 
 
// Credit to g.p.hom 
// pulse synchronizer 
module synchronize #(parameter NSYNC = 2)  // number of sync flops.  must be >= 2 

 
74 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

 (input clk,in, 
 output reg out); 
  reg [NSYNC-2:0] sync; 
  always @ (posedge clk) begin 

         {out,sync} <= {sync[NSYNC-2:0],in}; 
  end 
ndmodule 
 
// Credit to g.p.hom 
// use system clock for the clock input 
// to produce a synchronous, debounced output 
module debounce #(parameter DELAY=1000000)   // .01 sec with a 100Mhz clock 
 (input reset, clock, noisy, 
 output reg clean); 
 
   reg [19:0] count; 
   reg new; 
 
   always @(posedge clock) 
 if (reset) 
 begin 
      count <= 0; 
      new <= noisy; 
      clean <= noisy; 
 end 
 else if (noisy != new) 
 begin 
      new <= noisy; 
      count <= 0; 
 end 
 else if (count == DELAY) 
 clean <= new; 
 else 
 count <= count+1; 
   
endmodule 

11.3.2 fsm.v 
module fsm #(parameter MAX_BALL_WIDTH = 128) (input clock, reset, batter_up, swing, 
ball_clock, hit, [1:0] ball_speed, output [3:0] out_state, output bat_enable, start_pitch, output 
[1:0] swing_time, output reg [7:0] hits,misses, output start_ball_moving); 
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//state encodings 
parameter IDLE = 4'b0000; 
parameter BALL_COMING = 4'b0001; 
parameter BALL_IN_ZONE = 4'b0010; 
parameter SWING = 4'b0011; 
parameter TIME_MISS = 4'b0100; 
parameter SYNC = 4'b0101; 
parameter HIT = 4'b0110; 
parameter SWING_MISS = 4'b0111; 
parameter BATTER_UP_WAIT = 4'b1000; 

  
parameter LEFT_SIDE_BALL = 2'b00; 
parameter MIDDLE_BALL = 2'b01; 
parameter RIGHT_SIDE_BALL = 2'b10; 

  
parameter COUNT_5_SEC = 32'd325000000; 

 
//state transition diagram 
reg [3:0] state = IDLE; 
reg [29:0] counter_hit = 0; 
reg [29:0] counter_miss = 0; 
reg [29:0] batter_wait_counter = 0; 
reg [7:0] ball_counter = 0; 
reg [1:0] rswing_time = 3; //either left, middle, or right 

  
reg rbat_enable; //when graphics should display the bat 
reg rstart_pitch; //tells graphics when to pitch the ball 
reg rstart_ball_moving; //tells graphics when to start showing ball trajectory 

  
always @ (posedge clock) begin 

   
 if (reset) begin; 
 counter_hit <= 0; 
 counter_miss <= 0; 
 ball_counter <= 0; 
 state <= IDLE; 
 rbat_enable <= 0; 
 hits <= 0; 
 misses <= 0; 
 rstart_ball_moving <= 0; 
 end 
   
 //transitions to next state and updates signal 
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 else begin 
   
 case (state) 
   
  //everything is at rest waiting for the signal to pitch the ball 
 IDLE: begin 
   
 rbat_enable <= 0; 
 ball_counter <= 0; 
 counter_hit <= 0; 
 counter_miss <= 0; 
 batter_wait_counter <= 0; 
 if (batter_up) state <= BATTER_UP_WAIT; 
 else state <= IDLE; 
 rstart_ball_moving <= 0; 
   
 end 
   
  //gives time for thebatter to get set before the ball is pitched 
 BATTER_UP_WAIT: begin 
   
 rbat_enable <= 0; 
 ball_counter <= 0; 
 rstart_pitch <= 0; 
   
 batter_wait_counter <= batter_wait_counter + 1;   
   
 if (batter_wait_counter >= 65000000) begin //wait 1 second before pitching ball 
 state <= BALL_COMING; 
 batter_wait_counter <= 0; 
 rstart_pitch <= 1; 
 end 
 else state <= BATTER_UP_WAIT; 
 end 
   
  //ball is moving towards teh batter in the first half of the ball's path 
 BALL_COMING: begin 
   
 rbat_enable <= 0; 
 batter_wait_counter <= 0; 
 rstart_pitch <= 0; 
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 //handles timing for how far the ball has traveled based on graphical 
representation 
 if (ball_clock) ball_counter <= ball_counter + 1; 
   
  //ball is in the zone if it has travelled halfway, this is independent of speed 
 if (ball_counter >= ((MAX_BALL_WIDTH/ball_speed)/2)) state <= 
BALL_IN_ZONE; //corresponds to certain ball width and color 
 else if (swing) begin 
 state <= TIME_MISS; 
 ball_counter <= 0; 
 end 
   
 else if (batter_up) begin 
 state <= BATTER_UP_WAIT; 
 ball_counter <= 0; 
 end 
   
 else state <= BALL_COMING; 
   
 end 
 
  //ball is moving towards the batter in the zone (the batter would have correct timing here 
if they swung) 
  //this state also tells graphics which side of the ball the batter hit 
 BALL_IN_ZONE: begin 
   
 rbat_enable <= 0; 
   
 if (ball_clock) ball_counter <= ball_counter + 1; //continues counting ball width 
from BALL_COMING state 
   
 if (swing) begin 
 state <= SYNC; 
 ball_counter <= 0; 
 if (ball_counter <= (((MAX_BALL_WIDTH / ball_speed)/8) * 5)) rswing_time <= 
RIGHT_SIDE_BALL; //swung early => hit right side 
 else if ((ball_counter > (((MAX_BALL_WIDTH / ball_speed)/8) * 5)) && 
   (ball_counter <= (((MAX_BALL_WIDTH / ball_speed)/8) * 7))) 
rswing_time <= MIDDLE_BALL; //hit middle part of ball 
 else rswing_time <= LEFT_SIDE_BALL; //swung late => hit left side 
 end 
   
 else if (ball_counter >= (MAX_BALL_WIDTH / ball_speed)) begin 
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 state <= TIME_MISS; //ball is now white and full sized 
 ball_counter <= 0; 
 misses <= misses + 1;  
 end 
   
 else if (batter_up) begin 
 state <= BATTER_UP_WAIT; 
 ball_counter <= 0; 
 end 
 
 else state <= BALL_IN_ZONE; 
   
 end 
   
  //used to synchronize ball clock for hit detection in later states 
 SYNC: begin 
   
 rbat_enable <= 0; 
   
 if (ball_clock) state <= SWING; 
   
 else state <= SYNC; 
   
 end 
 
  //the bat has just been swung at the right time, and graphics will determine if the bat hit 
the ball 
 SWING: begin 
 rbat_enable <= 1; 
  //if any pixels have both a bat and ball component, then the ball is considered to 
be hit 
 if (hit) begin 
 state <= HIT;  
 hits <= hits + 1;  
 end  
  //no pixels on the screen are detecting an intersection of the bat and the ball, so 
this is then a miss   
 else if (ball_clock) begin 
 state <= SWING_MISS;  
 misses <= misses + 1;  
 end   
 else state <= SWING; 
 end 
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  //the batter made contact with the ball (based on timing and bat angle) 
 HIT: begin 
 rbat_enable <= 1; 
 counter_hit <= counter_hit + 1; 
 ball_counter <= 0; 
   
 //has viewed the screen for 5 seconds 
 if (counter_hit >= COUNT_5_SEC) begin 
 state <= IDLE; 
 counter_hit <= 0; 
 rbat_enable <= 0; 
 rstart_ball_moving <= 1; 
 end 
   
 else if (batter_up) begin 
 state <= BATTER_UP_WAIT; 
 counter_hit <= 0; 
 rbat_enable <= 0; 
 end 
   
 else state <= HIT; 
 end   
   
  //the batter missed the ball due to either swinging too early or too late 
 TIME_MISS: begin 
 counter_miss <= counter_miss + 1; 
 ball_counter <= 0; 
   
 if (counter_miss >= COUNT_5_SEC) begin 
 state <= IDLE; 
 counter_miss <= 0; 
 end 
   
 else if (batter_up) begin 
  state <= BATTER_UP_WAIT; 
  counter_miss <= 0; 
  end 
 
 else state <= TIME_MISS; 
   
 end 
   

 
80 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

  //the batter missed the ball due to an incorrect angle (they had correct timing) 
 SWING_MISS: begin 
 rbat_enable <= 1; //major difference from TIME_MISS 
 counter_miss <= counter_miss + 1; 
 ball_counter <= 0; 
   
 if (counter_miss >= COUNT_5_SEC) begin 
 state <= IDLE; 
 counter_miss <= 0; 
 rbat_enable <= 0; 
 end 
   
 else if (batter_up) begin 
 state <= BATTER_UP_WAIT; 
 rbat_enable <= 0; 
  counter_miss <= 0; 
 end 
   
 else begin 
 state <= SWING_MISS; 
 rbat_enable <= 1; 
 end 
   
 end 
 
  default: state <= IDLE; 
   
 endcase   
  
 end 

end 
  

assign bat_enable = rbat_enable; 
assign out_state = state; 
assign swing_time = rswing_time; 
assign start_pitch = rstart_pitch; 
assign start_ball_moving = rstart_ball_moving; 

endmodule 
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11.3.3 bat.v 
module bat( 
    input clk, 
    input reset, 
    input start,              // start is the calibration signal for pos 
    input ready,              // ready indicates new data is ready from IMU 
    input signed [15:0] accelx, 
    input signed [15:0] accely, 
    input signed [15:0] accelz, 
    input signed [15:0] gyrox, 
    input signed [15:0] gyroy, 
    input signed [15:0] gyroz, 
  
    output reg [7:0] X,       // unsigned!!! 
    output reg [7:0] Y, 
    output reg direction, 
    output reg done, 
    output batter_ready, 
  
    output reg [1:0] state,   // for debugging 
    output pos0, 
    output [7:0] test_x, 
    output [7:0] test_y, 
    output test_dir, 
    input [12:0] SW           // for finding thresholds 
    ); 
  
    // states 
    parameter IDLE = 2'b00; 
    parameter CALIBRATE = 2'b01; 
    parameter READ = 2'b11; 
    parameter SWING = 2'b10; 
    reg [1:0] next_state; 
  
    // helper variables 
    wire start_pos, done_pos; 
    wire [7:0] slope_x, slope_y;  
    wire dir; 
  
    // helper modules 
    pos posz(.clk(clk), .reset(reset), .update(ready), .start(start_pos), .gyroz(gyroz), .gyrox(gyrox), 
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.done(done_pos), .raised(batter_ready), .pos0(pos0)); 
    slope #(.DIV(11)) slope1(.clk(clk), .reset(start_pos), .update(ready), .T(6), .T2(1), 
.beta({11'hF}), 
                                .gyrox(gyrox), .gyroy(gyroy), .gyroz(gyroz), .accely(accely), .accelz(accelz), 
.z(slope_x), .y(slope_y), .dir(dir));  
  
    // for debugging 
    assign test_x = slope_x; 
    assign test_y = slope_y; 
    assign test_dir = dir;  
  
    // calibrate when in calibration state 
    assign start_pos = state==CALIBRATE; 
  
  
    always @(posedge clk) begin 
        if (reset) begin                // system reset 
            done <= 0; 
            state <= IDLE; 
        end 
        else begin  
            case (state) 
                IDLE: begin 
                    done <= 0; 
                    state <= start ? CALIBRATE : IDLE;   // start calibration (centered) 
                end 
                CALIBRATE: begin 
                    state <= READ;                       // signal start_pos 
                end 
                READ: begin                              // read gyro/accel values until bat returned to 
calibration point 
                    state <= done_pos ? SWING : (start ? CALIBRATE : READ); 
                end 
                SWING: begin                             // output x and y values from slope 
                    X <= slope_x; 
                    Y <= slope_y; 
                    direction <= dir; 
                    state <= IDLE; 
                    done <= 1; 
                end 
            endcase 
        end 
    end 
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endmodule 
 
 
module pos ( 
    input clk, 
    input reset, 
    input update, 
    input start, 
    input signed [15:0] gyroz, 
    input signed [15:0] gyrox, 
    output reg done, 
    output reg raised, 
    output pos0                     // for debugging 
    ); 
  
    // set up some constant values 
    parameter [2:0] T = 3'sd2;          // divisor for gyro (g/2^T) 
    parameter signed [23:0] epsilonz = 24'sh8000;    // threshold for being in zone- use 100 for 
testing 
    parameter signed [23:0] epsilonx = 24'sh300000;  // threshold for being in zone- use 100 for 
testing 
    parameter signed [15:0] gz_threshold = 16'sh100; // threshold for stopped movement 
    parameter IDLE = 2'b00;             // waiting for start signal 
    parameter CENTERED = 2'b01;         // calibrate pos, wait until bat moves 
    parameter RAISING = 2'b10;          // raise bat 
    parameter SWINGING = 2'b11;         // wait for pos to return to 0 
  
    // create registers to store initial pos (calibrating point) 
    reg [1:0] state; 
    reg signed [23:0] posz; 
    reg signed [23:0] posx; 
  
    wire posz0, posx0;                          // detects when pos is within epsilon of calibrated point 
    assign posz0 = posz[23] ? posz > -epsilonz : posz < epsilonz;     // if negative: check 
pos<-eps,   else if positive: check pos>eps 
    assign posx0 = posx[23] ? posx > -epsilonx : posx < epsilonx;  
    assign pos0 = posz0 & posx0; 
  
  
    always @(posedge clk) begin 
        if (reset) begin                // system reset 
            posz <= 0; 
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            posx <= 0; 
            raised <= 0; 
            done <= 0; 
            state <= IDLE; 
        end 
        else if (start) begin           // start calibration (centered) 
            posz <= 0; 
            posx <= 0; 
            raised <= 0; 
            done <= 0; 
            state <= CENTERED; 
        end 
        else if (update) begin 
            // update pos 
            posz <= posz + (gyroz >>> {1'b0,T});  
            posx <= posx + gyrox;  
  
            // update state 
            if (state == CENTERED && !posz0) begin 
                state <= RAISING; 
            end 
            else if (state == RAISING && (gyroz[15] ? gyroz>-gz_threshold : gyroz<gz_threshold)) 
begin 
                state <= SWINGING; 
                raised <= 1; 
            end  
            else if (state == SWINGING && pos0) begin 
                done <= 1; 
                state <= IDLE; 
            end 
            else begin 
                raised <= 0; 
                done <= 0; 
            end 
        end 
        else begin 
            raised <= 0; 
            done <= 0; 
        end 
    end 
  
  
endmodule 
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module slope #(parameter DIV=5) ( 
    input clk, 
    input reset, 
    input update, 
    input [2:0] T, 
    input [1:0] T2, 
    input [DIV-1:0] beta, 
    input signed [15:0] gyrox, 
    input signed [15:0] gyroy, 
    input signed [15:0] gyroz, 
    input signed [15:0] accely, 
    input signed [15:0] accelz, 
    output [7:0] z, 
    output [7:0] y, 
    output dir 
    ); 
  
    // create BIG registers to store previous accel/gyro values 
    reg signed [15:0] z_int, y_int, gx;  
    reg signed [23:0] az, ay, gz, gy; 
    reg signed [31:0] zz, yy; 
    assign z = z_int[15] ? -z_int[15:8] : z_int[15:8]; // top 8 bits of abs(z_int) 
    assign y = y_int[15] ? -y_int[15:8] : y_int[15:8]; 
  
    // calculate signed positive beta and 1-beta 
    wire signed [DIV:0] beta_int; 
    wire signed [DIV+1:0] beta_comp; 
    assign beta_int = {1'b0, beta}; 
    assign beta_comp = (2'b01<<{1'b0,DIV}) - beta_int; 
  
    // direction is sign of y_accel 
    assign dir = y_int[15]; 
  
    always @(posedge clk) begin 
        if (reset) begin 
            y_int <= accely; 
        end 
        else if (update) begin  
  
            // update position in z direction  
            /* works pretty well on it's own, but not in combo with  
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            z_int <= (zz >>> {1'b0,DIV}) + (az >>> {1'b0,DIV}); 
            az <= beta_int * accelz;//(accelz + (gyroy[15]?gyroy:-gyroy)>>>{1'b0,T2}); 
            gz <= gyrox >>> {1'b0,T}; 
            zz <= beta_comp * (dir ? (z_int + gz) : (z_int - gz));        // add gz if pointing down, else 
subtract gx 
             */ 
            /* let z_int be constant */ 
            z_int <= 16'h3800; 
  
 
            // update position in y direction 
            /* Affected by centripetal acceleration 
            y_int <= (yy >>> {1'b0,DIV}) + (ay >>> {1'b0,DIV}); 
            ay <= beta_int * accely; 
            gy <= gyrox >>> {1'b0,T}; 
            yy <= beta_comp * (y_int + gy); 
            */ 
            /* accounts for centripetal acceleration */ 
            // B=0xF, T=6, T2=1 
            y_int <= (yy >>> {1'b0,DIV}) + (ay >>> {1'b0,DIV}); 
            ay <= beta_int * (accely - (((gyroz[15]?-gyroz:gyroz))<<<{1'b0,T2})); 
            gy <= (gyrox) >>> {1'b0,T}; 
            yy <= beta_comp * (y_int + gy);                             // add gy because increasing 
downward for both 
  
        end 
    end 
  
endmodule 

11.3.4 serialRX.v 
module serialRX( 

input clk, // 65 MHz clk 
input reset, // active high reset 
input serial_in, 
output reg [7:0] data,   // 8 bit raw data 
output reg done 
); 

 
// this section sets up the clk; 
parameter DIVISOR =  564; // create 115,200 baud rate clock, not exact, but should 

work. use 4 for tb 
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reg [10:0] count; 
  

// sets up states 
parameter IDLE =  2'b00; 
parameter START = 2'b01; 
parameter READ =  2'b11; 
parameter STOP =  2'b10; 
// constants 
parameter NUM_BITS = 3'd7; 
parameter START_BIT = 1'b0; 
parameter STOP_BIT = 1'b1; 

  
// set up variables 
reg [2:0] bits_read; 
reg [7:0] data_read; 
reg [1:0] state; 

  
   

always @(posedge clk) 
begin 

 if (reset) begin // reset to IDLE state 
 state <= IDLE; 
 data[7:0] <= 0; 
 count <= 0; 
 done <= 0; 
 end 
 else begin // FSM transitions 
 case(state) 
 IDLE: begin 
 count <= 0; 
 done <= 0; 
 if (serial_in == START_BIT) begin // start reading once start bit 
received 
 state <= START; 
 end 
 end 
 START: begin 
 if (count == DIVISOR/2 - 1) begin 
 bits_read <= 0; //should happen by default, but just in case 
 data_read <= 0; 
 count <= 0; 
 state <= READ; 
 end 
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 else count <= count+1; 
 end 
 READ: begin 
 if (count == DIVISOR - 1) begin 
 bits_read <= bits_read + 1; 
 count <= 0; 
 data_read[7:0] <= {serial_in, data_read[7:1]};  // shift in next bit 
 if (bits_read == NUM_BITS) begin // finished reading all bits, output 
value into data 
 state <= STOP; 
 end 
 end 
 else count <= count+1; 
 end 
 STOP: begin 
 if (count == DIVISOR - 1) begin 
 count <= 0; 
 state <= IDLE; 
 if (serial_in == STOP_BIT) begin 
 data[7:0] <= data_read[7:0]; 
 done <= 1; 
 end 
 end 
 else count <= count+1; 
 end 
 endcase 
   
 end 

end 
 
endmodule 

11.3.5 bluetoothRX.v 
module bluetoothRX( 

input clk, 
input reset, 
input [7:0] data, 
input write, 
output [15:0] accelx, 
output [15:0] accely, 
output [15:0] accelz, 
output [15:0] gyrox, 
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output [15:0] gyroy, 
output [15:0] gyroz, 
output reg done 
); 

  
// this section sets up the clk; 
reg [12:0] count; 

  
// states 
parameter IDLE = 2'b00; 
parameter READL = 2'b01; 
parameter READM = 2'b11; 
reg start; 
reg [1:0] state; 
reg [1:0] next_state; 

  
// constants 
parameter START_BYTE = 8'h11; 
parameter DIVISOR = 13'd6000; //65MHz * 10bit/115200Hz = 5642, but want to 

overshoot 
parameter NUM_OUTPUTS = 3'd6; 

  
// read into array, then assign to accel and gyro 
reg [15:0] outputs[0:NUM_OUTPUTS-1];  // array of outputs 
reg [2:0] outputs_read; // reads six 16bit packets as twelve 8bit packets 
reg [7:0] outputL; // lower 8bits 
assign accelx = outputs[0]; 
assign accely = outputs[1]; 
assign accelz = outputs[2]; 
assign gyrox  = outputs[3]; 
assign gyroy  = outputs[4]; 
assign gyroz  = outputs[5]; 

  
// state transitions: figure out next state 
always@* begin 

 case(state) 
 IDLE: next_state = write ? READL : IDLE;   
 READL: next_state = (count==DIVISOR-1)|start ? IDLE : (write ? READM : 
READL); 
 READM: next_state = (outputs_read >= NUM_OUTPUTS) ? IDLE : (write ? READL 
: READM); 
 default: next_state = IDLE; 
 endcase 
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end  
   

always @(posedge clk) 
begin 

 if (reset) begin // reset to IDLE state 
 state <= IDLE; 
 count <= 0; 
 outputs_read <= 0; 
 done <= 0; 
 start <= 0; 
 end 
 else begin   
 // count 
 if (count >= DIVISOR) begin // waited too long, reset to idle state   
 state <= IDLE; 
 count <=0; 
 end 
 else if (write) begin // read byte, reset counter 
 count <= 0; 
 state <= next_state; 
 end 
 else begin // waiting for next byte or a timeout 
 count <= count+1; 
 state <= next_state; 
 end 
   
 // transition 
 if (next_state != state) begin 
 case(next_state) 
 IDLE: begin 
 start <= 0; 
 if (outputs_read == NUM_OUTPUTS) begin // finished reading whole 
packet -> done and reset 
 done <= 1; 
 end 
 end 
 READL: begin 
 if (data == START_BYTE) begin // read the start byte 
 outputs_read <= 0; 
 start <= 1; // skip reading in the start byte as a low bit 
-> return to IDLE 
 end 
 else outputL <= data; // read lower order bits 
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 done <= 0; 
 end 
 READM: begin 
 outputs[outputs_read] <= {data, outputL}; // read higher order bits, combine 
and put into correct output 
 outputs_read <= outputs_read+1; 
 end 
 endcase 
 end 
 else done <= 0; 
   
 end 

end 
  
endmodule 

11.3.6 graphics.v 
 
////////////////////////////////////////////////////////////////////// 
// 
// blob: generate rectangle on screen 
// 
////////////////////////////////////////////////////////////////////// 
module blob 
   (input [10:0] x,hcount, 

input [9:0] y,vcount, 
input [11:0] width, height, 
input [23:0] color, 
output reg [23:0] pixel); 

 
   always @ * begin 
 if ((hcount >= x && hcount < (x+width)) && 

(vcount >= y && vcount < (y+height))) 
   pixel = color; 
 else pixel = 0; 
   end 
endmodule 
 
 
//////////////////////////////////////////////////////////////////////////////////// 
// 
// circle_blob: generate a circle on the screen with a particular center and radius 
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// 
//////////////////////////////////////////////////////////////////////////////////// 
module circle_blob (input [10:0] center_x, hcount, 
 input [9:0] center_y, vcount, 
 input [11:0] radius, 
 input [23:0] color, left_color, middle_color, right_color, 
 input clock, show_side, 
 output reg [23:0] circle_pixel); 
  

reg [10:0] deltax; 
reg [9:0] deltay; 
reg [21:0] deltax_sq; 
reg [19:0] deltay_sq; 
reg [23:0] radiussquare; 

   
always @ * begin 

  
deltax <= (hcount > center_x) ? (hcount - center_x) : (center_x - hcount); 
deltay <= (vcount > center_y) ? (vcount - center_y) : (center_y - vcount); 

  
end 

  
always @(posedge clock) begin 

   
 //handles multiplication timing 
 deltax_sq <= deltax * deltax; 
 deltay_sq <= deltay * deltay; 
 radiussquare <= radius * radius; 
  
 if (deltax_sq + deltay_sq <= radiussquare) begin 
 if (!show_side) circle_pixel <= color;  
 else begin 
 if (hcount <= (center_x - (radius/2))) circle_pixel <= left_color; 
 else if (hcount >= (center_x + (radius/2))) circle_pixel <= right_color; 
 else circle_pixel <= middle_color; 
 end 
 end 

else circle_pixel <= 0; 
  

end 
 
 
endmodule 
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////////////////////////////////////////////////////////////////////////////////////////// 
// 
// bat_blob: generate a slanted rectangle from vertical center based on a provided angle 
// 
////////////////////////////////////////////////////////////////////////////////////////// 
module bat_blob(input [23:0] x_accel, hcount, 
 input [23:0] y_accel, vcount, 
 input [23:0] color, 
 input clock, up, 
 output reg [23:0] bat_pixel); 
   
  

always @ (posedge clock) begin 
   
    //uses x and y components to determine angled lines that define bat 
 if (up) begin 
 if (((x_accel * (380 - (vcount + 48))) <= (y_accel * hcount)) 
 && ((y_accel * hcount) <= (x_accel * (380 - (vcount - 48))))) bat_pixel <= color; 
   
 else if ((vcount >= (380 - 48)) && (vcount <= (380 + 48)) 
 && ((y_accel * hcount) <= (x_accel * (380 - (vcount - 48))))) bat_pixel <= color; 
   
 else bat_pixel <= 0; 
 end 
   
 else begin 
 if (((x_accel * (((vcount) - 380 - 48))) <= (y_accel * hcount)) 
 && ((y_accel * hcount) <= ((x_accel * (((vcount) - 380 + 48)))))) bat_pixel <= 
color; 
 
 else if ((vcount >= (380 - 48)) && (vcount <= (380 + 48)) 
 && ((y_accel * hcount) <= ((x_accel * (((vcount) - 380 + 48)))))) bat_pixel <= 
color; 
 
 else bat_pixel <= 0; 
 
 end 
 

end 
 
endmodule 
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//displays a picture 
module picture_blob #(parameter WIDTH = 1024, HEIGHT = 768) 

(input pixel_clk, input [10:0] x, hcount, y, vcount, output reg [23:0] pixel);  
  

wire [7:0] image_bits; 
wire [7:0] color_index; //9 bits used to look into the color maps 
wire [7:0] color_red; //retrieved from red color map 
wire [7:0] color_green; // retrieved from green color map 
wire [7:0] color_blue; //retrieved from blue color map 

 
reg [17:0] image_addr = 0; //num bits for 512 X 384 

  
always @ (posedge pixel_clk) begin  

   
 if ((hcount >= 0 && hcount < WIDTH) && (vcount >= 0 && vcount < HEIGHT)) begin 
 image_addr <= ((vcount[10:1] * 512) + hcount[10:1]); //get rid of last bit of vcount and 
hcount because need to enlarge image by double in each direction 
 pixel <= {color_red, color_green, color_blue};  
 end  
   
 else pixel <= 0;  
 

end 
  

blk_mem_gen_0 mem_color_index(.clka(pixel_clk), .ena(1), .addra(image_addr), 
.douta(color_index)); //retrieves the image index that will be used for color maps 

blk_mem_gen_1 mem_color_red(.clka(pixel_clk), .ena(1), .addra(color_index), 
.douta(color_red)); 

blk_mem_gen_2 mem_color_green(.clka(pixel_clk), .ena(1), .addra(color_index), 
.douta(color_green)); 

blk_mem_gen_3 mem_color_blue(.clka(pixel_clk), .ena(1), .addra(color_index), 
.douta(color_blue)); 
  
 endmodule 
 
 
 
//////////////////////////////////////////////////////////////////////////////// 
// 
// graphics: the virtual softball game!   
//   
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//////////////////////////////////////////////////////////////////////////////// 
 
module graphics #(parameter MAX_BALL_WIDTH = 128) ( 
   input vclock,   // 65MHz clock 
   input reset, // 1 to initialize module 
   input [10:0] hcount,   // horizontal index of current pixel (0..1023) 
   input [9:0] vcount, // vertical index of current pixel (0..767) 
   input hsync, // XVGA horizontal sync signal (active low) 
   input vsync, // XVGA vertical sync signal (active low) 
   input blank, // XVGA blanking (1 means output black pixel) 
   input bat_up, //is bat at an upward angle 
   input [23:0] x_accel, //x slope component of bat 
   input [23:0] y_accel, //y slope component of bat 
   input start_pitch, // when to pitch the ball 
   input bat_enable, //tells when to show bat on screen 
   input [1:0] softball_side, //which side of the softball was hit 
   input [1:0] ball_speed, 
   input start_ball_move, 
  
   output phsync,   // softball game's horizontal sync 
   output pvsync,   // softball game's vertical sync 
   output pblank,   // softball game's blanking 
   output [23:0] pixel,   // softball game's pixel  // r=23:16, g=15:8, b=7:0 //will be converted to 12 
bit color 
   output screen_pulse, //when screen has been refreshed 
   output hit, //when bat and ball share a pixel 
   output [1023:0] led_full_sequence, //commands passed to LEDs 
   output led_update //when LEDs should be updated 
   ); 
  
   assign phsync = hsync; 
   assign pvsync = vsync; 
   assign pblank = blank; 
  
   reg [7:0] softball_width; 
   reg [10:0] softball_x; //softball x center 
   reg [10:0] softball_y; //softball y center 
   reg [23:0] softball_color; 
   reg [7:0] softball_color_red; //used for blending of color as ball approaches 
   reg [7:0] softball_color_green; //used for blending of color as ball approaches 
  
   //used to show hit timing when appropriate 
   reg [23:0] softball_color_left; 
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   reg [23:0] softball_color_middle; 
   reg [23:0] softball_color_right; 
 
   reg rscreen_pulse; 
   reg [7:0] random_counter = 0; //used to randomly determine where ball is pitched 
   reg stop_ball_grow = 0; //0 => don't stop, 1 => stop 
   reg hit_memory; //remembers if single pixel hit pulse seen on a full swing 
 
   reg [959:0] rled_sequence = {30{3'b111, 29'b0}}; //led sequence values without the start and 
end signal, start with blank 
   reg rled_update = 0; 
   reg last_led_update; //helps with LED timing for different ball speeds 
 
   reg was_bat_enabled = 0; //if the bat was enabled on the last cycle, used to determine if bat 
just went away => want ball motion 
   reg move_ball = 0; //says whether the ball should display a trajectory 
  
   //controls vertical ball trajectory 
   reg up; 
   reg down; 
   reg up_memory; 
   reg down_memory; 
  
   wire [23:0] ball_pixel; 
   wire [23:0] square_pixel; 
   wire [23:0] blend_pixel; 
   wire [23:0] multi_pixel; 
  
   wire [23:0] left_sz_pixel; 
   wire [23:0] top_sz_pixel; 
   wire [23:0] right_sz_pixel; 
   wire [23:0] bottom_sz_pixel; 
   wire [23:0] vertical_middle_sz_pixel; 
   wire [23:0] horizontal_middle_sz_pixel;  
   wire [23:0] softball_pixel; 
   wire [23:0] bat_pixel; 
   wire [23:0] total_zone_pixel; 
   wire [23:0] ball_zone_multipixel; 
   wire [23:0] ball_bat_multipixel; 
   wire [23:0] pic_pixel; 
   wire [23:0] game_pixel; 
  
   wire [1023:0] led_full_sequence; //entire sequence to control LEDs 
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   wire led_update; //when LEDs should be updated with new commands 
  
  
  
   parameter SCREEN_WIDTH = 1023; 
   parameter SCREEN_HEIGHT = 767; 
   parameter STRIKEZONE_THICKNESS = 16; 
  
   //used to display swing timing 
   parameter LEFT_SIDE_BALL = 2'b00; 
   parameter MIDDLE_BALL = 2'b01; 
   parameter RIGHT_SIDE_BALL = 2'b10; 
  
   always @(posedge vclock) begin 
  
 random_counter <= random_counter + 1; 
   
 hit_memory <= hit || hit_memory; 
   
 if (rled_update) rled_update <= 0; //stop sending LED signal 
   
 if (start_ball_move) move_ball <= 1; //continue showing trajectory of ball 
   
 //determines vertical trajectory of ball 
 if (hit) begin 
 if (vcount > softball_y) up <= 1; 
 else down <= 1; 
 end 
 
 else begin 
 up <= 0; 
 down <= 0; 
 end 
   
 up_memory <= start_pitch ? 0 : up || up_memory; // remembers if up pulse was 
seen, resets on start_pitch 
 down_memory <= start_pitch ? 0 : down || down_memory; // remembers if up 
pulse was seen, resets on start_pitch 
  
 //resets the game 
 if (reset) begin 
 rled_update <= 0; 
 was_bat_enabled = 0; 
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 move_ball <= 0; 
 up_memory <= 0; 
 down_memory <= 0; 
 end 
   
 if (start_pitch) begin 
 softball_width <= 0; 
 softball_color <= 24'hFF_00_00; //ball begins red 
 softball_color_red <= 8'hFF; 
 softball_color_green <= 8'h00; 
 
 //random ball start constricted to a particular region (equations written out for timing 
purposes) 
 if (((SCREEN_WIDTH >> 5) + (random_counter[3:0] * (SCREEN_WIDTH >> 4))) <= 450 
&& 
 ((((SCREEN_HEIGHT >> 5) + (random_counter[7:4] * (SCREEN_HEIGHT >> 
4))) <= 200) || 
 ((SCREEN_HEIGHT >> 5) + (random_counter[7:4] * (SCREEN_HEIGHT >> 4))) 
>= 450)) begin 
 softball_x <= ((SCREEN_WIDTH >> 5) + (random_counter[3:0] * (SCREEN_WIDTH >> 
4))) + 512; 
 softball_y <= ((SCREEN_HEIGHT >> 5) + (random_counter[7:4] * (SCREEN_HEIGHT 
>> 4))); 
 end 
 
 else begin 
 softball_x <= ((SCREEN_WIDTH >> 5) + (random_counter[3:0] * 
(SCREEN_WIDTH >> 4))); 
 softball_y <= ((SCREEN_HEIGHT >> 5) + (random_counter[7:4] * 
(SCREEN_HEIGHT >> 4)));   
 end 
   
 stop_ball_grow <= 0; 
 hit_memory <= 0; 
 rled_sequence <= {30{3'b111, 29'b0}};  //clears LEDs for the next pitch 
 rled_update <= 1; 
 was_bat_enabled <= 0; 
 move_ball <= 0; 
 end  
   
   
 //determines when the screen should be refreshed; represents each cycle of going 
through all the pixels 
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 if (hcount == SCREEN_WIDTH && vcount == SCREEN_HEIGHT) begin   
 rscreen_pulse <= 1; 
   
 //show bat on the screen 
 if (bat_enable) begin 
 was_bat_enabled <= 1; 
 softball_width <= softball_width; 
 stop_ball_grow <= 1;  
   
 //left side of ball is green to show hit timing 
 if (softball_side == LEFT_SIDE_BALL) begin 
 if (hit_memory || hit) softball_color_left <= 24'h00_FF_00; 
 else softball_color_left <= 24'hFF_00_00; 
 softball_color_middle <= 24'hFF_FF_FF; 
 softball_color_right <= 24'hFF_FF_FF; 
 end 
 
 //middle part of ball is green to show hit timing 
 else if (softball_side == MIDDLE_BALL) begin 
 softball_color_left <= 24'hFF_FF_FF; 
 if (hit_memory || hit) softball_color_middle <= 24'h00_FF_00; 
 else softball_color_middle <= 24'hFF_00_00; 
 softball_color_right <= 24'hFF_FF_FF; 
 end 
   
 //right side of ball is green to show hit timing 
 else begin 
 softball_color_left <= 24'hFF_FF_FF; 
 softball_color_middle <= 24'hFF_FF_FF; 
 if (hit_memory || hit) softball_color_right <= 24'h00_FF_00; 
 else softball_color_right <= 24'hFF_00_00;   
 end   
   
 end 
   
 //ball is showing trajectory 
 else if (move_ball) begin 
  //ball is done showing trajectory 
 if (softball_width < 2 ) begin 
 move_ball <= 0; 
 softball_width <= 0; 
 end 
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 softball_color <= 24'h00_FF_00; 
   
  //ball trajectory 
 softball_y <= softball_y - up_memory + down_memory; 
   
  //timing of the hit determines where the ball flies laterally 
 case (softball_side) 
   
 LEFT_SIDE_BALL: begin 
 softball_x <= softball_x + 1; 
 softball_width <= softball_width - 1; 
 end 
 
 MIDDLE_BALL: begin 
 softball_width <= softball_width - 1; 
 end 
   
 RIGHT_SIDE_BALL: begin 
 softball_x <= softball_x - 1; 
 softball_width <= softball_width - 1; 
 end 

  
 default; //do nothing; don't move the ball  
   
 endcase 
   
 end 
   
 //bat has gone away and if no trajectory is shown (a miss) then the ball turns a solid color 
and remains still 
 else if (stop_ball_grow) begin 
 softball_width <= softball_width; 
 stop_ball_grow <= 1; 
 if (hit_memory) begin 
 softball_color <= 24'h00_FF_00; 
 rled_sequence <= {30{32'hFF_00_FF_00}}; 
 rled_update <= 1; 
 end 
 else begin 
 softball_color <= 24'hFF_00_00;  
 rled_sequence <= {30{32'hFF_00_00_FF}}; 
 rled_update <= 1; 
 end 
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 end 
   
     //ball continues growing and changing color from red to green, denoting a pitch moving 
towards the batter 
 else if ((softball_width <= MAX_BALL_WIDTH-2) && !stop_ball_grow) begin 
 //ball growing speed depends on speed input given by user 
 softball_width <= softball_width + ball_speed; 
 softball_color_red <= softball_color_red - ball_speed * 2; 
 softball_color_green <= softball_color_green + ball_speed * 2; 
 softball_color <= {softball_color_red, softball_color_green, 8'h00}; 
   
 //signal LED change here 
 if (softball_width < MAX_BALL_WIDTH >> 1) begin 
 //instantiates the LED sequence to clear 
 rled_sequence <= {30{3'b111, 29'b0}}; 
 rled_update <= 1; 
 end 
   
 if (softball_width == MAX_BALL_WIDTH >> 1) begin 
 //first LED lights when ball enters strikezone, rest of LEDs are balnk 
 rled_sequence <= {32'hFF_00_FF_FF, {29{3'b111, 29'b0}}}; 
 rled_update <= 1;  
 end 
   
   
 if (softball_width > MAX_BALL_WIDTH >> 1) begin 
 //LED shift timing is speed dependent, changes when to update the position of the lit 
LED 
 if (ball_speed == 1 && !last_led_update) begin 
    //shifts lit LED over 1 by using previous sequence 
 rled_sequence <= {3'b111, 29'b0, rled_sequence[959:32]}; 
 rled_update <= 1; 
 last_led_update <= 1; 
 end 
 
 //LED shift timing is speed dependent, changes when to update the position of the lit 
LED 
 else if (ball_speed == 2) begin 
    //shifts lit LED over 1 by using previous sequence 
 rled_sequence <= {3'b111, 29'b0, rled_sequence[959:32]}; 
 rled_update <= 1;  
 end 
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 else last_led_update <= 0; 
   
 end 
   
   
 if (softball_side == LEFT_SIDE_BALL) begin 
 //determines color of ball side based on timing and whether it was a hit or miss 
 if (softball_pixel && bat_pixel && bat_enable) softball_color_left <= 24'h00_FF_00; 
 else softball_color_left <= 24'hFF_00_00; 
 softball_color_left <= 24'hFF_FF_00; 
 softball_color_middle <= 24'hFF_FF_FF; 
 softball_color_right <= 24'hFF_FF_FF; 
   
 end 
 
 else if (softball_side == MIDDLE_BALL) begin 
 //determines color of ball side based on timing and whether it was a hit or miss 
 softball_color_left <= 24'hFF_FF_FF; 
 if (softball_pixel && bat_pixel && bat_enable) softball_color_middle <= 24'h00_FF_00; 
 else softball_color_middle <= 24'hFF_00_00; 
 softball_color_right <= 24'hFF_FF_FF; 
   
 end 
   
 else begin 
 //determines color of ball side based on timing and whether it was a hit or miss 
 softball_color_left <= 24'hFF_FF_FF; 
 softball_color_middle <= 24'hFF_FF_FF; 
 if (softball_pixel && bat_pixel && bat_enable) softball_color_right <= 24'h00_FF_00; 
 else softball_color_right <= 24'hFF_00_00;   
 end  
 end 
   
     //ball grows to largest size 
 else begin 
 softball_width <= MAX_BALL_WIDTH; 
 softball_color_red <= 8'hFF; 
 softball_color_green <= 8'hFF; 
 softball_color <= 24'hFF_FF_FF; 
 stop_ball_grow <= 1; 
   
 end   
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 end 
  

 //the screen pulse should only be high for one 65MHz clock cycle 
 else rscreen_pulse <= 0; 

  
   end 
  
  
   //make softball 
   circle_blob softball(.center_x(softball_x), .center_y(softball_y), .radius(softball_width), 
.clock(vclock), .hcount(hcount), .vcount(vcount), 
    .color(softball_color), .show_side(bat_enable), .left_color(softball_color_left), 
.middle_color(softball_color_middle), 
    .right_color(softball_color_right), .circle_pixel(softball_pixel)); 
 
   
   //make left strike zone line 
   blob left_sz(.x(0), .y(0), .width(STRIKEZONE_THICKNESS), .height(SCREEN_HEIGHT), 
.color(24'hFF_FF_00), .hcount(hcount), .vcount(vcount), .pixel(left_sz_pixel)); 

  
   //make top strike zone line 
   blob top_sz(.x(0), .y(0), .width(SCREEN_WIDTH), .height(STRIKEZONE_THICKNESS), 
.color(24'hFF_FF_00), .hcount(hcount), .vcount(vcount), .pixel(top_sz_pixel)); 
   
   //make right strike zone line 
   blob right_sz(.x(SCREEN_WIDTH - STRIKEZONE_THICKNESS), .y(0), 
.width(STRIKEZONE_THICKNESS), .height(SCREEN_HEIGHT), .color(24'hFF_FF_00), 
.hcount(hcount), 
    .vcount(vcount), .pixel(right_sz_pixel)); 
  
   //make bottom strike zone line 
   blob bottom_sz(.x(0), .y(SCREEN_HEIGHT - STRIKEZONE_THICKNESS), 
.width(SCREEN_WIDTH), .height(STRIKEZONE_THICKNESS), .color(24'hFF_FF_00), 
.hcount(hcount), 
    .vcount(vcount), .pixel(bottom_sz_pixel));   
  
   //make vertical middle strike zone line 
   blob vertical_center_sz(.x((SCREEN_WIDTH / 2) - (STRIKEZONE_THICKNESS / 2)), .y(0), 
 .width(STRIKEZONE_THICKNESS), .height(SCREEN_HEIGHT), .color(24'hFF_FF_00), 
 .hcount(hcount), .vcount(vcount), .pixel(vertical_middle_sz_pixel)); 
  
   //make horizontal middle strike zone line 
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   blob horizontal_center_sz(.x(0), .y((SCREEN_HEIGHT / 2) - (STRIKEZONE_THICKNESS / 
2)), 
 .width(SCREEN_WIDTH), .height(STRIKEZONE_THICKNESS), .color(24'hFF_FF_00), 
 .hcount(hcount), .vcount(vcount), .pixel(horizontal_middle_sz_pixel)); 
  
   
   //make bat 
   bat_blob bat(.x_accel(x_accel), .y_accel(y_accel), .color(24'h00_00_FF), .up(bat_up), 
.hcount(hcount), .vcount(vcount), .clock(vclock), .bat_pixel(bat_pixel)); 
  
   //make a picture appear in the background  
   picture_blob pic(.pixel_clk(vclock), .hcount(hcount), .vcount(vcount), .pixel(pic_pixel)); 
  
   //if bat and ball overlap, then it is considered a hit 
   assign hit = (softball_pixel && bat_pixel && bat_enable); 
  
   //represents the entire strikezone 
   assign total_zone_pixel = left_sz_pixel + top_sz_pixel + right_sz_pixel + bottom_sz_pixel 
 + vertical_middle_sz_pixel + horizontal_middle_sz_pixel; 
  
   //the ball should overlay the strikezone 
   assign ball_zone_multipixel = (softball_pixel != 0) ? (softball_pixel) : total_zone_pixel; 
  
   //ball and bat blend color to show where the bat hit the ball 
   assign ball_bat_multipixel = bat_pixel + softball_pixel; 
  
   //determines if bat is shown on screen or just ball and strikezone 
   assign game_pixel =  ((bat_pixel==0 || !bat_enable) ? (ball_zone_multipixel) : 
ball_bat_multipixel); 
  
   //game should overlay the background picture  
   assign pixel = (game_pixel != 0) ? game_pixel : pic_pixel; 
  
   //signals every time the screen is refreshed   
   assign screen_pulse = rscreen_pulse; 
  
   //controls the LEDs 
   assign led_full_sequence = {32'b0, rled_sequence, {32{1'b1}}}; 
   assign led_update = rled_update; 
   
endmodule 
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11.3.7 ledTX.v 
module ledTX #(parameter SIZE = 1024)(  //note: max size = 2^16 = 65563 

input clk, 
input reset, 
input [SIZE-1:0] packet, 
input update, 
output signal, 
output led_clk, 
output reg done 
); 

  
reg [15:0] count; 
reg [5:0] led_count; 
reg [SIZE-1:0] prev_packet0; 
reg [SIZE-1:0] prev_packet1; 

  
assign signal = (count >= SIZE) ? 1'b1 : packet[count]; // idle if count = size 
assign led_clk = (count >= SIZE) ? 0 : !led_count[5]; // sets output clk to 1/64 of 

input clk   
  

always @(posedge clk) begin 
 led_count <= led_count + 1; 
   
 if (update & (count == SIZE) & prev_packet1 != packet) begin 
 count <= SIZE-1; // begin sending packet by initializing count 
 prev_packet0 <= packet; 
 prev_packet1 <= prev_packet0; 
 end 
 else begin 
 if (led_count[5:0] == 6'b0) begin 
 if (count == 0) begin // end of count, so go back to idle state, also 
signal done 
 count <= SIZE; 
 done <= 1; 
 end 
 else begin // decrement count 
 done <= 0; 
 if (count < SIZE) begin 
 count <= count - 1; 
 end 
 end 
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 end 
 end 

end 
  
endmodule 

11.3.8 display.v 
// Credit to g.p. hom 
module xvga(input vclock, 
 output reg [10:0] hcount, // pixel number on current line 
 output reg [9:0] vcount,     // line number 
 output reg vsync,hsync,blank); 
 
   // horizontal: 1344 pixels total 
   // display 1024 pixels per line 
   reg hblank,vblank; 
   wire hsyncon,hsyncoff,hreset,hblankon; 
   assign hblankon = (hcount == 1023);  
   assign hsyncon = (hcount == 1047); 
   assign hsyncoff = (hcount == 1183); 
   assign hreset = (hcount == 1343); 
 
   // vertical: 806 lines total 
   // display 768 lines 
   wire vsyncon,vsyncoff,vreset,vblankon; 
   assign vblankon = hreset & (vcount == 767);  
   assign vsyncon = hreset & (vcount == 776); 
   assign vsyncoff = hreset & (vcount == 782); 
   assign vreset = hreset & (vcount == 805); 
 
   // sync and blanking 
   wire next_hblank,next_vblank; 
   assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank; 
   assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank; 
   always @(posedge vclock) begin 
 hcount <= hreset ? 0 : hcount + 1; 
 hblank <= next_hblank; 
 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync;  // active low 
 
 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount; 
 vblank <= next_vblank; 
 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync;  // active low 
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 blank <= next_vblank | (next_hblank & ~hreset); 
   end 
endmodule 
 
// Credit to g.p.hom 
// Description:  Display 8 hex numbers on 7 segment display 
module display_8hex( 

input clk, // system clock 
input [31:0] data, // 8 hex numbers, msb first 
output reg [6:0] seg, // seven segment display output 
output reg [7:0] strobe// digit strobe 
); 

 
localparam bits = 13; 
  
reg [bits:0] counter = 0;  // clear on power up 
  
wire [6:0] segments[15:0]; // 16 7 bit memorys 
assign segments[0]  = 7'b100_0000; 
assign segments[1]  = 7'b111_1001; 
assign segments[2]  = 7'b010_0100; 
assign segments[3]  = 7'b011_0000; 
assign segments[4]  = 7'b001_1001; 
assign segments[5]  = 7'b001_0010; 
assign segments[6]  = 7'b000_0010; 
assign segments[7]  = 7'b111_1000; 
assign segments[8]  = 7'b000_0000; 
assign segments[9]  = 7'b001_1000; 
assign segments[10] = 7'b000_1000; 
assign segments[11] = 7'b000_0011; 
assign segments[12] = 7'b010_0111; 
assign segments[13] = 7'b010_0001; 
assign segments[14] = 7'b000_0110; 
assign segments[15] = 7'b000_1110; 
  
always @(posedge clk) begin 

 counter <= counter + 1; 
 case (counter[bits:bits-2]) 
 3'b000: begin 
 seg <= segments[data[31:28]]; 
 strobe <= 8'b0111_1111 ; 
 end 
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 3'b001: begin 
 seg <= segments[data[27:24]]; 
 strobe <= 8'b1011_1111 ; 
 end 
 
 3'b010: begin 
 seg <= segments[data[23:20]]; 
 strobe <= 8'b1101_1111 ; 
 end 
 3'b011: begin 
 seg <= segments[data[19:16]]; 
 strobe <= 8'b1110_1111;   
 end 
 3'b100: begin 
 seg <= segments[data[15:12]]; 
 strobe <= 8'b1111_0111; 
 end 
 
 3'b101: begin 
 seg <= segments[data[11:8]]; 
 strobe <= 8'b1111_1011; 
 end 
 
 3'b110: begin 
 seg <= segments[data[7:4]]; 
 strobe <= 8'b1111_1101; 
 end 
 3'b111: begin 
 seg <= segments[data[3:0]]; 
 strobe <= 8'b1111_1110; 
 end 
 endcase 
 end 
 
endmodule 
 
module hex_to_dec #(parameter BITS = 14, parameter DIGITS = 4, parameter BASE = 10)( 

input clk, 
input reset, 
input [BITS-1:0] hex, 
output reg [(4*DIGITS)-1:0] dec 
); 

 
109 



 
shadekat, szabom        6.111 Virtual Softball Project         Fall 2017 

  
// tracks an update in the hex value 
reg [BITS-1:0] prev_hex; 
reg [BITS-1:0] count_hex; 

  
// hard coded for now -> make into an array! reg [3:0] count_dec [DIGITS-1:0] 
reg [3:0] count_dec_0; 
reg [3:0] count_dec_1; 
reg [3:0] count_dec_2; 
reg [3:0] count_dec_3; 

  
always @(posedge clk) begin 

 if (reset) begin 
 prev_hex <= hex; 
 count_dec_0 <= 0; 
 count_dec_1 <= 0; 
 count_dec_2 <= 0; 
 count_dec_3 <= 0; 
 dec <= 0; 
 end 
   
 else if (count_hex != 0) begin // increment count and shift base 10 
 count_hex <= count_hex - 1; 
 if (count_dec_0 == BASE-1) begin 
 count_dec_0 <= 0; 
 if (count_dec_1 == BASE-1) begin 
 count_dec_1 <= 0; 
 if (count_dec_2 == BASE-1) begin 
 count_dec_2 <= 0; 
 count_dec_3 <= count_dec_3 + 1; 
 end 
 else count_dec_2 <= count_dec_2 + 1; 
 end 
 else count_dec_1 <= count_dec_1 + 1; 
 end 
 else count_dec_0 <= count_dec_0 + 1; 
 end 
   
 else begin 
 dec <= {count_dec_3, count_dec_2, count_dec_1, count_dec_0}; // update output once 
counting complete 
   
 if (prev_hex != hex) begin // start counting if new data available 
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 prev_hex <= hex; 
 count_hex <= hex; 
   
 count_dec_0 <= 0; 
 count_dec_1 <= 0; 
 count_dec_2 <= 0; 
 count_dec_3 <= 0; 
 end 
   
 end 

end 
  
endmodule 
 

11.3.9 siren.v 
module siren (  
    input clk,  // 65MHz 
    input reset, 
    input on, 
    output reg siren 
    ); 
  
    // divisor values to get 880Hz output 
    parameter DIV_880 = 73_863;  
  
    // set up counters 
    reg [17:0] count;           // counts to set output frequency 
    reg [17:0] div; 
  
    always @ (posedge clk) begin 
        if (reset) begin        // reset counter, default 880Hz 
            count <= 0; 
            div <= DIV_880; 
        end 
        else if (on) begin 
            count <= count + 1; 
            if (count == div) begin                   // reset counter 
                siren <= 0;  
                count <= 0; 
            end 
            else if (count == div / 2) siren <= 1;    // get 50% duty cycle output 
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        end 
    end 
endmodule 
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