1.
2,

3.

Virtual Softball

Katie Shade and Melinda Szabo

Overview

Design
2.1 Goals and Scope
2.2.1 Baseline
2.2.2 Expected
2.2.3 Stretch
2.2 Block Diagram

Implementation
3.1 Physical Bat Interfacing
3.2 Bat Swing Calculator
3.3 Gameplay
3.4 Hit Calculator
3.5 Graphics

4. Testing

4.1 List of Modules

4.2 External Components

4.3 Design Verification
4.3.1 Physical Bat Interfacing
4.3.2 Bat Swing Calculator
4.3.3 Gameplay
4.3.4 Hit Calculator
4.3.5 Graphics

5. Timeline

Week of 10/30
Week of 11/6

Week of 11/13
Week of 11/20
Week of 11/27
Week of 12/4

Week of 12/11

6. Responsibilities

6.111 - 2017

© © ©O© ©O© 00 N N O OO O o a A W W WwW DN

RGN
o O ©

_ A A A A A A
[U U U O e T e T =)

-
-—

1. Overview

Softball is a team sport played by people of all ages. It relies on both strategy and skill in order
to be successful. In the winter months, it is often difficult to practice outside due to weather.
This virtual softball game allows users to swing a real bat and practice their hitting timing from
the comfort of the indoors. It also gives non-softball players the opportunity to experience a
life-like version of the game with real equipment.

Users will stand with a bat in front of a screen. When the game begins, users will see a ball
approaching them as it becomes larger on the screen. It will be located in one of the four
quadrants of the strike zone. As the ball approaches the batter, this will be visually cued by the
ball changing color. When the ball is within hitting distance of the batter, it will turn a bright
color, indicating the optimal time to hit the ball. It will stay that color for a short period of time
until it returns to its original darker color and stays frozen on the screen in the strike zone.

The user is expected to swing the bat when the ball is in a hittable position (a bright color). By
interfacing with an IMU, real bat position and angle from an accelerometer can be recorded, and
a virtual representation of the bat will be reflected onto the screen in front of the user after the
swing. The goal is to give the user feedback on both their hitting timing as well as their batting
mechanics in the form of the bat angle while swinging. The screen will indicate approximately
where the bat hit the ball (up, down, left, right, center) or if they missed the ball due to timing or
incorrect bat angle. If the ball is hit, a future plausible trajectory of the hit ball will be shown in
order to make the game more fun and give better feedback to the user.

With time permitting, there will also be a defensive component to the game in the form of a field
player virtually catching a ball. For this part, the field player would see a ball coming at them on
the screen as the ball becomes larger when it approaches. They will then move a glove to
catch the ball at the right time. The ball’s location will be determined by the way the batter
(described in the previous paragraph) hit the ball. The movement of the glove can be
implemented either in a videogame-like manner with moving arrow keys or a joystick or via a
physical glove that is tracked. These defensive components are considered stretch goals as the
batting functionality is the first priority.

2. Design

2.1 Goals and Scope

Priorities are listed in terms of importance. PO denotes baseline requirements to build the rest
of the project on. Anything P3 or higher is definitely considered a stretch goal. The priorities list
the general order in which the goals are expected to be worked on.

2.2.1 Baseline

1. Take inputs from physical bat swing
e PO - Determine the timing of when the user would hit the ball if this were a real
game.
e PO - Determine the angle of the physical bat as it comes through the strike zone.

2. Graphically represent a ball's path as it comes toward the user.
e PO - Ball becomes larger as it gets closer to the batter.
e PO - Use color to represent when the ball should be hit.

3. Graphically represent how the bat was swung.
e PO - Show the location on the ball that the bat is expected to hit it.
e PO - Show if the batter missed the ball.

2.2.2 Expected

1. Ball location in the strike zone will change between pitches.
e P1 - The ball position will change randomly from pitch to pitch.
e P1 - The corresponding determination of a hit or miss will be dependent on both
the bat swing and the ball position.

2. Indicate that the user is ready for the next pitch.
e P1 -The user can press a button to show they would like to receive another
pitch.

3. Wired bat communications with the NEXYS4.

e P1 -The IMU on the bat will be sending data via a wired connection to the
necessary system modules. Although having a wire connected to the bat is not
ideal, the bat can still be swung normally such that the swing is not affected by
the wire.

4. Graphically show batted ball trajectory.
e P2 - Based on where the bat hit the ball, show a plausible trajectory for the ball
after being hit.

2.2.3 Stretch

1. Wireless bat communications with the NEXYS4.
e P2 - Instead of having a wired connection from the IMU, data can be sent via
Bluetooth. We expect this to involve a microcontroller and additional Bluetooth
receivers.

2. Improved gameplay interface.

P2 - Include softball-themed backdrop on screen.

P2 - Add sound effects for ball hits and misses.

P2 - Make game playable on TV screen.

P2 - Adjustable difficulty can be set by the user before each swing.
P3 - Include opening menu scene with available settings.

P3 - Rate hits and keep a score for the full game.

3. Indicate that the user is ready for the next pitch.
e P3 -The user shows they would like to receive another pitch by raising the bat in
a ready position.

4. Defensive mode of the game for a field player.

e P2 - Have a ball graphically appear on the screen as though it is coming towards
the fielder.

e P2 - Fielder uses buttons on NEXYS4 to move virtual glove shown on screen to
catch the ball.

e P3 - The ball appears on the screen to the fielder in a corresponding trajectory to
how the batter hit the ball.
P3 - Fielder uses a joystick to move the glove to catch the ball.
P4 - Fielder uses a real glove (probably with LEDs attached) that is tracked by a
camera for its corresponding position.

e P4 - We detect the closing of the physical glove by having two metal plates that
connect and conduct electricity when the glove is closed. This would indicate
when the fielder thinks they should catch the ball.

2.2 Block Diagram

ball position

step ball

ball state

bat enable

BTNC

e

Yy
S|0UE JECq

(naus| 18q

EEIE
uoyisod ||eq

acceleration

gyroscope

raw_imu

3. Implementation

3.1 Physical Bat Interfacing

Interfacing with a physical bat will be a crucial component of making the softball game playable
and exciting. To make it as realistic as possible, we will use a real softball bat with attached
sensors to measure speeds and acceleration of each swing. For our initial implementation, we
plan to use an MPU9255 9-axis accelerometer, secured to the end of the bat with a wired
connection to the FPGA board, providing communication channels and power to the IMU. To
avoid getting lost in the details of an 12C or SPI protocol, we will channel all raw data from the
IMU through a Teensy 3.2, which will output all readings serially to an FPGA input pin. The
UART module will handle reading the stream of inputs and outputting the most recent readings

to the IMU module for calculations.

Given enough time, we hope to additionally implement wireless functionality to allow for more
mobility of the player, however it may also increase the latency of the system. We would use a
fast bluetooth transmitter, such as the Blue SMiRF from Sparkfun, which can go up to 115200
baud rates, to relay the information to the Teensy and include a receiver on the FPGA board to
communicate with the rest of the system.

3.2 Bat Swing Calculator

The bat _module will serve to translate accelerometer data into meaningful information that
can be processed by the main program. It receives synchronized acceleration and gyroscopic
information recorded and transmitted by the IMU from the UART module and performs the
necessary physics calculations to get key metrics of a swing. The most important readings that
need to be captured are the swing timing and exact angle at the moment the bat intersects the
plane of the ball. This can be calculated from the inflection point in the vertical position of the tip
of the bat, which requires integrating the speed over the time of the swing and knowing the
orientation of the IMU with respect to the real world. At the moment the bat reaches it's lowest
point in the swing, a signal is sent to the FSM and the angle of the bat is stored, which will be
used in hit calculations by the drawer module.

Although in our first approach a pitch is initiated by the press of a button on the FPGA, we would
want a raised bat to indicate that the batter is ready for the ball. This feature will be implemented
if we are able to get the IMU functioning properly and are able to easily read and interpret data
from it.

3.3 Gameplay

The main FsM controls the game sequence and manages all other modules. With support of
the timer module (modified from the car alarm lab implemented earlier in the semester), it
initiates the game setup from a pseudo-randomized state by taking the least significant bits of a
counter at an arbitrary point in time. We may include a difficulty setting, which determines the
speed of the ball and time frame to swing, that the FSM handles by sending a step_ball signal at
a certain frequency and setting the corresponding times for the timer. The main states and
transitions within the FSM are depicted below. In each state, the outputs are updated to reflect
all currently known values. This FSM allows for expansion of the game to include a fielder to
virtually catch the ball at a location determined by the hit trajectory. Although a fun addition, this
expansion will only be implemented once all other modules are functional and have met the
expected goals.

timeout

timeout

r 3

Signal for new

pitch swing

k4

batter up — butten

push orbr:tisingof BALL BAI_I_ IN
[" COMIING ZONE

Fy

v

Signal for new
pitch

timeout el

HIT

3.4 Hit Calculator

Once a swing is detected and the angle of the bat is known, the drawer module will have
enough input data from the ball and bat states to determine how the ball was hit. It will output
information on the geometry of the ball and bat to the graphics module for an accurate display,
and it will return information about the hit. The metrics we consider important for a hit are
vertical position (determined by angle), horizontal position (determined by timing), and speed (if
we get our IMU readings accurate enough to detect such variations).

3.5 Graphics

To make the game playable and fun, we will include visual cues on a screen of when to hit the
ball and feedback on the results of a hit. The graphics module takes inputs from the drawer
on the position and size/orientation of the ball and bat. It then creates simple blobs to display
on the screen. We will follow pixel representations similar to the pong game implemented earlier
for a lab. Because the ball is represented as a circle, we may need to delay the output by a few
clock cycles to calculate multiplications, but this lag will not be noticeable by the player because
it is accounted for when measuring the timing of the swing. The display also includes a
segmentation of the screen into four main quadrants to provide an indication to the player of
different pitch locations requiring different swing angles. There will also be some form of
feedback reflecting the success of a hit and plausible outcome of the swing either as a score
counter or hit/miss indicator light as well as expected trajectory of the ball. The display screen

will primarily be a lab monitor, however, if we are able to implement a scaling factor to make the
ball and bat still look realistic on different screen sizes, we would make the game playable on
the TV screen as well. Additionally, we may include features such as a ballpark backdrop,
sounds, or game-like menu screen if we have enough time, but our priorities are to optimize the
physical bat swing detector. Given that our graphics are minimalistic and we are not storing
much data about previous swings, memory will not be a main consideration for this project.

Possible Strike Zone Example Graphic:

4. Testing

4 .1 List of Modules

UART

Bat module
FSM

Drawer
Graphics
Timer

Debounce

Synchronizer

4.2 External Components

Essential:

MPU9255 ($5)

Teensy V3.2 ($20)

Softball bat (borrowed from MIT Varsity Softball Team)
Display monitor (in lab)

Nexys4DDR board (in lab)

Additional:
Blue SMiRF Silver- fast bluetooth module transmitter and receiver ($25 each)
Joystick (in lab)

4.3 Design Verification

To keep our design modular and testable without having everything complete, we can separate
the design into main components that can be tested individually.

4.3.1 Physical Bat Interfacing

To test UART communication between the FPGA and Teensy, we can have the Teensy output
arbitrary data and verify that the FPGA is able to read back that data and separate it into
meaningful chunks. Ideally, we would use sample data read from the IMU to verify the
functionality of that specific process. Using this same technique, we will be able to test how well
communicating over Bluetooth works and whether the data is still accurate enough for our
purposes.

4.3.2 Bat Swing Calculator

For the bat swing, it is necessary to have valid IMU data read into the FPGA before being able
to verify that our calculations based on that data are correct. To avoid relying on the success of
the UART communication and without needing to implement an 12C protocol, we will first
demonstrate the functionality of all calculations in a higher-level C-like language written directly
on the Teensy. Once that is shown to be functional, we can transfer the logic to the FPGA.
Once the communication is functional, we can test the full bat module. Alternatively, if
communication is not yet ready, we can try to extract and save readings from a real bat swing
and use those as data inputs for a simulation of the IMU calculator module.

4.3.3 Gameplay

Gameplay aims to test correct transitioning in the sequence of play, targeting the FSM module.
Because we will be building off of an existing and working timer, we can use that to help signal

the correct times to transition, while providing necessary inputs via simulation or by button
presses. The output will be matched to expected state transitions given the inputs.

4 .3.4 Hit Calculator

Testing the whole display will require proper outputs from the drawer and a correctly
implemented graphics module. We can start by verifying the outputs of the drawer module being
correct, although they may be hard to judge without any visual aids. By inputting general ball/bat
state and easy-to-track update values (time steps, bat angles, etc), the drawer module must
calculate the correct size/orientation of each object. We will verify these outputs both
numerically, to make sure they are within reasonable ranges, and visually, to make sure they
look correct on screen once the graphics system is fully functional.

4.3.5 Graphics

The graphics can be tested with a series of plausible gameplay situations, described as
simulation inputs. The module requires only ball position and size, bat angle and length, and
enable signals for all objects. Providing reasonable inputs allows us to step through a mock
game sequence without a fully implemented FSM.

5. Timeline

This is meant to give a rough timeline of what modules should be worked on each week. As we
begin working, we will make harder deadlines for ourselves each week, but this is meant to give
a rough idea of the rest of the semester.

e Week of 10/30

o IMU interfacing with teensy and NEXYS4

m Implement data flow from physically swung bat to modules.
o Ball and bat graphics

m Implement with fake bat and ball positions and data.

e Week of 11/6

o Bat physics
m Figure out how to determine the timing of when the swing would hit the
ball in a real game.
m Determine bat angle through the strike zone with data from the
gyroscope.
o Timing
m Implement the universal timing of all modules including the bat so that the
resulting swing timing data is accurate.

e Week of 11/13

o Hit Calculating
m Graphically implement real data from the bat and show how the ball would
be hit.
m Determine the trajectory of a hit ball.
o Gameplay
m Implement the FSM so that all modules are connected with correct timing.

e \Week of 11/20

o This is the week of Thanksgiving, so we realistically expect to be in lab much less
time.
o Test the existing parts and determine which stretch goals should be worked-on.

o Week of 11/27

o Work on stretch goals
o Wireless Connection
m Instead of having a physical wire connected to the bat, try to transfer data
wirelessly.
o Glove/Fielding Modules
m [f time permits, implement the fielding modules to play the defensive parts
of virtual softball.

e \Week of 12/4

o Finishing Touches
m Incremental enhancements
m Small changes made to improve the user experience

e Week of 12/11

o Checkoff by 12/11
o Video filming on 12/12
o Finalize the report due on 12/13

6. Responsibilities

Subsystem Designer
Physical Bat Interfacing Melinda
Bat Swing Calculator Both
Gameplay Melinda
Hit Calculator Katie
Graphics Katie

